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Provable Preconditioned Plug-and-Play Approach for
Compressed Sensing MRI Reconstruction
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Abstract—Model-based methods play a key role in the recon-
struction of compressed sensing (CS) MRI. Finding an effective
prior to describe the statistical distribution of the image family of
interest is crucial for model-based methods. Plug-and-play (PnP) is
a general framework that uses denoising algorithms as the prior or
regularizer. Recent work showed that PnP methods with denoisers
based on pretrained convolutional neural networks outperform
other classical regularizers in CS MRI reconstruction. However,
the numerical solvers for PnP can be slow for CS MRI reconstruc-
tion. This paper proposes a preconditioned PnP (P2nP) method to
accelerate the convergence speed. Moreover, we provide proofs of
the fixed-point convergence of the P2nP iterates. Numerical exper-
iments on CS MRI reconstruction with non-Cartesian sampling
trajectories illustrate the effectiveness and efficiency of the P2nP
approach.

Index Terms—Magnetic resonance imaging (MRI), non-
cartesian sampling, reconstruction, preconditioner, plug-and-play
(PnP).

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a noninvasive
medical imaging technique that uses magnetic fields

to obtain images of organs, tissues, and other structures. MRI
scanners acquire the Fourier components of the image of interest,
called the k-space. However, the acquisition procedure is slow.
To accelerate the acquisition, one strategy is to under-sample
the Fourier components, but this violates the condition of the
Nyquist sampling theorem, causing aliasing in conventionally
reconstructed images. To solve this problem, modern MRI scan-
ners use multiple coils (parallel imaging) to acquire the Fourier
components, providing additional spatial information [1], [2],
[3]. Moreover, compressed sensing (CS) MRI [4], [5] improves
the quality of the reconstructed images by using suitable sam-
pling patterns. In practice, CS MRI is combined with parallel
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imaging and the MRI image is reconstructed by solving a
composite minimization problem like the following:

x̂ = arg min
x∈CN

1

2
‖Ax− y‖22︸ ︷︷ ︸

f(x)

+φ(x) , (1)

where A ∈ C
ML×N refers to the forward model defining the

mapping from the imagex to the acquired k-space datay andL is
the number of coils.A consists of a stack of matricesAl such that
A = [A1;A2; · · · ;AL] where Al ∈ C

M×N � MFCl. M ∈
R

M×N defines the sampling pattern andF ∈ C
N×N denotes the

(non-uniform) Fourier transform operator. Cl ∈ C
N×N repre-

sents the sensitivity map associated with the lth coil and is patient
specific.

The data-fit term f(·) encourages consistency of the image x
with the measurements y and φ(·) is a regularizer that describes
the statistical distribution of the unknown image x, often called
a prior. Classical choices for φ(·) that have shown to be useful
for MRI reconstruction include total variation (TV) [4], [6],
[7], wavelets [8], [9], dictionary learning [10], [11], and low-
rank [12], to name a few. See [13], [14] for reviews of different
choices of φ(·). In the past decade, deep learning (DL) has
gained a lot of attention in reconstructing MRI images due to its
excellent performance. Instead of hand-crafting explicit priors,
DL provides a data-driven tool for implicitly encoding image
priors. Popular DL-based approaches for MRI reconstruction
include end-to-end mapping [15] and model-based (or called
physics-informed) deep unrolling [16], [17], [18], [19], [20].
Recently, using generative models to learn a prior for solving
MRI reconstruction has received extensive interest [21], [22].

Plug-and-Play (PnP) [23] is an alternative to DL that lever-
ages the most effective image denoisers, such as BM3D [24] or
DnCNN [25], leading to state-of-the-art performance in various
imaging tasks [26], [27], [28], [29], [30], [31]. Differing from
DL approaches that usually rely on training with massive data
for a predefined imaging task, PnP can be easily customized
to a specific application without retraining. This feature is par-
ticularly beneficial for solving CS MRI problems, where the
sampling patterns, coil sensitivity maps, and image resolution
can vary significantly from scan to scan. Moreover, PnP methods
can still achieve reasonable reconstruction results even when the
testing data is out-of-distribution from the training data used for
the denoiser [32]. Detailed discussions about using PnP for MRI
reconstruction are found in [33].
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PnP originates from the proximal algorithms [34], which
is a class of iterative algorithms for solving (1). At the kth
iteration, the (accelerated) proximal gradient method, which is
also called (Fast) Iterative Shrinkage-Thresholding Algorithm
((F)ISTA) [35], updates the next iterate as

xk+1 ← proxαφ(zk − α∇f(zk))
zk+1 ← xk+1 + ck(xk+1 − xk),

(2)

where α > 0 is the step size, ck > 0 encodes the acceleration
mechanism, and ∇f(·) denotes the gradient of f(·). Here,
proxαφ(·) represents the proximal operator defined as

proxαφ(·) � argmin
x∈CN

1

2
‖x− ·‖22 + αφ(x). (3)

The observation that (3) can be interpreted as a denoiser inspired
the development of PnP-(F)ISTA algorithm, where the proximal
operator is replaced with an arbitrary denosier Dσ(·). Here, σ2

represents the variance of the additive white Gaussian noise and
is related to the strength of the regularizer, e.g., a large σ means
more regularization. In PnP practice, the value of σ is often
selected via empirical parameter tuning, after choosing the step
size α based on a Lipschitz constant for ∇f . PnP-ADMM [36]
is another popular PnP approach that comes from the Alternat-
ing Direction Method of Multipliers (ADMM) [37]. Section II
discusses PnP approaches and their convergence properties.

Despite the rich literature that elaborates on the benefits of
using PnP for image reconstruction, efficiently solving PnP
optimization problems remains computationally challenging,
particularly for multi-coil non-Cartesian sampling CS MRI re-
construction. Frequent use of the forward model A results in
significant computational expense in CS MRI reconstruction.
This work focuses on this challenge and proposes a Precondi-
tioned PnP (P2nP) method to accelerate the convergence speed
of PnP-(F)ISTA algorithm. The main contributions of our work
are summarized as follows:

1) We propose a new preconditioned solver for PnP called
P2nP that improves the convergence speed of PnP-
(F)ISTA algorithm. In particular, we present two different
strategies for designing the preconditioners, i.e., fixed and
dynamic, where the fixed one is pre-determined using the
forward model A, and the dynamic one is estimated at
each iteration with negligible cost. Since the estimation
of the dynamical preconditioner does not rely on the
evaluation of A, it is especially useful when computing
Ax is computationally expensive.

2) We establish the theoretical convergence and stability
analysis of P2nP. Our proofs show that, under mild con-
ditions, P2nP achieves fixed-point convergence for both
fixed and the dynamic preconditioners.

3) We applied normalization-equivariant denoisers in the
PnP framework. Our results demonstrated that, compared
with ordinary CNN denoisers, noise-adapted and robust
normalization-equivariant denoisers can effectively boost
the performance of PnP, compared to existing PnP meth-
ods for which selecting a denoising strength is tricky.

4) We extensively tested P2nP for multi-coil non-Cartesian
sampling CS MRI reconstruction in a variety of settings,

including with fixed and dynamic preconditioners, spiral
and radial sampling trajectories, and a normalization-
equivariant denoiser. Our numerical results show that
P2nP consistently outperformed the baseline methods in
terms of both the convergence speed and also the recon-
struction performance, both qualitatively and quantita-
tively.

The rest of the paper is organized as follows. Section II
presents some popular existing variants and convergence proper-
ties of PnP. Section III proposes our preconditioned PnP (P2nP)
method and discusses the convergence properties of P2nP.
Section IV summarizes the experimental validation of P2nP for
CS MRI reconstruction and the comparison with other known
baseline methods. Furthermore, we examine the convergence of
P2nP to verify our theoretical analyses. Section V concludes the
paper.

II. PRELIMINARIES ON PNP APPROACHES

This section reviews different variants of PnP and their con-
vergence properties. PnP is a family of imaging algorithms
that interpret the prior with a black-box denoiser. For example,
beyond PnP-ADMM and PnP-(F)ISTA, PnP can be developed
from other algorithms, such as PnP-PDS [27], PnP-HQS [38],
and PnP-CE [29], etc. An alternative to PnP is regularization
by denoising (RED) [39], [40], [41] that forms an explicit
denoiser-embedded regularization function. To accelerate the
convergence of PnP, Tan et al. [42] proposed a PnP-quasi-
Newton approach incorporating quasi-Newton steps into a prov-
able PnP framework. However, their method is quite complicated
and the computation at each step is very expensive. Pendu
et al. [43] analyzed a preconditioned PnP-ADMM algorithm
using a diagonal matrix as the preconditioner. In general, diag-
onal matrices are ineffective for many applications because the
associated Hessian matrices are not diagonally dominant. The
method in [43] requires training a locally adjustable denoiser for
different preconditioners {Σ}, where the denoiser solves

min
x∈RN

1

2
‖Σ(x− ·)‖22 + αφ(x), (4)

where Σ is a diagonal matrix. Σ will be used as an additional
channel for training a denoiser. In practical applications, finding
a set of {Σ} for training is not an easy task. Furthermore, it is
also nontrivial to find such a diagonal preconditioner when the
explicit formulation of A is unknown.

Besides the empirical success of PnP, the convergence anal-
yses of PnP also has made much progress. Sreehari et al. [26]
provided sufficient conditions for the convergence of PnP with
respect to some implicit objective function. Chan et al. [36]
established the fixed-point convergence of PnP-ADMM for
bounded denoisers. Buzzard et al. [29] proposed a fixed-point
interpretation of PnP from the consensus equilibrium view.
Teodoro et al. [44] established the convergence for PnP-ADMM
with linearized Gaussian mixture model denoisers. Gavaskar
et al. [45] showed the convergence of PnP with an explicit cost
function for linear denoisers. Recent analyses showed that the
convergence of PnP iterates can also be ensured under other
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assumptions about the denoisers [46], [47], [48], [49], [50],
[51]. Related work on RED convergence analysis includes [39],
[41], [52]. Recent work in [53] demonstrated that RED is guar-
anteed to converge to a stationary point in a non-convex setting.
See [54] and the references therein for detailed discussions of
PnP convergence properties.

III. PROPOSED METHOD

This section first presents our P2nP method and then describes
two different strategies for choosing the preconditioner: fixed
and dynamic. We also provide the convergence and stability
analyses for P2nP.

Let P � 0 denote a Hermitian positive matrix in C
N×N . At

the kth iteration, P2nP solves the following problem:

xk+1 = argmin
u∈CN

{
〈∇f(xk),u− xk〉

+
1

2a
(u− xk)

HP−1(u− xk) + φ(u)

}
= argmin

u∈CN

{
1

2
‖u− (xk − αP∇f(xk))‖2P −1

+αφ(u)

}
, (5)

where α is the step-size, H denotes the Hermitian transpose, and
we define the weighted Euclidean norm ‖v‖2P −1 � vHP−1v.
Clearly, ifP = I , then P2nP reverts to PnP-ISTA. Using the fact
that ‖v‖2P −1 ≤ ‖P−1‖2‖v‖22, we remove the weighting P−1 in
(5) by using the update

xk+1 = argmin
u∈CN

1

2
‖u− (xk − αP∇f(xk))‖22 +

α

η
φ(u),

(6)
where η � ‖P−1‖2 > 0. Aminifard et al. [55] proved that con-
vergence of the function value sequence {f(xk)} in (1) is
still guaranteed when solving (6) instead of (5) with an extra
line search step. The following section shows a stronger result,
namely that convergence of the iterates sequence {xk} of P2nP
still holds under mild assumptions even without an extra line
search step.

Clearly, (6) is very similar to the definition of the proximal
operator in (3). So we replace this proximal operator with a de-
noiserDσ , leading to our proposed P2nP algorithm summarized
in Algorithm 1. One can treat 1

η in (6) as a trade-off parameter.

When 1
η > 1, we should emphasize φ(u) more, so the denoiser

should use a larger σ value than the one used for (3). For a given
choice of P and step size α, one can fine-tune an appropriate σ
value empirically in light of (6).

Similar to PnP-FISTA, one could try to accelerate P2nP using
momentum. However, we experimentally found that the perfor-
mance of both PnP-FISTA and the accelerated P2nP degraded
significantly after running “too many” iterations, a problem
needing further investigation in the future. So this paper focuses
on Algorithm 1. Next we show two different ways to choose the
preconditioner P .

Algorithm 1: Preconditioned Plug-and-Play (P2nP).
Require:x1 and step-size α > 0.
1: for k = 1, 2, . . . do
2: xk+1 ←Dσ(xk − αP∇f(xk)).
3: end for

A. Fixed Preconditioners

We first discuss the convergence of P2nP to gain insights into
the kinds of preconditionersP that can improve the convergence
rate and then show how to choose a fixed P efficiently in
practice.

1) Convergence Analysis: Here we discuss the convergence
condition of P2nP and its convergence rate bound. First, we
assume the denoiser is Lipschitz continuous, a standard assump-
tion in the analysis of fixed-point PnP [47], i.e., Assumption 1.

Assumption 1: The denoiser Dσ(·) : CN → C
N is Lipschitz

continuous with Lipschitz constant 1 + ε for ε > 0 so that the
following inequality is satisfied for all x,y ∈ C

N ,

‖Dσ(x)−Dσ(y)‖ ≤ (1 + ε)‖x− y‖.
Then Theorem 1 provides a sufficient condition for conver-

gence of the P2nP iterates to a fixed-point.
Theorem 1 (Convergence of P2nP with fixed preconditioner):

Assume Dσ(·) satisfies Assumption 1. Then the iterates se-
quence generated by Algorithm 1 converges to a fixed-point
if

r0 � (1 + ε) ρ(I − αPAHA) < 1, (7)

where ρ(·) denotes the spectral radius, and the convergence rate
of the iterates is upper bounded by that r0.

See Appendix A for the proof.
From Theorem 1, an ideal αP should be chosen to mini-

mize ρ(I − αPAHA). If AHA � 0, the ideal choice would
be αP = (AHA)−1 so that Algorithm 1 would converge to a
fixed-point in one iteration. However, the computation of such an
αP is expensive, and, in CS MRI, AHA is a Hermitian positive
semi-definite matrix, so choosing such an αP is impractical.

2) The Choice of Preconditioners αPTEXT: Finding a αP
to minimizeρ(I − αPAHA) is a non-trivial task. One approach
that has proved to be useful in the scientific computing commu-
nity is to minimize an upper bound of ρ(I − αPAHA) [56],
[57], i.e.,

min
αP
‖I − αPAHA‖2F . (8)

In CS MRI, we do not store dense matrix A explicitly, so using
(8) would be challenging. Moreover,A is different for each scan
because of the patient-dependent coil sensitivity maps, making
any expensive pre-computing strategies impractical.

This paper proposes using polynomial preconditioners [58].
Represent αAHA as αAHA = I − Ā. Then the ideal precon-
ditioner would be

(I − Ā)−1 = I + Ā+ Ā
2
+ · · · . (9)

An incomplete inverse of αAHA is the truncated form
of (9), i.e., P =

∑Γ
γ=1 aγ(Ā)γ−1 with Γ ∈ Z+ :≥ 2. Since
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αPAHA =
∑Γ

γ=1 p̄γ(αA
HA)γ , we know P is also a polyno-

mial in AHA. So we consider the following polynomial form
of P :

P =

Γ∑
γ=1

pγ(αA
HA)γ−1, (10)

where{pγ}γ is a set of scalars. We would like to choose this set to
minimize ρ(I − αPAHA). Note that the cost of finding {pγ}γ
for an effectiveP can be negligible. For instance, Zulfiquar et al.
in [59] set

pγ =

(
Γ

γ

)
(−1)γ−1, (11)

and adapted the polynomial preconditioner to FISTA for
wavelet-based image reconstruction, i.e., solving

x∗ = arg min
x∈RN

1

2
‖AW−1x− y‖22 + ν‖x‖1 (12)

whereW represents an orthogonal wavelet transform and ν > 0
is the trade-off parameter. Then the recovered image is W−1x∗.
Zulfiquar et al. showed that the preconditioned FISTA converged
significantly faster than regular FISTA for addressing (12).

An alternative approach is used in [60], where Iyer et al.
showed the effectiveness of Chebyshev polynomial precondi-
tioners for CS MRI reconstruction with low-rank regularization.
BecauseAHA is Hermitian, all its eigenvalues are real, allowing
the use of Chebyshev polynomial preconditioners that are opti-
mal for minimizing ρ(I − αPAHA). By finding the smallest
and largest eigenvalue of AHA, we can get the values of {pγ}γ
analytically. In CS MRI, A is usually under-determined, so the
smallest eigenvalue of AHA is zero and we obtain the largest
eigenvalue by the power method.

By using a recursive implementation, applying Px needs
to compute AHAx a total of (Γ− 1) times. In modern CS
MRI, performing AHAx is also expensive due to the use of
multi-coils and non-Cartesian acquisition, so a large Γ can
dramatically increase computational costs. Note that a large Γ
can yield a more effective preconditioner but leads to higher
computational cost. In practice, its efficiency depends on the
sampling trajectories, sensitivity maps, number of coils, and
matrix size. So, in practice, the bestΓ should strike a balance be-
tween its effectiveness and the extra computation. In this paper,
we simply used Γ = 2 for all experiments. To further reduce
the computation in the polynomial preconditioners, we study
dynamic preconditioners in the next part, where the additional
computation at each iteration is negligible.

B. Dynamic Preconditioners

Theorem 1 indicates that a well-designed preconditioner
should approximate the inverse of AHA. So an alternative
approach is to use quasi-Newton methods [61, Ch. 6] to estimate
aP that approximates (AHA)−1. Following [62], [63], [64], we
suggest using the zero-memory self-scaling Hermitian rank-1
(ZMSHR1) for complex data to define such a preconditioner.
Algorithm 2 summarizes the ZMSHR1 approach. Since (14)

is a one-dimensional minimization problem, we simply search
for the minimal a. Lemma 1 specifies some properties of the
variables generated by Algorithm 2.

Lemma 1: Suppose f(x) = 1
2‖Ax− y‖22 with x ∈ C

N .
Then τk and 〈sk,vk〉 generated in Algorithm 2 are real and
〈sk − τkvk,vk〉 ≥ 0. Moreover, the generated τk and P k ∈
C

N×N for ∀k are bounded by

1

2θ2
< τk ≤ 1

θ1
,

1

2θ2
� P k � δ + 1

δθ1
,

where δ > 0, θ1 ∈ (0, 1), and θ2 ∈ (1,∞).
See Appendix B for the proof.
Lemma 1 ensures that P k is a positive-definite matrix. Let

ηk � ‖P−1k ‖2. Then, at the kth iteration, the dynamic precondi-
tioner version of P2nP solves the following problem instead of
(6):

xk+1 = argmin
u∈CN

1

2
‖u− (xk − αP k∇f(xk))‖22 +

α

ηk
φ(u).

(13)
Clearly, ηk differs at each iteration, so solving (13) is not equiv-
alent to executing a denoiser with a fixed σ for all iterations.
In [65], Xu et al. proved that if Dσ(·) denotes a minimum
mean-squared error (MMSE) denoiser for image data with noise
standard deviation σ, then 1

μDσ(μx), μ > 0 is the MMSE

denoiser for an image with noise level σ2/μ2. Moreover, Xu
et al. [50] showed many modern denoisers like BM3D [24] and
trained CNN denoisers can be treated experimentally as MMSE
denoisers. So, for a given ηk, one could, in principle, solve (13)
by (somehow) finding a suitable η∗k and running 1

η∗k
Dσ(η

∗
kx) if

Dσ(·) is a MMSE denoiser. However, finding η∗k in practice is
a nontrivial task.

Herbreteau et al. proposed a normalization-equivariant CNN
denoiser that performs as well as an ordinary denoiser and can
denoise noisy images across various noise levels [66]. Specif-
ically, the normalization-equivariant denoiser has the special
property that, for any μ ∈ R with μ > 0 and Δ ∈ C, we have
Dσ(μx+Δ1) = μDσ(x) + Δ1, where 1 denotes the vector
of ones. By using a normalization-equivariant denoiser, we can
simply apply Dσ(xk − αP k∇f(xk)) instead of (13) without
needing to adjust the associated noise level σ for different ηk
values; this property makes using a dynamic preconditioner as
practical as the fixed preconditioner case. Algorithm 3 summa-
rizes P2nP with dynamic preconditioners.

Section IV-D compares the performance between
normalization-equivariant and ordinary denoisers and shows
that the normalization-equivariant denoiser outperformed the
ordinary denoiser. Next, we discuss the stability property
of Algorithm 3, ensuring that the iterates xk generated by
Algorithm 3 will always be close to a fixed-point.

1) Stability Analysis: In this part, we present the stability
analysis of P2nP when using dynamic preconditioners. We show
that Algorithm 3 is reliable in the sense that the iterates xk

remain in a bounded set. We first assume the gradient of f is
upper bounded.
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Algorithm 2: Zero-Memory Self-Scaling Hermitian rank-1
(ZMSHR1) Method.

Require:xk−1, xk,∇f(xk−1), ∇f(xk), δ > 0,
θ1 ∈ (0, 1), and θ2 ∈ (1,∞).

1: Set sk ← xk − xk−1 and mk ← ∇f(xk)−∇f(xk−1).
2: Compute a such that

mina{a ∈ [0, 1]|vk = ask + (1− a)mk}
satisfies θ1 ≤ 〈sk,vk〉

〈sk,sk〉 and 〈vk,vk〉
〈sk,vk〉 ≤ θ2.

(14)

3: Compute τk ← 〈sk,sk〉
〈sk,vk〉 −

√
( 〈sk,sk〉
〈sk,vk〉 )

2 − 〈sk,sk〉
〈vk,vk〉 .

4: if 〈sk − τkvk,vk〉 ≤ δ‖sk − τvk‖‖vk‖ then
5: uk ← 0.
6: else
7: uk ← sk − τkvk.
8: end if
9: Return: P k ← τkI +

uku
H
k

〈sk−τvk,vk〉 .

Algorithm 3: P2nP With Dynamic Preconditioners.
Require:x1, step size α ∈ R,
and Dσ(·) is a normalization-equivariant denoiser.
1: for k = 1, 2, . . . do

2: if k==1 then
3: xk+1 ←Dσ(xk − α∇f(xk)).
4: else
5: Call Algorithm 2 to get P k.
6: xk+1 ←Dσ(xk − αP k∇f(xk)).
7: end if
8: end for

Assumption 2: For ∀xk generated by Algorithm 3, there
exists R <∞ such that

‖∇f(xk)‖ ≤ R.

The bound R exists in practice since many denoising
algorithms have bounded range spaces [48] and ∇f(x) =
AH(Ax− y). Theorem 2 defines an upper bound on ‖xk −
x∗‖.

Theorem 2 (Stability of Algorithm 3): Suppose a Hermi-
tian positive matrix P ∗ satisfies 0 ≺ P ∗ � λ∗I with λ∗ <∞,
and q � [(1 + ε) ρ(I − αP ∗AHA)] < 1. Let{P k}k denote the
dynamic preconditioners generated by Algorithm 2 and as-
sume a normalization-equivariant denoiser is used. Then ‖xk −
x∗‖ with xk generated by Algorithm 3 and x∗ � Dσ(x∗ −
αP ∗∇f(x∗)) is upper bounded by

‖xk+1 − x∗‖ ≤ qk‖x1 − x∗‖+ (1 + ε)α(δ + 1 + δθ1λ∗)
δθ1(1− q)

R.

(15)
See Appendix C for the proof.
Since q < 1, when k →∞, the first term in (15) will vanish

and the distance ‖xk − x∗‖ is bounded by the second term. In
our experiments, we found R = ‖∇f(x1)‖, so a good initial
value with small ‖∇f(x1)‖ can help to control the error. More-
over, one can control the accuracy of the error bound by setting

other parameters to a desired level. However, the algorithm
may be very slow if we tune the parameters to enforce a small
error bound. In practice, we experimentally identified that the
excellent PSNR performance of Algorithm 3 can be achieved
without tuning the value of the second term in (15), coinciding
with the observation in [48, Thm. 1]. This observation indicates
that the parameters which perform well in experiments may
result in an extremely high upper bound, suggesting that further
analysis could lead to tighter results.

IV. NUMERICAL EXPERIMENTS

This section studies the performance of P2nP with fixed and
dynamic preconditioners for CS MRI reconstruction with spiral
and radial sampling trajectories. For the fixed preconditioners,
we examined (11) and the Chebyshev polynomials, and inves-
tigate the convergence of P2nP to verify our analyses. Lastly,
we compared the performance of normalization-equivariant and
ordinary denoisers. We first present our experimental and algo-
rithmic settings and then show the reconstruction results.

Experimental Settings: The brain and knee MRI images were
used to study the performance of P2nP. For the brain images,
we adopted the dataset used in [16] that has 360 images in the
training dataset and 164 images in the testing dataset. For the
knee images, we used the NYU fastMRI [67] multi-coil knee
dataset, where we first applied the ESPIRiT algorithm [68] to re-
cover the complex-valued images and then took 700 and 6 slices
from the training and testing datasets, respectively. We then
cropped and resized all brain and knee images to 256× 256. The
noisy images were obtained by adding i.i.d. Gaussian noise with
variance 0.1/255. For the denoiser, we used the DRUNet [31]
and trained both normalization-equivariant [66] and ordinary
denoisers for brain and knee images. In the training procedure,
both normalization-equivariant and ordinary denoisers used a
batch size of 16 with the mean squared error as the loss function.
The ADAM algorithm is used as the optimizer with a learning
rate 10−4 [69], and a total of 3× 103 iterations are performed
to train the denoisers. We trained different denoisers for brain
and knee images, but we used the same denoiser for different
acquisitions.

We took six images from the brain and knee testing datasets as
the ground truth and scaled the maximum magnitude of images
to be one. Fig. 1 shows the magnitude of the six complex-valued
ground truth images. For the sampling trajectories, we used 6
interleaves, 1688 readout points, and 32 coils (respectively, 21
spokes with golden angle rotation, 1024 readout points, and 32
coils) for the spiral (respectively, radial) trajectory to specify
the forward model A. Fig. 2 illustrates the trajectories used
in this paper. We applied the related forward models to the
ground truth images to generate the noiseless multi-coil k-space
data and then added complex i.i.d Gaussian noise with mean
zero and variance 10−3 (respectively, 3× 10−4) to all coils for
the brain (respectively, knee) images to form the associated
measurements y. Section IV-C, IV-D examine the whole six
brain test images with the spiral acquisition. The supplementary
material provides additional experimental results for a Cartesian
sampling trajectory and the way to compute the acceleration
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Fig. 1. The magnitude of the six brain and knee complex-valued ground truth images.

TABLE I
SUMMARY OF THE ALGORITHMIC ROUTINES FOR PNP-ISTA/ADMM AND P2NP

Fig. 2. The non-Cartesian k-space sampling trajectories used in this paper.

factor for spiral and radial acquisitions. All experiments were
implemented in PyTorch [70] and run on NVIDIA GeForce RTX
3090.

Algorithmic Settings: The step-size α was set to be
1/‖AHA‖2, where the spectral norm was computed by the
power method. For all experiments, we used AHy as the ini-
tialization. For P2nP with fixed preconditioners, we studied two
different strategies: one withΓ = 2 such thatP F

1 = 2− αAHA
through (11) dubbed “P2nP-F-1”, and the other with P F

2 =
4− 10

3 αAHA through the Chebyshev polynomials dubbed
“P2nP-F-Cheb”. P2nP with dynamic preconditioner is denoted
by “P2nP-D”. Algorithm 2 used δ = 10−8, θ1 = 2× 10−6, θ2 =
200. We mainly compared P2nP with PnP-ISTA and PnP-
ADMM methods [36], [47] since those methods also have prov-
able fixed-point convergence under mild assumptions. Table I
outlines the algorithmic routines for all comparison methods.

Fig. 3. PSNR values versus iteration and wall (GPU) time on the brain 1 image
with spiral acquisition.

We ran all algorithms for 200 iterations except in Section IV-C,
where we ran 500 iterations to examine the convergence prop-
erties. Moreover, we used the normalization-equivariant de-
noiser in all the experiments except in Section IV-D, where we
compared the difference between normalization-equivariant and
ordinary denoisers.

A. Spiral Acquisition Reconstruction

Fig. 3 presents the performance of P2nP for the brain 1
image. Fig. 3(a) shows that P2nP with fixed and dynamic pre-
conditioners converged faster than PnP-ISTA and PnP-ADMM
in terms of iteration number, demonstrating the effectiveness
of using preconditioners and the fastest convergence speed of
Algorithm 3. Moreover, P2nP-F-Cheb was faster than P2nP-F-1,
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Fig. 4. The reconstructed brain 1 images at 25, 50, 100, 200th iteration with spiral acquisition. The PSNR value is labeled in the left bottom corner of each image.
The fifth column shown the error maps (×5) of the reconstructed images at 200th iteration. We omitted the PnP-ADMM results since it is similar to PnP-ISTA.
DC represents the density compensation based reconstruction. Acceleration factor is ≈ 130.

coinciding with our expectation since P2nP-F-Cheb is optimal.
Fig. 3(b) displays the PSNR values versus wall time. P2nP-D
was the most appealing algorithm in this experiment because
it converged faster (both in terms of iterations run and wall-
time) than the other algorithms. Fig. 3(b) shows that P2nP-F-1
and P2nP-F-Cheb needed almost twice as much wall time as
ISTA. This was because P2nP-F-1 and P2nP-F-Cheb executed
Ax twice as often as PnP-ISTA. Nevertheless, P2nP-F-1 and
P2nP-F-Cheb still converged faster than PnP-ISTA in terms
of wall time. PnP-ADMM was the slowest algorithm across

all methods in terms of wall time because ADMM needed
to solve a least-squares problem at each iteration, requiring
executing Ax many times. Fig. 4 depicts the reconstructed
images at the 25, 50, 100, and 200th iterations and the as-
sociated error maps at the 200th iteration and shows that
P2nP achieved a higher PSNR and clearer image reconstruction
than PnP-ISTA with the same number of iterations. Moreover,
Fig. 4 also includes the density compensation based recon-
struction [71], clearly demonstrating the advantage of the PnP
framework.
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TABLE II
PSNR PERFORMANCE OF EACH METHOD FOR RECONSTRUCTING 5 OTHER BRAIN TEST IMAGES WITH SPIRAL ACQUISITION

Fig. 5. PSNR values versus iteration and wall (GPU) time on the knee 1 image
with radial acquisition.

Table II presents the performance of different methods for
the reconstruction of other brain test images, where we used
the highest PSNR obtained by PnP-ADMM as a benchmark.
Firstly, PnP-ISTA had similar PSNR as PnP-ADMM. Secondly,
from the first row of each method in Table II, P2nP took fewer
iterations and less wall time than PnP-ISTA and PnP-ADMM, to
reach a similar PSNR. This consistent advantage of P2nP demon-
strates the effectiveness of using preconditioners. Moreover,
P2nP-D was almost 70 times faster than PnP-ADMM and 7∼10
times faster than PnP-ISTA to reach a similar PSNR, illustrating
the advantages and efficiency of using dynamic preconditioners.
The second row of each method in Table II indicated that P2nP-
D also yielded the highest PSNR after running all scheduled
iterations. Overall, in this experiment, P2nP-D was the fastest
algorithm in terms of iteration and wall time. P2nP not only
improved the numerical efficiency, but also yielded a higher
PSNR. The supplementary material provides the results of knee
images with spiral acquisition where we observed similar trends
as the brain images.

B. Radial Acquisition Reconstruction

Fig. 5 describes the performance of different methods for the
reconstruction of knee 1 image. Consistent with the observations
in the brain-image-based experiments in Section IV-A, P2nP
converged faster than PnP-ADMM and PnP-ISTA in terms
of iteration and wall time. Additionally, in this experiment,
P2nP-D converged at a rate similar to P2nP-F-Cheb in terms
of iterations run but P2nP-D was faster than P2nP-F-Cheb in

terms of wall time. Although the PSNR value of P2nP-F-Cheb
dropped slightly at the end of the iterations, it was still faster
than P2nP-F-1. Similar to Section IV-A, P2nP-D was the fastest
algorithm. Fig. 6 shows the reconstructed images for different
methods. Here the reconstructed images had some aliasing
artifacts because we only used 21 spokes. The supplementary
material shows the reconstruction of knee 1 image with a spi-
ral acquisition that yields much clearer reconstructed images.
Moreover, we also tested on the radial acquisition with 55
spokes and the results are summarized in the supplementary
material where we saw the artifacts were significantly reduced.
P2nP yielded only 1 dB higher PSNR than PnP-ISTA instead
of ≈ 4.5 dB for a spiral acquisition. The main reason is due to
the effectiveness of the preconditioner in this acquisition. The
supplementary material shows that P2nP performs significantly
better than PnP-ISTA on the same knee image with spiral and
55-spoke radial acquisitions.

Similar to Table II, we also tested the other knee images
and Table III summarizes the results. Here, PnP-ISTA had very
slightly worse PSNR than PnP-ADMM for some test images.
Moreover, for some images (i.e., 5 and 6), PnP-ISTA images
has slightly lower PSNR towards the end of the iterations. This
is expected because fixed-point convergence cannot guarantee
the quality of the reconstructed image. Similar to Section IV-A,
P2nP was faster than PnP-ISTA and PnP-ADMM, and P2nP-D
was the fastest algorithm to exceed the performance of ADMM.
However, for some images (i.e., 2, 3, 4), P2nP-F-Cheb achieved
the highest PSNR. The supplement summarizes the results
of brain images with radial acquisition which showed similar
trends.

C. Convergence Validation

This part studied the convergence of P2nP. Denote by
E(xk) = ‖xk −Dσ(xk − αP∇f(xk))‖22/‖x1‖22, so E(xk)
→ 0 if xk → x∗ where x∗ represents the fixed-point. Fig. 7(a)
shows the value of E(xk) versus iteration for PnP-ISTA, P2nP-
F-1, and P2nP-F-Cheb. We saw that E(xk)→ 0 for all tested
methods and P2nP converged faster than PnP-ISTA. Moreover,
we noticed that the shaded region was very small, indicating
that the convergence properties were similar across different
test images. Fig. 7(b) presents the value of ‖∇f(xk)‖22/‖x1‖22
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Fig. 6. The reconstructed knee 1 images at 25, 50, 100, 200th iteration with radial acquisition. The PSNR value is labeled in the left bottom corner of each
image. The fifth column shown the error maps (×5) of the reconstructed images at 200th iteration. DC represents the density compensation based reconstruction.
Acceleration factor is ≈ 12.

TABLE III
PERFORMANCE OF EACH METHOD ON THE RECONSTRUCTION OF OTHER KNEE TEST IMAGES WITH THE RADIAL ACQUISITION
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Fig. 7. (a) Numerical test of the fixed-point convergence of PnP-ISTA, P2nP-
F-1, and P2nP-F-Cheb. (b) ‖∇f(xk)‖ values versus iteration for P2nP-D.

Fig. 8. Numerical test of the convergence rates of PnP-ISTA, P2nP-F-1, P2nP-
F-Cheb, and P2nP-D averaged on six brain test images with spiral acquisition.
The shaded region of each curve represents the bound of the ρk across all brain
test images.

Fig. 9. Averaged PSNR values versus iteration for PnP-ISTA with the
normalization-equivariant and ordinary denoisers. The shaded region of each
curve represents the bound of the PSNR across all brain test images with spiral
acquisition.

for P2nP-D. It can be seen that ‖∇f(xk)‖22/‖x1‖22 attained its
maximal value at the first iteration and tended to zero, indicating
R = ‖∇f(x1)‖.

We used ρk � (‖xk+1 − xk‖2/‖x2 − x1‖2)1/k for k ≥ 1 to
measure the empirical convergence rate, where ρk < 1 means
‖xk+1 − xk‖2 tends to zero. Fig. 8 shows ρk versus iteration
for PnP-ISTA and P2nP with fixed and dynamic preconditioners.

D. Comparing Ordinary and Normalization-Equivariant
Denoisers

Fig. 9 compares the PSNR values of PnP-ISTA on the
brain test images with ordinary and normalization-equivariant
(“Norm-Equiv”) denoisers. PnP-ISTA with the “Norm-Equiv”
denoiser had significantly higher PSNR than the ordinary de-
noiser and was more robust to running more iterations. This
is due to the fact that, compared with ordinary denoisers, the
“Norm-Equiv” ones are more robust and adaptive to noise level
changes [66]. Ref. [65] illustrated the importance of choosing
the proper noise level for the denoiser in the PnP framework. Our
experiments demonstrated that the “Norm-Equiv” denoiser can
be an appealing choice to automatically address this concern.

V. CONCLUSION

This paper proposes a preconditioned PnP method (P2nP)
with provable convergence. We showed that P2nP can
significantly accelerate the convergence speed of its no-
preconditioner-based counterparts in the reconstruction of CS
MRI. Since the forward model in CS MRI is patient-specific, we
proposed two different strategies (fixed and dynamic) for com-
puting preconditioners efficiently. The corresponding numerical
experiments demonstrated effectiveness and efficiency of using
preconditioners for accelerating MRI reconstruction with spiral
and radial trajectories. Moreover, we introduced the use of
normalization-equivariant denoisers in the PnP framework. By
providing a self-adaptive way to address the noise-level tuning
problem in PnP, using normalization-equivariant denoisers not
only allows for “solving” (13) but also significantly improves
the reconstruction PSNR.

The dynamic preconditioner does not require any explicit
knowledge of the forward model, making it a potentially efficient
solver for addressing nonlinear inverse problems with PnP, e.g.,
full waveform inversion [72]. Another promising direction is to
unroll P2nP, which may yield a more efficient network than oth-
ers for image reconstruction. We leave the further investigation
of these topics to future work.

APPENDIX A
PROOF OF THEOREM 1

The updating scheme in Algorithm 1 can be written as

xk+1 = T (xk)withT (x) � Dσ(x− αP∇f(x)).
From the Banach fixed-point theorem, Algorithm 1 is guaranteed
to converge to a fixed-point if the mapping T (x) is contractive.
So if x∗ is a fixed-point of T (x) such that x∗ = T (x∗), then
conditioned on Assumption 1,we have

‖xk+1 − x∗‖ = ‖T (xk)− T (x∗)‖
= ‖Dσ(xk − αP∇f(xk))−
−Dσ(x∗ − αP∇f(x∗))‖
≤ (1 + ε)‖xk − x∗

− αP (∇f(xk)−∇f(x∗)) ‖
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= (1 + ε)‖xk − x∗ − αPAHA(xk − x∗)‖
≤ (1 + ε)‖I − αPAHA‖ · ‖xk − x∗‖.

Clearly, if (1 + ε)ρ(I − αPAHA) < 1, the iterates from Al-
gorithm 1 are guaranteed to converge and the convergence rate
is at most (1 + ε)ρ(I − αPAHA).

APPENDIX B
PROOF OF LEMMA 1

The proof that τk and 〈sk,vk〉 are real comes from [7, Obser-
vation 1]. Using the fact∇f(x) = AH(Ax− y) and following
the deduction in [64, Lemma A.3 and Theorem 4.2], we can
easily prove that 〈sk − τkvk,vk〉 is nonnegative and the bounds
of τk and P k so that we omit the details here. The bound of
P k obtained here is much tighter than the one shown in [64,
Thm. 4.2] that bound depends on the image size while ours does
not. If one considers general nonlinear inverse problems in the
complex plane, then Lemma 1 in general is invalid.

APPENDIX C
PROOF OF THEOREM 2

The updating scheme of Algorithm 3 at the kth iteration can
be represented as

xk+1 = Tk(xk)withTk(x) = Dσ(x− αP k∇f(x)).

Then we have

‖xk+1 − x∗‖ ≤ (1 + ε)‖xk − x∗

− α(P k∇f(xk)− P ∗∇f(x∗))‖
≤ (1 + ε)‖I − αP ∗AHA‖‖xk − x∗‖

+ (1 + ε)α‖(P k − P ∗)∇f(xk)‖
≤ qk‖x1 − x∗‖

+ (1 + ε)α
k∑

m=1

qk−m‖(Pm

− P ∗)∇f(xm)‖
≤ qk‖x1 − x∗‖

+ (1 + ε)αRβ

k∑
m=1

qk−m

≤ qk‖x1 − x∗‖+ (1 + ε)
αRβ

1− q

where q � [(1 + ε)ρ(I − αP ∗AHA)] and β � maxm≤k
‖Pm − P ∗‖ ≤ maxm≤k ‖Pm‖+ ‖P ∗‖ ≤ δ+1

δθ1
+ λ∗. The

first inequality is the result of Assumption 1. The second
inequality derives from the triangle and Cauchy–Schwarz
inequalities. The third inequality is obtained by applying first
and second inequalities recursively. The fourth inequality comes
from the definitions of R and β.
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Fig. S.1. PSNR values versus iteration and wall (GPU) time for the knee 1
test image with spiral acquisition.

S.I. SPIRAL ACQUISITION RECONSTRUCTION

Figure S.1 presents the PSNR values versus iteration and
wall time for the knee 1 image with spiral acquisition. Clearly,
we saw P2nP-F-1/Cheb and P2nP-D converged faster than
PnP-ISTA and PnP-ADMM in terms of iteration number and
wall time. Moreover, we observed P2nP-D was faster than
P2nP-F-Cheb in terms of wall time, but P2nP-F-Cheb achieved
higher PSNR eventually. In this setting, P2nP-F-1 was only
slightly faster than PnP-ISTA and PnP-ADMM in terms of
wall time. Figure S.2 shows the reconstructed images of each
method. Obviously, P2nP required less iterations to achieve
higher PSNR than PnP-ISTA and PnP-ADMM, illustrating the
effectiveness of using preconditioners. Table S.I describes the
results of other knee test images. Evidently, similar trend was
observed for the brain test images.

S.II. RADIAL ACQUISITION RECONSTRUCTION

Figure S.3 describes the PSNR values versus iteration and
wall time of the brain 1 test image with radial acquisition.
From Figure S.3, we observed P2nP converged faster than PnP-
ISTA and PnP-ADMM. Moreover, P2nP-D converged similar
to P2nP-F-Cheb in terms of iteration but P2nP-D was faster
than P2nP-F-Cheb in terms of wall time. Table S.II shows the
results of other test images, illustrating the effectiveness of
adding preconditioners.
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S.III. RADIAL ACQUISITION RECONSTRUCTION WITH 55
SPOKES

Figure S.5 describes the reconstruction of knee 1 test image
with the 55 spokes radial acquisition. Clearly, the undesired
artifacts in the 21 spokes radial acquisition disappeared and
P2nP-D yielded the highest PSNR at 200th iteration.

S.IV. CARTESIAN ACQUISITION RECONSTRUCTION

In this section, we present the results of using Cartesian
sampling. Figure S.6 describes the downsampling mask and
compares the PSNR values of different methods with respect
to iteration and wall time for the knee 1 image. Moreover,
we also tested the brain 1 image and the results are presented
in Figure S.7. From Figures S.6 and S.7, we saw P2nP still
outperforms than PnP-ISTA demonstrating the effectiveness of
our approach.

S.V. THE ACCELETATION FACTOR IN NON-CARTESIAN
SAMPLING

In this section, we describe the method we used to compute
the acceleration factor in non-Cartesian sampling. Without any
confusion, the notation used in this section is self-contained.

For radial acquisition, the following formula is used to
compute the acceleration factor (AF):

AF =
Nspokes,fully sampled

Nspokes,acquired
.

We approximate Nspokes,fully sampled through the number of
phase encoding lines in Cartesian sampling.

For spiral acquisition, the number of interleaves required
for full k-space coverage should ensure the spacing between
adjacent spiral arms meeting the Nyquist criterion that

Ninterleaves =
2πkmax

∆k
,

where kmax = 1
2∆x with ∆x representing the image resolution

and ∆k ≤ 1
FOV . Then we have

Ninterleaves =
π × FOV

∆x
= π × Matrix Size

resulting in

AF =
Ninterleaves

Nacquired,interleaves
.
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Fig. S.2. The reconstructed knee 1 images at 25, 50, 100, 200th iteration with spiral acquisition. The PSNR value is labeled in the left bottom corner of each
image. The fifth column shown the error maps (×5) of the reconstructed images at 200th iteration. We omitted the PnP-ADMM results since it is similar to
PnP-ISTA. DC represents the density compensation based reconstruction. Acceleration factor is ≈ 130.
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TABLE S.I
PSNR PERFORMANCE OF EACH METHOD FOR RECONSTRUCTING 5 OTHER BRAIN TEST IMAGES WITH SPIRAL ACQUISITION. FOR PNP-ADMM, WE
SHOWED THE MAXIMAL PSNR AND THE ASSOCIATED NUMBER OF ITERATIONS, AND WALL TIME THAT IS USED AS THE BENCHMARK. FOR OTHER

METHODS ON EACH TEST IMAGE, THE SECOND COLUMN OF THE FIRST ROW REPRESENTS THE FIRST ITERATION THAT EXCEEDED PNP-ADMM PSNR.
THE RELATED FIRST AND THIRD COLUMNS ARE THE ASSOCIATED PSNR AND WALL TIME, RESPECTIVELY. THE BOLD DIGITS DENOTE THE NUMBER OF

ITERATIONS AND WALL TIME OF THE FASTEST ALGORITHM THAT FIRST EXCEEDED PNP-ADMM. THE SECOND ROW SHOWS THE PSNR AND WALL TIME
AT THE 200TH ITERATION. THE BLUE DIGITS DENOTE THE HIGHEST PSNR AT THE 200TH ITERATION.

Methods
Index 2 3 4 5 6

PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓
PnP-ADMM 37.85 200 147.8 34.33 200 148 34.96 200 147.4 33.53 200 148.9 34.24 200 147.8

PnP-ISTA 37.85 200 14.6 34.33 199 14.6 34.96 199 14.5 33.54 199 14.4 34.25 199 14.5
37.85 200 14.6 34.34 200 14.7 34.97 200 14.6 33.55 200 14.5 34.26 200 14.6

P2nP-F-1 37.85 75 10.3 34.36 85 11.7 34.96 84 11.5 33.57 87 11.8 34.27 90 12.3
39.03 200 27.4 36.43 200 27.5 36.73 200 27.5 35.92 200 27.2 36.44 200 27.4

P2nP-F-Cheb 37.91 37 5 34.36 41 5.7 34.99 41 5.6 33.56 42 5.7 34.28 44 6.1
39.66 200 27.5 38.03 200 27.5 38.15 200 27.5 37.77 200 27.4 38.14 200 27.5

P2nP-D 38.34 36 2.6 34.33 21 1.5 35.06 26 1.9 33.58 35 2.6 34.29 23 1.7
39.80 200 14.6 38.23 200 14.5 37.90 200 14.8 38.04 200 14.6 38.21 200 14.6

TABLE S.II
PERFORMANCE OF EACH METHOD ON THE RECONSTRUCTION OF OTHER BRAIN TEST IMAGES WITH RADIAL ACQUISITION. THE DEFINITION OF DIGITS

IS IDENTICAL TO TABLE S.I. “−” MEANS THE METHOD CANNOT REACH HIGHER PSNR IN 200 ITERATIONS.

Methods
Index 2 3 4 5 6

PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓ PSNR↑ iter.↓ sec.↓
PnP-ADMM 30.76 181 134.5 31.31 181 132.7 30.79 182 133.3 29.63 175 129.1 29.23 163 121.8

PnP-ISTA − − − − − − − − − − − − − − −
30.73 200 14.5 31.29 200 14.3 30.77 200 14.4 29.59 200 14.4 29.14 200 14.4

P2nP-F-1 30.77 66 9.0 31.31 64 8.7 30.81 65 8.8 29.64 61 8.4 29.24 58 8.0
31.38 200 27.4 31.95 200 27.3 31.46 200 27.2 30.25 200 27.3 29.67 200 27.5

P2nP-F-Cheb 30.80 33 4.6 31.35 32 4.4 30.83 32 4.3 29.66 30 4.1 29.23 28 3.8
31.93 200 27.7 32.50 200 27.3 32.03 200 27.1 30.82 200 27.2 30.13 200 27.3

P2nP-D 30.77 18 1.3 31.41 24 1.8 30.83 20 1.4 29.66 25 1.8 29.23 27 2.0
32.07 200 14.7 32.68 200 14.3 32.04 200 14.4 30.51 200 14.5 28.70 200 14.5
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Fig. S.3. PSNR values versus iteration and wall (GPU) time for the brain 1
test image with radial acquisition.
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Fig. S.4. The reconstructed brain 1 images at 25, 50, 100, 200th iteration with different algorithms for radial acquisition. The PSNR value is labeled in
the left bottom corner of each image. The fifth column shown the error maps (×5) of the reconstructed images at 200th iteration. DC represents the density
compensation based reconstruction. Acceleration factor is ≈ 12.
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Fig. S.5. The reconstructed knee 1 images at 25, 50, 100, 200th iteration with radial acquisition of 55 spokes. The fifth column shown the error maps (×5)
of the reconstructed images at 200th iteration.
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Fig. S.6. Downsampling mask and PSNR values versus iteration and wall
time for the knee 1 image with Cartesian sampling. Acceleration factor is 2.
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Fig. S.7. PSNR values versus iteration and wall time for the brain 1 image
with Cartesian sampling.
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