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Abstract 

Purpose: 90Y SPECT-based dosimetry following radioembolization (RE) in liver 
malignancies is challenging due to the inherent scatter and the poor spatial resolution 
of bremsstrahlung SPECT. This study explores a deep-learning-based absorbed dose-
rate estimation method for 90Y that mitigates the impact of poor SPECT image quality 
on dosimetry and the accuracy–efficiency trade-off of Monte Carlo (MC)-based scatter 
estimation and voxel dosimetry methods.

Methods: Our unified framework consists of three stages: convolutional neural net-
work (CNN)-based bremsstrahlung scatter estimation, SPECT reconstruction with scat-
ter correction (SC) and absorbed dose-rate map generation with a residual learning 
network (DblurDoseNet). The input to the framework is the measured SPECT projec-
tions and CT, and the output is the absorbed dose-rate map. For training and testing 
under realistic conditions, we generated a series of virtual patient phantom activity/
density maps from post-therapy images of patients treated with 90Y-RE at our clinic. To 
train the scatter estimation network, we use the scatter projections for phantoms gen-
erated from MC simulation as the ground truth (GT). To train the dosimetry network, 
we use MC dose-rate maps generated directly from the activity/density maps of phan-
toms as the GT (Phantom + MC Dose). We compared performance of our framework 
(SPECT w/CNN SC + DblurDoseNet) and MC dosimetry (SPECT w/CNN SC + MC Dose) 
using normalized root mean square error (NRMSE) and normalized mean absolute error 
(NMAE) relative to GT.

Results: When testing on virtual patient phantoms, our CNN predicted scatter projec-
tions had NRMSE of 4.0% ± 0.7% on average. For the SPECT reconstruction with CNN SC, 
we observed a significant improvement on NRMSE (9.2% ± 1.7%), compared to recon-
structions with no SC (149.5% ± 31.2%). In terms of virtual patient dose-rate estima-
tion, SPECT w/CNN SC + DblurDoseNet had a NMAE of 8.6% ± 5.7% and 5.4% ± 4.8% 
in lesions and healthy livers, respectively; compared to 24.0% ± 6.1% and 17.7% ± 2.1% 
for SPECT w/CNN SC + MC Dose. In patient dose-rate maps, though no GT was avail-
able, we observed sharper lesion boundaries and increased lesion-to-background 
ratios with our framework. For a typical patient data set, the trained networks took ~ 1 s 
to generate the scatter estimate and ~ 20 s to generate the dose-rate map (matrix size: 
512 × 512 × 194) on a single GPU (NVIDIA V100).

*Correspondence:   
jiayx@umich.edu

1 Department of Electrical 
Engineering and Computer 
Science, University of Michigan, 
4125 EECS Bldg., 1301 Beal Ave., 
Ann Arbor, MI 48109, USA
2 Department of Radiology, 
University of Michigan, Ann 
Arbor, MI, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-023-00598-9&domain=pdf


Page 2 of 18Jia et al. EJNMMI Physics           (2023) 10:82 

Conclusion: Our deep learning framework, trained using true activity/density maps, 
has the potential to outperform non-learning voxel dosimetry methods such as MC 
that are dependent on SPECT image quality. Across comprehensive testing and evalu-
ations on multiple targeted lesions and healthy livers in virtual patients, our proposed 
deep learning framework demonstrated higher (66% on average in terms of NMAE) 
estimation accuracy than the current “gold-standard” MC method. The enhanced 
computing speed with our framework without sacrificing accuracy is highly relevant 
for clinical dosimetry following 90Y-RE.

Keywords: 90Y, SPECT, Radioembolization, Scatter correction, Dosimetry, Deep 
learning

Introduction
Radioembolization (RE) with microspheres radiolabeled with 90Y, a β-emitter, is a treat-
ment option for inoperable primary or metastatic liver cancer [1]. In recent years, the 
importance of accurate post-therapy imaging-based dosimetry for RE treatment verifica-
tion and for establishing dose–response relationships for use in dosimetry-guided treat-
ment planning in future patients has been well recognized [2]. Furthermore, the concept 
of using 90Y absorbed dose maps to plan subsequent treatment with external beam radi-
otherapy (EBRT) to under-dosed regions is being explored [3, 4]. Post-therapy dosimetry 
based on directly imaging the delivered 90Y instead of pre-therapy imaging with sur-
rogates such as 99mTc Macro Albumin Aggregated (99mTc-MAA) is preferred for such 
application due to differences between predicted and delivered activity distributions.

Treatment with 90Y offers the potential for both therapy and quantitative imaging. 
However, lacking gamma-ray photons, imaging of 90Y typically relies on SPECT/CT 
imaging of bremsstrahlung X-rays [5, 6] associated with the β decays (Emax = 2.3  MeV, 
E = 0.94  MeV, mean tissue penetration 2.5  mm, maximum 11  mm) [7]. Alternatively, 
time-of-flight 90Y PET imaging via a very low abundance positron decay of 90Y (posi-
tron yield ~ 3.2 ×  10−5) [7] has the advantage of superior resolution but suffers from a 
high noise level [8]. Furthermore, due to the wider accessibility and lower cost of SPECT 
compared with PET, its application in 90Y-RE imaging is expected to continue and thus 
should be improved. The challenge of quantitative 90Y SPECT is associated with the con-
tinuous bremsstrahlung energy spectrum that extends up to 2.3 MeV. This impacts the 
spatial resolution because medium or high energy collimation must be used to reduce 
septal penetration of high energy photons. Furthermore, there are significant downscat-
ter events that contaminate the main window acquisition, limiting quantitative accuracy. 
Wang et  al. studied the multi-modal treatment of hepatocellular carcinoma using 90Y-
RE combined with EBRT and identified the poor quantitative accuracy of bremsstrahlung 
SPECT, performed without scatter correction, as the main limitation for their approach 
since the SPECT image quantification forms the basis for 90Y dose calculation [3].

Accurate scatter correction is a prerequisite for accurate quantitative SPECT imaging. 
Clinical systems commonly use simple energy window-based scatter estimation methods 
such as dual or triple energy window approaches. However, for bremsstrahlung SPECT 
imaging, such methods are less effective because of the continuous energy spectrum, 
even though empirical window-based methods have been proposed [9]. When window-
based methods are unsuitable or less precise, Monte Carlo (MC) transport algorithms 
are preferred. MC algorithms fully track particle interactions from their initial points 
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within the patient body to the camera crystal, making them the gold standard for scat-
ter estimation [5, 6]. Nevertheless, the higher computational demands of MC can limit 
its routine clinical use. In addition to scatter, limited spatial resolution is another physi-
cal effect that degrades SPECT quantification accuracy, especially when medium or high 
energy collimation is used. To reduce the impact of poor spatial resolution and the asso-
ciated blurring of 90Y SPECT images, reconstruction with collimator detector response 
(CDR) modeling is used, but this leads to edge-artifacts while de-blurring is still incom-
plete. Resolution effects are also reduced with partial volume correction (PVC), often 
in the form of recovery coefficients applied when quantifying mean activity in a target 
volume. However, voxel-level PVC is a challenging and yet unresolved problem [10].

Following quantitative imaging, the final step in 90Y-RE voxel dosimetry is converting 
the activity map into an absorbed dose map. Sequential imaging/co-registration to deter-
mine pharmacokinetics and time-activity fitting is not required for this therapy because 
the microspheres are trapped and do not redistribute [2]. Direct MC radiation transport 
starting with the patient’s hybrid images (for example, activity map from SPECT and 
density map from CT) is generally accepted as the gold standard for voxel dosimetry; 
however, it is computationally expensive for routine clinical utilization. Hence simplified 
models, such as dose voxel kernel (DVK) convolution [11] are widely used, but introduce 
some additional errors on the estimated dose, particularly in the presence of heteroge-
neous medium (e.g., lung-liver and bone-marrow interfaces). Despite the superiority of 
direct MC radiation transport over DVK-based dose estimation, both are derived from 
the activity map corresponding to the measured emission image; hence, both suffer from 
the limitations of SPECT described above.

Machine learning algorithms, in particular deep learning, have rapidly advanced in 
medical image analysis over the past decade [12] and have recently entered the nuclear 
medicine arena [13–15]. For SPECT scatter estimation, our group proposed a deep con-
volutional neural network and demonstrated results comparable to MC-based scatter esti-
mation, but at a fraction of the computation cost [16]. For dosimetry, there are a few recent 
studies that have applied deep learning for both diagnostic (18F and 68Ga) and theranostic 
(177Lu) radiopharmaceuticals [17–19], although, to our knowledge, not for 90Y therapy. 
Despite the promising performance, there is an inherent limitation in the training process 
of these previously proposed dosimetry networks. This problem stems from the fact that 
the ground truth images for training the networks were generated from SPECT or PET 
images, hence suffer from the limitations of the modality such as poor resolution, noise, 
scatter, and reconstruction artifacts. To address this problem for 177Lu dosimetry, we pre-
viously proposed a deep residual convolutional neural network that used virtual computa-
tional phantoms with a high spatial resolution for the training process [20].

Motivated by the recent interest in accurate 90Y voxel dosimetry and building on 
our previously implemented CNNs [16, 20], we developed a unified framework that 
aims to estimate the voxel-level dose-rate map accurately and efficiently, starting 
with the measured SPECT projections and CT images as input. Our framework con-
sists of (1) a deep learning model for 90Y-SPECT/CT scatter estimation; (2) SPECT 
reconstruction with the deep learning-based scatter estimate; (3) a residual learning 
network for 90Y dose estimation, trained using high-resolution virtual phantoms. 
We trained/validated/tested our framework using a population of virtual patient 
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phantoms relevant to 90Y-RE and compared performance with dosimetry performed 
using non-learning methods, MC and DVK convolution.

Materials and methods
Figure  1 presents an overview of the framework, encompassing three main stages: 
scatter estimation, SPECT reconstruction and voxel-level dosimetry.

Virtual patient phantom generation

90Y SPECT/CT data for 18 patients who underwent 90Y-RE at our clinic were avail-
able for generation of virtual patient phantoms. The lesion contours defined manu-
ally by a radiologist and healthy liver (liver minus lesions) contours defined using 
automated tools were also available. The lesions covered a range of lesion-to-back-
ground uptake ratios, shapes, and sizes (median: 26.9 mL, range 5.7–932.1 mL) and 
represented both left and right lobe treatment. The patient SPECT data were recon-
structed with in-house developed ordered-subsets expectation–maximization (OS-
EM) software with attenuation, scatter correction and resolution recovery to define 
virtual patient (digital phantom) activity maps. Note that for the scatter estimation, 
we used the previous CNN described in [15]. The corresponding density maps were 
generated from the patient’s CT using an experimentally derived calibration curve 
for CT-to-density conversion. All activity maps and density maps used for simulation 
were registered to CT image space (matrix size: 512 × 512 × 194, voxel size in mm: 
0.98 × 0.98 × 2). Phantoms were divided into training/validation/testing sets for both 
networks to represent a range of activity distributions and patient sizes (see Addi-
tional file 1: Figs. S1–S3 and Additional file 1: Table S1).

Fig. 1 Overview of deep learning framework for 90Y Bremsstrahlung SPECT scatter estimation and voxel 
dosimetry. Our framework consists of (1) a deep learning model for 90Y-SPECT/CT scatter estimation; (2) 
SPECT reconstruction with the deep learning-based scatter estimate; (3) a residual learning network for 90Y 
dose estimation, trained using high-resolution virtual phantoms
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Stage I: convolutional neural network‑based estimation of SPECT scatter projections

Datasets

We used MC-simulated SPECT projections from 6 virtual patients (6 × 128 projection 
views) to train and validate the scatter estimation CNN in the first stage, while the rest 
of 12 virtual patients were used for testing. To train/validate the network, we gener-
ated the ground truth (GT) scatter projections by running the SIMIND MC simulation 
code [21] that couples the digital phantoms with the SPECT/CT camera model based 
on parameters from our clinic (scanner: Siemens Intevo with HE collimators, crystal 
size: 5/8″, acquisition window: 105–195 keV, number of projection views: 128, matrix 
size: 128 × 80, pixel size in mm: 4.8 × 4.8). Approximately one billion photon histories 
were simulated per projection angle to generate data with low statistical noise. We kept 
only the central slices of each projection that were within the FOV, reducing the initial 
projection matrix size of 128 × 128 to 128 × 80 for each view angle. Poisson noise was 
added after scaling projections to count levels observed in the clinic, ~  107 counts over 
all views.

Network

Our scatter estimation CNN (Fig. 2), similar to our previous network [16], took both the 
projected attenuation map (3D attenuation map projected to SPECT projection space 
via line integrals) and the scaled SPECT projection measurements individually as inputs 
and passed them to separate branches. Each of the input branches has three convolu-
tional layers followed by a ReLU activation layer. The outputs of these two branches were 
then concatenated along the channel dimension and fed through three convolutional 
layers with ReLU activations. To generate the non-negative estimated scatter projection, 
a point-wise convolutional layer and an additional ReLU layer were applied at the end. 
To preserve the spatial dimensions, all convolutions, except for the final one, used a 3 × 3 
kernel with zero padding of size 1 for each dimension. We trained the scatter estimation 
network by minimizing the pixel-wise mean square error (MSE) between the estimated 

Fig. 2 Architecture of CNN for 90Y Bremsstrahlung scatter estimation in SPECT projection space. Each blue 
box corresponds to a multi-channel (the number of channels is listed on the top of each box) feature map. 
The spatial dimensions are maintained at 128 × 80 through the entire network
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and GT scatter projections from SIMIND, using the Adam optimizer [22] with 800 
epochs and initial learning rate of 0.0001. We implemented the network in PyTorch and 
trained on NVIDIA V100 GPU.

Stage II: OS‑EM for SPECT reconstruction

OS-EM [23] is a widely used algorithm for performing 3D SPECT reconstruction that 
aims to estimate the image (emission distribution) x from the noisy measurements 
(recordings of emitted particles) y , which are often statistically modeled as:

where A represents the system model, including ray-dependent factors such as attenua-
tion and detector efficiency, and r denotes the mean of background events such as scat-
ter events. In this stage, we performed OS-EM reconstruction (number of subsets: 4, 
number of iterations: 16, matrix size: 128 × 128 × 80, voxel size in mm: 4.8 × 4.8 × 4.8) 
using our in-house MIRT program [24], with CT-based attenuation correction, CNN 
estimated scatter correction, as well as collimator-detector response compensation with 
no post-filtering. All reconstructed SPECT images were linearly interpolated and regis-
tered to CT image space afterward.

Stage III: generating the absorbed dose‑rate map with deep residual learning network

Datasets

The 12 virtual patient phantoms that had gone through the test phase of the scatter esti-
mation CNN were used for training/testing the dosimetry network (6 for training and 
6 for testing). To generate the GT dose-rate maps to use as the training labels, we first 
ran the in-house Monte Carlo dosimetry code (dose planning method, DPM [25]) with 
the true activity and density maps corresponding to the phantom as the input (Phan-
tom + MC Dose). For DPM, we simulated approximately one billion histories after con-
sidering statistical uncertainty. With this number of histories, the relative uncertainty 
in absorbed dose-rate was < 0.1% at organ and lesion level and < 1% at the voxel level 
for voxels within these structures. For use in our residual learning network described 
below, we also generated dose-rate maps by DVK convolution, where the 90Y kernels in 
water (1.0 g/cm3) were generated by DPM MC. To include all possible events, the beta 
particle kernel size was designed to be 23 × 23 × 13 (with voxel size 0.98 × 0.98 × 2  mm3) 
given the fact that the maximum range of 90Y beta particles in tissue is about 11 mm. 
SPECT reconstructions obtained from stage II were convolved with DVKs with fast Fou-
rier transform (FFT). Density scaling was performed by dividing each voxel by the corre-
sponding density value (g/cm3). To avoid the unreasonably high dose-rate estimation in 
extreme low-density regions, the DVK dose-rate with corresponding voxel density lower 
than 1.0 g/cm3 was set to 0. Such a cutoff was also used within DPM.

Network

The network takes the reconstructed SPECT (from Stage II) and CT images as inputs 
to generate the dose-rate map with high resolution (deblurred). The network imple-
mented in this stage (Fig. 3) for the proposed 90Y dose-rate estimation was inspired 

y ∼ Poisson(Ax + r)
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by our previous implementation (DblurDoseNet) for 177Lu [20], and we further 
extended and fine-tuned the hyperparameters. Here, we use the physics-based DVK 
convolution approach to obtain a fast initial estimate of the dose-rate map. Our net-
work was designed to have a residual structure that learned only the subtle differ-
ences between the GT dose-rate maps from MC and DVK dose-rate maps. The inputs 
to our residual learning network consist of packs of scaled activity maps (SPECT 
images reconstructed with CNN scatter correction, scaled so that all voxels sum up 
to a normalizing constant for faster and more stable convergence during training) and 
density maps. The input size was 512 × 512 × 11 (with voxel size 0.98 × 0.98 × 2  mm3) 
with 11 slices packed to capture all possible dose contributions from 90Y beta par-
ticles. The input packs were concatenated along the channel dimension and passed 
to a 3D convolutional layer-based (kernels with spatial size of 7 and depth of 5, 3, 3, 
respectively) feature extractor and 2D feature maps corresponding to the middle slice 
of the inputs were generated. The 2D feature maps were then fed to a 2D U-Net. The 
corresponding DVK dose-rate maps (provided to the stage III as an initial estimation 
of dose-rate maps for residual learning) were added to the outputs of the 2D U-Net to 
generate the outputs of the stage III, as well as the outputs of the entire framework: 
estimated dose-rate maps (density correction and inversely scaling was applied at the 
last layer). The dose-rate unit in the network output is nGy/MBq-sec, aligning with 
the unit of the training labels (GT dose-rate maps) up to a scaling factor. The network 
was trained to minimize the pixel-wise MSE between the GT dose-rate maps (Phan-
tom + MC Dose) and the estimated dose-rate maps (with residual learning) on a sin-
gle NVIDIA V100 GPU (batch size: 32, optimizer: Adam with initial learning rate of 
0.001, epochs: 300). The training/validation curves converged visually after ~ 10 h of 
training, as illustrated in Additional file 1: Fig. S4. Note that we trained two networks 
in stage I and stage III separately and sequentially, without backpropagating through 
the OS-EM.

Fig. 3 Architecture of our residual learning network (DblurDoseNet) for SPECT-based absorbed dose-rate 
map generation. Each blue box corresponds to a multi-depth (the depth is listed on top of each box) feature 
map. The depths of kernels in the three 3D-convolution operations are 5, 5, 3, respectively. The input size was 
512 × 512 × 11 with 11 adjacent slices to capture the dose contributions from 90Y beta particles. The spatial 
dimensions are maintained at 512 × 512 in all layers
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Ablation study

As an ablation of our framework, instead of two networks for scatter and dosimetry 
separately we also investigated training and fine-tuning only the stage III model (Dblur-
DoseNet) to perform both tasks. The same 6 training cases used previously to train the 
DblurDoseNet were used here. In this case, the single-stage model took SPECT recon-
struction with no SC and density maps as inputs and used the DVK dose-rate map (FFT 
convolved DVK with SPECT w/no SC) for residual learning.

Metrics used for evaluation

Performance was evaluated for the total image and both the lesion and the healthy liver 
(treated liver minus the lesions) volumes of interest (VOIs) in the phantoms. Qualita-
tively, results were compared by visual assessment of images and line profiles. Quantita-
tively, the following metrics were used. Let np denotes the total number of voxels in the 
VOI. The GT and estimated images are denoted by x and x̂ , respectively.

Normalized mean absolute error (NMAE) is defined as:

Normalized root mean squared error (NRMSE) is defined as:

The subscription indicates the ith voxel of the object.
We evaluated the CNN scatter projections using NRMSE relative to the GT scatter 

projections from SIMIND. The SPECT reconstructions with no SC and the CNN esti-
mated SC were evaluated using NRMSE relative to the reconstructions with the true 
scatter estimates from SIMIND as the GT. The dose-rate maps were evaluated using 
both NMAE and NRMSE relative to the GT dose rate maps directly from the phantom 
(Phantom + MC Dose). We compared performance of dose-rate maps corresponding to 
(1) SPECT reconstruction with CNN scatter correction and DVK convolution (SPECT 
w/CNN SC + DVK) (2) SPECT reconstruction with CNN scatter correction and DPM 
MC dosimetry (SPECT w/CNN SC + MC Dose) and (3) SPECT reconstruction with 
CNN scatter correction and deep learning dosimetry (SPECT w/CNN + DblurDoseNet). 
All dosimetry evaluations were performed on dose-rate maps (output of the framework) 
instead of dose maps. For 90Y-RE, where there is no re-distribution of activity, conver-
sion of dose-rate maps to dose-maps simply requires scaling by a constant factor, which 
is the time integral of the mono-exponential decay curve with a half-life equal to physi-
cal decay.

Torso phantom measurement

The torso phantom comprised a liver section filled with water, lung compartments 
filled with Styrofoam beads and water (simulating lung tissue density), and a spine 
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insert for bone density. The liver had a volume of 1200  mL and incorporated three 
lesion inserts: a 29 mL ovoid (insert 1), a 16 mL sphere (insert 2), and an 8 mL sphere 
(insert 3). The phantom’s total Y90 activity during imaging was 2.0 GBq. Activity con-
centrations were 6.4–7.8 MBq/mL for the liver inserts and 1.3 MBq/mL for the liver 
excluding inserts, aligning with clinical scenarios for Y90 RE. SPECT/CT acquisi-
tion lasted 30  min, ensuring a count level (9 million counts) consistent with stand-
ard patient studies. The ground truth activity map was generated by masking the CT 
image and assigning the true (uniform) activity concentration to each compartment.

Patient studies

90Y SPECT/CT images from 4 clinical patients (distinct from the patients used to 
generate virtual patient phantoms) were selected to represent clinical application. 
Patients covered diverse scatter conditions and dose-rate levels with injected activi-
ties ranging from 1.3 to 4.0 GBq. 90Y SPECT/CT scans were acquired with a duration 
of approximately 30 min within a few hours following the RE procedure on the same 
SPECT/CT system described previously. A total of 6 lesions (volume ranging from 
4 to 59  mL) were segmented by the radiologist in these 4 patients. As in the phan-
tom testing, patient measured SPECT projections and CT-based projected attenu-
ation map were used to estimate scatter projections (Stage I) that were needed for 
OS-EM SPECT reconstruction (Stage II). DVK dose-rate maps (based on SPECT w/
CNN SC) were produced, and packs of upstream SPECT images with CNN SC and 
density maps were subsequently input to the residual learning network to generate 
dose-rate maps (Stage III). In the absence of GT, to evaluate the dose-rate map of 
clinical patients, we compute line profiles and the lesion-to-background ratios. Here, 
the background VOIs were defined nearby in a uniform region of the liver with equiv-
alent sizes and shapes to those of the target lesions.

Results
Testing in virtual patient phantoms

Evaluation on scatter projections and reconstructed SPECT

Visually, the CNN estimated scatter projections were close to GT scatter projections 
from SIMIND. SPECT w/CNN SC also shows close agreement to SPECT w/GT SC, 
while SPECT w/o SC shows poor contrast and overestimation of counts. Figure 4 pro-
vides example images and line profiles. Table 1 reports the NRMSE of the estimated 
scatter projections (average 4.0% ± 0.7%), as well as the NRMSE of SPECT w/CNN SC 
(average 9.2% ± 1.7%) and SPECT w/o SC (average 149.5% ± 31.2%) relative to SPECT 
w/GT SC. The overall improvement was 94% across all tested virtual patients in terms 
of NRMSE of SPECT reconstruction.

Evaluation on dose‑rate maps

Visually, the dose-rate maps generated from the proposed framework were sharper 
and closer to the GT dose-rate maps, compared to DVK dose-rate maps and MC 
dose-rate maps. See Fig. 5, for example, images and line profiles. Table 2 reports the 
NMAE and NRMSE for mean dose-rate in lesions and healthy livers across all 6 test 
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Fig. 4 Comparison of SPECT scatter projections and reconstructed images for an example virtual patient 
phantom. The first row displays a projection view and line profiles of the total projection, the true scatter 
projection, and the CNN estimated scatter projection. The second row illustrates the SPECT reconstruction 
without scatter correction, SPECT reconstructions with GT and CNN estimated scatter correction, and their 
respective line profiles

Table 1 NRMSE of estimated scatter projections relative to the GT scatter projections from SIMIND 
MC as well as NRMSE of SPECT w/CNN SC and SPECT w/o SC, relative to SPECT w/GT SC

Mumbers in bold represent the best outcomes among the comparisons made within each table

Values presented are over the total image of the 12 virtual patients used for testing the scatter correction

Virtual patient #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #II #12

NRMSE (%)

Scatter projections 3.0 4.3 4.0 4.9 3.4 3.7 5.0 3.6 4.6 4.3 4.4 2.8

SPECT recon w/CNN SC 11.1 9.5 11.5 8.9 7.5 9.6 7.4 9.0 12.6 8.1 7.0 8.6
SPECT recon w/o SC 171.9 127.1 177.5 132.2 106.2 166.0 145.3 130.6 229.0 148.7 128.8 131.1

Fig. 5 An example slice of SPECT/CT, along with dose-rate maps of a virtual patient with our proposed 
framework and MC and DVK dosimetry methods starting with the SPECT reconstruction with CNN SC. The 
upper right figure displays horizontal profiles, while the bottom right one illustrates vertical profiles
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phantoms. Our framework, SPECT w/CNN SC + DblurDoseNet achieved a NMAE 
of 8.6% ± 5.7% and 5.4% ± 4.8% for dose-rate in lesions and healthy livers, respec-
tively, while the corresponding NMAE values for SPECT w/CNN SC + MC Dose were 
24.0% ± 6.1% and 17.7% ± 2.1%. For NRMSE of dose-rate in lesions and healthy liv-
ers, respectively, SPECT w/CNN SC + DblurDoseNet achieved 20.1% ± 5.0% and 
26.3% ± 4.1%; whereas SPECT w/CNN SC + MC Dose achieved 27.6% ± 5.7% and 
28.1% ± 5.0%. Over all phantoms, the improvement in results for our framework over 
MC was 66% for NMAE and 20% for NRMSE. Figure  7 provides cumulative dose-
rate volume histograms corresponding to DVK, MC Dose, CNN and the GT dose-
rate maps of virtual patients demonstrating more accurate voxel-level dose metrics, 
such as minimum dose rate to 10% (D10) and 90% of volume (D90), with our method 
compared with MC and DVK dosimetry.

Testing in torso phantom measurement

Figure 6 compares dose-rate maps of the torso phantom corresponding to our frame-
work and with MC/DVK dosimetry methods. Visually, our framework, SPECT 
w/CNN SC + DblurDoseNet generated the dose-rate map with sharper lesion 

Table 2 NMAE and NRMSE of dose-rate in lesions and healthy livers across 6 test virtual patients, 
using our framework, and MC and DVK voxel-dosimetry methods

Mumbers in bold represent the best outcomes among the comparisons made within each table

NMAE (%) NRMSE (%)

SPECT w/CNN 
SC + DblurDoseNet

SPECT 
w/CNN 
SC + DVK

SPECT w/CNN 
SC + MC Dose

SPECT w/CNN 
SC + DblurDoseNet

SPECT 
w/CNN 
SC + DVK

SPECT 
w/CNN 
SC + MC 
Dose

Virtual patient #I

Lesion I (932.1 mL) 6.2 18.3 18.3 27.5 26.3 26.3

Lesion 2 (41.8 mL) 3.0 24.1 24.0 22.3 28.7 28.6

Healthy liver 4.1 18.5 18.4 33.6 36.7 36.7

Virtual patient #2

Lesion I (183.8 mL) 12.2 24.9 24.8 21.4 28.6 28.5

Healthy liver 0.7 17.0 17.0 28.5 30.8 30.8

Virtual patient #3

Lesion I (56.9 mL) 6.5 21.0 21.0 12.7 22.4 22.3

Healthy liver 5.1 17.5 17.5 23.5 25.8 25.8

Virtual patient #4

Lesion I (29.6 mL) 12.4 17.6 17.5 25.3 23.1 23.1

Lesion 2 (27.4 mL) 7.3 26.2 26.2 18.1 28.2 28.2

Lesion 3 (21.0 mL) 10.5 31.6 31.6 17.6 34.4 34.4

Lesion 4 (5.7 mL) 21.7 38.7 38.7 23.7 40.4 40.3

Healthy liver 1.7 16.6 16.6 23.6 24.6 24.6

Virtual patient #5

Lesion I (26.4 mL) 8.8 25.7 25.7 18.0 31.4 31.3

Healthy liver 14.2 21.4 21.6 24.0 27.7 27.7

Virtual patient #6

Lesion I (21.2 mL) 2.8 20.3 20.2 15.4 21.2 21.1

Lesion 2 (22.7 mL) 0.6 19.2 19.2 26.0 22.9 22.9

Lesion 3 (21.7 mL) 11.6 20.8 20.7 13.5 23.8 23.7

Healthy liver 6.5 16.3 16.4 25.0 24.2 24.1
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boundaries and closer to the GT. The proposed method achieved a significant lower 
NMAE for dose-rate in all lesion inserts, as shown in Table 3.

Application in patients

Figure 8 compares dose-rate maps of a representative clinical patient generated with 
our framework and with MC dosimetry. Compared with MC, the dose-rate map from 
our framework demonstrates sharper lesion boundaries. Table 4 provides lesion-to-
background ratios for the mean dose-rate for the two methods. The proposed method 
achieves higher ratios (16.5% ± 6.7%) compared to MC dosimetry (12.4% ± 5.5%).

Results for ablation study

We compared the performance of this single-stage model versus the proposed frame-
work with the same 6 test cases used previously. The single network approach showed 
comparable dosimetry performance to our proposed framework, with NMAE: 8.1% 
versus 8.6% and NRMSE: 17.4% versus 22.3%, respectively, on average across all test 
cases.

Fig. 6 An example slice of SPECT/CT, as well as dose-rate map of the torso phantom with our proposed 
framework and MC and DVK dosimetry methods starting with the SPECT reconstruction with CNN SC, and 
line profiles across the center of the tumor insert (16 mL)

Table 3 NMAE and NRMSE of dose-rate in all lesion inserts of the torso phantom, using our 
framework, and MC and DVK voxel-dosimetry methods

Mumbers in bold represent the best outcomes among the comparisons made within each table

NRMSE (%) NMAE (%)

29 mL ovoid 16 mL sphere 8 mL sphere 29 mL ovoid 16 mL sphere 8 mL sphere

SPECT w/CNN 
SC + Dblur-
DoseNet

36.4 29.9 19.3 9.2 18.4 10.4

SPECT w/CNN 
SC + DVK

29.2 41.5 41.0 22.0 40.4 40.9

SPECT w/CNN 
SC + MC Dose

29.3 41.6 41.4 21.8 40.2 40.2
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Fig. 7 Lesion-specific cumulative dose-rate volume histograms (DRVH) corresponding to the proposed 
framework and MC/DVK dosimetry methods starting with the SPECT reconstruction with CNN SC

Fig. 8 An example slice of SPECT/CT, along with dose-rate maps of a representative clinical patient using 
the proposed framework and MC dosimetry, are presented. Background VOI is delineated to compute the 
lesion-to-background ratio (as shown in Table 4). The upper right figure displays horizontal profiles, while the 
bottom right one illustrates vertical profiles
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Time cost

The data generation and training processes for our framework can be time-consuming and 
computationally expensive; however, these steps are only required to be performed once. The 
times listed here correspond to the Intel Core i9 @ 2.3 GHz CPU and NVIDIA V100 GPU. 
With regard to generation of datasets, it took ~ 16  h to generate all 128 MC-simulated 
SPECT projections (matrix size 128 × 128) by SIMIND for one digital phantom on the CPU 
with 16 processors. Generating the GT dose-rate map from the true activity/density map of 
a virtual patient (matrix size: 512 × 512 × 194) with DPM MC took ~ 1 h on the CPU using 1 
processor. The scatter estimation network took ~ 12 min to train and can generate all (128) 
scatter projections for a test case within 1 s on a single GPU. In the final stage, it took ~ 10 s 
to generate the DVK dose-rate map on CPU, and the residual learning network required 
~ 10 h to train and could estimate the dose-rate map in ~ 20 s on a single GPU.

Discussion
To our knowledge, this is the first study reporting 90Y SPECT-based dosimetry using 
deep learning methods for both scatter estimation and voxel dosimetry. The proposed 
method offers the advantage that it generates dose-rate maps using a framework that 
was trained by the true activity map devoid of scatter and resolution effects/artifacts. 
This is distinct from previous reports on dosimetry with deep learning for diagnostic 
and therapy applications where the GT images for training were generated from SPECT 
or PET [17–19]. Our approach mitigates the impact of poor SPECT image quality on 
dosimetry and the accuracy–efficiency trade-off of MC-based scatter estimation and 
voxel dosimetry methods. Our framework is especially well-suited for 90Y SPECT-based 
dosimetry, which is impacted by the complexities of bremsstrahlung imaging.

The improved dosimetry with our network is evident in Figs. 5, 6, 7 and 8 where non-
learning voxel dosimetry methods fail to generate accurate dose-rate maps. We demon-
strated mean dose-rate errors of only 8.6% on average for lesions and 5.4% on average for 
healthy liver with a maximum of 21.7% across a range of virtual patients (Table 2). The 
dose-rate error primarily stems from the DVK dose-rate maps’ quality that is contingent 

Table 4 Lesion-to-background ratio in mean dose-rate across all 4 test clinical patients, using our 
framework and MC dosimetry based on the CNN scatter-corrected SPECT reconstruction

Mumbers in bold represent the best outcomes among the comparisons made within each table

SPECT w/CNN SC + DblurDoseNet SPECT w/CNN 
SC + MC dose

Clinical patient #1

Lesion 1 (15.7 mL) 24.1 22.1

Lesion 2 (4.2 mL) 23.0 12.3

Clinical patient #2

Lesion 1 (59.1 mL) 13.2 12.2

Clinical patient #3

Lesion 1 (22.9 mL) 11.8 7.56

Clinical patient #4

Lesion 1 (11.0 mL) 19.5 13.6

Lesion 2 (4.6 mL) 7.6 6.8
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on the SPECT images that have limited resolution. Partial Volume Effects associated 
with spatial resolution impact SPECT quantification and can depend on various fac-
tors, such as object size, shape, and activity distributions [26, 27]. In addition to SPECT 
resolution effects, the test data might encompass unique features absent from the train-
ing set, making it challenging to always achieve optimal recovery results. Overall, the 
improvement with our framework over MC dosimetry was 66% in terms of NMAE and 
20% in terms of NRMSE. Due to the lack of ground truth dose-rate maps in the case of 
clinical patients, our quantitative evaluations had to be limited to virtual patient phan-
toms. However, we conjecture that the sharper lesion boundaries (Fig. 8) and enhanced 
lesion-to-background ratios (Table 4) in dose-rate maps of clinical test cases are indica-
tion of increased dosimetry accuracy with the proposed framework.

To avoid overfitting, we used independent data for training/validating/testing the two net-
works and for testing the overall framework. Both the neural networks in stage I and stage 
III were designed to follow commonly used architectures in medical imaging. As a result, 
these two networks both used only modest amounts of training data, but the framework 
can still provide promising results as determined by metrics applied to each stage. Due to 
the presence of the OS-EM reconstruction algorithm in stage II, the entire framework was 
not trained as a single unit using backpropagation algorithms end-to-end. Therefore, we 
trained the two neural networks in the framework separately using backpropagation, since 
it would be too computationally expensive to backpropagate through all the OS-EM itera-
tions to jointly optimize all components of the framework. Future works include comparing 
with a fully end-to-end training method that backpropagates through the OS-EM, where 
the scatter correction network and the dosimetry network are jointly optimized [28].

In the third stage of our proposed framework, the DblurDoseNet was designed to 
learn the residual between the GT and the DVK dose-rate map. Specifically, since the 
DVK dose-rate map is computed from SPECT reconstructed images, this stage effec-
tively learns to counteract the imperfections inherent in the reconstruction process, 
primarily focusing on deblurring (hence the name DblurDoseNet). This suggests its 
potential to revert the blurred dose-rate map back to its original one (corresponding to 
the activity map devoid of scatter and blurring), whether from a clinical patient scan, 
a virtual patient phantom, or a high-resolution digital phantom such as XCAT [29]. 
The reason we trained the framework with SPECT-derived virtual patient phantoms is 
because our evaluations revealed that when the framework were trained using piece-
wise linear activity maps such as in XCAT phantoms, it resulted in unnaturally uniform 
dose-rate maps when testing on patient data. This discrepancy is attributed to the diver-
gent data distributions between training and testing phases. For instance, virtual patient 
phantoms display non-uniform (and more clinically representative) activity distribu-
tions, whereas XCAT phantoms have a uniform (and less representative distribution). It 
is generally assumed and preferred that the training and testing data exhibit similar dis-
tributions. One direction for future research could be to develop new network architec-
tures that can adeptly learn from both types of distributions. A limitation of this study 
is the training on a relatively small dataset, potentially affecting the framework’s robust-
ness on novel test data. However, given the promising results achieved with our current 
set of virtual patient phantoms, we predict that the framework would perform consist-
ently and generalize well if it is exposed to a broader range of Y90 SPECT data features.
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The single-stage model provides a slightly faster workflow (saving about 1 s of com-
putation time that is needed for separately estimating scatter in our framework) than 
the proposed method. Furthermore, separately training two networks may require more 
training data than training a single network, which can be considered as another limita-
tion of our approach. For example, our proposed framework used 6 training cases for 
scatter network and 6 for the dosimetry network. In contrast, one could use all 12 train-
ing cases simultaneously for training and validating a single-stage model. An advantage 
of the proposed framework is that it generates both an accurate SPECT reconstruction, 
and a dose-rate map unlike the single-stage network, which generates only the dose-rate 
map. Having access to the higher quality SPECT image with scatter correction for diag-
nostic purposes in addition to the dose-rate map enhances clinical relevance.

Conclusion
In this work, we proposed a unified deep learning framework for 90Y bremsstrahlung 
SPECT/CT scatter estimation and voxel-level dosimetry, starting from the SPECT pro-
jections and CT image. The framework consists of three stages: CNN-based scatter esti-
mation, SPECT reconstruction with SC, and absorbed dose-rate map generation with 
our residual learning network trained using true activity maps devoid of scatter and res-
olution effects. Across testing and evaluating on multiple VOIs of a series of clinically 
relevant virtual patient phantoms, our proposed method demonstrated higher estima-
tion accuracy than the current “gold-standard” MC voxel dosimetry method and enjoys 
substantially faster computing speed. Furthermore, in clinical studies, we observed 
sharper dose-rate maps generated by our framework, which we conjecture corresponds 
to higher accuracy. Our framework’s ability to enhance both computing speed and accu-
racy is of much significance for clinical dosimetry following 90Y-RE.
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Supplemental Table 1: A demographic table of all patients included in the study, including the 
age, BMI, gender specifications.  
 Sex Height (m) Weight (kg) Age (Y) 
Treatment 1 M 1.765 73.936 70 
Treatment 2 M 1.778 120.203 76 
Treatment 3 M 1.727 90.719 59 
Treatment 4 M 1.702 87.544 53 
Treatment 5 M 1.778 105.000 77 
Treatment 6 F 1.676 59.875 68 
Treatment 7 F 1.626 81.647 69 
Treatment 8 M 1.778 79.379 62 
Treatment 9 M 1.753 87.100 66 
Treatment 10 M 1.753 87.100 66 
Treatment 11 M 1.829 108.863 66 
Treatment 12 M 1.778 95.254 62 
Treatment 13 M 1.676 84.369 79 
Treatment 14 M 1.726 92.126 66 
Treatment 15 M 1.708 86.183 74 
Treatment 16 M 1.778 105.000 77 
Treatment 17 M 1.753 90.719 66 
Treatment 18 F 1.636 81.647 65 

 
  



Supplemental Fig. 1: Example slices for virtual patient phantoms (used for training stage I) to 
show the variability.  

 
  



Supplemental Fig. 2: Example slices for virtual patient phantoms (used for testing stage I and 
training stage III) to show the variability.  

 
 
  



Supplemental Fig. 3: Example slices for virtual patient phantoms (used for testing stage III and 
the framework) to show the variability.  

 
  



 
Supplemental Fig. 4: Learning curves (training loss and validation loss) converged visually 
when training the deep residual neural networks in stage III. 
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