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Imaging 3D chemistry at 1 nm resolution
with fused multi-modal electron
tomography

Jonathan Schwartz 1, Zichao Wendy Di2, Yi Jiang 3, Jason Manassa 1,

Jacob Pietryga1,4, Yiwen Qian 5, Min Gee Cho5,6, Jonathan L. Rowell7,

Huihuo Zheng 8, Richard D. Robinson 9,10, Junsi Gu11, Alexey Kirilin 12,

Steve Rozeveld13, Peter Ercius 6, Jeffrey A. Fessler 14, Ting Xu 5,15,

Mary Scott 5,6 & Robert Hovden 1,16

Measuring the three-dimensional (3D) distribution of chemistry in nanoscale

matter is a longstanding challenge for metrological science. The inelastic

scattering events required for 3D chemical imaging are too rare, requiring high

beam exposure that destroys the specimen before an experiment is com-

pleted. Even larger doses are required to achieve high resolution. Thus, che-

micalmapping in 3Dhas beenunachievable except at lower resolutionwith the

most radiation-hard materials. Here, high-resolution 3D chemical imaging is

achieved near or below one-nanometer resolution in an Au-Fe3O4 metama-

terial within an organic ligand matrix, Co3O4-Mn3O4 core-shell nanocrystals,

and ZnS-Cu0.64S0.36 nanomaterial using fused multi-modal electron tomo-

graphy. Multi-modal data fusion enables high-resolution chemical tomo-

graphy often with 99% less dose by linking information encoded within both

elastic (HAADF) and inelastic (EDX/EELS) signals. We thus demonstrate that

sub-nanometer 3D resolution of chemistry is measurable for a broad class of

geometrically and compositionally complex materials.

Knowing the complete chemical arrangement of matter in all dimen-

sions is fundamental to engineering novel nanomaterials1. Although

electron tomography provides comprehensive 3D structure at reso-

lutions below 1 nm using elastic scattering signals2–4, chemical tomo-

graphy obtained from inelastic scattering remains largely out of reach.

Several demonstrations of chemical tomography using electron

energy loss or x-ray energy spectroscopy (EELS/EDX) accompanied the

introduction of scanning transmission electron microscope (STEM)

tomography and provide a milestone for 3D imaging5–8. However,

chemical tomography from core-excitation spectroscopy demands

high electron doses that almost always exceed the specimen limits

(e.g., >107e/Å2)9–11. If attempting chemical tomography, researchers
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must sacrifice resolution by collecting few specimen projections (e.g.,

5–10) and constrain the total dose (e.g., <106e/Å2). Consequently, 3D

resolution is penalized from undersampling and noisy chemical

maps12. Therefore, a paradigm shift is necessary for high-resolution

chemical tomography.

Achieving high-resolution 3D chemistry at lower dose requires

fusing both elastic and inelastic scattering signals. Typically these

detector signals are analyzed separately and correlated13–18. However,

correlative imaging disregards shared but also complementary infor-

mation between structure and chemistry and misses opportunities to

recover useful information19. Data fusion, popularized in satellite

imaging, goes further than correlation by linking separate signal

modalities to reconstruct new information and improvemeasurement

accuracy20–22. Early approaches for tomographic data fusion showed

noise reduction through joint regularization across modalities23 and

linear models between EDX and elastic signals24–26. Recent develop-

ments in 2D multi-modal data fusion integrate the non-linear physics

of Rutherford scattering to substantially reduce thedose requirements

to acquire an atomic-resolutionmap27. In alignment with this principle

of fused multi-modal electron microscopy, we extend its algorithmic

framework into the third dimension.

Here we present fused multi-modal electron tomography that

offers high-resolution recovery of nanomaterial chemistry in 3D

with high signal-to-noise (SNR) by fusing signals from both elastic

high-angle annular dark field (HAADF) and inelastic (EDX/EELS)

scattering. Multi-modal electron tomography reconstructs the

volumetric chemical structure of specimens by solving a three-

term inverse problem that fuses information from multiple detec-

tors. This approach extends beyond 2D data fusion27 to offer a 3D

framework with distinct sampling strategies that minimize dose

and maximize resolution. When many HAADF projections are

measured alongside far fewer chemical projections 100-fold dose

reductions are achievable. Although the 3D chemical structure is

severely underdetermined, fusing both modalities allows missing

chemical information to become identifiable. This approach

demonstrates that researchers can measure 3D chemistry at 1 nm

resolution using electron doses as low as 104 e/Å2 and as few as nine

spectroscopic maps while remaining consistent with original

measurements. Multi-modal tomography is validated across

multiple material systems, including Au-Fe3O4 superlattice clus-

ters, core-shell Co3O4-Mn3O4
28, ZnS-Cu0.64S0.36 heterostructures

29,

Cu-SiC nanoparticles and several simulated specimens. By fusing

modalities, chemical tomography is possible at sub-nanometer

resolution along all three dimensions is achievable for a wider class

of material systems.

Results
Principles of fused multi-modal electron tomography
High-resolution 3D chemical imaging is achieved using the multi-

modal electron tomography framework illustrated in Fig. 1a for a

binary Au-Fe3O4 nanoparticle superlattice grafted with thiol end-

functionalized polystyrene ligands. In multi-modal electron tomo-

graphy, projections of the specimen structure are measured from a

HAADF detector and the specimen chemistry is extracted from spec-

troscopy (EELS or EDX). These two detector modalities are fused

during the reconstruction process to provide the complete 3D che-

mical distribution of a specimen at high resolution and SNR. Figure 1b

shows the 3D reconstruction of each individual chemistry: larger

10.2 ± 1.1 nm Fe nanoparticles (blue) and smaller Au 3.9 ± 0.4 nm

nanoparticles (orange). Both chemistries are visualized simultaneously

in Fig 1c to show the self-organization of the chemical superlattice. The

light-element, carbon matrix is shown in Supplementary Fig. 1.

In multi-modal tomography, the number of structural HAADF

projections usually exceeds the chemical projections. In this first

demonstration, only nine chemicalmaps (Δθ = 15 °) aremeasured from

the Fe-L2,3 and Au-M4,5 core-excitation edges in an EELS spectrum

whereas 47 HAADF images (Δθ = 3 °) are collected over a ± 70 ° speci-

men tilt range. Linking bothmodalities into the reconstruction enables

a clear distinction between Fe3O4 and Au nanoparticles at high reso-

lution from just a few EELS maps and a total electron dose of 5 × 105 e/

Å2
—roughly twoorders ofmagnitude lower total electron dose than an

equivalent conventional approach.

Fused multi-modal electron tomography reconstructs three-

dimensional chemical models by solving an optimization problem

seeking a solution that strongly agrees with (1) the HAADF modality

containing high SNR, (2) the chemically sensitive spectroscopic mod-

ality (EELS and/or EDX), and (3) encourages sparsity in the gradient

domain producing solutionswith reduced spatial variation. The overall

Fig. 1 | Nanoscale recovery of Au-Fe3O4 nanoparticle superlattice. a Schematic

highlighting the linked HAADF and EELS modalities for chemical tomography84.

HAADF projection images are collected at every tilt increment while core-loss EELS

spectra are sparsely acquired every few tilts. b The fused multi-modal

reconstruction for the specimen’s FeL2,3 (turquoise),O-K (turquoise), and goldM4,5

edge (yellow). c Chemical overlay of the superlattice nanoparticles over the entire

115 nm field of view. Scale cubes, 5 nm3.
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optimization function is as follows:

arg min
xi ≥0
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xi is the reconstructed 3D chemical distributions for element i, bi is

the measured 2D chemical maps for element i, bH is the measured

HAADF micrographs, Ah and Ac are forward projection operators

for HAADF and chemical modalities, λ are regularization para-

meters, ε herein prevents log(0) issues but can also account for

background, the log is applied element-wise to its arguments,

superscript T denotes vector transpose, and 1 denotes the vector of

Nproj
chem

nyni ones, where ny is the number of pixels, ni is the number of

elements present, and Nproj
chem

is the number of projections for the

chemical modality. Pseudo-code for numerical implementation is

provided in the Supplementary Materials.

The three terms in Eq. (1) define our fusedmulti-modal framework

designed to surpass traditional limits for chemical tomography. First,

we assume a forwardmodel where the simultaneous HAADF is a linear

combination of the reconstructed 3D elemental distributions (xγ
i

where γ∈ [1.4, 2]). The incoherent linear imaging approximation for

elastic scattering scales with atomic number as Zγ
i , where experimen-

tally γ is typically around 1.730–32. This γ is bounded between 4 and 3 as

described by Lenz–Wentzel expressions for electrons passing through

a screened coulombic potential and 2 for Rutherford scattering from

bare nuclear potentials33,34. Second, we ensure the recovered 3D dis-

tributions maintain a high degree of data fidelity with the initial mea-

surements by using the log-likelihood for spectroscopic

measurements dominated by low-count Poisson statistics22,35. In a

higher count regime, this term can be substituted with a least-squares

discrepancy (k Ax � bk22)
36. Lastly, we include channel-wise isotropic

total variation (TV) regularization to enforce a sparse gradient mag-

nitude, which reduces noise by promoting image smoothness while

preserving sharp features37. This sparsity constraint, popularized by

thefield of compressed sensing (CS), is a powerful yetmodestprior for

recovering structured data38,39. When solving Eq. (1), each of these

three terms should be weighted appropriately by determining coeffi-

cients (λ) that balance their contributions. Ultimately, optimization of

all three terms is necessary for accurate recovery (Supplementary

Figs. 2, 3).

The improvement in reconstruction quality with fused multi-

modal chemical tomography (Fig. 2i) is dramatic when compared to

traditional chemical tomography (Fig. 2c).

3D chemistry at high-resolution, low-dose
In tomography, 3D resolution is described by the Crowther criter-

ion, which states resolution is limited by the object size and the

number of specimen projections measured40
—higher resolution

requires more projections41. For traditional chemical tomography,

few chemical projections are collected and the Crowther relation

devastates resolution in 3D. This limitation occurs from the high-

dose requirements of chemicalmapping (i.e., EDX, EELS) where only

Fig. 2 | Nanoscale recovery of Co3O4-Mn3O4 core-shell nanoparticles. a–c Raw

EELS reconstruction for the Co (blue-green) and Mn (orange) L2,3 core-loss edges.

d–fTheHAADF tomogramofCo3O4-Mn3O4nanoparticle tracks the structureof the

specimenbut fails to describematerials chemistry in 3D.g–iThe fusedmulti-modal

reconstruction. Scale cubes, 25 nm3. a, d, g Representation in Fourier space of the

projections used to reconstruct the tomograms. j Fusedmulti-modal tomogram of

a single Co3O4-Mn3O4 nanoparticle. Scale cube, 10 nm3. k A line profile showing the

average intensity across the diameter of the particle.
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a few projections can be collected before radiation damage alters

the specimen structure.

Figure 2 shows how specimen projections from eachmodality are

superimposed as planes of information in Fourier space. Chemical

tomography is sparsely sampled in Fourier space (Fig. 2a), which

results in a tomographic reconstruction containing artifacts and low

SNR (Fig. 2b, c). Despite the poor quality, traditional chemical tomo-

graphy tracks the chemical distribution, and theMn shell (orange) can

be seen surrounding the Co core (blue-green). In contrast, elastically

scattered electrons collected by the HAADF detector provide high

signals at lower doses and allow many projections to be collected—in

practice, HAADF sampling is five to ten times more finely spaced than

chemical (Fig. 2d)32. The dose required for a singleHAADFprojection is

102
–103 times lower than a chemical projection acquired using core-

energy loss spectroscopy. Thus, it is favorable to acquiremoreHAADF

images and achieve higher resolution. Although HAADF tomography

permits high-resolution and high-SNR reconstructions of structure, it

lacks chemical specificity. This is seen in Fig. 2e, f where the structure is

well defined with low noise but the Co and Mn regions are not

identifiable.

Exploiting shared information in both modalities, multimodal

tomography achieves a chemical resolution in 3D comparable to high-

resolution HAADF reconstructions. Although few chemical measure-

ments pose a severely underdetermined problem, fusing with the

HAADFmodality fills in missing chemical information. This is reflected

in Fig. 2g where many HAADF projections (e.g., 50–180) are measured

while far fewer chemical projections (e.g., 5–15) are intermittently

measured. In this reconstruction, 9 EELS maps and 45 HAADF projec-

tions (50–200mrad detector inner and outer semi-angles) were col-

lected over a ±60 ° tilt range using a 2.4Å probe with a 24.3 nm depth

of focus (300 keV acceleration voltage, 10mrad convergence angle).

High-resolution 3D chemistry is visible in the core-shell Co3O4-Mn3O4

using multi-modal tomography in Fig. 2h, i.

Fused multi-modal electron tomography provides unique insight

for studying heterostructured nanocrystals with unprecedented geo-

metries. In the case of Co3O4-Mn3O4 nanocrystals, the manganese

oxide shell is divided into several ordered grains that grow on each

surface plane for the cobalt oxide nanocube core28. However, the core

and shell interface can vary per plane driven by the growth interplay

between strain and surface energy, resulting in the formation of grain

boundaries42. The complete 3D distribution of Co and Mn at the sur-

face and interface is difficult to discernwith 2Dprojected EELSmaps or

HAADF reconstructions. Fortunately, the fused chemical distributions

reveal surface coverage of the shell grains and cross-sections quantify

the shell thickness and interface chemistry (Fig. 2k). To further

demonstrate, fusedmulti-modal EELS tomographywasused to discern

between ZnS and Cu0.64S0.36 phases (Supplementary Fig. 4) in a het-

erostructured nanocrystal29 and EDX tomography to identify Cu

nanoparticles embedded in SiC catalysts (Supplementary Fig. 5).

Data fusion eliminates noticeable noise in the final 3D chemical

reconstruction without a loss of resolution. This noise reduction

accompanies a dose reduction of roughly 100 fold. Linking the che-

mical projections to the high SNR HAADF signals dose-efficiently

boosts the chemical specificity. Even at modest HAADF signals (e.g.,

SNR≃ 10), multi-modal tomography notably outperforms traditional

chemical tomography (Supplementary Fig. 21). To illustrate, in Fig. 2,

matching the resolution of fused multi-modal chemical tomography

using traditionalmethodswould require 45 EELSmaps—a fivefolddose

increase. However, the SNR of each chemical projection would still fall

short (Supplementary Fig. 19) and require roughly 20-times additional

dose. In total,multi-modal chemical tomography performswell at one-

hundredth the dose requirement of traditional methods.

Reduction of electron beam dose produces irreplaceable advan-

tages for electron tomography—both in terms of accessible resolution

and the range of materials classes that can be imaged in 3D. Dose

requirements for tomography scale quickly with higher resolution

(resolution∝dose−4)43,44. For 3D chemical imaging, multi-modal elec-

tron tomography notably improves the sampling and dose constraints

that limit resolution across a range of radiation-sensitivematerials (See

Supplementary Figs. 6, 7).

Sub-nanometer chemical resolution in 3D
3D resolution of the chemical distribution in Au-Fe3O4 nanoparticle

superlattice (Fig. 3a) is demonstrated at or below 1 nm using multi-

modal tomography. The achieved resolution is quantified in real and

reciprocal space. In real space, the resolution limit is verified by

visually inspecting a single 3 nm Au nanoparticle (Fig. 3d). The edge

sharpness between the reconstructed nanoparticle and vacuum is

visibly less than 1 nm. From line profiles, the half-pitch resolution is

0.8 nm×0.8 nm× 1.1 nm along the x, y, and z directions, respectively.

Along optimal directions (x, y) the resolution is comparable to the

Nyquist frequency (8.05Å). The real-space resolution is consistent

Fig. 3 | Resolution analysis ofAu-Fe3O4 superlattice nanoparticles. a Fused EELS

tomograms of Au-Fe3O4 nanoparticles. Scale cube, 2 nm3. b Power spectral density

of the Fe reconstruction along the principal axial directions shown on the right.

Scale bar, 0.5 nm−1. c Power spectral density profiles for kx-ky and kx-kz directions.

d A 2.5 Au nanoparticle is shown with, e, line profiles showing a resolution of

0.8 nm, 0.8 nm, and 1.1 nm along the x, y, and z directions. f Planar cross sections of

the 2.5 nm. Au nanoparticle.
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with reciprocal space estimates of the cutoff frequency at which the

signal drops to the noise floor1. Figure 3b highlights power spectral

density variations projected on three orthogonal planes. Measured

power spectral density along the kx-ky and kx-kz directions show

information transfer roughly occurring at 0.99 nm and 1.02 nm

respectively (Fig. 3c). These directions conservatively represent the 3D

resolution from an average of the high-resolution and low-resolution

(z-axis) directions. This 3D chemical resolution nearly matches the 3D

HAADF resolution 1.00 nm, 1.01 nm in Fig. 3 (Supplementary Fig. 8).

For fused multi-modal chemical tomography, the HAADF 3D resolu-

tion provides an upper bound to the highest obtainable 3D chemical

resolution. A reduction of resolution along the z-axis is expected from

the incomplete tilt range that creates a missing wedge of information

in Fourier space45. Avoiding this anisotropic resolution loss has been

demonstrated by acquiring a full tilt range (±90°) through the pre-

paration of needle wire samples or preparing nanoparticles on carbon

nanofibers46,47. Here, we observe approximately a 25% reduction in

resolution along the missing wedge direction of the multi-modal

chemical reconstruction (Fig. 3e, f).

Influence of sampling
Electron tomography simulations show a 3–5 fold improvement in the

normalized root mean square error hNRMSE ið Þ averaged across all

elements when multi-modal tomography is used over conventional

chemical tomography. In Fig. 4 synthetic gold decorated CoO/CuO

nanocubes inspired by real experimental data47provide a ground truth

comparison to assess the accuracy of fused multi-modal tomography.

Simulated projection images are generated from a simple linear

incoherent imagingmodel of the 3D chemical compositionwith added

Poisson noise (SeeMethods). The specimen tilt range is limited to ±70°

to better match typical experimental conditions. The advantages of

multi-modal tomography are clearly visible in the 2D slices (Fig. 4b)

taken from 3D reconstructions obtained by conventional chemical

tomography hNRMSE i= 1:301ð Þ and fused multi-modal tomography

hNRMSE i=0:33ð Þ. For all chemistries (Au, O, Cu, Co) fused multi-

modal tomography is more consistent with the ground truth with

higher resolution and reduced noise.

For any number of chemical projections acquired, we see a

notable reduction in NRMSE when HAADF projections are integrated

into the chemical reconstruction. Figure 4 shows the improved fused

multi-modal reconstruction accuracy across a wide range of HAADF

and chemical projections for the gold-decoratedCoO/CuOnanocubes.

The reconstruction error (average NRMSE) across most of the multi-

modal parameter space is less than 0.40 compared to values around

1.2 for conventional tomography. Pixel values on the diagram (Fig. 4a)

represent the average NRMSE across all elements. This NRMSE map

shows data fusion strongly benefits by increasing the HAADF infor-

mation available. It requires substantially less dose to increase the

HAADF projections (i.e., moving vertically on the map) compared to

increasing the chemical projections (i.e., moving horizontally on

the map).

Conventional chemical tomography does not use HAADF pro-

jections (bottom row, Fig. 4a) resulting in an average reconstruction

error larger than the entire multi-modal regime. In practice, fused

multi-modal tomography is performed in the regime with equal or

more HAADF projections than chemical (i.e., top-left triangle). Multi-

modal tomography also performs well when the chemical projections

exceed the number of HAADF projections, however, this is not prac-

tical sinceHAADF signals can be acquired simultaneouslywith EDXand

EELS. Similar trends are observed in a second large-scale simulation

performed on a synthetic composite structure composed of transition

metal CoO nanoparticles embedded in a NiO support (Supplemen-

tary Fig. 10).

Fused multi-modal electron tomography can measure 3D stoi-

chiometry without knowledge of inelastic cross-sections. The ratio of

chemical concentrations for each voxel quantifies local stoichiometry.

For the simulated CoO-CuO nanocubes, values agree with the ground

truth (Supplementary Fig. 11)—concentrations of Cu, Co, and O are

centered at the expected value of 0.50. Here, stoichiometric precision

of multi-modal tomography (σ =0.04) is four times better than tradi-

tional chemical tomography (σ = 0.17). For experimental Fe3O4 nano-

particles (Supplementary Fig. 12), multi-modal tomography produces

an average Fe concentration of 0.46 (0.43 expected) with a standard

deviation of 0.15. Note, determining stoichiometry using traditional

-1.0

-0.9

-0.8

-0.5

-0.4

-0.3

Fig. 4 | Estimating sampling requirements for accurate recovery with synthetic

CoO/CuO nanocubes. a An normalized root mean square error (NRMSE) map

representing the reconstruction error as a function of the number of HAADF and

chemical tilts. Brighter pixels denote results containing incorrect reconstructions

from the ground truth. b Visualization of three points corresponding to conven-

tional chemical tomography (reconstruction without the HAADF modality), and

low or high-dose fused multi-modal electron tomography. c The 3D models used

for generating synthetic chemical and ADF projections85. Scale bar, 75 nm.

Article https://doi.org/10.1038/s41467-024-47558-0

Nature Communications |         (2024) 15:3555 5



chemical tomography also requires accurate calculation of the

inelastic cross-sections for each experiment48.

Discussion
Although this work presents significant advantages for fused multi-

modal electron tomography, the technique requires supervision.

Convergence should be verified and reasonable weights for each term

in the cost function (Eq. (1)) should be assigned (Supplementary

Fig. 13). Error when implementing routine spectroscopic pre-

processing (e.g., incorrect background subtraction of EELS spectra49

or failure to decouple overlapping characteristic X-ray peaks) will

cause inaccurate stoichiometric quantification. These errors will

amplify when applied to multi-modal data fusion. Although lighter

elements have smaller elastic cross-sections, they tend to have larger

inelastic cross-sections which benefits chemical tomography. For

example, the K-shell cross-section (chemical spectroscopic signal) of

Carbon (Z = 6) is over 20-fold larger than Germanium (Z = 32)50,51. EELS

is advantageous for discerning lighter elements whereas overlapping

peaks may occur in EDX. In general, electron tomography is favorable

for measuring volumes in the range of (10 nm)3 to (1000 nm)3 at

resolutions around 3 to 30Å4. Thick specimens with dimensions that

far exceed the mean free path of the electron can produce inversion

contrast that will cause electron tomography to fail52—also causing

failure for multi-modal electron tomography (Supplementary Fig. 14).

Electron tomography performs best for thicknesses less than three

times the incident electron’s mean free path (e.g., < 550nm for Silicon

at 300 keV)53. In all electron tomography experiments, beam con-

vergence angles should be chosen tomatch the desired resolution and

depth of focus41. As shown for 2D fused multi-modal electron

microscopy27, fused multi-modal tomography works best when ele-

ments have discernible contributions to the HAADF contrast and all

chemical elements have been imaged. Multi-modal tomography

leverages CS (e.g., TV min.) which assumes incoherence (i.e., a high

level of dissimilarity) between the sensing and sparsifying

transform54–56
—although this assumption typically holds as demon-

strated for the datasets presented herein.

In summary, we present fused multi-modal electron tomography

that enables chemically-sensitive 3D reconstruction of matter with

nanometer resolution at high SNR. We demonstrate that researchers

do not need to choose between measuring 3D structure without che-

mical detail or characterizing chemistry along a single viewing direc-

tion. By linking signals from elastic (HAADF) and inelastic (EDX/EELS)

scattering processes, the traditional dose limits of chemical tomo-

graphy are substantially surpassed. In some cases, a one-hundred-fold

reduction in dose is estimated. When compared to 2D chemical

imaging27, we show the benefits of data fusion in 3D are much greater.

To demonstrate, the complete volumetric density of each chemistry

was mapped in several systems including Au-Fe3O4, Co3O4-Mn3O4,

ZnS-Cu0.64S0.36, and Cu-SiC nanomaterials. In both artificial and

experimental datasets, fusedmulti-modal electron tomography shows

significant benefits in the accuracy of 3D chemical imaging. This

approach enables chemical tomography of a wide range of previously

inaccessible materials with moderate radiation sensitivity. At chemical

resolutions of 1 nm, fused multi-modal electron tomography will

facilitate understanding of geometrically complex materials—from 3D

semiconductor gate stacks57, clean energy materials58,59, or photo-

luminescence quantum dot nanoparticles60.

Here, fused multi-modal tomography used commonly available

STEM detectors (HAADF, EDX, and EELS), however, future approaches

can further integrate other modalities—such as 4D-STEM from pixel-

array detectors61, annular bright field62, ptychography63, low-loss

EELS64. Furthermore, the tremendous potential of multi-modal data

fusion as a paradigm readily enhances deep learning to capitalize on

the unique advantages from both domains65.

Methods
Specimen synthesis and preparation
Au-Fe3O4 superlattice nanoparticles. Syntheses of 3.9 nm Au NPs66

and 10.2 nm Fe3O4 NPs
67 were carried out under nitrogen atmosphere

using standard Schlenk line techniques according to literature meth-

ods. Polystyrene-based ligands were attached to the NP surface

through a ligand exchange process as reported before68. Thiol-

terminated PS (PS-SH) was used as the polymeric ligand for Au NPs

and was synthesized using Radical Addition Fragmentation Transfer

polymerization and end-functionalized by aminolysis. Amine-

terminated polystyrene was used as the polymeric ligand for Fe3O4

NPs and was synthesized using atom transfer radical polymerization

and end-groupmodification69. Binary superlattice of Au and Fe3O4NPs

was prepared by nanoparticle co-crystallization at water-air interface.

A toluene solution containing two types of NPs with concentration

ratio of 2:1 was drop-cast onto the water surface in a Teflon well and

slowly dried overnight. The binary nanoparticle film was transferred

onto a 200-mesh carbon TEM substrate and further dried in vacuum

oven for 6 h to remove residual solvent.

Co3O4 nanocubes. A mixture of 0.37 g of cobalt(II) perchlorate

(Aldrich) and 2.7 g of oleylamine (Acros) in 15mL of 1-octanol (Aldrich)

was heated to 120 °C under air and aged for 2 h. During the heating,

0.7mL of distilled water was added before the temperature reaches

120 °C. After the reaction, an excess amount of acetone and ethanol

was added and Co3O4 nanocubes were retrieved by centrifugation.

Core-shell Co3O4-Mn3O4 nanoparticles. An organic/aqueous sus-

pension was prepared by adding 0.080 g of Co3O4 nanocubes into a

mixture of oleylamine (5mmol), oleic acid (0.5mmol), formic acid

(3.15mmol, Aldrich), and 15mL of xylenes (Aldrich). The as-prepared

suspension was heated to 40 °C under air and aged for 3 h with mag-

netic stirring. And then, 0.7mL of 0.7M aqueous solution of manga-

nese (II) chloride tetrahydrate was rapidly injected into the suspension

at 90 °C and aged for 1.5 h under air. After the reaction, the nano-

crystals were washed with hexane/ethanol and retrieved by cen-

trifugation. The final product waspreparedwith three iterations of this

process.

ZnS-Cu0.64S0.36 nanocrystals. Synthesis of the ZnS-Cu0.64S0.36 Het-

erostructured NPs was performed as described by literature using

typical air and water free synthetic techniques29. Cu1.81S (roxbyite)

nanocrystals are synthesized by first dissolving CuCl2⋅2H2O in oleyla-

mine (OLAM) at 200 °Cafter thoroughly degassing the solution at high

temperature. Tert-butyl-disulfide is then injected at 180 °C and the

reaction continues at this temperature for 40min. After cooling to

room temperature, the NPs are washedwith hexanes and acetone then

dried in a vacuumdesiccator. The roxbyite NPs are then injected into a

concentratedZn ion solutionheated at 50 °C for 10min to facilitate the

reaction. Briefly, ZnCl2 and OLAM are degassed at high temperature

and then heated at 180 °C for 30min to make a concentrated solution

of Zn2+ for cation exchange. After cooling the Zn2+ solution to 100 °C,

an aliquot of the solution is mixed with toluene and the temperature is

adjusted to 50 °C. The synthesized roxbyite NPs are dissolved in tri-

octyl phosphine and then injected into the Zn2+ solution in and allowed

to react for 30min before quenching the reaction with cold acetone.

Cu-SiC catalyst. The Cu/SiC catalyst was prepared on a commercial

SiC support purchased from a commercial vendor with a Brunauer-

Emmett-Teller surface area of 30 m2/g and pore volume of 0.4 cm3/g.

following previously described methods70. The catalyst was prepared

by incipientwetness impregnation using a 2MCu(NO3)2⋅3H2Oaqueous

solution followed by drying (120 °C for 2 h) and calcination in air

(350 °C for 2 h) at a heating rate of 2 deg/min.

Article https://doi.org/10.1038/s41467-024-47558-0

Nature Communications |         (2024) 15:3555 6



Acrylic C-TiO2 nanoparticles. The C-TiO2 sample was prepared by

blending commercial TiO2 particles (purchased from Chemours) with

an emulsion polymer latex. Before conducting the chemical imaging at

room temperature, the blendwas pre-treated under the electron beam

in a Thermo Fisher T12 TEM at −80 °C to promote cross-linking in the

latex and preserve its morphology above the glass transition

temperature.

Electron tomography acquisition
Simultaneously acquired HAADF and EELS tilts series for the Au-Fe3O4

specimen were collected on a Talos F200X G2 (Thermo Fisher) oper-

ated at 200 keV with a probe current of 115 pA, probe semi-angle of

roughly 10.5mrad and inner collection semi-angle of 50mrad. The

HAADF projections were collected from −60° to +60° with a 3° angular

increment using a Model 2021 Fischione Analytical Tomography

Holder. At each tilt angle, a STEM imagewith a 24μs dwell time at each

pixel of a lateral dimension 6.4Å. Simultaneously acquired HAADF and

EELS spectrums were acquired at acquired with a 15 ° angular incre-

ment with a dwell time of 3ms receiving a total electron dose of

4.9 × 105e/Å2 (1.72 × 104e/Å2, 4.73 × 105e/Å2 for the HAADF and EELS

modality, respectively). Refer to Supplementary Figs. 15, 16 to view the

raw tilt series.

Simultaneously acquired HAADF and EELS tilt series for the

Co3O4-Mn3O4 specimen were collected on a double aberration-

corrected modified FEI Titan 80–300 microscope (the TEAM I instru-

ment at the National Center for Electron Microscopy within Lawrence

Berkeley National Laboratory) operated at 300 keV with a probe cur-

rent of 115 pA and semi-angle of roughly 10mrad. This microscope is

equipped with a Gatan K3 detector and Continuum spectrometer. The

HAADF projections were recorded from −60° to +60°with a 3° angular

increment using a Hummingbird Scientific eucentric Tomography

Holder. At each tilt angle, a STEM imagewith a 24μs dwell time at each

pixel of a lateral dimension of 7.79Å. Simultaneously acquired HAADF

and EELS spectrums were acquired at acquired with a 15 ° angular

increment with a dwell timeof 0.677ms receiving a total electron dose

of 8.37 × 104e/Å2 (1.16 × 104e/Å2, 7.21 × 104e/Å2 for the HAADF and EELS

modality, respectively). Refer to Supplementary Figs. 17, 19 to view the

raw tilt series.

Simultaneously acquired HAADF and EDX tilt series for the Cu-SiC

specimen were collected on a Talos F200X G2 (Thermo Fisher) oper-

ated at 200 keV with a probe current of 250 pA, probe semi-angle of

roughly 10.5mrad and collection angle of 44–200mrad. The HAADF

projections were collected from −75 to +70 with a 3° angular incre-

ment. At each tilt angle, a STEM image with a 20μs at each pixel of the

lateral dimension of 1.4679 nm. Simultaneously acquired HAADF and

EDXspectrumswere acquired at acquiredwith a 15 ° angular increment

with a dwell time of 20μs dwell time for 25 frames receiving a total

electron dose of 4.33 × 104e/Å2 (7.1 × 103e/Å2, 3.62 × 104e/Å2 for the

HAADF and EELS modality, respectively). The initial chemical dis-

tributions were generated from EDX maps using commercial Velox

software that produced initial net count estimates (however atomic

percent estimates are also suitable).

Multi-modal tilt series alignment
TheEELS signalswereobtainedby integration over the core loss edges,

all of which were done after background subtraction. The background

EELS spectra were modeled using a linear combination of power laws

implemented using the open-source Cornell Spectrum Imager

software9.

Before tilt series alignment, the spectrum images have been drift-

corrected after acquisition assuming a time-dependent linear drift

model, as illustrated in Supplementary Fig. 20. The survey image,

which is taken with an identical dwell time as the HAADF tilts, is taken

as a reference. Iterative image registration between the chemical and

HAADF signals seek an optimal translation and affine transformation.

Following registration, the background of each projection was

removed. For this purpose, the mean gray level in the outer regions

was calculated for each projection and subtracted. In this way, the

signal contribution of the carbon film could be eliminated.

For the alignment of the tilt series, a coarse alignment is per-

formed with either the center of mass (CoM) or cross-correlation

method71. CoM works best when the total projected volume is fixed

across specimen tilts (i.e., the object is isolated)72. In caseswhere either

of these requirements are not met (e.g., fields of view where multiple

particles are visible as demonstratedwith the Au-Fe3O4 nanoparticles),

cross-correlation should be considered. Fine alignment is performed

with custom written projection matching method73 on the HAADF

modality. The measured translation shifts are subsequently applied to

the corresponding tilts where simultaneously acquired chemical maps

were acquired.

Fused multi-modal tomography recovery
Here, fused multi-modal electron microscopy is framed as an inverse

problem expressed in the following form:

x̂ = argminx ≥0 λ1Ψ1ðxÞ+ λ2Ψ2ðxÞ+ λ3TVðxÞ where x̂ is the final

reconstruction, and the three terms are described in the main manu-

script (Eq. (1)).When implementing an algorithm to solve this problem,

we concatenate the multi-element spectral variable (x) as 2Dmatrices:

x 2 Rny �ny �ni ×nx where ni denotes the total number of reconstructed

elements and nx, ny represent number of pixels in the x and y direction

and xi,bi are the reconstructions and chemical maps for element i

(xi 2 R
ny �ny ×nx and bi 2 R

ny �N
proj

chem
×nx ). Here the axis of rotation is along

the x-direction (nx).

The optimization problem is solved by a combination of gradient

descent with TV regularization. We minimize this cost function by

iteratively descending along the negative gradient directions for the

first two terms and subsequently evaluate the isotropic TV proximal

operator to denoise the chemical volumes74. The gradients of the first

two terms are:

∇xΨ1ðxÞ= � γdiag xγ�1
� �

Σ
TAT

h AhðΣx
γÞ

T
� bH

� �

ð2Þ

∇xi
Ψ2ðxiÞ=A

T
c ðAcxi � biÞ � ðAcxi + εÞ
� �

, ð3Þ

where⊘ denotes point-wise division, bH 2 RnyN
proj

HAADF
×nx are the HAADF

measurements, Ah 2 Rny �N
proj

HAADF
×ny �ny and Ac 2 Rny �N

proj

chem
×ny�ny are for-

ward projection matrices operating on the chemical and HAADF

modalities. Here, the first term in the cost function, relating the elastic

and inelastic modalities, has been equivalently re-written as

Ψ1 =
1
2 k AhðΣx

γÞ � bHk
2
2, where Σ 2 Rny �ny ×ny �ny �ni and Σ x expresses

the summation of all chemistries as matrix-vector multiplication.

Evaluating the TV proximal operator is in itself another iterative

algorithm. In addition, we impose a non-negativity constraint since

negative concentrations are unrealistic. We initialize the first iterate

with reconstructions composed purely of the raw measured data

(x0
i = argminΨ2). This is an ideal starting point as it is a local

minimizer of Ψ2.

Appropriate step sizes for convergence of Eq. (1) can be deter-

mined estimating the Lipschitz constant of the measurement matrix

using the Powermethod75. Convergencecanbe confirmedby assessing

each term in the cost function as the reconstruction proceeds (Sup-

plementary Fig. 13). Sub-optimal parameters often result in slower

convergence. Smooth and asymptotic decay of all three terms in Eq. (1)

is an indicator of reliable reconstruction. We find that the optimal

weights (λ) in Eq. (1) do not change significantly between datasets and

even sub-optimal terms outperform traditional tomography methods.

However careful selection can also be achieved by selecting values

within the inflection point of the Pareto front in Eq. (1) (see
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Supplementary Fig. 13)76. The final 3D HAADF and multi-modal che-

mical volumes were rendered using the Tomviz platform

(tomviz.org77).

Multi-modal simulations and Bayesian hyperparameter
optimization
To demonstrate the functionality of our fused multi-modal electron

tomography algorithm,we created amulti-channel phantomspecimen

inspired from an experimental system. The phantom consists of four

channels, whichwe attribute to the crystal stoichiometry of CuO, CoO,

and Au (Fig. 4c) with a volume size of 2563. The HAADF intensity is

proportional to
P

eðZ ixiÞ
γ where xi reflects the element’s stoichio-

metry. To produce chemical maps with realistic noise characteristics,

we set the background (vacuum) to roughly 15% of the max intensity

and subsequently applied Poisson noise tomeet the desired SNR. For a

Poisson-limited signal, each synthetic image has an SNR of
μs +μ

2
s

σ2
N

where

μs is the mean signal and σ2
N is the variance of noise41 In the case of

Fig. 4, the SNR of the Co, Cu, O, Au, and HAADF modalities were 1.92,

2.89, 2.69, 1.96, 2208.67, respectively. Prior to measuring the NRMSE

of the reconstructed volumes, the chemical distributions were nor-

malized with zero mean and unit standard deviation. The NRMSE

expresses a normalized measure of agreement between the recon-

structed (x) and ground truth (y) :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i,j,k
ðyi,j,k�xi,j,k Þ

2

P

i,j,k
ðyi,j,k Þ

2

s

. While the HAADF

SNRmay be high, we found the NRMSE reliably converges when above

50 (Supplementary Fig. 21).

Determining optimal regularization parameters for the phase

diagram (Fig. 4a) is computationally expensive to explore due to its

variability across sampling conditions.While grid search couldfind the

best parameters by exhaustively exploring all possible candidate

values, the computation time would be expensive as each map would

take ~125 days to complete on a single GPU.

We efficiently explored the parameter space with Bayesian opti-

mization (BO)—a machine learning framework known for optimizing

expensive unknown objective functions with minimal evaluations78,79.

It works by building a probabilistic model of the objective function

with Gaussian processes (GP) regression. GP not only estimates our

function of interest but alsoprovides theuncertaintymeasurements to

guide future predictions. BO takes into account past evaluations when

determining future hyperparameter selections via an acquisition

function80. For our simulations, we carried out BO with GP in Python

with the Scikit Optimize library (scikit-optimize.github.io/stable) with

the Matern kernel and GP Hedge acquisition strategy81. By exploiting

BO with GP, we are able to provide an atlas of balanced hyperpara-

meters for Eq. (1) with the CoNiO and CoCuO synthetic datasets

(Supplementary Figs. 22, 23). The estimated parameter landscape is

smooth and continuous with a clear global optimum.

Asynchronousparallel BOon supercomputing resources allowedus

to efficiently run several reconstructions simultaneously on a single

node. This form of parallel computing resulted in several factors of

computational speedup asmultipleGPUs received unique experimental

parameters (e.g., SNRor sampling) to reconstruct concurrently amongst

each other. Specifically, the computation time to generate an NRMSE

map was reduced by 99.8%—taking less than a day to complete (18 h). In

total, 3452 GPU hours were used to complete these simulations—1078h

on Summit - OLCF and 1078h on ThetaGPU—ALCF for the phase dia-

grams (Fig. 4 and Supplementary Fig. 10). An additional 1296 GPU hours

on Summitwere used to produce the SNRplots (Supplementary Fig. 21).

Data availability
The raw and aligned Au-Fe3O4, Co3O4-Mn3O4, and Cu-SiC tilt series

with reconstructed 3D chemistries are available in a Zenodo

repository82.

Code availability
All of the multi-modal electron tomography reconstruction and itera-

tive alignment codes are available at github.com/jtschwar/tomo_TV

and github.com/jtschwar/projection_refinement83. A sample jupyter

notebook outlining the fused multi-modal reconstruction on the Cu-

SiC and Au-Fe3O4 material systems will be available in the tomo TV

repository.
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1 Multi-Modal Reconstruction of Au-Fe3O4 Nanoparticles Inside a Carbon Support

Fig.1 The complete reconstruction of the Au-Fe3O4 nanoparticle superlattice inside the carbon matrix (highlighted in purple). Scale cube, 10 nm3.
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2 Consequence of Reconstructing CuO/CoO Simulation with Individual Components in Cost Function

Fig.2 a Synthetic CuO/CoO nanocubes ground truth EELS maps and simultaneous HAADF reconstruction. b Slice of the reconstructed nanocubes dataset with only
Ψ2 (data consistency), λ1,λ3=0. The recovered EELS maps and HAADF reconstruction are noisy. c Slice of the reconstructed multi-modal nanocubes dataset with
Ψ1 and Ψ2 (model + data-consistency), λ3=0. The EELS maps are still noisy but show improvement with the extra Ψ1 term. d Slice of the reconstructed multi-modal
nanocubes dataset with Ψ2 + TV, λ1=0 . The expression Ψ2 + TV is equivalent to a denoising problem; thus the resulting reconstructions produce common staircase
artifacts associated with TV [1]. e Slice of the reconstructed nanocubes dataset with fused multi-modal electron tomography. Scale bar, 75 nm.
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3 Consequence of Reconstructing CoNiO Simulation with Individual Components in Cost Function

Fig.3 a Synthetic CoNiO nanotube ground truth EELS maps and simultaneous HAADF reconstruction. b Slice of the reconstructed nanotube dataset with only Ψ2

(data consistency), λ1,λ3=0. The recovered EELS maps and HAADF reconstruction are noisy. c Slice of the reconstructed multi-modal nanotube dataset with Ψ1 and
Ψ2 (model + data-consistency), λ3=0. The EELS maps are still noisy but show improvement with the extra Ψ1 term. d Slice of the reconstructed multi-modal nanotube
dataset with Ψ2 + TV, λ1=0 . The expression Ψ2 + TV is equivalent to a denoising problem; thus the resulting reconstructions produce common staircase artifacts
associated with TV [1]. e Slice of the reconstructed nanotube dataset with fused multi-modal electron tomography. Scale bar, 50 nm.
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4 Multi-Modal EELS Tomography of ZnS - Cu0.64S0.36 Heterostructured Nanoparticles

Fig.4 a HAADF tomography on heterostructured nanocrystals with applications in photovoltaic devices and battery electrodes [2]. The copper sulfide properties are
sensitive to stoichiometry and crystal structure at the interface. The HAADF reconstruction and 2D slice are shown on the left. b The fused multi-modal reconstruction
illustrating CuS or ZnS-rich nanoparticles and oxidized shells. c 2D slices of the chemical reconstructions with the noisy traditional reconstructions highlighted on the
left of each image. Scale bar, 50 nm. d The HAADF and fused multi-modal chemical tomogram for a smaller field of view. e Representative EELS spectra for the S, C,
Cu, and Zn core loss edges.

The simultaneously acquired HAADF and EELS tilt series for the specimen were collected on a Talos F200X G2 (Thermo Fisher) operated at 200 keV with a
probe semi-angle of roughly 10.5 mrad and inner collection semi-angle of 50 mrad. For the larger cluster (a-c), the HAADF projections were collected from -74◦ to
+70◦ with a 3◦ angular increment using a Model 2021 Fischione Analytical Tomography Holder. At each tilt angle, a STEM image with a µs dwell time at each pixel of
a lateral dimension of 1.26 nm. Simultaneously acquired HAADF and EELS spectrums were acquired at acquired with a 15◦ angular increment with a dwell time of 2
ms receiving a total electron dose of 8.25× 104 e/Å2 (3.87× 103, 7.86× 104 for the HAADF and EELS modality, respectively).

For the smaller cluster (d), the HAADF projections were collected from -74◦ to +67◦ with a 3◦ angular increment using a Model 2021 Fischione Analytical
Tomography Holder. At each tilt angle, a STEM image with a 30 µs dwell time at each pixel of a lateral dimension of 1.12 nm. Simultaneously acquired HAADF and
EELS spectrums were acquired at acquired with a 15◦ angular increment with a dwell time of 3.5 ms receiving a total electron dose of 2.07× 105 e/Å2 (6.87× 103,
2.01× 105 for the HAADF and EELS modality, respectively).
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5 Multi-Modal EDX Tomography of Cu-SiC Nanoparticles

Fig.5 a Cu-supported silicon carbon (SiC) catalysts designed for the production of fuels and chemicals from biomass. These silica supported catalysts efficiently
convert ethanol into acetaldehyde because of their high selectivity and stability [3]. The HAADF reconstruction with a few tilt micrographs is shown on right. b The fused
multi-modal reconstruction highlighting Cu nanoparticles embedded inside the SiC support and raw EDX maps are shown on the right. Scale bar, 50 nm. c The PSF of
an individual 3 nm nanoparticle inside the SiC. A few 2D slices of the reconstruction are shown on the right where we see the structure is sharp along the orthogonal
axis perpendicular to the missing wedge and approximately a 20% reduction in resolution along the missing wedge direction. Scale bar, 2 nm. d EDX spectra for a
single tilt.
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6 Historical Demonstrations of Multi-Element Chemical Tomography

Fig.6 The reported dose and Nyquist limited resolutions for the fused multi-modal (MM) reconstructions reported in this manuscript are compared to previous multi-
element chemical tomography (CT) experiments [4–10]. Note, the actual achieved 3D resolution of previously reported chemical tomography may be lower than the
Nyquist resolution.
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7 Resolution and Electron Dose for Multi-Modal Electron Tomography

Fig.7 a Resolution and dose relationship for electron tomography approximates the best achievable resolution for each material [11–15] – assuming an image contrast of
80%[16]. Fused multi-modal electron tomography results in a much higher dose-efficiency which enables higher resolution at any dose limit. b Multi-modal (green) and
conventional chemical tomography (blue). This relationship between dose and resolution assumes sufficient tomographic sampling is achieved (i.e. many projections)—
in practice the actual resolution will be much lower. Dose limited resolution assumes the material is adequately sampled (i.e. Crowther and Nyquist relations)
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8 Measuring the Resolution of Au-Fe3O4 Nanoparticles in the HAADF

Fig.8 a Fused EELS tomograms of Au-Fe3O4 nanoparticles. Power spectral density of the HAADF reconstruction along the principal axial directions shown on the
right. Scale cube, 2 nm3. Scale bar, 0.5 nm−1. b Power spectral density profiles for YZ and XY planes. c Line scan profiles of a 2.5 nm Au nanoparticle give a
resolution of 1.00, 1.03, and 1.01 nm along the x, y, and z directions.
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9 Sampling Requirements of Multi-Modal Tomography on CoO/CuO Nanocubes

Fig.9 a An NRMSE map representing reconstruction error as a function of the number of HAADF and chemical tilts. The bottom two rows provide results from non-multi-
modal algorithms where the HAADF is not included in the reconstruction process. The last row uses the Poisson Maximum Likelihood term to reconstruct the individual
chemical distributions. The second to last row adapts the compressed sensing framework into the reconstruction process by including total variation minimization –
thus providing a 2-3 fold reduction in average error. b Visualization of four points in the phase diagram corresponding to conventional chemical tomography, regularized
tomography (compressed sensing), and low or high-dose fused multi-modal electron tomography. The 3D models were then rendered and colored in Tomviz [17]. Scale
bar, 75 nm.
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10 Estimating the Sampling Requirements for a CoNiO Composite

Fig.10 a A normalized root-mean-square-error (NRMSE) heatmap of a fused multi-modal CoNiO nanotube reconstructions as a function of the number of HAADF and
chemical tomographic projections. Brighter pixels denote higher levels of error in the reconstruction when compared to the ground truth. The SNR for the Co, Ni, O,
and HAADF modalities were 2.66, 6.46, 3.17, and 2156.16 respectively. b Visualization of four points in the phase diagram corresponding to conventional chemical
tomography, regularized tomography (compressed sensing), and low or high-dose fused multi-modal electron tomography.c The synthetic CoNiO nanotube ground truth
3D models generating synthetic chemical and ADF projections. The 3D models were then rendered and colored in Tomviz [17]. Scale bar, 50 nm.
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11 Measuring 3D Stoichiometric Concentration for simulated CuO-CoO Nanocubes

Fig.11 Histograms of the chemical concentrations for each voxel in the traditional and fused multi-modal tomography reconstructions are shown for the simulated
CuO-CoO nanocube system. The mean values of each chemistry are within ±0.03 of the expected value of 0.5. For traditional chemical tomography, the accuracy
improves as SNR increases or more projections are collected. Multi-modal tomography maintains low error, especially for experimentally realistic conditions (e.g. 14
chemical tilts and SNR < 10).
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12 Measuring 3D Stoichiometric Concentration of Au-Fe3O4 Superlattice Nanoparticles

Fig.12 3D chemical reconstructions for each element are shown with their corresponding voxel intensity histograms. The mean values and standard deviations are
46.4±15.1%, 54.6±15.3%, 100±0% for Fe, O, and Au, respectively. The expected stochiometry of this system is 42.9%, 57.1%, 100%.
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13 Assessing Convergence and Selecting Hyperparameters with Paraeto Front Curves

Fig.13 a Pareto fronts illustrates the relationship between reconstruction quality and regularization parameters for multi-modal electron tomography. Depicted are
the tradeoffs from three reconstruction evaluation metrics: the multi-modal, self-consistency and average NRMSE across all elements. We see the highest quality
reconstruction (lowest NRMSE) occurs around the inflection point of the pareto front. b The three individual components in the cost function plotted throughout the
multi-modal electron tomography reconstruction process illustrates smooth asymptotic convergence. Convergence should be confirmed for accurate reconstruction.
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14 Consequence of Reconstructing Thick 280 nm Nanoparticles with EELS Tomography

Fig.14 a The HAADF reconstruction with a few HAADF projections from the tilt series shown on right. These projections were square rooted to visually see the TiO and
C nanoparticles. b The fused multi-modal reconstruction illustrating TiO nanoparticle decorated by C support with raw EELS maps shown on the right. Scale bar, 100 nm.

The simultaneously acquired HAADF and EELS tilt series for the specimen were collected on a Talos F200X G2 (Thermo Fisher) operated at 200 keV with a
probe semi-angle of roughly 10.5 mrad and inner collection semi-angle of 50 mrad. The HAADF projections were collected from -70◦ to +70◦ with a +2◦ angular
increment using a Model 2021 Fischione Analytical Tomography Holder. At each tilt angle, a STEM image with a 32 µs dwell time at each pixel of a lateral dimension
of 2.015 nm. Simultaneously acquired HAADF and EELS spectrums were acquired at acquired with a 10◦ angular increment with a dwell time of 2 ms receiving a total
electron dose of 4.96× 104 e/Å2 (3.48× 103, 4.61× 104 for the HAADF and EELS modality, respectively)

.
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15 Raw HAADF Tilt Series for the Au-Fe3O4 Nanoparticles

Fig.15 The 45 projection images with a tilt range from -60◦ to +60◦ (shown at the top left of each panel) were measured using ADF-STEM. The total electron dose of
the tilt series is 1.72× 104 e/Å2. Scale bar shown at the bottom right, 25 nm.
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16 Raw EELS Tilt Series for the Au-Fe3O4 Nanoparticles

Fig.16 The 9 EELS maps with a tilt range from -60◦ to +60◦ (shown at the top left of each map) were measured using EELS spectroscopy. The total electron dose of
the tilt series is 4.73× 105 e/Å2. Scale bar is shown at the bottom right, 50 nm.
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17 Raw HAADF Tilt Series for the Co3O4 - Mn3O4 Core-Shell Nanoparticles

Fig.17 The 45 projection images with a tilt range from -60◦ to +60◦ (shown at the top left of each panel) were measured using ADF-STEM. The total electron dose of
the tilt series is 1.16× 104 e/Å2. Scale bar is shown at the bottom right, 50 nm.
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18 Raw EELS Tilt Series for the Co3O4 - Mn3O4 Core-Shell Nanoparticles

Fig.18 The 9 EELS maps with a tilt range from -60◦ to +60◦ (shown at the top left of each map) were measured using EELS spectroscopy. The total electron dose of
the tilt series is 7.21× 104 e/Å2. Scale bar is shown at the bottom right, 50 nm.
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19 Orthogonal Views of Au - Fe3O4 and Co3O4 - Mn3O4 Nanoparticles

Fig.19 3D renderings of the recovered fused chemistries for the Au-Fe3O4 nanoparticles (top row) and Co3O4 - Mn3O4 nanoparticles (bottom row) with the yz and xz

plane cut-view images displayed alongside the tomograms. Scale bars, 25 nm and 50 nm respectively.
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20 Drift Correction of Spectrum Maps

Fig.20 Drift correction of the spectrum images: a survey image I(x,y), recorded before the spectrum image acquisition, is used as a reference to calculate the affine
transformation on the acquired spectrum map. These parameters are subsequently used to correct for drift in the acquired image and all associated spectroscopic
signals.
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21 SNR Dependency for Successful Fused Multi-Modal Recovery

Fig.21 a The initial corrupted chemical distributions for oxygen in the CuO-CoO synthetic dataset with increasing SNR. We see as we exceed the Rose criterion (SNR
≃ 5) internal pores and fine features are visible. b A heat map expressing the relationship between average reconstruction error and SNR for either modality (HAADF or
Chemistry) when 11 chemical maps (∆θ = +12°) and 141 HAADF projections (∆θ = +1°) are available. c SNR plot highlighting the average NRMSE as a function of
chemical SNR for reconstructions without any regularization or fusion (traditional tomography), without data-fusion (regularized tomography) and within the multi-modal
framework. We see substantial improvements in reconstruction quality as we incorporate more terms in the cost function. Most notably, data fusion converges quite
rapidly when the SNR is above 6. Visualization of the oxygen elemental reconstruction of the 2D slices from the reconstructions from each of the three curves. d

SNR plot highlighting the average NRMSE as a function of chemical SNR for traditional tomography with the SIRT reconstruction algorithm, without data-fusion with
the FISTA reconstruction algorithm and within the multi-modal framework [18, 19]. When the sampling between the chemistry and HAADF is equivalent and chemical
SNR is larger, regularized tomography outperforms mutli-modal tomography. Visualization of the cobalt and copper elemental reconstruction of the 2D slices from the
reconstructions from each of the three curves.
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22 Hyperparameter Estimation with Bayesian Optimization for the CuO-CoO Nanocubes

Fig.22 a Bayesian optimization optimizes the data fusion cost function (shown above) when provided a given number of chemical and HAADF tilts. We see the
weights between HAADF and chemical modality (λ1 and λ2 respectively) can vary depending on our certainty in either modality. When the number of tilts is low,
the corresponding λ value would decrease and vice-versa. Overall, these maps can guide future scientists to produce multi-modal reconstructions with reasonable
hyperparameter selections. b 3D visualization of the ground truth Au decorated CuO/CoO nanocubes. Scale bar, 75 nm. c Bayesian optimization parameter selection
landscape where each black dot represents one of the many attempts to find the minimum NRMSE.
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23 Hyperparameter Estimation with Bayesian Optimization for CoNiO Composite

Fig.23 a Bayesian optimization optimizes the data fusion cost function (shown above) when provided a given number of chemical and HAADF tilts. We see the
weights between HAADF and chemical modality (λ1 and λ2 respectively) can vary depending on our certainty in either modality. When the number of tilts is low,
the corresponding λ value would decrease and vice-versa. Overall, these maps can guide future scientists to produce multi-modal reconstructions with reasonable
hyperparameter selections. b 3D visualization of the ground truth CoNiO composite structure. Scale bar, 75 nm. c Bayesian optimization parameter selection landscape
where each black dot represents one of the many attempts to find the minimum NRMSE.
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24 Fusion Multi-Modal Electron Tomography Pseudo Code

Algorithm 1 Fused Multi-Modal 3D Chemical Tomography

1: Objective Function: Ψ(x) = λ1

2

∥

∥Ah

∑

i(Zixi)
γ − bh

∥

∥

2

2
+ λ2

∑

i

(

1
TAcxi − bTi log(Acxi + ε)

)

+ λTV

∑

i ∥xi∥TV

2:

3: Input: bh ∈ R
ny·N

proj
HAADF

×nx ▷ HAADF Tilt Series

4: Input: bc ∈ R
ni·ny·N

proj

chem
×nx ▷ Chemical Tilt Series

5: Output: x ∈ R
ni·ny·ny×nx ▷ Reconstructed Chemical Tomogram

6:

7: Niter = 100, ε = 0.1

8: x0
i = argminx Ψ2(0) ▷ Initialize first iterate with reconstruction from raw chemical maps

9:

10: for k = 1, Niter do ▷ Main Loop

11: for s = 1, nx do ▷ Apply the Gradient for Each Slice Along the Axis Parallel to Tilt Axis

12: xk
s = xk−1

s − (λ1∇xΨ1(x
k−1
s ) + λ2∇xΨ2(x

k−1
s ))

13: end for

14: for i = 1, ni do

15: xk
i = tv_fgp_3D(xk

i , λTV ) ▷ Channel-Wise TV Minimization

16: end for

17: end for

18: return x

19:

20: Comments:

21: ∇xΨ1(x) = −γdiag
(

xγ−1
)

Σ
TAT

h

(

Ah(Σxγ)− bh

)

22: Σ ∈ R
ny·ny×ny·ny·ni expresses the summation operation as matrix vector multiplication.

23: ∇xi
Ψ2(xi) = AT

c

(

(Acxi − bi)⊘ (Acxi + ε)
)

24: ⊘ is element-wise division.

25: xi ∈ R
ny·ny×nx is the reconstruction for element i.

26: bi ∈ R
ny·N

proj

chem
×nx is the chemical tilt series for element i.

27: xs ∈ R
ny·ny·ni .
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Algorithm 2 3D Gradient Projection (GP) Method (DOI: 10.1109/TIP.2009.2028250)

1: Input: b ∈ R
nx×ny → 3D Volume, λ → Regularization Parameter, ng → Number of Iterations

2: Output: x∗ → Optimal Solution

3:

4: function tv_gp_3D(x, λ, ng)

5: p0
x = 0 ∈ R

(m−1)×n×k, p0
y = 0 ∈ R

m×(n−1)×k, p0
z = 0 ∈ R

m×n×(k−1)

6: for k = 1, ng do ▷ Main Loop

7: (pk
x,p

k
y ,p

k
z) = PP

[

(pk−1
x ,pk−1

y ,pk−1
z ) + 1

26λL
T
(

PC [b− λL(pk−1
x ,pk−1

y ,pk−1
z )]

)

]

8: end for

9: return x∗ = PC [b− λL(png
x ,png

y ,pk−1
z ))]

10: end function

11:

12: function L(p,q,r) ▷ Linear Operation

13: for i = 1, . . . , nx do

14: for j = 1, . . . , ny do

15: for k = 1, . . . , nk do

16: if i == 0 or i == nx do pi,j,k = 0

17: if j == 0 or j == ny do qi,j,k = 0

18: if k == 0 or k == nk do ri,j,k = 0

19: L(p, q, r)i,j,k = pi,j,k + qi,j,k + ri,j,k − pi−1,j,k − qi,j−1,k − ri,j,k−1

20: end for

21: end for

22: end for

23: return L(p, q, r)

24: end function

25:

26: function LT (x)

27: for i = 1, . . . , nx − 1 do

28: for j = 1, . . . , ny − 1 do

29: for k = 1, . . . , nz − 1 do

30: pi,j = xi,j − xi+1,j,k

31: qi,j = xi,j − xi,j+1,k

32: ri,j = xi,j − xi,j,k+1

33: end for

34: end for

35: end for

36: return (p, q, r)

37: end function

38:
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Algorithm 3 Projection and Proximal Functions for the 3D Gradient Projection Method (DOI: 10.1109/TIP.2009.2028250)

1: function PC(x) ▷ Orthogonal Projection Operator Onto Convex Set (Non-negativity)

2: returnmax{0,x}

3: end function

4:

5: function PP (p, q, r) ▷ Projection Operator for Isotropic TV Norm

6: for i = 1, . . . , nx − 1 do

7: for j = 1, . . . , ny − 1 do

8: for k = 1, . . . , nz − 1 do

9: denom =
√

p2i,j,k + q2i,j,k + r2i,j,k

10: pi,j,k =
pi,j,k

{max{1,denom}

11: qi,j,k =
qi,j,k

max{1,denom}

12: ri,j,k =
ri,j,k

max{1,denom}

13: end for

14: end for

15: end for

16: return (p, q, r)

17: end function

18:

19: function PP (p, q, r) ▷ Projection Operator for Anisotropic TV Norm

20: for i = 1, . . . , nx − 1 do

21: for j = 1, . . . , ny − 1 do

22: for k = 1, . . . , nz − 1 do

23: pi,j,k =
pi,j,k

max{1,|pi,j,k|}

24: qi,j,k =
qi,j,k

max{1,|qi,j,k|}

25: ri,j,k =
ri,j,k

max{1,|ri,j,k|}

26: end for

27: end for

28: end for

29: return (p, q, r)

30: end function
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