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ALPCAH: Subspace Learning for Sample-Wise
Heteroscedastic Data

Javier Salazar Cavazos , Graduate Student Member, IEEE, Jeffrey A. Fessler , Fellow, IEEE,
and Laura Balzano , Senior Member, IEEE

Abstract—Principal component analysis (PCA) is a key tool
in the field of data dimensionality reduction. However, some
applications involve heterogeneous data that vary in quality
due to noise characteristics associated with each data sample.
Heteroscedastic methods aim to deal with such mixed data
quality. This paper develops a subspace learning method, named
ALPCAH, that can estimate the sample-wise noise variances and
use this information to improve the estimate of the subspace
basis associated with the low-rank structure of the data. Our
method makes no distributional assumptions of the low-rank
component and does not assume that the noise variances are
known. Further, this method uses a soft rank constraint that
does not require subspace dimension to be known. Additionally,
this paper develops a matrix factorized version of ALPCAH,
named LR-ALPCAH, that is much faster and more memory
efficient at the cost of requiring subspace dimension to be
known or estimated. Simulations and real data experiments
show the effectiveness of accounting for data heteroscedasticity
compared to existing algorithms. Code available at https://github.
com/javiersc1/ALPCAH.

Index Terms—Heteroscedastic data, heterogeneous data qual-
ity, subspace basis estimation, subspace learning.

I. INTRODUCTION

MANY modern data-science problems require learning an
approximate signal subspace basis for some collection

of data. This process is important for downstream tasks involv-
ing the subspace basis coefficients such as classification [1],
regression [2], and compression [3]. More concretely, lesion de-
tection [4], motion estimation [5], dynamic MRI reconstruction
[6], and image/video denoising [7] are practical applications
involving the estimation of a subspace basis. In the modern “big
data” world, a significant amount of data is collected to solve
problems, and this data tends to belong to a high-dimensional
ambient space. However, the underlying relationships between
the data features are often low dimensional so the problem shifts
towards finding low-dimensional structure in the data.
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Some applications involve heterogeneous data that vary in
quality due in part to noise characteristics associated with each
data sample. Some examples of heteroscedastic datasets include
environmental air data [8], astronomical spectral data [9], and
biological sequencing data [10]. In heteroscedastic settings,
the noisier data samples can significantly corrupt conventional
basis estimates [11]. Subspace learning methods like probabilis-
tic PCA (PPCA) [12] work well in the homoscedastic setting,
meaning when the data is the same quality throughout, but fail
to accurately estimate bases in the heteroscedastic setting [13].
This limitation is due to implicit assumptions such as assuming
that each sample’s noise distribution is the same throughout
(PPCA), or in the case of the classical Robust PCA (RPCA)
method [14], that there are fewer outliers than good quality
data samples.

A natural approach could be to simply discard the noisiest
samples to avoid this issue. This approach requires the user to
know the data quality, which may be unavailable in practice.
That approach also assumes that there is enough good data
to estimate the basis, but it is possible that a lack of good
data requires using the noisy data, especially if the subspace
dimension is higher than the amount of good data. Furthermore,
even the noisier samples can help improve the basis estimate if
properly modeled [13], so it is preferable to use all of the data
available. This paper introduces subspace learning algorithms
that can estimate the sample-wise noise variances and use this
information in the model to improve the estimate of the sub-
space basis associated with the low-rank structure of the data.
See Fig. 1 for a visualization where PCA fails to account for
heteroscedasticity in a simple 2D data example, but our LR-
ALPCAH method more accurately finds the subspace basis.

The proposed subspace learning method, ALPCAH, first in-
troduced in previous proceedings work [15], allows for optional
use of rank knowledge via a low-rank promoting functional
and makes no distributional assumptions about the low-rank
component of the data, allowing it to achieve higher accuracy
than current methods without knowing the noise variances.
Moreover, we extend our previous proceedings work [15] by
developing an alternative formulation inspired by the matrix
factorization literature [16], that saves both memory and com-
pute time at the cost of requiring the subspace dimension to be
known or estimated.

The paper is organized as follows. Section II introduces the
heteroscedastic problem formulation for subspace learning and
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Fig. 1. 1D subspace with data consisting of two noise groups shown with
circle and triangle markers.

discusses related work. Section III introduces two subspace
learning methods, one with nuclear norm style low-rank regu-
larization originally introduced in our proceedings paper [15],
and an extension to a regularization-free maximum likelihood
approach. Section IV covers synthetic and real data experi-
ments that illustrate the effectiveness of these methods. Finally,
Section V discusses some limitations of our methods and pos-
sible extensions.

II. PROBLEM FORMULATION & RELATED WORKS

Let yi ∈ R
D denote the data samples for index

i ∈ {1, . . . , N} given N total samples, and let D denote
the ambient dimension. Let xi represent the low-dimensional
data sample generated by xi =Uzi where U ∈ R

D×d is an
unknown subspace basis of dimension d and zi ∈ R

d are the
corresponding basis coordinates. Collect the measurements
into a matrix Y = [ y1, . . . ,yN ]. Then the heteroscedastic
model we consider is

yi = xi + εi where εi ∼N (0, νiI) (1)

assuming Gaussian noise with variance νi, where I denotes the
D ×D identity matrix. We consider both the case where each
data point may have its own noise variance, and cases where
there are G groups of data having shared noise variance terms
{ν1, . . . , νG}. Section III proposes an optimization problem
that estimates the heterogeneous noise variances {νi} and the
subspace basis U .

A. Heteroscedastic Impact on Subspace Quality

Before describing the methods, we illustrate how het-
eroscedastic data impacts the quality of the PCA subspace basis
estimate Û :,1:d, the first d columns of Û . Let Y =X +E
where X ∈ R

D×N is a rank-d matrix and E ∈ R
D×N is the

noise matrix where E:,i ∼N (0, νiI) ∀j. Let Y = ÛΣ̂V̂
′
and

X =UΣV ′ denote singular value decompositions of their re-
spective matrices, σi(A) denotes the ith singular value of A.
Let ‖A‖2 denote the spectral norm of matrix A and ‖x‖2

denote the Euclidean norm of a vector x. The notation a � b
means ∃k > 0 s.t. a≤ kb. By Wedin-Davis-Kahan sin θ theo-
rem [17, p. 95], it is known that

‖Û :,1:dÛ
′
:,1:d −U :,1:dU

′
:,1:d‖2 ≤

2‖E‖2
σd(X)− σd+1(X)

. (2)

This inequality states that the maximum angle misalignment
between the latent subspace basis U :,1:d and the SVD-estimated
subspace Û :,1:d is bounded by the spectral norm of the noise
matrix over the spectral gap in matrix X . Assuming the el-
ements in E are zero mean and independent (not necessarily
identically distributed) random variables it is known from [18]
that, in expectation, the spectral norm of E is bounded as

E[‖E‖2] �max
i

√∑
j

E[E2
ij ]

+ max
j

√∑
i

E[E2
ij ] + 4

√∑
i,j

E[E4
ij ]. (3)

Because E:,i ∼N (0, νiI) ∀j in our application, it can be ver-
ified that

max
i

√∑
j

E[E2
ij ] =

√
ν
(1)
sum (4)

max
j

√∑
i

E[E2
ij ] =

√
Dνmax (5)

4

√∑
i,j

E[E4
ij ] =

4

√
3Dν

(2)
sum (6)

for νmax =maxi νi and ν
(k)
sum =

∑
i ν

k
i . Let CX correspond to

the covariance matrix of X , i.e., CX = 1
NXX ′. Combin-

ing these bounds with the property that σd+1(X) = 0 for a
rank-d matrix leads to the following result. The subspace error,
or more precisely, the maximum angle separation between the
true subspace basis U :,1:d and the estimated subspace basis
Û :,1:d is bounded as follows

E[‖Û :,1:dÛ
′
:,1:d −U :,1:dU

′
:,1:d‖22]

�

(√
ν
(1)
sum +

√
Dνmax +

4

√
3Dν

(2)
sum

)2

Nσd(CX)
. (7)

This upper bound indicates that the quality of the subspace
basis estimate Û :,1:d provided by the SVD of noisy data Y ,
i.e., by conventional PCA, could be degraded by heteroscedastic
noise. Fig. 8 in the appendix provides empirical evidence for
this claim. Thus, it can be advantageous to model the het-
eroscedasticity and design a more robust PCA-like algorithm
that mitigates some of the effects of heteroscedastic noise and
achieves more accurate subspace basis estimates.

B. Other Heteroscedastic Models

This paper focuses on heteroscedastic noise across the data
samples. There are other methods in the literature that explore
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heteroscedasticity in different ways. For example, HeteroPCA
considers heteroscedasticity across the feature space [19]. One
possible application of that model is for data that consists of sen-
sor information with multiple devices that naturally have differ-
ent levels of precision and signal to noise ratio (SNR). Another
heterogeneity model considers the noise to be homoscedastic
and instead assume that the signal itself is heteroscedastic [20].
In that case, the power fluctuating signals are embedded in white
Gaussian noise. These different models each have their own
families of applications.

C. Probabilistic PCA (PPCA)

PCA methods like PPCA [12] work well in the homoscedas-
tic setting, i.e., when the data is the same quality throughout,
but fail to accurately estimate the basis when the data varies in
quality, e.g., in the heteroscedastic setting [15].

Let C = FF ′ + νI and observe that the model

yi = Fzi + ε (8)

xi ∼N (0, I), ε∼N (0, νI), yi ∼N (0,C) (9)

is similar to (1) in that we have observation data yi, unobserved
variables zi, factor matrix F , and noise term ε. Then, for a
covariance-type matrix Cy =

∑
i yiy

′
i formed from data sam-

ples Y , the negative log-likelihood is

L(F , ν) =−N

2
(d log(2π) + log(|C|) + Tr(C−1Cy)), (10)

where | · | and Tr(·) denote matrix determinant and trace, re-
spectively. After estimating F and ν by minimizing (10), PPCA
finds the subspace basis by orthogonalizing F . Because ε∼
N (0, νI) is identically distributed across all data samples,
PPCA does not account for heterogeneous data samples.

D. Robust PCA (RPCA)

Robust PCA (RPCA) [14] decomposes the data matrix Y =
X +E into a low-rank component X and an outlier matrix E
by the following optimization problem:

argmin
X,E

(λ‖X‖∗ + ‖E‖1,1) s.t. Y =X +E (11)

where ‖X‖∗ =
∑

i=1 σi(X) and ‖E‖1,1 =
∑

i,j |Eij |. RPCA
finds the subspace basis by iteratively applying an SVD to X
to soft threshold the singular values. Here, the term ‖E‖1,1
encourages sparsity and so captures noise in the data matrix by
assuming there is a sparse collection of outliers. This modeling
assumption may not be true in some applications; for instance,
low-quality and abundant commercial sensors are often com-
bined with fewer high-quality sensors. Ref. [15] illustrated the
limitations of RPCA in the heteroscedastic regime.

E. Weighted PCA (WPCA)

Given data samples {y1, . . . ,yN} and weights {w1, . . . ,
wN}, the weighted PCA (WPCA) approach [21] for modeling

heteroscedastic data forms the following weighted sample co-
variance matrix

Cy(w) =
N∑
i=1

wi(yiy
′
i), (12)

where a natural choice for the weights is wi = ν−1
i . WPCA

finds the subspace basis by orthogonalizing Cy(w) via eigen-
value decomposition (EVD). However, the noise variances may
not be known, e.g., unknown origin of the dataset or unavailable
data sheet for physical sensors.

F. Heteroscedastic PPCA Technique (HePPCAT)

To our knowledge, besides ALPCAH, there is only one
sample-based heteroscedastic PCA algorithm that estimates un-
known noise variances. The Heteroscedastic Probabilistic PCA
Technique (HePPCAT) [13] builds on the PPCA formulation.
For n1 + . . .+ nG =N data samples from G noise groups, the
model is described as

yg,i = Fzg,i + εg,i i ∈ {1, . . . , nG}, g ∈ {1, . . . , G} (13)

for factor scores zg,i ∼N (0, I), noise terms εg,i ∼N (0, vgI),
and points yg,i ∼N (0,Cg)whereCg = FF ′ + vgI for factor
matrix F . Then, the negative log-likelihood model to optimize
is the following

L(F ,v) =
1

2

G∑
g=1

[ng ln det(Cg)
−1 − Tr{Y T

(g)(Cg)
−1Y (g)}]

(14)

where Y (g) denotes the submatrix of Y that consists only
of data samples belonging to the gth noise group, and v =
(v1, . . . , vG) denotes the unknown nose variances for each
group. Being a factor analysis method, HePPCAT makes Gaus-
sian assumptions about the basis coefficients zl,i that may not
be a good model for some datasets. Additionally, HePPCAT
requires the rank parameter d associated with the latent signal
matrix X to be estimated or known a priori.

III. PROPOSED SUBSPACE LEARNING METHODS

This section introduces the ALPCAH formulation for sub-
space learning. Since nuclear norm computation is expensive
for big data applications due to SVD computations, we take
inspiration from the matrix factorization literature and addition-
ally develop LR-ALPCAH to be a fast and memory efficient
alternative to ALPCAH.

A. ALPCAH

For the measurement model yi ∼N (xi, νiI) in (1), the
probability density function for a single data vector yi is

1√
(2π)D|νiI|

exp

[
−1

2
(yi − xi)

′(νiI)
−1(yi − xi)

]
. (15)
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For uncorrelated samples, after dropping constants, the joint log
likelihood of all data {yi}Ni=1 is the following

N∑
i=1

−1

2
log |νiI| −

1

2
(yi − xi)

′(νiI)
−1(yi − xi). (16)

Let Π= diag(ν1, . . . , νN ) ∈ R
N×N be a diagonal matrix rep-

resenting the (typically unknown) noise variances. Then, the
negative log likelihood in matrix form is

D

2
log |Π|+ 1

2
Tr[(Y −X)Π−1(Y −X)′]

=
D

2
log |Π|+ 1

2
‖(Y −X)Π−1/2‖2F, (17)

using trace lemmas. When both Π and X are unknown, pur-
suing maximum-likelihood estimation with (17) would lead
to degenerate solutions. Thus, regularization is necessary to
promote a low-rank solution. In this work, we use a functional
modified from the nuclear norm regularizer to encourage the
estimate of X to be low rank.

The optimization problem used by ALPCAH for the het-
eroscedastic model is

argmin
X,Π

λfd̂(X) +
1

2
‖(Y −X)Π−1/2‖2F +

D

2
log |Π|,

(18)

where fd̂(X) is a novel functional [22] that promotes low-rank
structure in X , d̂ is the rank parameter, and λ ∈ R

+ is a regular-
ization parameter. In the following, we introduce our algorithm
called ALPCAH (Algorithm for Low-rank regularized PCA
for Heteroscedastic data) for solving (18). Since X represents
the denoised data matrix, the subspace basis is calculated by
SVD on the optimal solution from (18) and extracting the
first d̂ left singular vectors so that X̂ =

∑
i σ̂iûiv̂

′
i and thus

Û = [û1, . . . , ûd̂]. The low-rank promoting functional we use
is the sum of the tail singular values defined as

fd̂(X) �
min(D,N)∑
i=d̂+1

σi(X) = ‖X‖∗ − ‖X‖Ky−Fan(d̂) (19)

where ‖ · ‖∗ denotes the nuclear norm, and ‖ · ‖Ky−Fan(d̂) de-
notes the Ky-Fan norm [23] defined as the sum of the first
d̂ singular values. For d̂= 0, f0(X) = ‖X‖∗. For a general
d̂ > 0, fd̂(X) is a nonconvex difference of convex functions.
We use the functional fd̂ instead of the nuclear norm since we
empirically found that the nuclear norm tends to over shrink the
singular values of X in the heteroscedastic setting. Here, the
rank parameter d̂	D is either known beforehand, estimated
using methods like row permutations [24] or sign flips [25], or
intentionally over-parameterized.

Definition 1: Let A ∈ R
D×N be a rank k matrix such that

its decomposition is SVD(A) =UADAV
′
A where DA =

diag(σ1(A), . . . , σmin(D,N)(A)). Let the soft thresholding
operation be defined as Sτ [x] = sign(x)max(|x| − τ, 0) for
some threshold τ > 0. Decompose DA such thatDA =DA1 +
DA2 = diag(σ1(A), . . . , σd̂(A), 0, . . . , 0) + diag(0, . . . , 0,

σd̂+1(A), . . . , σN (A)). Then, the proximal map for fd̂ is the
tail singular value thresholding operation [22]:

TSVT(A, τ, d̂) � UA (DA1 + Sτ [DA2])V
′
A. (20)

Although the proximal operator for fd̂ is provided in (20),
it is unclear how one would apply a proximal gradient method
(PGM) directly to (18) due to the product of X and Π. One
could apply a block coordinate decent approach that alternates
between updating X using a PGM, and updates the diagonal
elements of Π using a closed-form solution. The PGM update
of X could cause slow convergence because the Lipschitz con-
stant of the gradient of the smooth term g(X) is the reciprocal
of the smallest diagonal element of Π, which could be quite
large, leading to small step sizes. Thus, instead we optimize
(18) using the inexact augmented Lagrangian method known
as the alternating direction method of multipliers (ADMM)
[26] that introduces auxiliary variables to convert a complicated
optimization problem into a sequence of simpler optimization
problems.

Defining the auxiliary variable Z = Y −X , the augmented
penalty parameter μ ∈ R, and dual variable Λ ∈ R

D×N , the
augmented Lagrangian, as defined in [27], is

Lμ(X,Z,Λ,Π) = λfd̂(X) +
1

2
‖ZΠ−1/2‖2F +

D

2
log |Π|

+ 〈Λ,Y −X −Z〉+ μ

2
‖Y −X −Z‖2F,

(21)

where 〈·, ·〉 denotes the Frobenius inner product between two
matrices.

Performing a block Gauss-Seidel pass for each variable in
(21) results in the following closed-form updates

Zt+1 = argmin
Z

Lμ(Xt,Z,Λt,Πt)

= [μ (Y −Xt) +Λt] (Π
−1
t + μI)−1 (22)

Xt+1 = argmin
X

Lμ(X,Zt,Λt,Πt)

= TSVT

(
Y −Zt +

1

μ
Λt,

λ

μ
, d̂

)
(23)

Λt+1 =Λt + μ (Y −Xt −Zt) (24)

for current iteration pass t. Each pass is run for T total iterations.
When we treat data sample yi as having its own unknown noise
variance, then the variance update is

Πt+1 = argmin
Π

Lμ(Xt,Zt,Λt,Π) =
1

D
Z ′

tZt � I. (25)

For the case when the data points have grouped noise variances,
let g ∈ {1, . . . , G} signify the gth noise group out of G total
groups with ng denoting the number of samples in the gth
group; then the grouped noise variance update instead becomes

νg =
1

Dng
‖Z(g)‖2F =

1

Dng
‖Y (g) −X(g)‖2F (26)
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where the notation Y (g) denotes the submatrix of Y that con-
sists only of data samples belonging to the gth noise group.

1) Convergence With Known Variance: Consider the cost
function for the case when the variances Π are known. The
formulation consists of a two-block setup written as

argmin
X,Z

λfd̂(X) +
1

2
‖ZΠ−1/2‖2F s.t. Y =X +Z. (27)

Theorem 1: Let Ψ(X,Z) = f(X) + g(Z) where f(X) =
λfd̂(X) and g(Z) = 1

2‖ZΠ−1/2‖2F. Let νi ≥ ε > 0 ∀i. As-
suming that μ in (21) satisfies μ > 2Lg = 2‖Π−1‖2, the se-
quence {(Xt,Zt,Λt,Π)}Ti=1 generated by ADMM in (22)
(23) (24) (25) converges to a KKT (Karush–Kuhn–Tucker)
point of the augmented Lagrangian Lμ(X,Z,Λ,Π) with
fixed Π.

Proof: ADMM convergence for nonconvex problems has
been explored for two-block setups [28]. The functional f(X)
is a proper, lower semi-continuous function since it is a
sum of continuous functions. The function g(Z) is a con-
tinuous differentiable function whose gradient is Lipschitz
continuous with modulus of continuity Lg = ‖Π−1‖2. By
definition g(Z) = ν

−1/2
1 Z11 + ν

−1/2
1 Z21 + . . .+ ν

−1/2
N ZDN .

Since g(Z) is a polynomial equation, its graph is a semi-
algebraic set.

Let G=X ′X ∈ R
N×N . Then, by Cayley Hamilton the-

orem, the characteristic polynomial of G is pG(z) = zN +
cn−1(G)zN−1 + . . .+ c1(G)z + c0 for constants ci ∈ R and
polynomial degree N . Let λ denote an eigenvalue of G which
implies pG(λ) = 0. Then, the set SG = {λ | pG(λ) = 0} is
semi-algebraic since it is defined by polynomial equations.
Note that λi(G) = σ2

i (X) since G is the Gram matrix of
X . The set SX = {σ | σ2 = λ ∈ SG, σ ≥ 0}= {σ1, . . . , σN}
is semi-algebraic as it is expressed in terms of polynomial
inequalities. Expressing h(X) = ‖X‖∗ = h(σ1, . . . , σN ), its
graph h= {(σ, f(σ))} is semi-algebraic and thus by extension
so is the nuclear norm.

By Tarksi-Seidenburg theorem [29, p. 345], defining the
map Φ : Rn → R

d̂ that retains the first d̂ singular values of
SX , the set Φ(SX) = {σ1, . . . , σd̂} is semi-algebraic and thus
so is q(X) = ‖X‖Ky−Fan(d̂). A finite weighted sum of semi-
algebraic functions is known to be semi-algebraic [30] and so
f(X) = h(X)− q(X) is semi-algebraic. Since the functions
f(X) and g(Z) are lower, semi-continuous and definable on an
o-minimal structure such as semi-algebraic [31], it follows that
Ψ(X,Z) = f(X) + g(Z) is a Kurdyka-Lojasiewicz function
[30]. Thus the sequence {(Xt,Zt,Λt,Π)}i∈N converges to a
KKT point by [28, Thm. 3.1].

B. LR-ALPCAH

The main compute expense for the ALPCAH algorithm
is the SVD operations used in every iteration of complexity
O(DN min (D,N)). To reduce computation, we take inspira-
tion from the matrix factorization literature [32] and factorize
X ∈ R

D×N ≈LR′ where L ∈ R
D×d̂ andR ∈ R

N×d̂ for some

rank estimate d̂. Using the factorized form, we propose to esti-
mate X by solving for L and R in the following optimization
problem

L̂, R̂, Π̂= argmin
L,R,Π

f(L,R,Π)

f(L,R,Π) =
1

2
‖(Y −LR′)Π−1/2‖2F +

D

2
log |Π|. (28)

This version is a maximum-likelihood estimator of Π and the
factors L and R. This comes from a modified model (1) where

yi =Lri + εi, εi ∼N(0, νiI), (29)

where ri denotes the ith column of R. We call this version
LR-ALPCAH given the prevalence of LR′ notation in the
matrix factorization literature. The crucial difference between
ALPCAH and LR-ALPCAH is that ALPCAH uses a “soft”
low rank constraint through the regularization penalty λ with
optional usage of d̂, whereas LR-ALPCAH uses a “hard” low
rank constraint since L and R rigidly contain d̂ columns.

We solve this optimization problem using alternating mini-
mization [33] to solve each sub-block, resulting in the following
updates:

Lt+1 = argmin
L

f(L,Rt,Πt)

= Y ΠtRt(R
′
tΠtRt)

−1 (30)

Rt+1 = argmin
R

f(Lt,R,Πt)

= Y ′Lt(L
′
tLt)

−1 (31)

Πt+1 = argmin
Π

f(Lt,Rt,Π) =⇒

e′jΠt+1ej =D−1‖(Y −LtR
′
t)ej‖22, ∀j, (32)

where ej denotes the jth standard canonical basis vector that we
use to select the jth column of some matrix. The Πt update (32)
is the same as (25) in that each point is treated as having its own
noise variance and both equations perform the same operation.
This implementation requires less computation and memory
since the matrix Z ′

tZt is not formed. One can substitute (32)
with (26) if noise grouping is known.

Since this is a nonconvex problem, initialization will play a
key role in the success of optimization. First, we initialize the
Lt and Rt matrices with the following spectral approach:

Spectral Init(Y ) = ÛΣ̂V̂ ′ ≈ (Û1:d̂Σ̂
1/2

1:d̂ )(Σ̂
1/2

1:d̂ V̂
′
1:d̂

)

= (L0)(R
′
0). (33)

This initialization from the matrix factorization literature [16]
[34] is a natural approach due to the Eckart-Young theorem [35]
that shows L0 and R0 are the best rank-constrained matrices
that solve

argmin
L,R

‖Y −LR′‖F subject to rank(L), rank(R)≤ d̂.

(34)

Second, we initialize the noise variances using the Euclidean
norms of the columns of the residual Y −L0R

′
0 with (32).
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Algorithm LR-ALPCAH (github.com/javiersc1/ALPCAH)
(unknown variances, unknown quality noise grouping)

Input: Y ∈ R
D×N : data, d̂ ∈ N

∗: rank estimate
Opt: T ∈ N

∗: iterations, ε ∈ R
+: variance noise floor

Output: U ∈ R
D×d̂: subspace basis, X ∈ R

D×N : low-rank
estimated data, ν ∈ R

+: estimated noise variances
// sample mean to de-mean data
μ← 1

NY 1
// the method assumes linear subspaces only
Y ← Y − 1′μ
// initialize matrices by (33)
L0,R0 ← SPECTRALINIT(Y , d̂)
// compute noise variances from residuals Y −L0R

′
0

// ej is canonical basis vector
ν0 ←maxj=1,...,N

1
D‖(Y −L0R

′
0)ej‖22

ν0 ←max(ν0, ε)
Π−1

0 ← (1/ν0)I
// update L,R,Π matrices using (30) (31) (32)
for t= 1, . . . , T do

Lt ← Y Π−1
t−1Rt−1(R

′
t−1Π

−1
t−1Rt−1)

−1

Rt ← Y ′
t−1Lt−1(L

′
t−1Lt−1)

−1

νj ←max( 1
D‖(Y −Lt−1R

′
t−1)ej‖22, ε), j = 1, . . . , N

Π−1
t ← Diagonal(1/νj)

end for
// form subspace basis from final left factor
U ← GRAMSCHMIDT(LT )
// construct de-meaned low-rank estimate
X ←LTR

′
T

// add back original sample mean
X ←X + 1′μ

Finally, we apply alternating minimization to update Lt and
Rt matrices at current iteration t via (30) (31) (32).

Since Lt is not semi-unitary but has the same range as U , we
apply Gram-Schmidt orthnormalization to the final Lt matrix to
estimate the subspace basis, as described in Alg. LR-ALPCAH.
The matrix inversions used in the Lt and Rt updates involve
d× d matrices that are relatively small and thus computation-
ally feasible for many practical problems given complexity
O(d̂3) knowing that d̂	min (D,N). Combining the matrix
multiplications and inversions, LR-ALPCAH has a per-iteration
complexity of O(DNd̂+ d̂3). This is in contrast to ALPCAH
with per-iteration complexity O(DN min (D,N)) due to the
SVD computations.

1) Convergence With Unknown Variance: Note that (28)
is a nonconvex function and we apply alternating minimiza-
tion, also known as block coordinate descent or block nonlin-
ear Gauss-Seidel method, to solve the optimization problem.
Given a noise variance lower bound ε > 0, the feasible sets for
L,R,Π variables are given by

SL = R
D×d̂, SR = R

N×d̂ (35)

SΠ = {Πi,j ∈ [ε,∞) ∀i= j, 0 o.w.}. (36)

Given the following optimization problem with

argmin f(L,R,Π)

subject to L,R,Π ∈ S = SL × SR × SΠ, (37)

the following theorem establishes local convergence of {(Lt,
Rt,Πt)}Tt=1 to critical points of (37).

Theorem 2: The sequence generated by alternating minimiza-
tion {(Lt,Rt,Πt)}Tt=1 in Alg. LR-ALPCAH has limit points
that are critical points of (37).

Proof: The cost function f is a continuously differentiable
function by inspection of both terms. The feasible sets SL,SR

are trivially nonempty, closed, and convex sets by definition.
Moreover, Π ∈ SΠ since it is an enforced constraint of the
optimization in (37). The function f is componentwise strictly
quasiconvex with respect to the two blocks L and R. This is be-
cause f(L,R,Π) w.r.t. L and f(L,R,Π) w.r.t. R are convex
terms it follows that they are pseudoconvex functions [36] and
this implies they are also strict quasiconvex functions [36]. It
then follows from [37, Prop. 5] that the sequence generated by
alternating minimization {(Lt,Rt,Πt)}Tt=1 converges to limit
points that are also critical points of (37).

IV. EMPIRICAL RESULTS & DISCUSSION

This section summarizes synthetic and real data experiments,
including astronomy spectra and RNA sequencing data, that
explore various aspects of subspace learning from heteroscedas-
tic data.

A. Synthetic Experiments

This section uses synthetic data to compare LR-ALPCAH
with other methods. We begin by describing the experimental
setup, followed by an investigation of PCA, and after that com-
pare to RPCA, HePPCAT, and WPCA.

a) Experimental Setup: We consider two groups of data,
one with fixed quality, meaning fixed size and additive noise
variance, and one whose parameters we vary. Let yi ∈ R

100

be D = 100 dimensional ambient-space data. Let U ∈ R
100×5

denote a basis for a d= 5 dimensional subspace generated by
random uniform matrices such that UΣV ′ = svd(A), where
Aij ∼ U [0, 1]. We use the compact SVD here. The low-rank
data is simulated as xi =Uzi where the coordinates zi ∈ R

5

were generated from U [−100, 100] for each element. Then,
we generated yi =Uzi + εi where εi ∈ R

100 was drawn from
N (0, νiI). The error metric used is subspace affinity error
(SAE) that compares the difference in projection matrices

SAE(U , Û) = ‖UU ′ − ÛÛ
′‖F/‖UU ′‖F (38)

so that a low error signifies a closer estimate of the true sub-
space. This metric is also known as normalized chordal distance
[38]. In summary, the noisy data Y = [y1, . . . ,yN ] is generated
accordingly, an estimate X̂ is generated from (1), the subspace
basis is calculated by X̂ =

∑
i σ̂iûiv̂

′
i =⇒ Û = [û1, . . . , ûd],

and we report the subspace affinity error.
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Fig. 2. Subspace affinity error ‖UU ′ − ÛÛ
′‖F/‖UU ′‖F performance of LR-ALPCAH compared to PCA.

Fig. 3. Absolute difference of LR-ALPCAH subspace error subtracted from
PCA while good data amount varies.

b) Subspace Basis Estimation (LR-ALPCAH vs. PCA):
We explored the effects of data quality and data quantity on the
heteroscedastic subspace basis estimates in different situations.
For the heatmaps in Fig. 2, we focused on comparing LR-
ALPCAH with PCA only to discuss this method in the general
context of subspace learning. In Fig. 2, each pixel represents
the ratio SAE(U , ÛLR-ALPCAH)/SAE(U , ÛPCA). A value close
to 1 implies LR-ALPCAH did not perform much better than the
other method, whereas a ratio closer to 0 implies LR-ALPCAH
performed relatively well. The average SAE ratio of 50 trials
is used, where each trial has different noise, basis coefficients,
and subspace basis realizations. The noise variance for group
1 is fixed to ν1 = 0.1 with N1 = 20 point samples. We varied
group 2 point samples N2 and noise variances ν2, as illustrated
in the x-axis and y-axis respectively for the heatmaps shown.

Fig. 2(a) compares LR-ALPCAH against PCA in the sit-
uation where noise variances are known. In this case, LR-
ALPCAH performs well relative to PCA in noisy situations and
can improve estimation, especially in extreme heteroscedastic
regions. From the bottom left corner and moving rightwards,
the estimation error worsened as the number of noisy points

Fig. 4. Absolute subspace quality performance of ALPCAH compared
against other methods. Zoomed-in areas shown within plots for better visibility
for certain λ ranges.

increased. To clarify, LR-ALPCAH never performed worse than
PCA, only that the advantage gap decreased as more noisy
samples were added. This means that, in LR-ALPCAH, the
noisy points may have contributed too much to the estimation
process when the good quality data should have more influence
in the process. For these results, we used the inverse noise
variances as the weighing scheme as this is a natural choice
that arises from the Gaussian likelihood. However, finding the
optimal scheme to mitigate this worsening effect is a topic of
future work.

Fig. 2(b) is similar to Fig. 2(a) but only using the high quality
points for PCA specifically, whereas LR-ALPCAH used all of
the data. One can see that even when there was enough good
data, there was still an improvement relative to applying PCA to
just the good data alone. The improvement increased as more
noisy points were added. Thus, it is beneficial to collect and
use all of the data, since the noisy points offer meaningful
information that can improve the estimate of the basis versus
using good data alone, especially in data-constrained situations.

c) Effects of Good Data: Fig. 3 explores how the num-
ber of good data samples affects subspace learning quality.
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Fig. 5. Experimental results of quasar flux data for subspace learning and noise sample estimation.

Fig. 6. Sample data matrix of quasar flux measurements across wavelengths
for each (column-wise) sample.

We fixed N2 = 50 and varied N1 while keeping ν1 = 0.1 and
varying ν2. This figure plots the difference SAE(U , ÛPCA)−
SAE(U , ÛLR-ALPCAH) to see when it is advantageous to use LR-
ALPCAH instead of PCA. In the absolute sense, both methods
performed similarly when good data is abundant. However,
when good data was more limited, there were larger differences
in subspace quality, meaning it is more advantageous to use
LR-ALPCAH.

d) Absolute Subspace Error: In this section, we discuss
absolute error of the algorithms in the unknown noise variance
setting without group knowledge. For Fig. 4, we fixed N1 =
50, N2 = 450 that have noise variances ν1 = 0.25, ν2 = 100.
The regularization parameter λ is varied (ALPCAH & RPCA
only) and subspace dimension is d= 10. As before, we use the
subspace affinity error SAE(U , Û). The average error is plotted
out of 50 trials with standard deviation bounds for each λ value.
Fig. 4 represents the unknown variance case but we again use
WPCA with weights wi = ν−1

i , a known variance method, to
illustrate the lowest possible affinity error if one hypothetically
knew the noise variances.

In Fig. 4, when using rank knowledge, ALPCAH (d̂= 10)
approaches the error of the other methods as λ grows. When

not using rank knowledge, for ALPCAH (d̂= 0), the method
can perform just as well but requires cross-validation to find
an ideal λ range. Both ALPCAH (d̂= 10) and LR-ALPCAH
achieved lower error than HePPCAT, likely because there are
no distributional assumptions on the basis coefficients with
ALPCAH/LR-ALPCAH. The RPCA method did not perform
well in these experiments, likely because of the model mismatch
between the heteroscedastic data and the outlier assumption
of RPCA. Excluding the case when rank knowledge is not
known, ALPCAH (d̂= 0), the regularization parameter appears
to be robust to this landscape of different variance and point
ratios.

B. Real Data Experiments

1) Astronomy Spectra Data: We investigated quasar spectra
data from the Sloan Digital Sky Survey (SDSS) Data Release
16 [39] using its DR16Q quasar catalog [40]. Each quasar has a
vector of flux measurements across wavelengths that describes
the intensity of observing that particular wavelength. In this
dataset, the noise is heteroscedastic across the sample space
(quasars) and feature space (wavelength), but we focused on
a subset of data that is homoscedastic across wavelengths and
heteroscedastic across quasars. The noise for each quasar is
known given the measurement devices used for data collection
[39], but we performed estimation as if the variances were
unknown so that we could compare the estimated values to the
reference values. We preprocessed the data (filtering, interpo-
lation, centering, and normalization) based on supplementary
material 5 of [41]. We formed a training dataset based on the
1000 smallest variance quasar flux samples and performed PCA
to get a “ground-truth” measurement of the subspace basis using
d̂= 5 as the rank parameter estimated from SignFlipPA [25].
We formed the test dataset by excluding the 1000 samples used
during training and combining 9000 samples of various noise
quality, leading to heteroscedasticity across samples as shown
in Fig. 6. This figure shows only the 3000 lowest noise variance
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Fig. 7. Biological scRNA-seq data results.

TABLE I
SUBSPACE LEARNING RESULTS

ON QUASAR FLUX DATA

Time
(ms)

Memory
(MiB)

Mean
SAE

Homoscedastic Reference
PCA 32.4 7.3 0.65

Heteroscedastic Methods
RPCA (classical) 5091.8 7977.5 0.46
HePPCAT 1339.1 5731.6 0.39
ALPCAH (d̂=0) 4339.3 3838.6 0.41
ALPCAH (d̂=10) 4339.9 3838.8 0.39
LR-ALPCAH 153.5 459.0 0.38

data samples along with 2000 noisier samples to illustrate the
differences in data quality.

For our subspace quality experiment, we report SAE using
the “ground-truth” basis over 100 trials for various methods.
We ran each applicable subspace learning algorithm for 100
iterations to ensure convergence. In Fig. 5(a), RPCA seems
to perform slightly worse than the other methods, indicating
a model mismatch between outliers and heteroscedastic data.
Moreover, it seems that LR-ALPCAH and ALPCAH performed
equally well as HePPCAT in this specific real data example.
All methods performed better than PCA, indicating a mismatch
between the homoscedastic assumption of PCA and the het-
eroscedastic data. Additionally, we examined the computational
time and memory requirements for these methods on this test
dataset. Table I shows that the proposed LR-ALPCAH method
is both extremely fast and memory efficient relative to the other
heteroscedastic methods as shown in bold. Since we have refer-
ence noise variance values, we also examined how the estimated
noise variance values compared to the reference values. Fig.
5(b) sorts the data based on the reference variance values and
plots the ALPCAH estimates. ALPCAH estimates generally
tracked the global trend found in the reference values but there
are minor variations among adjacent points.

2) Biological scRNA-Seq Data: This section applies PCA
and LR-ALPCAH to real data from single-cell RNA-
sequencing data (scRNA-seq) from [42]. This sequencing

technology is useful for quantifying the transcriptome of indi-
vidual cells [43]. The data is high dimensional since thousands
of genes are counted for thousands of cell samples, which
produces challenges for data analysis. PCA methods are useful
for scRNA-seq data to perform gene variation analysis and
clustering in low-dimensional spaces to study gene groups [44].
Heterogeneous noise may occur among both cells and genes
[25], which prompts further investigation into heteroscedastic-
aware PCA methods on scRNA-seq data. The data matrix
consists of 10,000 cells by 5,000 genes. We preprocessed the
data by subtracting the mean and replacing the missing values
with zeros. Since the noise variances are unknown in this appli-
cation, we cannot have a “ground truth” subspace to compare
against. Instead, we separate the data into train and test, and
calculate the NRMSD to compare reconstruction quality, i.e.,

NRMSD = ‖Y test −U trainU
′
trainY test‖F / ‖Y test‖F. (39)

The subspace basis was learned on the training data with
PCA or LR-ALPCAH and the test data was used to assess
reconstruction quality by projecting test data onto the subspace
basis and using the basis coefficients to return to the ambient
space. In this experiment, SignFlipPA was used to determine an
appropriate rank [25]. Fig. 7 shows a subset of the data matrix.
Here, the color map is clipped to 10 to better visualize the matrix
as most gene counts are sparse. The middle plot shows sorted
noise variances estimated by LR-ALPCAH indicating some
potential heterogenoity by one or two orders of magnitude. The
right plot shows that LR-ALPCAH has a better reconstruction
quality since it has ∼0.1 lower NRMSD than PCA. The
difference between PCA and LR-ALPCAH is more modest with
this dataset. Possibly, the results could be improved further by
developing a method that handles heteroscedasticity across both
the samples and features, as this data is doubly heteroscedastic.
Moreover, real scRNA-seq data has additional challenges such
as dependent noise that is not modeled by our method.
However, preliminary results indicate that LR-ALPCAH is a
promising approach and further investigation into addressing
model assumptions is an interesting direction of future work.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 19,2025 at 02:37:10 UTC from IEEE Xplore.  Restrictions apply. 



SALAZAR CAVAZOS et al.: ALPCAH: SUBSPACE LEARNING FOR SAMPLE-WISE HETEROSCEDASTIC DATA 885

Fig. 8. Experimental verification of heteroscedastic impact on PCA upper
bound (7).

V. CONCLUSION

This paper proposed two subspace learning algorithms that
are robust to heteroscedasticity by jointly learning the noise
variances and subspace bases. While LR-ALPCAH is memory
efficient and fast, its application is limited to sample-wise het-
eroscedasticity. It would be interesting to generalize this work
to be doubly heteroscedastic, where the features themselves also
have different noise variances. Applications such as biological
sequencing [45] and photon imaging [46] could benefit from
such an extension. In the scRNA-seq application, we computed
missing entries as zeros, which is a natural choice for low-
rank models. However, others have worked on adapting PCA
methods for missing data [47] so such an approach could be
beneficial given the higher than expected NRMSD with LR-
ALPCAH. This generalization is nontrivial so it is left for future
work. Additionally, our model and the comparison methods
are limited to the subspace setting, but some applications like
resting-state functional MRI [48] benefit from manifold learn-
ing approaches [48]. It would be interesting to explore other
approaches such as a heteroscedastic variational autoencoder
[49] to expand the possible applications of heteroscedastic data
learning.

APPENDIX

A. PCA Bound Experiment

This section focuses on providing empirical verification of
our subspace bound in (7). Before doing so, we mention that
the random matrix theory bound in (3) depends on a universal
constant c1, independent of D and N , that is not calculated
in the source paper [18]. Let A= [a] be a 1× 1 matrix with
element a∼N (0, 1). For the LHS in (3), the spectral norm
in this instance is ‖A‖2 = |a|. This implies that E[‖A‖2] is
equivalent to calculating the mean of a folded normal distri-
bution. Since a is a standard normal random variable, E[|a|] =√
2/π. One can verify from (4) (5) (6) that the RHS in (3)

simplifies to 2 + 4
√
3. Solving for c1, the inequality becomes

c1 ≥
√

2/π/(2 + 4
√
3)≈ 0.24. In our subspace bound (7), both

sides are squared and a factor of 2 exists in (2), therefore the

constant in (7) is c= 4c21 ≈ 0.22. Knowing this constant, it is
now possible to experimentally verify (7). The experimental
setup consists of generating random rank-3 subspaces within
a 100 dimensional ambient space. The data samples consist
of two groups, one with n1 = 30 samples, ν1 = 0.1 and the
other with n2 = 970 samples and a varying ν2 ∈ {0.1, . . . , 75}.
During the course of 50 trials, we computed the mean spectral
norm projection error, i.e., ‖ÛÛ

′ −UU ′‖22, along with the
minimum and maximum error values for that ν2 instance. Fig.
8 illustrates that PCA scales similarly to the bound in (7), yet
our method, LR-ALPCAH, empirically did not degrade at the
same rate, indicating robustness to heterocedasticity.
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