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Purpose: Optimizing three-dimensional (3D) k-space sampling trajectories is

important for efficient MRI yet presents a challenging computational problem.

This work proposes a generalized framework for optimizing 3D non-Cartesian

sampling patterns via data-driven optimization.

Methods:We built a differentiable simulation model to enable gradient-based

methods for sampling trajectory optimization. The algorithm can simultane-

ously optimize multiple properties of sampling patterns, including image qual-

ity, hardware constraints (maximum slew rate and gradient strength), reduced

peripheral nerve stimulation (PNS), and parameter-weighted contrast. The pro-

posedmethod can either optimize the gradient waveform (spline-based freeform

optimization) or optimize properties of given sampling trajectories (such as

the rotation angle of radial trajectories). Notably, the method can optimize

sampling trajectories synergistically with either model-based or learning-based

reconstruction methods. We proposed several strategies to alleviate the severe

nonconvexity and huge computation demand posed by the large scale. The

corresponding code is available as an open-source toolbox.

Results: We applied the optimized trajectory to multiple applications includ-

ing structural and functional imaging. In the simulation studies, the image

quality of a 3D kooshball trajectory was improved from 0.29 to 0.22 (NRMSE)

with Stochastic optimization framework for 3D NOn-Cartesian samPling tra-

jectorY (SNOPY) optimization. In the prospective studies, by optimizing the

rotation angles of a stack-of-stars (SOS) trajectory, SNOPY reduced the NRMSE

of reconstructed images from1.19 to 0.97 compared to the best empiricalmethod

(RSOS-GR). Optimizing the gradient waveform of a rotational EPI trajectory

improved participants’ rating of the PNS from “strong” to “mild.”

Conclusion: SNOPY provides an efficient data-driven and optimization-based

method to tailor non-Cartesian sampling trajectories.
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1 INTRODUCTION

Most MRI systems sample data in the frequency domain

(k-space) following prescribed sampling trajectories. Effi-

cient sampling strategies can accelerate acquisition and

improve image quality. Many well-designed sampling

strategies and their variants, such as spiral, radial, CAIPIR-

INHA, and PROPELLER,1-4 have enabled MRI’s applica-

tion to many areas.5-8 Sampling patterns in k-space are

either located on the Cartesian raster or arbitrary locations

(non-Cartesian sampling). This paper focuses on opti-

mizing three-dimensional (3D) non-Cartesian trajectories

and introduces a generalized gradient-based optimization

method for automatic trajectory design or tailoring.

The design of sampling patterns usually considers cer-

tain properties of k-space signals. For instance, the vari-

able density spiral trajectory9 samples more densely in

the central k-space where more energy is located. For

higher spatial frequency regions, the variable density spi-

ral trajectory uses larger gradient strengths and slew rates

to cover k-space as quickly as possible. Compared to

two-dimensional (2D) sampling, designing 3D sampling

analytically is more challenging for several reasons. The

number of parameters increases in 3D, and the parameter

selection is more difficult due to the larger search space.

For example, a 3D radial trajectory with 10 000 spokes has

20 000 degrees of freedom, while its 2D multislice coun-

terpart with 200 spokes per slice has only 200 degrees of

freedom.Additionally, analytical designs usually are based

on the Shannon–Nyquist relationship10-12 that might not

fully consider properties of sensitivity maps and nonlinear

reconstruction methods. For 3D sampling patterns with

high undersampling (acceleration) ratios, there are limited

analytical tools for designing sampling patterns with an

anisotropic field of view (FOV) and resolution. The periph-

eral nerve stimulation (PNS) effect13 is also more severe

in 3D imaging because of the additional spatial encoding

gradient, further complicating manual designs. For these

reasons, automatic designs of 3D sampling trajectories are

crucial for efficient acquisition.

Many 3D sampling approaches exist. The

“stack-of-2D” strategy stacks 2D sampling patterns

in the slice direction.6,12 This approach is easier to

implement and enables slice-by-slice 2D reconstruc-

tion. Another design applies Cartesian sampling in the

frequency-encoding direction and non-Cartesian sam-

pling in the phase-encoding direction.14,15 However, these

approaches do not fully explore the design space in three

dimensions and may not perform as well as true 3D

sampling trajectories.16

Recently, 3D SPARKLING16 proposes to optimize 3D

sampling trajectories based on the goal of conforming to

a given density while distributing samples as uniformly

as possible.17 That method demonstrated improved image

quality compared to the “stack-of-2D-SPARKLING”

approach. In both 2D and 3D, the SPARKLING approach

uses a prespecified sampling density in k-space that is

typically an isotropic radial function. This density func-

tion cannot readily capture distinct energy distributions

of different imaging protocols, therefore adaptive density

functions were recently proposed.18 In SPARKLING, the

PNS effects are not controlled explicitly, and the user may

need to lower the slew rate to reduce PNS. SPARKLING

optimizes the location of every sampling point, or the

gradient waveform (freeform optimization), and cannot

optimize parameters of existing sampling patterns.

In addition to analytical methods, learning-based

methods have been investigated for designing trajectories.

Since different anatomies have distinct energy distribu-

tions in the frequency domain, an algorithm may learn

to optimize sampling trajectories from training datasets.

Several studies have shown that different anatomies pro-

duce distinct optimized sampling patterns, and these

optimized sampling trajectories can improve image qual-

ity.19-27 Some methods can optimize sampling trajectories

with respect to specific reconstruction algorithms to fur-

ther enhance reconstruction image quality.14,28 Several

recent studies also applied learning-based approaches to

3D non-Cartesian trajectory design. J-MoDL14 proposes

to learn sampling patterns and model-based deep learn-

ing (MoDL) reconstruction algorithms jointly. J-MoDL

optimizes the sampling locations in the phase-encoding

direction, to avoid the computation cost of nonuniform

Fourier transform. PILOT/3D-FLAT22,29 jointly optimizes

freeform 3D non-Cartesian trajectories and a reconstruc-

tion neural network with gradient-based methods. These

studies use the standard auto-differentiation approach

to calculate the gradient used in optimization, which

can be inaccurate and lead to suboptimal optimization

results.28

Thiswork extends our previousmethods20,28 and intro-

duces a generalized Stochastic optimization framework

for 3DNOn-Cartesian samPling trajectorY (SNOPY). The

proposed method can automatically tailor given trajec-

tories and learn k-space features from training datasets.

We present several optimization objectives, including

image quality, hardware constraints, PNS effect suppres-

sion and image contrast. Users can simultaneously opti-

mize one or multiple characteristics of a given sam-

pling trajectory. Similar to previous learning-based meth-

ods,14,20-22 the sampling trajectory can be jointly opti-

mizedwith trainable reconstruction algorithms to improve

image quality. The joint optimization approach can thus

exploit the synergy between acquisition and reconstruc-

tion, and learn optimized trajectories specific for differ-

ent anatomies and reconstruction methods.14,20,28,30,31 The
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F IGURE 1 Diagram of SNOPY. The sampling trajectory (and possibly reconstruction parameters) are updated using gradient methods.

The training/optimization process uses differentiable programming to obtain the gradient necessary for the update.

algorithm can optimize various properties of a sampling

trajectory, such as readout waveforms, or rotation angles

of readout shots, making it more practical and applica-

ble. We also introduced several techniques to improve

efficiency, enabling large-scale 3D trajectory optimization.

We tested the proposed methods with multiple imaging

applications, including structural and functional imaging.

These applications benefited from the SNOPY-optimized

sampling trajectories in both simulation and prospective

studies.

2 THEORY

This section describes the proposed gradient-based meth-

ods for trajectory optimization. We use the concept of

differentiable programming to compute the descent gra-

dient with respect to sampling trajectories required in

the gradient-based methods. The sampling trajectory and

reconstruction parameters are differentiable parameters,

whose gradients can be computed by auto-differentiation.

To learn or update these parameters, one may apply

(stochastic) gradient descent algorithms. Figure 1 illus-

trates the basic idea. The sampling trajectories can be

optimized in conjunction with the parameters of learnable

reconstruction algorithms so that the learned sampling

trajectories and reconstruction methods are in synergy

and produce high-quality images. The SNOPY algorithm

combines several optimization objectives to ensure that

the optimized sampling trajectories have desired prop-

erties. Section 2.1 delineates these objective functions.

Section 2.3 shows that the proposed method is appli-

cable to multiple scenarios with different parameteriza-

tion strategies. For non-Cartesian sampling, the system

model usually involves non-uniform fast Fourier trans-

forms (NUFFT). Section 2.4 briefly describes an effi-

cient and accurate way to calculate the gradient involv-

ing NUFFTs. Section 2.5 suggests several engineering

approaches to make this large-scale optimization problem

solvable and efficient.

2.1 Optimization objectives

This section outlines the optimization objectives in

SNOPY. As SNOPY is a stochastic gradient descent-like

algorithm, the objective function, or loss function, is by

default defined on a mini-batch of data. The final loss

function can be a linear combination of following loss

terms to ensure the optimized trajectory possesses multi-

ple required properties.

2.1.1 Image quality

For many MRI applications, efficient acquisition and

reconstruction aim to produce high-quality images.

Consequently, the learning objective should encourage

images reconstructed from sampled k-space signals to

match the reference images. We formulate this similarity

objective as the following image quality training loss:

recon = �(f�,c(A(�(c))x + �) − x). (1)

Here, �(c) ∈ RNfe×Ns×Nd denotes the trajectory to be opti-

mized, with Ns shots, Nfe sampling points in each shot,

and Nd image dimensions. For 3D MRI, Nd = 3. � is simu-

lated complex Gaussian noise. A(�) is the forward system

matrix for sampling trajectory�(c).32 c denotes the param-

eterization coefficients of sampling trajectories �, which

is introduced in Section 2.3. In this study, A also incor-

porated multicoil sensitivity information.33 x denotes the

reference image from the training set  , which is typi-

cally reconstructed from fully sampled signals. In addition

to contrast-weighted imaging, if the training dataset 
includes quantitative parameter maps, one may also sim-

ulate x using the Bloch equation, and A can subsequently

consider imaging physics such as relaxation. f�,�(⋅) is the

reconstruction algorithm to be delineated in Section 2.2. �

denotes the reconstruction algorithm’s parameters. It can

be kernel weights in a convolutional neural network, or

the regularizer coefficient in amodel-based reconstruction
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method. The similarity term �(⋅) can be �1 norm, �2 norm,

or a combination of both. There are also otherways tomea-

sure the distance between x and f�,�(A(�)x + �), such as

the structural similarity index.34 For simplicity, this work

used a linear combination of �1 norm and square-of-�2
norm, which is a common practice in deep learning-based

image reconstruction.35

2.1.2 Hardware limits

The gradient system of MR scanners has physical con-

straints, namely maximum gradient strength and slew

rate. Ideally, we would like to enforce a set of constraints

of the form

||gi[�, ∶]||2 ≤ gmax, gi = D1�[∶, i, ∶]∕(�Δt) ∈ R
(Nfe−1)×Nd ,

for every shot i = 1, … ,Ns and time sample � =

1, … ,Nfe, where gi denotes the gradient strength of

the i shot and gmax denotes the desired gradient upper

bound. One may use a Euclidean norm along the spa-

tial axis so that any rotation of the sampling trajectory

still obeys the constraint. Applying the penalty to each

individual gradient axis is also feasible. A similar con-

straint is enforced on the Euclidean norm of the slew

rate si = D2�[∶, i, ∶]∕(�Δt2), where D1 and D2 denote

first-order and second-order finite difference operators

applied along the readout dimension. Δt denotes the

raster time interval and � denotes the gyromagnetic

ratio.

To make the optimization more practical, we follow

previous studies,20,22 and formulate the hardware con-

straint as a soft penalty term:

g =

Ns∑

i=1

Nfe−1∑

�=1

�gmax (||gi[�, ∶]||2). (2)

s =

Ns∑

i=1

Nfe−2∑

�=1

�smax (||si[�, ∶]||2). (3)

Here � is a penalty function, and we use a sim-

ple soft-thresholding function ��(x) = max(|x| − �, 0),

because it is subdifferentiable and easy to implement.

It is possible to use more sophisticated functions. Since

� here is a soft penalty and the optimization results

may exceed the threshold, smax and gmax can be slightly

lower than the scanner’s actual physical limits to ensure

that the optimization results are feasible on the scanner.

Applying a sanity check before sequence program-

ming is also useful. In addition to the soft-penalty

approach, recent studies36 also used projection-based

methods.

2.1.3 Suppression of PNS effect

The additional gradient axis in 3D imaging can result

in stronger PNS effects compared to 2D imaging. To

quantify possible PNS effects of candidate gradient wave-

forms, SNOPY uses a convolution model described in

Reference 37:

Rid(t) =
1

smin∫
t

0

sid(�)c

(c + t − �)2
d�, (4)

where Rid denotes the PNS effect of the gradient waveform

from the ith shot and the dth dimension. sid is the slew

rate of he ith shot in the dth dimension. c (chronaxie) and

smin (minimum stimulation slew rate) are scanner-specific

parameters.

Likewise, we discretize the convolution model and use

a soft penalty term as the following loss function:

pid[�] =

�∑

k=1

sid[k]cΔt

smin(c + �Δt − kΔt)2
,

pns =

Ns∑

i=1

Nfe∑

�=1

�pmax

(( Nd∑

d=1

pid[�]
2

) 1

2
)
. (5)

Again, � denotes the soft-thresholding function, with

PNS threshold pmax (usually ≤ 80%37). This model com-

bines the three spatial axes via the sum-of-squaresmanner

and does not consider anisotropic characteristics of PNS.38

The implementation may use an FFT (with zero padding)

for efficient convolution.

2.1.4 Image contrast

In many applications, the optimized sampling trajectory

should maintain certain parameter-weighted contrasts.

For example, ideally the (gradient) echo time (TE) should

be identical for each shot. Again, we replace this hard

constraintwith anTEpenalty. Other parameters, like repe-

tition time (TR) and inversion time, can be predetermined

in the RF pulse design. Specifically, the corresponding loss

function encourages the sampling trajectory to cross the

k-space center at certain time points:

c =
∑

{i,�,d}∈C

�0(|�[i, �, d]|), (6)

where C is a collection of gradient time points that are

constrained to cross the k-space zero point. � is still a

soft-thresholding function, with threshold 0.

The total loss function is a linear combination of the

above terms

 = �reconrecon + �gg + �ss + �pnspns + �cc.
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Note that not every term is required. For example, exper-

iment Section 3.2.2 only used the recon. Section 5 further

discusses how to choose linear weights � s.

2.2 Reconstruction

In (1), the reconstruction algorithm f�,�(⋅) can be various

algorithms. Consider a typical cost function for regularized

MR image reconstruction

x̂ = argmin
x

||A(�)x − y||22 +(x). (7)

(x) here can be a Tikhonov regularization �||x||2
2

(CG-SENSE39), a sparsity penalty �||Tx||1 (compressed

sensing,40 T is a finite-difference operator), a roughness

penalty �||Tx||2
2
(penalized least squares, PLS), or a neural

network (MoDL41). Section 4 shows that different recon-

struction algorithms lead to distinct optimized sampling

trajectories. In training, y is retrospectively simulated as

y = A(�)x + � (following (1)). In prospective studies, y is

the acquired k-space data.

To get a reconstruction estimation x̂, onemay use itera-

tive reconstruction algorithms. Specifically, the algorithm

should be step-wise differentiable (or subdifferentiable) to

enable differentiable programming. The backpropagation

uses the chain rule to traverse every step of the iterative

algorithm to calculate gradients with respect to variables

such as �.

2.3 Parameterization

As is shown in Reference 20, directly optimizing every

k-space sampling location (or equivalently every gradi-

ent waveform time point) may lead to suboptimal results.

Additionally, in many applications, one may need to opti-

mize certain properties of existing sampling patterns, such

as the rotation angles of a multishot spiral trajectory,

so that the optimized trajectory can be easily integrated

into existing workflows. For these needs, we propose two

parameterization strategies.

The first approach, spline-based freeform optimiza-

tion, represents the sampling pattern using a linear basis,

that is, � = Bc, where B is a matrix of samples of a basis

such as quadratic B-spline kernels and c denotes the coeffi-

cients to be optimized.20,22 This approach fully exploits the

generality of a gradient system. Using a linear parameteri-

zation like B-splines reduces degrees of freedom and facil-

itates applying hardware constraints.20,42 Additionally, the

parameterization can be combined with multiscale opti-

mization to avoid suboptimal local minima and further

improve optimization results.17,20,22 However, freeformly

optimized trajectories could introduce implementation

challenges. For example, some MRI systems can not store

hundreds of different gradient waveforms.

The second approach is to optimize attributes c of exist-

ing trajectories, where �(c) is a differentiable function

of the attributes c. For example, many applications use

radial trajectories, where the rotation angles can be opti-

mized. Suppose s ∈ R3×N is one radial sampling spoke, and

consider anM-shot 3D radial trajectory,

� =
[
R1 · · · RM

]
IM ⊗ s, (8)

where Ri ∈ R3×3 denotes a rotation matrix, IM denotes an

identity matrix of size M, and ⊗ denotes the Kronecker

product. In this case, the list of Ri is the coefficient to

be optimized. This approach is easier to implement on

scanners, and can work with existing workflows.

2.4 Efficient and accurate Jacobian
calculation

In the similarity loss (1), the sampling trajectory is embed-

ded in the forward systemmatrixA. The systemmatrix for

non-Cartesian sampling usually includes NUFFT opera-

tors.32 Updating the sampling trajectory in each optimiza-

tion step requires the Jacobian, or the gradientwith respect

to the sampling trajectory. The NUFFT operator typically

involves interpolation in the frequency domain, which is

nondifferentiable due to rounding operations. Several pre-

vious works used auto-differentiation (with subgradients)

to calculate an approximate numerical gradient,22,29 but

that approach is inaccurate and slow.28 We derived an effi-

cient and accurate Jacobian approximation method.28 For

example, the efficient Jacobian of a forward system model

A is:

Ax


�[d]
= −� diag

{
A(x⊙ r[d])

}
, (9)

where d ∈ {1, 2, 3} denotes the spatial dimensions,

r[d] denotes the Euclidean spatial grid, ⊙ denotes the

Hadamard product, and � is the imaginary unit. Calculat-

ing this Jacobian simply uses another NUFFT, which is

more efficient than the auto-differentiation approach. See

Reference 28 for more cases, such as 
A′Ax


�[d]
and the detailed

derivation.

2.5 Efficient optimization

2.5.1 Optimizer

Generally, to optimize the sampling trajectory � and

other parameters (such as reconstruction parameters �)
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F IGURE 2 The evaluation loss curve for SGLD and Adam.

The training process costs ∼ 1 h.

via stochastic gradient descent-like methods, each update

takes a step (in the simplest form)

�
K = �

K−1 − 
�



�

(�K−1,�K−1)

�
K = �

K−1 − 
�



�

(�K−1,�K−1),

where  is the loss function described in Section 2.1 and

where 
� and 
� denote step-size parameters.

The optimization is highly nonconvex and may suffer

from suboptimal local minima. We used stochastic gra-

dient Langevin dynamics (SGLD)43 as the optimizer to

improve results and accelerate training. Each update of

SGLD injects Gaussian noise into the gradient to introduce

randomness

�
K = �

K−1 − 
�




�K−1
+
√
2
� (0, 1)

�
K = �

K−1 − 
�




�K−1
+
√
2
� (0, 1). (10)

Across most experiments, we observed that SGLD led

to improved results and faster convergence compared with

SGD or Adam.44 Figure 2 shows a loss curve of SGLD and

Adam of experiment Section 3.2.3.

2.5.2 Memory saving techniques

Due to the large dimension, the memory cost for naive 3D

trajectory optimization would be prohibitively intensive.

We developed several techniques to reduce memory use

and accelerate training.

As discussed above, the efficient Jacobian approxi-

mation uses only 10% of the memory required by the

standard auto-differentiation approach.28 We also used

in-place operations in certain reconstruction steps, such as

the conjugate gradient (CG) method, because with care-

ful design it will not interrupt auto-differentiation. (See

our open-source code* for details.) The primary memory

*https://github.com/guanhuaw/Bjork

bottleneck relates to 3D NUFFT operators. One can pre-

calculate the Toeplitz embedding kernel to save memory

and accelerate computation.45,46 In the training phase, we

used NUFFTs with lower accuracy, for instance, with a

smaller oversampling ratio for gridding.28 Table 1 shows

the incrementally improved efficiency achievedwith these

techniques. Without the proposed techniques, optimizing

3D trajectories would require hundreds of gigabytes of

memory, which would be impractical for a single node.

SNOPY enables solving this otherwise prohibitively large

problem on a single GPU.

3 METHODS

3.1 Datasets

We used two publicly available datasets; both of them

contain 3D multicoil raw k-space data. SKM-TEA47

is a 3D quantitative double-echo steady-state48 knee

dataset. It was acquired by 3T GE MR750 scanners and

15/16-channel receiver coils. SKM-TEA includes 155 sub-

jects. We used 132 for training, 10 for validation, and 13

for the test. Calgary brain dataset49 is a 3D brain T1w

MP-RAGE50 k-space dataset. It includes 67 available sub-

jects, acquired by anMR750 scanner and 12-channel head

coils. We used 50 volumes for training, six for validation,

and seven for testing. All sensitivity maps were calculated

by ESPIRiT.51

3.2 Simulation experiments

We experimented with multiple scenarios to show the

broad applicability of the proposed method. All the exper-

iments used a node equipped with an Nvidia Tesla A40

GPU for training.

3.2.1 Optimizing 3D gradient waveform

We optimized the sampling trajectory with a 3D radial

(“kooshball”) initialization.52,53 As is described in

Section 2.3, the experiment optimized the readout wave-

form of each shot with B-spline parameterization, to

reduce the number of degrees of freedom and enable mul-

tiscale optimization. The initial 3D radial trajectory had a

5.12 ms long readout (raster time = 4 �s) and 1024 shots

(8× acceleration), using the rotation angle described in

Reference 16. The training used the SKM-TEA dataset.

The retrospectively cropped FOV was 158 × 158 × 51mm3

with 0.76 × 0.62 × 1.6 mm3 simulated resolution. The

receiver bandwidth was ± 125 kHz (dwell time = 4 �s).
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TABLE 1 The memory/time use reduction brought by proposed techniques.

Plain +Efficient Jacobian +In-place ops +Toeplitz embedding +Low-res NUFFT

5.7GB / 10.4s 272MB / 1.9 s 253MB / 1.6 s 268MB / 0.4 s 136MB / 0.2 s

Notes: Here we used a 2D 400 × 400 test case, and CG-SENSE reconstruction (20 iterations). “+” means adding the technique to previous columns.

The training loss was

 = recon + 103g + 103s + pns.

The gradient strength (gmax) and slew rate (smax) were 50

mT/m and 150 mT/m/ms (for individual axis). The PNS

threshold (pmax) was 80%. The simulated noise � was 0.

The batch size was 3. The learning rate 
� decayed from

10−4 to 0 linearly. For multilevel optimization, we used 3

levels (with B-spline kernel widths = 32, 16, and 8), and

each level used 200 epochs. The total training time was

approximately 240 h. The trajectory was optimized with

respect to several image reconstruction algorithms. We

used a regularizer weight � = 10−3 and 30 CG iterations

for CG-SENSE and PLS. For learning-based reconstruc-

tion, we used theMoDL41 network that alternates between

a neural network-based denoiser and data consistency

updates. We used a 3D version of the denoising network,54

20 CG iterations for the data consistency update, and

six outer iterations. Similar to previous investigations,14,20

SNOPY jointly optimized the neural network’s parameters

and the sampling trajectory using (10).

3.2.2 Optimizing rotation angles
of stack-of-stars trajectory

This experiment optimized the rotation angles of a

stack-of-stars trajectory, which is a widely used volumet-

ric imaging sequence. The training used the Calgary brain

dataset. We used PLS as the reconstruction method for

simplicity, with � = 10−3 and 30 iterations. The simulated

noise � was 0 and the batch size was 12. We used 200

epochs and a learning rate linearly decaying from 10−4

to 0. The FOV was retrospectively cropped to 256 × 218 ×

32mm3 with 1mm3 resolution. We used 40 spokes per kz

location (6× acceleration), and 1280 spokes in total. The

readout length was 3.5 ms. The receiver bandwidth was ±

125 kHz (dwell time = 4 �s). The trajectory was a stack of

32 kz planes, hence SNOPY optimized 1280 rotation angles

in this case.

Since optimizing rotation angles does not impact the

gradient strength, slew rate, PNS, and image contrast, we

only used the reconstruction loss  = recon.We regarded

the method (RSOS-GR) proposed in previous works12 as

the best empirical scheme. We applied 200 epochs with a

linearly decaying learning rate from 10−3 to 0. The training

cost approximately 20 h.

3.2.3 PNS suppression of 3D rotational EPI
trajectory for functional imaging

The third application optimizes the rotation EPI (REPI)

trajectory,55 which provides an efficient sampling strategy

for fMRI. For high resolution (i.e., ≤ 1mm), we found

that subjects may experience strong PNS effects intro-

duced by REPI. This experiment aimed to reduce the PNS

effect of REPIwhile preserving the original image contrast.

We optimized one shot of REPI, being parameterized by

B-spline kernels (width = 16). The optimized readout shot

was rotated using the angle scheme similar to Reference 55

for multishot acquisition.

We designed the REPI readout for an oscillating stead

steady imaging sequence, a novel fMRI signal model that

can improve the SNR.56,57 The FOV was 200 × 200 × 12

mm3, with 1 mm3 isotropic resolution, TR = 16 ms, and

TE= 7.4 ms. The readout length was 10.6 ms. The receiver

bandwidth was ± 250 kHz (dwell time = 2 �s). The gradi-

ent strength (gmax), and slew rate (smax) constraints were

58 mT/m and 200 mT/m/ms (three axes combined).

To accelerate training, the loss term here excluded the

reconstruction loss recon:

 = 10−2g + 10−2s + pns + 102c.

The training used 40 000 steps, with the learning rate

decaying linearly from 10−4 to 0. The training cost approx-

imately 1 h.

3.3 In vivo experiments

We implemented the optimized trajectory prospectively

on a GE UHP 3.0T scanner equipped with a Nova Medi-

cal 32-channel head coil. Participants gave informed con-

sent under local IRB approval. Since the cache space in

this MR system cannot load hundreds of distinct gradi-

ent waveforms, the experiment 3.2.1 was not implemented

prospectively. Readers may refer to the corresponding 2D

prospective studies20 for image quality improvement and

correction of eddy current effects. For experiment 3.2.2,
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424 WANG et al.

F IGURE 3 The optimized sampling trajectory of experiment Section 3.2.1. The training process involves the SKM-TEA dataset and

CG-SENSE reconstruction. The upper row shows a zoomed-in region from different viewing perspectives. The lower row displays one shot

from different perspectives.

we programmed the sampling trajectory with a 3D T1w

fat-saturated GRE sequence,58 with TR/TE = 14/3.2 ms

and FA = 20◦. The experiment included 4 healthy sub-

jects. For experiment 3.2.3, to rate the PNS effect, we asked

three participants to score the nerve stimulation with a

5-point Likert scale from “mild tingling” to “strong mus-

cular twitch.”

3.4 Reproducible research

The code is publicly available†. As an accompanying

project, MIRTorch‡ facilitates applying differentiable pro-

gramming to MRI sampling and reconstruction.

4 RESULTS

For the spline-based freeform optimization experiment

delineated in Section 3.2.1, Figure 3 presents an example

of the optimized trajectory, along with zoomed-in regions

and plots of a single shot. Similar to the 2D case20

and SPARKLING,16,17 the multilevel B-spline optimiza-

tion generates a swirling trajectory that can cover more

k-space in the fixed readout time, to reduce large gaps

between sampling locations and, consequently, aliasing

†https://github.com/guanhuaw/SNOPY
‡https://github.com/guanhuaw/MIRTorch

artifacts. Notably, the zoomed-in region highlights that

different shots were automatically learned not to over-

lap with each other, which implicitly improved the sam-

pling efficiency.17 Figure 4 displays point spread func-

tions (PSFs) of trajectories jointly optimized with differ-

ent reconstruction algorithms. To visualize the sampling

density in different regions of k-space, we convolved the

trajectory with a Gaussian kernel, and Figure 4 shows

the density of central profiles from different views. Com-

pared with 3D kooshball, the SNOPY optimization led

to fewer radial patterns in PSFs, corresponding to fewer

streak artifacts in Figure 5. Trajectories optimized with

different reconstruction algorithms generated different

PSFs and densities, which agrees with previous stud-

ies.28,30,31 Table 2 lists the quantitative reconstruction qual-

ity of different trajectories. The image quality metric is

the average PSNR of the test set. SNOPY led to approx-

imately 4 dB higher PSNR than the kooshball initializa-

tion. Figure 5 includes examples of reconstructed images.

Compared to kooshball, SNOPY’s reconstructed images

have reduced artifacts and blurring. Though MoDL (and

its variants) are well-performing NN-based reconstruction

algorithms according to the open fastMRI reconstruction

challenge,59many important structures are distorted using

the kooshball trajectory. Using the SNOPY-optimized tra-

jectory, a simple model-based reconstruction (CG-SENSE)

can reconstruct such structures. The gradient strength

and the slew rate of optimized sampling trajectories are

exhibited in Appendix S1. SNOPY solves a nonconvex
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F IGURE 4 Visualization of the

optimized trajectory in experiment

Section 3.2.1. The upper subfigure displays

PSFs (log-scaled, single-coil) of trajectories

optimized with different reconstruction

methods. The lower subfigure shows the

density of sampling trajectories, obtained by

convolving the sampling points with a

Gaussian kernel. Three rows are central

profiles from three perspectives.

problem; therefore, its results depend on the initialization.

Appendix S1 compare optimization results with different

initializations.

For experiment 3.2.2, Figure 6 shows the PSF of the

optimized and RSOS-GR schemes.12 For the in-plane

(x-y) PSF, the SNOPY rotation shows noticeably reduced

streak-like patterns. In the y-z direction, SNOPY optimiza-

tion leads to a narrower central lobe and suppressed alias-

ing artifacts. The prospective in vivo experiments also sup-

port this theoretical finding. In Figure 6, the example slices

(reconstructed by PLS) from prospective studies show that

SNOPY reduced streaking artifacts. The average PSNR of

SNOPY and RSOS-GR for the four participants were 39.23

and 37.84 dB, respectively. Appendix S1 shows the rotation

angles before and after SNOPY optimization.

In experiment 3.2.3, we tested three settings: unopti-

mized REPI, optimized with PNS threshold (pmax in (5)) =

80%, and optimized with pmax = 70%. Figure 7 shows one

slice of reconstructed images by the CS-SENSE algorithm,

as well as the subjective ratings of PNS. Though SNOPY

suppressed the PNS effect, the image contrast was well

preserved by the image contrast regularizer (6). Figure 8
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F IGURE 5 Examples of the reconstructed images for two knee slices in Experiment 3.2.1.

TABLE 2 The quantitative reconstruction quality (PSNR) of

the test set.

CG-SENSE PLS MoDL

3D kooshball 28.2 dB 28.2 dB 30.1 dB

SNOPY 32.3 dB 32.4 dB 33.6 dB

presents one shot before and after the optimization, and

one plot of simulated PNS effects. The SNOPY optimiza-

tion effectively reduced subjective PNS effects of given

REPI readout gradients in both simulation and in-vivo

experiments. Intuitively, SNOPY smoothed the trajectory

to avoid a constantly high slew rate, preventing a strong

PNS effect.

5 DISCUSSION

SNOPY presents a novel and intuitive approach to opti-

mizing non-Cartesian sampling trajectories. Via differ-

entiable programming, SNOPY enables the application

of gradient-based and data-driven methods to trajec-

tory design. Various applications and in-vivo experiments

demonstrated the applicability and robustness of SNOPY

and its 2D predecessor.20

Experiments 3.2.1 and 3.2.2 used SNOPY to tailor sam-

pling trajectories according to specific training datasets

and reconstruction algorithms, by formulating recon-

struction image quality as a training loss. One con-

cern was whether the learned trajectories would over-

fit the training dataset. In experiment 3.2.2, the train-

ing set used an MP-RAGE sequence, while the prospec-

tive sequence was an RF-spoiled GRE. Similarly, 2D

prospective and retrospective experiments20 showed that

trajectories learned with particular pulse sequences and

hardware still improved the image quality of other

sequences and hardware, and the NN-based reconstruc-

tion did not require fine-tuning with respect to prospec-

tive experiments. These empirical studies suggest that

trajectory optimization is robust to moderate distribution

shifts between training and inference. An intuitive expla-

nation is that SNOPY can improve the PSF by reducing

aliasing, and such improvements are universally benefi-

cial. Future investigations will explore the robustness of

SNOPY inmore diverse settings, such as optimizing trajec-

tories with healthy controls and prospectively testing them

with pathological participants to examine image quality

for pathologies. It will also be desirable to test SNOPYwith

different FOVs, resolutions, and B0 strengths.

Our experiments demonstrated that iterative recon-

struction with simple analytical regularizers, such as

CG-SENSE, can benefit from the SNOPY-optimized sam-

pling trajectories. As depicted in Figure 3, CG-SENSEwith

SNOPY optimization can successfully reconstruct many

anatomical structures that were blurred in the MoDL

reconstruction without SNOPY trajectory. This result is

consistent with previous studies,28 where compressed

sensing algorithms with trajectory optimization also out-

performed NN-based reconstruction. These findings indi-

cate untapped potentials ofmodel-based reconstruction by

optimizing sampling trajectories.

MRI systems are prone to imperfections such as field

inhomogeneity60 and eddy currents.61 Many correction

approaches exist, such as B0-informed reconstruction45

and trajectory mapping.62,63 SNOPY-optimized trajecto-

ries are compatible with existing correction methods. For

instance, we demonstrated the feasibility of implementing
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F IGURE 6 Prospective results of

Section 3.2.2, optimizing the rotation angles

of the stack-of-stars (6× acceleration). “Best

empirical” uses the design from a previous

study.12 The upper subfigure shows two

slices from prospective in-vivo experiments.

The reconstruction algorithm was penalized

least squares (PLS). Avg. PSNR is the

average peak signal-to-noise ratio (PSNR) of

the four subjects compared to the fully

sampled reference. The lower subfigure

shows the log-scaled PSF (single-coil) of two

trajectories.

F IGURE 7 Prospective results of Section 3.2.3. We showed three different trajectories: the unoptimized rotation EPI, as well as

SNOPY-optimized with peripheral nerve stimulation (PNS) thresholds of 80% and 70%. The left subfigure shows one slice of reconstructed

images. The reconstruction used penalized least squares (PLS) and 120 shots (volume TR = 2s). The right subfigure shows subjective scores

of the PNS effect.
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F IGURE 8 The first row of plots displays the peripheral nerve stimulation (PNS) effect calculated by the convolution model (5) used in

Experiment 3.2.3. The second row shows the corresponding readout trajectories before and after SNOPY optimization.

eddy currents correction for a 2D freeform optimized tra-

jectory in Reference 20. Additionally, incorporating sys-

tem imperfections into the forward learning/optimiza-

tion phase, such as off-resonance maps in the system

model A(as defined in (1)), may enhance the intrin-

sic robustness of the optimized trajectory. However, this

approach requires the distribution of system imperfec-

tions, which is typically scanner-specific. To address this

limitation, we plan to investigate prospective simulation

approaches in future studies. The model mismatch may

also happen at the digitization level: the training set typ-

ically consists of concrete discrete-space images, whereas

real objects are continuous. This inverse crime is common

in learning-based methods and may lead to suboptimal

results. Future research should investigate strategies for

mitigating this issue.

SNOPY uses a relatively simplified model of PNS.

More precise models, such as Reference 38, may lead

to improved PNS suppression results. SNOPY can also

incorporate other optimization objectives to encourage

properties such as robustness to field inhomogeneity and

reduction of acoustic noise.

The training process incorporates several loss terms,

including image quality, PNS suppression, hardware lim-

its, and image contrast. By combining these terms, the

optimization can lead to trajectories that have multiple

desired characteristics. One may alter the optimization

results by controlling the coefficients. For example, with a

larger coefficient of the hardware constraint loss, the tra-

jectory will better conform to smax and gmax. The Appendix

S1 contains an example of optimization results using dif-

ferent combinations of weights. Setting the weights of sev-

eral terms can be complicated. Empirically, the weight of

soft constraints, including hardware (g ands), PNS sup-

pression (pns), and contrast (c) can be tuned to a higher

value if the optimized trajectory significantly violates these

constraints. Additionally, the training losses may some-

times contradict each other, and the optimization pro-

cess would get stuck in a local minimum. To address

this, several empirical tricks have been employed. Simi-

lar to SPARKLING,17 the constraint onmaximum gradient

strength can be relaxed using a higher receiver bandwidth.

Bayesian optimization is another option for finding opti-

mal loss weights, but may increase training time. Using
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SGLD can introduce randomness that helps escape local

minima. In spline-based optimization, one can use a larger

B-spline kernel width in the early stages of a coarse-to-fine

search.

Trajectory optimization is a nonconvex problem.

SNOPY uses several methods, including effective Jaco-

bian approximation, parameterization, multilevel opti-

mization, and SGLD, to alleviate the nonconvexity and

achieve better optimization results. These methods were

also found to be effective in previous studies.20,28 Ini-

tialization is also important for non-convex problems, as

demonstrated in Appendix S1. SNOPY can leverage exist-

ing knowledge of MR sampling as a benign initialization.

For instance, our experiments used the widely accepted

golden-angle stack-of-stars as optimization bases. The

SNOPY algorithm can sequentially improve these skill-

fully designed trajectories to combine the best of both

stochastic optimization and researchers’ insights.

SNOPY has a wide range of potential applications,

including dynamic and quantitative imaging, particularly

if large-scale quantitative datasets are available. These new

applications may require task-specific optimization objec-

tives in addition to the ones described in Section 2.1. In

particular, if the reconstruction method is not easily dif-

ferentiable, such as the MR fingerprinting reconstruction

based on dictionary matching,64 one needs to design a

surrogate objective for image quality.
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1 SUPPLEMENTARY MATERIALS

FIGURE S1 Experiment 3.2.1 with two types of initialization.

1.1 Different initializations

SNOPY solves a nonconvex optimization problem, the qual-

ity of its results is influenced by initialization. Supplementary

to experiment 3.2.1, we compared different initialization tra-

jectories, including stack-of-stars (SOS) and 3D radial, as

illustrated in Fig. S1. The number of readout points, as well as

training configurations, were kept constant for both initializa-

tion methods. The average PSNR on the test set was 32.4 dB

for the optimized trajectory using 3D radial initialization, and

34.8 dB for the optimized trajectory using SOS initialization.

1.2 Weight combinations

This supplementary experiment tested 4 different settings of

experiment 3.2.3 to showcase the impact of different weight

combinations, including

 = 10
−2
g + 10

−2
s + 10

−3
pns + 10

2
c ,

 = 10
−2
g + 10

−2
s + 10

−2
pns + 10

2
c ,

 = 10
−2
g + 10

−2
s + 10

−1
pns + 10

2
c ,

and

 = 10
−2
g + 10

−2
s + pns + 10

2
c .

Fig. S2 displays the optimized sampling trajectory and the cor-

responding PNS calculation. A higher weight of pns led to

better adherence to the PNS constraint.

1.3 Gradient and slew rate profile

Fig. S3 plots the gradient and slew rate of the trajectory jointly

optimized with MoDL in experiment 3.2.1

1.4 Rotation angles

Fig. S4 plots the rotation angles before and after optimization

in experiment 3.2.2
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FIGURE S2 Examples of experiment 3.2.3 optimized by training losses with different weight combinations. The first row of figures shows the PNS

effect calculated by the convolution model. The second row depicts the optimized trajectory.

FIGURE S3 Profile of gradient strength and slew rate for one shot in experiment 3.2.1.
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FIGURE S4 Sampling trajectories in experiment 3.2.2. Each figure shows an inplane (kx − ky) sampling trajectory for a kz location.
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