Downloaded 04/11/23 to 141.214.17.121 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. MATH. DATA SclI. (© 2023 Society for Industrial and Applied Mathematics
Vol. 5, No. 1, pp. 222-250

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data"

David HongT, Fan Yangi, Jeffrey A. Fessler®, and Laura Balzano®

Abstract. Modern data are increasingly both high-dimensional and heteroscedastic. This paper considers the
challenge of estimating underlying principal components from high-dimensional data with noise that
is heteroscedastic across samples, i.e., some samples are noisier than others. Such heteroscedasticity
naturally arises, e.g., when combining data from diverse sources or sensors. A natural way to account
for this heteroscedasticity is to give noisier blocks of samples less weight in PCA by using the leading
eigenvectors of a weighted sample covariance matrix. We consider the problem of choosing weights
to optimally recover the underlying components. In general, one cannot know these optimal weights
since they depend on the underlying components we seek to estimate. However, we show that under
some natural statistical assumptions the optimal weights converge to a simple function of the signal
and noise variances for high-dimensional data. Surprisingly, the optimal weights are not the inverse
noise variance weights commonly used in practice. We demonstrate the theoretical results through
numerical simulations and comparisons with existing weighting schemes. Finally, we briefly discuss
how estimated signal and noise variances can be used when the true variances are unknown, and we
illustrate the optimal weights on real data from astronomy.
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1. Introduction. Principal Component Analysis (PCA) is a fundamental technique for
discovering underlying components in data and is a workhorse method for analyzing modern
high-dimensional data. However, conventional PCA does not recover underlying principal
components well when the data has heteroscedastic noise, as is common in practice. In par-
ticular, its performance can degrade substantially when the noise is heteroscedastic across
samples, i.e., some samples are noisier than others. PCA suffers from treating all the samples
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uniformly with performance held back by the noisiest samples, as was rigorously character-
ized in [17]. Weighted PCA addresses this shortcoming by giving less weight to lower quality
samples. This naturally raises a crucial question: how should the weights be chosen? Namely,
what are the optimal weights?

This paper addresses this question by rigorously deriving optimal weights that are simple
functions of the signal and noise variances. Surprisingly, they are not the inverse noise variance
weights that are commonly used in practice. We now elaborate in more detail.

1.1. High-dimensional and heteroscedastic data. Modern applications of PCA span nu-
merous and diverse areas across all of engineering and the sciences, ranging from medical
imaging [3, 38] to cancer data classification [41], genetics [31], and environmental sensing [36,
47], to name just a few. Increasingly, the number of features measured is comparable to
or even larger than the number of samples, i.e., the data are high-dimensional. Traditional
asymptotic analysis of the performance of methods as the number of samples grows (with a
fixed number of features) do not apply well to such settings. Modern data analysis needs new
theory and methods for the high-dimensional regime where both the number of features and
number of samples are large [24].

Modern datasets are also frequently composed of samples with heteroscedastic (i.e., hetero-
geneous) noise. In particular, we consider noise that is heteroscedastic across samples, namely,
some samples are noisier than others. Such data arises naturally when samples are obtained
at varying times or by varying means or equipment. For example, in the field of analytical
chemistry, [10] considers spectrophotometric data obtained from averages taken over varying
windows of time; samples from shorter windows are noisier. As another example, in the field
of air quality monitoring, samples come from various sources: government agencies provide
low-noise data obtained from carefully operated instruments, while individuals provide noisier
data obtained from cheaper and easy-to-setup sensors [39, 45]. As a final example, in the
field of astronomy, measurements of astronomical objects such as stars and quasars can have
various levels of noise due to atmospheric and detector effects that vary from object to object
[4, 43, 44]. More generally, modern big data analysis is often performed using datasets built
up by combining myriad sources, so one can expect that data with heteroscedastic noise will
be the norm. Modern data analysis needs PCA methods that effectively account for this type
of heteroscedasticity. Indeed, such methods may also unlock new opportunities to effectively
leverage new sources of data with heteroscedastic noise.

1.2. Weighted PCA. Weighted PCA accounts for heteroscedastic noise by giving smaller
weight to noisier samples. Analogous to unweighted PCA, the principal components are the
leading eigenvectors of the weighted sample covariance matrix

L
Swi=Y wY Y
/=1
where Y1,...,Y are L blocks of samples with associated noise variances vi,...,vr > 0, the
superscript H denotes the Hermitian transpose, and wi,...,wy, > 0 are the weights. Existing

choices for the weights include the following:
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e Uniform weights (wy =1): these weights correspond to unweighted PCA and can be
a natural choice when the noise is close to homoscedastic. However, its performance
degrades with increasing noise heteroscedasticity, as was shown in [17, Theorem 2].

e Binary weights (w; =1 for less noisy blocks and wy =0 for the rest): these weights
correspond to performing unweighted PCA using only less noisy blocks of samples and
are a natural choice when some samples are much noisier than the rest. The idea is to
exclude noisier samples that do more harm than good. However, doing so also omits
any useful information that was in the excluded samples. How to decide if a block of
samples is better to include or exclude can be unclear.

¢ Inverse noise variance weights (wy = 1/vy): these weights whiten the noise, making
it homoscedastic, and can be interpreted as a maximum likelihood weighting [49]. They
are a natural way to account for noise heteroscedasticity while using all the samples
and are commonly used in practice.

It has been unclear which of these existing options to choose and whether any are optimal.

1.3. Contribution of this paper. The main contribution of this paper is optimal weights
for high-dimensional heteroscedastic data, that are rigorously derived under some natural
statistical assumptions. Roughly, we show that when both dimensions of the data are large,
the optimal weights converge to the following simple asymptotic optimal weights:

1 1

U T o\

where vy is the noise variance and X is the signal variance. Notably, these weights are inverse
noise variance weights scaled by a simple term that depends on the noise-to-signal ratio vg/A.
See section 2 for the precise statement of the result and section 6 for its proof.

Naturally, one wonders how well these results apply for data with finitely many samples
and features. Numerical simulations in section 3 illustrate that the optimal weights in finite
dimensions (which are a function of the random signal coefficients and noise) concentrate
around the asymptotic optimal weights as the data grows in size. As a result, the asymptotic
optimal weights are often close to the optimal weights in finite dimensions when the dimensions
are large enough.

We also compare the asymptotic optimal weights with the existing weights above: uniform,
binary, and inverse noise variance weights. In particular, we consider how close they are to
the optimal weights in finite dimensions (subsection 4.1), how well they perform in finite
dimensions (subsection 4.2), and in what regimes they achieve positive asymptotic recovery
(subsection 4.3). Overall, the asymptotic optimal weights outperform the existing weights.

One also wonders how to calculate the asymptotic optimal weights when the signal and
noise variances are unknown. Naturally, one might consider simply using estimators of these
variances. We explain that the resulting estimated weights are also asymptotically optimal as
long as the estimators are consistent, and we give an example of such estimators (section 7).

Finally, we illustrate the asymptotic optimal weights on real data (section 8). The data
are quasar spectra measured by the Sloan Digital Sky Survey and have heteroscedastic noise.
The example exhibits some of the main themes of the paper and illustrates the potential for
optimally weighted PCA to improve performance in real data.
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1.4. Related works. Previous work on PCA for noise that is heteroscedastic (whether
across samples or otherwise) have addressed various important questions, as elaborated below.
However, to the best of our knowledge, the important question of optimal weighting was not
previously considered. This paper rigorously answers the question of optimal weighting for
noise that is heteroscedastic across samples. It will be interesting for future works to consider
this question for other forms of heteroscedastic noise.

Some of our other papers considered various aspects of noise that is heteroscedastic across
samples. In particular, [16, 17] derive the asymptotic performance of unweighted PCA and
characterize the impact of heteroscedasticity. See [17, sections 1.3 and 2.3] for a discussion of
the connections to previous analyses of PCA for homoscedastic noise (such as [22, 35, 37]),
and see [17, section S1] for a discussion of the connections to spiked covariance models. Alter-
natively, [18, 19] consider a probabilistic PCA approach, where the noise heteroscedasticity is
modeled via the statistical likelihood. The resulting method is not a weighted PCA. Instead,
one must solve a challenging optimization problem, and [18, 19] develop several algorithms
for this purpose.

A closely related model for heterogeneous data arises in the context of low-rank clutter
estimation for RADAR. In this setting, the noise is homoscedastic but the clutter signal has
heterogeneous strengths, i.e., the clutter covariances are a common low-rank matrix scaled by
heterogeneous power factors. Maximum likelihood estimation of the common low-rank matrix
and the power factors involves solving a challenging optimization problem, and [8, 9, 11, 42]
develop efficient algorithms for this purpose. The estimation performance is analyzed in [6],
and [1] considers maximum a posteriori estimation. This heterogeneous signal strength model
is related to the heteroscedastic noise model in the present paper through a straightforward
rescaling of the data: scaling each sample by the inverse of its power factor yields the model in
the present paper. Thus, the optimally weighted PCA developed here can be straightforwardly
modified to apply to the heterogeneous signal strength model; see supplementary material SM1
for details.

Several recent works develop PCA variants for high-dimensional data with noise that is
heteroscedastic across features. In contrast to the samplewise heteroscedasticity we consider,
featurewise heteroscedasticity produces a nonuniform bias along the diagonal of the covariance
matrix that skews its eigenvectors even with infinitely many samples. An approach based on
spectral shrinkage with noise whitening (to make it homoscedastic) is developed in [29]; the
noise is whitened by weighting the features by their inverse noise variance. Whitening both the
features and samples is considered in [30], and whitening in the context of linearly transformed
signals is considered in [14]. Alternatively, [50] addresses the bias in the covariance matrix
by iteratively replacing its biased diagonal entries using low-rank approximation. Estimating
the number of underlying principal components is another important problem in this setting,
and recent works [20, 26, 28] have developed new methods for tackling this challenge under
heteroscedastic noise. Estimated principal components are also often combined with estimates
of associated signal variances to obtain estimates of an underlying signal matrix or covariance.
For homoscedastic noise, existing works have made tremendous progress on how to estimate
these signal variances to optimize various objectives, typically by applying a carefully designed
shrinkage to the eigenvalues of the sample covariance matrix; see, e.g., [15] and the references
therein. A few recent works address this question in the context of heteroscedastic noise:
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reference [29] derives optimal shrinkages for use with whitening, [30] derives optimal spectral
denoisers, and [34] derives an optimal data-driven shrinkage.

Many works have considered weighted PCA methods in general; see [25, section 14.2.1] for
a survey of some of these works. For example, [12, sections 5.4-5.5] discusses weighting features
by inverse noise variance weights to account for featurewise heteroscedasticity. Weighting both
samples and features is proposed in [10] for analyzing spectrophotometric data from scanning
wavelength kinetics experiments; the weights are again inverse noise variance. Similar schemes
have also been proposed in metabolomics [21] and astronomy [4, 43], to name just a few areas.
Weighting data by inverse noise variance weights has been a recurring theme.

Overall, previous work on PCA for heteroscedastic noise made significant progress on
various important questions. However, the important question of optimal weighting was not
previously considered. This paper addresses that question for noise that is heteroscedastic
across samples.

1.5. Organization of this paper. Section 2 states our main result: optimal weights and
performance for high-dimensional data with heteroscedastic noise. Section 3 performs numer-
ical simulations in finite dimensions, and section 4 compares the asymptotic optimal weights
with existing weighting schemes: inverse noise variance weighted PCA, PCA using only a
single block of the data, and unweighted PCA. Section 5 compares optimally weighted PCA
with some additional methods. Section 6 proves the main result. The optimal weights depend
on the signal and noise variances. Section 7 describes how estimates of these variances can be
used when the true variances are unknown. Section 8 illustrates optimally weighted PCA on
real data coming from astronomy. Codes for reproducing the figures in this paper are available
online at https://gitlab.com/dahong/optimally-weighted-pca-heteroscedastic-data.

For readers mostly interested in understanding the underlying theory and proofs of the
main result, we suggest starting with sections 2 and 6. For readers mostly interested in using
optimally weighted PCA, we suggest starting with sections 2-5, 7, and 8.

2. Main result: Optimal weights and performance. We begin by making precise the
notion of optimal weights and optimal performance. Consider a dataset Y having k underlying
orthonormal components w1, ..., u, where Y is made of L blocks Y1,..., Y of samples with
heteroscedastic noise. Then, given weights w1, ...,wy, > 0, the w-weighted PCA estimate of
the ith component u; from Y, denoted @;(w,Y"), is

L
(2.1) @;(w,Y) :=ith leading eigenvector of the weighted sample covariance Z wY Y
/=1

A natural way to measure the performance of the estimate, i.e., how well @;(w,Y’) recovers
the ith component u;, is by the square inner product r;(w,Y’) given by

(2.2) ri(w,Y) := Jula; (w, V)%

Finally, optimal weights w;(Y) and the optimal performance r}(Y") for the ith component
are defined by

(2.3) w; (YY) € argmax 7 (w,Y), r’(Y) =max r;(w,Y).
w

w
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Note that the performance (2.2) depends on the underlying component u;. However, in
practice, u; is of course unknown so the optimization (2.3) cannot be done. Fortunately, as
our main result below shows, the optimal weights w}(Y") and optimal performance 7} (Y") can
be predicted when the data (a) satisfies some natural statistical assumptions, and (b) grows
large in size, i.e., under the following setting.

Setting. We will assume the following setting throughout the remainder of this paper.
(a) The noisy data blocks Y1 € C*™ ... Y € C¥*™ are generated from the components
uq,...,u;, € C¢ with corresponding signal variances A\; > --- > \; > 0 as follows:

(2.4) Y,=FZ,+E,eC™ for(=1,...,L,

where
o F:=[/Aui,...,v/ dpuy] € C9F is a deterministic factor matrix common to all
the blocks,
o Z,c CF*™ ig a coefficient matrix with IID entries having zero mean and unit
variance,
e E, € C¥™ is a noise matrix with IID entries having zero mean and variance
ve > 0,

and the noise entries further satisfy a technical condition: bounded ath moment with
a >4, ie., Jgsq s.t. B|(Ey); | < co. Note that this model also includes real-valued
data with real-valued coefficients and noise.

(b) The number of features d and numbers of samples n1,...,nz, all grow towards infinity
but with fixed aspect ratios ny/d = ¢, > 0. This asymptotic regime captures datasets
where the number of features and samples are roughly comparable, as is common in
modern big data settings.

Note that under the model (2.4), the optimal weights and performance (2.3) are random
quantities so their convergence will be probabilistic. Specifically, the convergence holds with
probability one, i.e., it is almost sure convergence, which we will denote by =5

We are now ready to state the main result on the optimal weights and performance.

Theorem 2.1 (asymptotic optimal weights and performance). The optimal weights w?(Y)
and corresponding optimal performance r:(Y') converge as

1 1 1 1
2.5 Y) 2 wf=(——o— = t le
(2.5) w; (Y) w; <U11+U1/)\i7 ’UL1+UL/)\1‘> up to scaling,

L
) 11—z

(2.6) r(Y) — 7 :=the unique solution x € (0,1) of 2 SV v =1,

except when Zle co(Ni/ve)? < 1, in which case w; is asymptotically unrecoverable by any
weighted PCA, i.e., r;(w,Y) 220 for all weights w.

'This technical condition on the noise is satisfied by numerous distributions including the sub-Gaussian
and sub-Exponential families [46, Propositions 2.5.2 and 2.7.1].
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Figure 2.1. Relative weight wa /w1 given by the optimal weights (2.5) as a function of the relative noise
variance vz /v1 for various signal-to-noise ratios \i/vi. The optimal weights downweight noisier data more
aggressively than inverse noise variance weights, but also do not discard noisier data. They lie in the region
between inverse and square inverse noise variance weights.

Remark 2.2 (optimal weights downweight more than inverse noise variance weights). The
optimal weights (2.5) are not the inverse noise variance weights that are commonly used. As
illustrated in Figure 2.1, optimal weights downweight noisier data more aggressively, but never
discard data. Specifically, when the signal-to-noise ratio A;/v; is small, the optimal weights
are square inverse noise variance weights up to scale. As \;/v; grows, the optimal weights
gradually become less aggressive and approach inverse noise variance weights.

Remark 2.3 (using estimated signal and noise variances). The optimal weights (2.5) depend
on the noise variances v and on the signal component variance A;. In some settings, these
parameters are known, e.g., from calibration data. When they are unknown, one may estimate
them using existing ideas and approaches, then plug them in to obtain estimated weights. As
discussed in section 7, these estimated weights are also asymptotically optimal as long as the
variance estimates are consistent.

Remark 2.4 (heterogeneous signal strengths). The result may at first appear to be limited
to data with homogeneous signal strengths. However, it generalizes straightforwardly to the
case where the signal in each block is scaled by an associated signal strength, as arises, e.g.,
in RADAR applications [8, 9, 42]. Simply preweight the data to recover the model (2.4); see
supplementary material SM1 for a detailed description.

Remark 2.5 (handling potentially degenerate cases). A careful reader may note the subtle
and technical point that there may exist degenerate choices of w for which r;(w,Y) is not well
defined, e.g., if the ith leading eigenvector becomes undefined due to eigenvalue multiplicity.
At such points, we define r;(w,Y’) by its limsup over w. Doing so makes 7;(w,Y’) upper
semicontinuous in w and avoids degenerate situations where its maximum does not exist.

Remark 2.6 (nonorthogonality of estimated components). Since the optimal weights (2.5)
are component-specific, the components u(w},Y),...,u,(w},Y) estimated by optimally
weighted PCA may not be orthogonal in practice. In applications where orthogonality is
crucial, one option is to sacrifice componentwise optimality and use a single set of weights,
e.g., that just optimizes recovery of the weakest component or that optimizes some appropriate
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overall metric of performance. Alternatively, in many such cases, the principal subspace is of
greater interest than the individual components; in these cases, one could orthogonalize the
components, e.g., via Gram—Schmidt.

Remark 2.7 (phase transition). Analogous to unweighted PCA under homoscedastic noise,
optimally weighted PCA exhibits a phase transition between settings with zero asymptotic
performance and those with nonzero asymptotic performance. As described in Theorem 2.1,
optimally weighted PCA has nonzero asymptotic performance when ) le co(Ni/ve)? > 1 (orin
other words, \; > (Zle ce/v?)~1/2). Notably, if any weighting scheme has nonzero asymptotic
performance, then optimally weighted PCA does too, as illustrated in subsection 4.3.

Before proving the main result (Theorem 2.1) in section 6, we provide some more intuition
about it through numerical simulations in finite dimensions (section 3) and comparisons with
existing weighting schemes (section 4).

3. Numerical simulation. This section performs numerical simulations in finite dimen-
sions. Specifically, we generate L = 2 blocks of data Y1 € R*™ and Y, € R¥™ according
to the model (2.4) with

e k=1 component u; € R? uniformly drawn from the unit sphere,
e Gaussian coefficients (Z/);; 0 N(0,1) and noise entries (Ey);; 0 N(0,vy),
e component variance A; =1 and noise variances v = (1, 3).
Figure 3.1 shows the nonasymptotic empirical distributions of the optimal weights wi(Y") and

the corresponding optimal performance 7§(Y") from (2.3) obtained using the true underlying

limit w7 2 /w7, from (2.5) limit 7] from (2.6)

25 ' 25 *
20 ' 20 '
15 1 15 '
10 ' 10 '
g T 1] ; B 111
0 0
0 1/6 1/3 1/2 0 1/4 1/2 3/4 1
Optimized relative weight wi »(Y")/wi 1(Y) Optimized performance 7 (Y)
(a) Nonasymptotic distributions for d = 100, n; = 400 and nz = 800.
limit @7 5 /@7 ; from (2.5) limit 77 from (2.6)
25 25 +
20 20 |- . N
15 15 N
10 10 | N
) 5 |
0 0
0 1/6 1/3 1/2 0 1/4 1/2 3/4 1
Optimized relative weight wi »(Y")/wi 1(Y) Optimized performance r1(Y)

(b) Nonasymptotic distributions for d = 1000, 71 = 4000 and n2 = 8000.

Figure 3.1. Nonasymptotic empirical distributions of optimal weights wi(Y ) and optimal performance
(YY) from (2.3) for an illustrative example with two blocks of data Y1 € R¥™™ and Y3 € R¥"™2 generated
with noise variances vi =1 and v2 = 3, and with one underlying component having variance \1 = 1.
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component ui. Since the weights are meaningful only up to scale, we show the optimal relative
weight wi o(Y')/wi;(Y), where w;,(Y') is the £th entry of w}(Y'). Similarly, v}, denotes the
(th entry of wy. 7 7

Note first that the nonasymptotic distributions for both the optimal weights w3(Y") and
the optimal performance r7(Y") are generally centered around their respective theoretical limits
w7} and 7} from (2.5) and (2.6). Moreover, they concentrate as the data grows in size from
Figure 3.1a to Figure 3.1b. This illustrates the almost sure convergence of the nonasymptotic
optimal weights and performance to their limits.

Naturally, one also wonders whether the asymptotic results of Theorem 2.1 can be used
to choose optimal weights or predict optimal performance for real data, which are finite-
dimensional. These experiments demonstrate that the asymptotic optimal weights (2.5) and
performance (2.6) can indeed be applied to choose weights that are often close to optimal for
finite-dimensional data and to predict their corresponding performance.

4. Comparison with existing weighting schemes. This section compares the asymptotic
optimal weights of (2.5) with existing weighting schemes. To ease discussion, we will focus
on the case with only two blocks Y; and Yy, i.e., L = 2, but the same insights apply more
generally. The weighting schemes considered are as follows:

(4.1) inverse noise variance: w=(1/v1,1/v9),
(4.2) only use Y : w = (1,0),
(4.3) only use Yy : w=(0,1),
(4.4) unweighted: w=(1,1),

where the weights are, as always, meaningful only up to scale. Note that using only Y; or
Y, are both special cases of general binary weights that discard blocks of data.

4.1. Comparison of weights. This section compares how close the various weighting
schemes are to the distribution of the actual empirically optimized weights w}(Y") from (2.3)
in an illustrative example. As in section 3, Y| € R¥*™ and Yy € R¥™ are generated from
the model (2.4) with Gaussian coefficients and noise, and a single signal component u; € R?
drawn uniformly from the unit sphere. The noise variances are v = (1,3), and the data sizes
are d = 1000, ny = 4000, and no = 8000.

Figure 4.1 shows the nonasymptotic distribution of the empirically optimized weights
(2.3) with the asymptotic optimal weights w7 from (2.5) and the existing weights (4.1)—-(4.4)
overlaid. Figure 4.1a shows a case with a moderate signal component variance A\ = 1, and
Figure 4.1b shows a case with a strong signal component A; = 30. Since the weights are
meaningful only up to scale, we show the relative weight w7 o(Y") /w7 1(Y) given to the noisier
block Y7, where w},(Y") is the ¢th entry of w}(Y'), as in Figure 3.1.

We make the foilowing observations from Figure 4.1:

o As before, the optimal weights are centered around the asymptotic optimal weights.

e When the signal component variance is moderate, the optimal weights do not overlap
with the existing weighting schemes. They more aggressively downweight the noisier
block than inverse noise variance weights but also do not discard the noisier block.

e When the signal component variance is large, the optimal weights overlap with inverse
noise variance weights.
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only use Y} asymptotic optimal only use Y1 asymptotic optimal
(cleaner block) ' ipyerse noise var. unweighted (cleaner block) inverse noise var. unweighted
25 J * - 25 - -
20 ' 20 "
15 ' 15
10 ' 10
5 ' 5
0 L 0
0 1/6 1/3 1/2 2/3 5/6 1 0 1/6 1/3 1/2 2/3 5/6 1
Optimized relative weight wi 5(Y)/wi 1(Y) Optimized relative weight w7 5(Y)/wi 1(Y)
(a) Moderate signal component variance A; = 1. (b) Large signal component variance A; = 30.

Figure 4.1. Comparison of weighting schemes for an illustrative example with two blocks of data Y1 €
RYX™ gnd Y, € R¥X™2 generated with noise variances vi = 1 and ve = 3, where d = 1000, n1 = 4000, and
ng = 8000. The nonasymptotic distributions of empirically optimized weights wi(Y') from (2.3) are shown as
histograms, with the asymptotic optimal weights WY from (2.5) and the ezisting weights (4.1)—(4.4) overlaid as
lines (the weights (4.3) that only use Y2 do not appear since they are at infinity).

1

3/4 . :
asymptotic optimal

ri(w,Y) 1/2 —
only use Y7 (cleaner block)
1/4 ruse Y. . . .
/ only use ¥; inverse noise variance
(larger block) unweighted ~
N Ssal
O -~

i | L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Block 2 noise variance vs

Figure 4.2. Performance comparison of weighting schemes (2.5) and (4.1)—(4.4) for an illustrative example
with two blocks of data Y1 € RX™ gnd Yo € RYX™2 with d = 1()3, ny = 103, ng = 104, and signal component
variance \1 = 2. The first block has noise variance vi = 1, while the second block noise variance ranges from
ve =1 to va =20. For each weighting scheme, the solid colored curve is the average from 400 trials, the ribbon
indicates the corresponding interquartile interval, and the dashed black curve is the asymptotic performance
from Theorem 2.1 and Proposition 4.1.

4.2. Comparison of performance. This section compares the various weighting schemes
in terms of their performance 7;(w,Y") in finite dimensions. As in section 3, Y'; € R¥”*™ and
Y, € R¥™ are generated from the model (2.4) with Gaussian coefficients and noise, and a
single signal component u; € R? drawn uniformly from the unit sphere. The signal component
variance is A\; = 2, and the data sizes are d = 103, n; = 103, and ny = 10*. The first noise
variance is v1 = 1 and the second noise variance ranges from vy, = 1 to vy = 20. Figure 4.2
shows the nonasymptotic distribution of performance for the asymptotic optimal weights (2.5)
and the existing weights (4.1)—(4.4).

We make the following observations from Figure 4.2:

e Across the entire sweep, the asymptotic optimal weights are generally best.
e The performance of the asymptotic optimal weights is well predicted by the asymptotic
performance from Theorem 2.1.
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When vs is small, there is a lot of clean data coming from Y5 since no is fairly large.
All weighting schemes do well except the scheme of using only Y.

As vy grows, Y5 becomes noisier and the methods that use Y5 degrade in performance.
Asymptotic optimal weighting degrades the most slowly/gracefully.

As vy continues to grow, all methods that use Y5 eventually do worse than using only
Y ; and hit zero asymptotic performance, except for the asymptotic optimal weighting.
When w9 is large, asymptotic optimal weighting performs similarly to using only Y.

e Asymptotic optimal weights naturally transition from using Y5 to largely ignoring Yo

without any tuning or manual choice of a “cutoff.”
Unweighted PCA and inverse noise variance weighted PCA sometimes perform worse
when given more data; in some cases using only Y1 or Y, was better. In contrast,
asymptotic optimal weighting always performs better than using only Y1 or only Y.
Moreover, it always uses all data blocks, i.e., all weights are nonzero. With optimal
weighting, more data can only help, it never hurts.

Figure 4.2 overlaid the asymptotic performance for each weighting scheme. For optimally
weighted PCA, this limit was given in (2.6). The following proposition provides an analogous
result for the existing weighting schemes.

Proposition 4.1 (asymptotic performance of the existing weighting schemes). The weighting
schemes (4.1)—(4.4) have corresponding performance converging as

(4.5)
(4.6)
(4.7)

(4.8)

as c —0?/)\?
inverse noise variance : ri(w,Y) —> max <0, 4__/)\1> ,
c +v
_ )\2
only use Y: ri(w,Y) 2% max <0, a +U1§)\ >
C1 V1
— )\2
only use Ys: ri(w,Y) 2% (0, @ +v2§)\ >
C2 V2
unweighted : ri(w,Y) 25 <O,
BiBi( ﬁz
where ¢:=c1 +---+cp, v:=(p1/vi+---+pr/or) ", pei= /e,
Lo ep? Lo
Z 24
= Bi(z)=1-X\;

and B; is the largest real root of the rational function B;.

Proposition 4.1 is a by-product of Lemma 6.2 in our proof of Theorem 2.1, with some
parts shown previously and some shown in this paper. Specifically, (4.6) and (4.7) are exactly
the well-studied homoscedastic case [22, 23, 35, 37], since the noise is homoscedastic when
using only Y'; or Y. For unweighted PCA (4.8), [17] derived the performance for the case
where A(f;) > 0 and conjectured the behavior for A(5;) < 0. Finally, for the performance of
inverse noise variance weights (4.5), closely related results were contemporaneously derived in
the recent work [29].
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4.3. Comparison of phase transitions. The asymptotic performances (2.6) and (4.5)—
(4.8) of the various weighting schemes exhibit phase transitions between settings with zero as-
ymptotic performance and those with nonzero asymptotic performance. Namely, each scheme
has nonzero asymptotic performance for data parameters ¢, v, and A; in an associated regime.
Figure 4.3 compares these regimes.

We make the following observations from Figure 4.3:

e None of the existing schemes dominate the rest with respect to nonzero asymptotic
performance. In some cases one is better than another.

e Asymptotic optimal weighting dominates all of them. Whenever nonzero asymptotic
performance is possible for one of the existing schemes, it is also possible for asymptotic
optimal weighting.

e Asymptotic optimal weighting also achieves nonzero asymptotic performance in set-
tings where all of the existing schemes have zero asymptotic performance.

For optimally weighted PCA, the condition defining the regime is given in Theorem 2.1.
The following proposition gives analogous conditions for the existing weighting schemes and
follows straightforwardly from Proposition 4.1.

Proposition 4.2 (phase transitions of existing weighting schemes). The asymptotic perfor-
mance of the weighting schemes are nonzero if and only if, respectively,

inverse noise variance: c -(\/0 ) >1,
only use Y : cy - (>\i/'U1)2 >1,
only use Yy : ca - (Nifv2)® > 1,
unweighted : A(B;) >0,

where ¢, U, A, and 3; are as in Proposition 4.1.

; N S

< 3 = =

© & -

g =

<] N —

] 2 L.

= > only Y5

g B '

- Q a«%’},

= = Ty

g 8 o, ighted

g 2 5 1 Py unweighted |

2, R

: = |

- . 2 0.5 region of zero

g region of zero = asymptotic

i asymptotic performance Eo performance

1 @
1 2 3 4 5 6 0 0.5 1 1.5 2

Combined aspect ratio ¢ Signal-to-noise ratio A; /vy for ¥,

(a) With respect to combined aspect ratio c for entire dataset Y (b) With respect to signal-to-noise ratios
and signal component variance \;, for blocks with associated Ai/v1 and A; /ve, for blocks with associated
aspect ratios ¢ = ¢+ (1/11,10/11) and variances v = (1, 5). aspect ratios ¢ = (1/2,1/2).

Figure 4.3. Comparison of phase transitions from Theorem 2.1 and Proposition 4.2 for an illustrative
exzample of two blocks of data Y1 € R™*™ and Y, € R¥*"2 with variances v1 and va and signal component
variance \;. For each weighting scheme, asymptotic performance is zero below the phase transition and nonzero
above it. In all cases, the shading goes up and to the right.
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5. Comparison with additional methods. This section compares the performance of opti-
mally weighted PCA with additional PCA methods designed for some form of heteroscedastic
noise. Specifically, we consider the following iterative methods:

e HePPCAT [19] is a probabilistic PCA approach that accounts for noise with sample-
wise heteroscedasticity by modeling the heteroscedasticity in the statistical likelihood.
We used 1000 iterations.

e HeteroPCA [50] addresses the bias in the diagonal of the covariance matrix caused by
noise with featurewise heteroscedasticity. It does so by iteratively replacing the biased
entries using low-rank approximation. We used 100 iterations.

Figure 5.1 shows the nonasymptotic distribution of performance for these methods for the
setup considered in subsection 4.2: Y1 € R and Yo € R¥X™2 gre generated from the model
(2.4) with Gaussian coefficients and noise, and a single signal component u; € R% drawn
uniformly from the unit sphere. The signal component variance is Ay = 2, and the data sizes
are d = 103, ny = 103, and ng = 10%. The first noise variance is v; = 1 and the second noise
variance ranges from vy =1 to vg = 20.

We make the following observations from Figure 5.1:

e HePPCAT accounts for the heterogeneous quality of the data blocks, and it performs
very similarly to optimally weighted PCA in this case (the curves overlap). Note that
HePPCAT involves solving a nonconvex optimization problem, and it currently lacks a
guarantee of convergence to a global optimizer. In contrast, optimally weighted PCA
can be computed simply and reliably via the well-studied singular value decomposition.

e HeteroPCA is also designed to account for heteroscedastic noise, but does so primarily
for featurewise heteroscedasticity. It treats the samples uniformly and performs very
similarly to unweighted PCA in this case (the curves overlap); it performs worse than
optimally weighted PCA and is even eventually worse than using only Y';. This exam-
ple highlights how samplewise and featurewise heteroscedasticity in the noise differ.
They have qualitatively different impacts that seem to call for distinct approaches.

1
3/4 . .
Optimally Weighted PCA
uia (Y))? 1/2 N
[ (V)] \ HePPCAT [19]
1/4 501\
o Unweighted PCA
0 ... --------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Block 2 noise variance vs

Figure 5.1. Performance comparison with additional methods for the illustrative example in Figure 4.2:
two blocks of data Y1 € R™*™ and Yo € R*"2 with d = 102, ny = 10%, ny = 10*, and signal component
variance \1 = 2. The first block has noise variance vi = 1, while the second block noise variance ranges from
ve =1 to v2 = 20. For each method, the colored curve is the average from 400 trials, and the ribbon indicates
the corresponding interquartile interval.
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6. Proof of main result. Theorem 2.1 states that unless 3>+, ¢¢(Ai/v¢)? < 1, the optimal
weights w}(Y") and corresponding optimal performance 77 (Y") for the ith component converge
almost surely to w} (up to scale) and 77 in the right-hand sides of (2.5) and (2.6).

Namely, w} and 7 are the result of first optimizing (with respect to the weights w)
then taking the limit (as the data Y grows in size). Unfortunately, w}(Y') and r(Y") are
complicated functions, making it challenging to directly analyze their limit. So, we instead
first take the limit then optimize. More precisely, using aslim to denote almost sure limits
and writing Y @ to make the limits more explicit, we first derive

argmax7;(w), where 7(w)=aslimr;(w,Y @),
w d—ro0

then use that result to obtain the result we want, i.e.,

aslimw? (Y @),  where w? (Y @)= argmaxr;(w,Y?).
d—o0 w

The following diagram illustrates the approach:

( Deﬁniti(()n )
Equation (2.3
ri(w,Y) - r wi(Y),r7(Y)
optimize w.r.t. w g g
Subsection 6.1| limi 1+ | Main result
(61> (Lemma 6.2) |2-s- limit a.s. limit | (Theorem 2.1)
_ ( ) optimize w.r.t. w N—
ri(w w;,T;
v Subsection 6.2 et A

(Lemma 6.3)

For this approach to work, the diagram must commute, i.e., the optimizer of the almost
sure limit (which we derive) must match the almost sure limit of the optimizer (which we
want). The following lemma states a suitable sufficient condition under which this happens,
i.e., the maximizer of the limit is the limit of the maximizer. This lemma may be proved
using techniques and results from variational analysis, e.g., [40, Chapter 7]. For convenience,
supplementary material SM2 also provides an elementary, self-contained, and concise proof.

Lemma 6.1 (diagram commutes). Let X C R? be compact, f, : X — R be a sequence of
functions, and f: X — R be a function, such that on X,

1. each f, has a mazimum,
2. fn converges uniformly to f,
3. f is continuous, and
4. f has a unique mazimizer.
Then the mazimum of f, and the set of mazximizers of f, both converge, i.e.,

max fp(x) — max f(x), argmax f,(x) — argmax f(x),
zeX zeX zEX TEX

where the set convergence is with respect to the Hausdorff distance.
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With Lemma 6.1 in hand, it now remains to (a) derive the almost sure limit 7;(w) of
ri(w,Y’), and show that the convergence is uniform in w (Lemma 6.2 in subsection 6.1)
and (b) optimize 7;(w) and show that the optimizer is unique (up to scaling) except when
S5 ce(MNifve)? <1 (Lemma 6.3 in subsection 6.2).

6.1. Almost sure limit of the performance. This section derives the almost sure limit of
the performance 7;(w,Y’), where the convergence is uniform in the weights w.

Lemma 6.2 (almost sure limit of the performance). Fori=1,...,k,
a.s. 1 Aw(ﬁiw)

6.2 ri(w,Y) 2% F(w):=max |0, AU LI
62 . X) ) ( Birw By (i)

where the convergence is uniform with respect to w on Réo \{0.},

L C’U)U L Cyw
74 _ Gewr
(6.3) = § P _1—>\Z
— .%‘—wg’Ug .Z‘—’wg’Ug

and B; 15 the largest real root of Bj 4.

The remainder of this subsection proves Lemma 6.2. After defining some notations, we
derive the limit of the singular values, then derive the limit of ;(w,Y") in two regimes (above
and below the phase transition), and finally derive the above algebraic form. There are
several other ways to structure these derivations; see, e.g., [7]. The approach we take here
carefully combines the general perturbation approach of [5] with celebrated random matrix
theoretic results on local laws [13, 27, 48] (reviewed in supplementary material SM3.1) to
obtain uniform convergence for the singular values and vectors. The algebraic form is derived
following the approach in [17]. Throughout the proof, we postpone some detailed calculations
to the supplement (supplement.pdf [local/web 475KB]).

6.1.1. Notation and preliminaries. Let HAi,w, U;p, and g, ,, denote, respectively, the ith
singular value, i¢th left singular vector, and ith right singular vector of the normalized and
weighted data matrix,

1 ~H =
(64) Yu;::ﬁ[\/wlYla---meL]:U@Qw+Ew7
where U := [uy,...,ug], © :=diag(fy,...,0) has diagonal entries 6; :=+/)\;, and

@w::\}ﬁ[mzla"'vaL]Ha Ew::\}ﬁ[mElv"'amEL]7

are normalized and weighted coefficients and noise. We indicate that these are functions of the
weights via the subscript w, and omit the dependence of the singular values and vectors on
the data (for brevity). We also omit the index for d; all limits are as d — oo unless otherwise
specified. B

Note that the left singular vectors of Y,, are exactly the eigenvectors of the weighted
sample covariance, so the performance can be written as r;(w,Y) = |uf'i; ,|?. The noise
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matrix Ew satisfies the usual random matrix theoretic conditions, and is well known to have
a singular value distribution that converges weakly almost surely to a nonrandom compactly
supported measure i, whose Stieltjes transform

(6.5) mp (w, €) ::/Cgitgdu’w(t)

is the unique solution to the generalized Marchenko—Pastur equation

L

I T DPewyevy
(6.6 @0~ 2 T gm0

for which Immyp (w, ¢) < 0 for ¢2 in the upper half complex plane [33], where c:=c;+---+cp,
and pg:=cy/c.

Moreover, the operator norm of the noise matrix converges to the upper-edge of i, (see
supplementary material SM3.2 for detailed derivation), i.e.,

~ a.s.
(6.7) [Ewllop = bw :=sup{support of i},
weEAL

a.s.
where Ap:={w € Réo cwy + -+ +wr =1} is the probability simplex, and = denotes almost
sure uniform convergence.

6.1.2. Limits of the singular values. Using a similar argument as [5, section 4], one can
show that any singular value of Y ., that does not tend to a limit greater than b,, tends to
bw, so we focus on singular values with limits greater than b,,. Following the approach of [5,
section 4], this section studies those singular values through the matrix-valued function

U

9

(6.8) M (w,() := {U @JHG(“”C)[ éw] ; {9‘1 61}

where G(w, () is the resolvent (or Green’s function) defined as

N
(6.9) G(w,() = <C1d+n— [EH Ew]) :

w

The link to singular values is made through an extension of [5, Lemma 4.1] that incorporates
the weights (see supplementary material SM3.3 for detailed derivation). It states that

(6.10) v ¢ is a singular value of Y, <= det M (w,() =0,

> Bwllop

so we instead study M in the limit. A careful application of anisotropic local laws [13, 27,
48] (see supplementary material SM3.4 for detailed calculations) yields that for any 7> 0,

a.s. @—1:|

— — Sol,w(OIk ] — [
(6.11)  M(w,() (ch):ezﬂ(ﬂ M (w,(): 02.w(O | |©O71

)
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where Q(7) :={(w,{) € Ap x C: (Re(,Im() € [by + 7,00) x [—1,1]} and

(6.12)  ¢1.w(C) :==Cmmp(w /CQ d““’ t),  ¢2w(C ZC wﬂ];eszéw(@/

Finally, we apply [5, Lemma A.1] with (6.10) and (6.11) in the same way as [5, section 4];
straightforward calculations (see supplementary material SM3.5) verify that ¢; 4, and 2,
satisfy the conditions of [5, Lemma A.1]. Moreover, noting that these arguments extend to
uniform convergence in w € Ay, yields that

Las _ iw  1f ;> O,
(6.13) 91'711, = Gi,w, where Qi,w:: Piw 1% "w
weA bew otherwise,

where Dy, (€) := ¢©1.0(C)p2.0(C) for ¢ > by, piw := Dg'(1/6%), and 9%) := 1/Dq(b,). Here
D! denotes the inverse function of Ds,, and f(b") :=lim¢_p+ f(€) is the limit from above.

6.1.3. Performance above the phase transition. This section derives the limit of the
performance r;(w,Y’) above the phase transition. Namely, for any v > 0, we prove uniform
convergence with respect to w over the domain W- (v) :={w € Ay : éi,w > by + v}

Following the approach of [5, section 5], we study 7;(w,Y") = |uti; ,»|? through the follow-
ing extension of [5, Lemma 5.1] (see supplementary material SM3.6 for detailed derivation):

o> 1B i) | ©@ua
6.14a \V/w L 9210 > E,w o B 0=M w’eiw wi,w and
(6.142) s B> [ Bullr { (.01 [@UH%]
(6.14Db) 1=x1(w) + x2(w) + 2Re x3(w) },

~ ~ ~H
where T'y, := (HiwId —EuE,) ! and
k
(6.15) Z ‘93 0 : ((I?l,qu‘,w) : (QZ,in,w)* ’ ujgagwrzvujw
J1,J2=

Z ejlejz ’ (uiﬂ%w) ) ( ;ﬂi,w)* ’ 632 wEwF%uEw(jjl,w’
Ji,92=1
Z ejlejz ’ (ujHlﬁzw) ’ (Qg,w@i,w)* 'uiéi,wrguEijhw
J1,J2=1
It follows from (6.13) that almost surely, eventually, for all w € Ws (v), 6;.4 > HEwHOp and
hence the condition of (6.14) holds. It remains to study the limits of i, x2, and xs3.

Carefully applying (6.11) and (6.13) to (6.14a) in a similar way as [5, section 5] yields that
(see supplementary material SM3.7 for detailed calculations), for any v > 0,
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. / - . a.s.
(616&) Xl(w) _ 012 |:+ (1017;1)('[)7/,'“)) _ Sol,w;plfw)] |'U/,IL—|'&/@711;|2 (7027w(pz.7w) — O7
Pi,w 1w (pz,w) weWs- (v)
. / - a.s.
(6.16b) o (w) — 01'2 [_ @2,;0(‘/)1,10) _ @2,w;,0@,w)] ’U;—"&z‘,w’z = 0,
Piw weWs (v)
(6.16¢) x3(w) g 0.
weW- (v)

Finally, applying (6.16) to (6.14b) yields that (see supplementary material SM3.8 for detailed
calculations), for any v > 0,

|2 2; Q@I,W(Pi,w)

(617) T‘Z'('LU, Y) = |’U,H’ltl,i7w — .
weW- (v) G?D@(Pi,w)

6.1.4. Performance below the phase transition. This section bounds the limit of the
performance r;(w,Y’) below the phase transition. Namely, for any v > 0, we derive a uniform
bound with respect to w over the domain W< (v) := AL \ W= (v) = {w € AL : 0; 4 < by + v}

Following the approach of [7], we study r;(w,Y) = |ul'i; ,»|? by first obtaining the follow-

ing deterministic bound (see supplementary material SM3.9 for detailed calculations):
(6.18) [uf'itiaf® < —v - Tm { G [M(w,Giaw) = M (w, Gio) M (w0, Gia)) ™ M(w,G)] b

0
where (?,, =02, 4w and

(6.19) M(w,() = [U v

H
~ G(w,( [ ~ } .
2. ol 4,
Next, by standard calculations (see supplementary material SM3.10), we have that almost
surely, eventually, the following bounds hold for all w € W< (v):

(6.20) Gl <O [Maw.Gu)| <o IM(w.Ga) o < o,

where 51, 52, and C~’3 do not depend on v or w.
Finally, applying (6.20) to (6.18) yields that for any v > 0, almost surely, eventually,

(6.21) sup  7i(w,Y)= sup |uld.,|? < Culv +1v1/?),
’UJEWS (l/) wEWS(lI)

where Cy := C} max(ég, 5225'3) does not depend on v.

6.1.5. Uniform convergence and algebraic form of performance. Noting that v >0 can
be arbitrarily small in (6.17) and (6.21) yields uniform convergence across w € Ay, i.e.,

a.s. _292011”7(/’“”) f9>9~
(6.22) rwY) = mw)i={ ODulew) DT Tw
weA 0 otherwise.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/11/23 to 141.214.17.121 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

240 D. HONG, F. YANG, J. FESSLER, AND L. BALZANO

Since 7i(w,Y’) is scale invariant, i.e., r;(yw,Y) = r;(w,Y) for any v > 0, it immediately
follows that the convergence is also uniform over RL\ {0} as well.

The proof concludes by deriving the algebraic description (6.2) of 7;(w). Following the
approach of [17, section 5.2], we change variables to

NS
(6.23) Y (C) = orw(C)

and observe that, analogously to [17, section 5.3],

l_Bz‘w w D;U 26B£w¢w<
(6.24) Duw(¢) = 79§w ), g(C)__GEA;u((wu:((C))))’

Y (b)) = . and Yoy (piaw) = Biw When 67 > 62,, where au, and f; 4 are the largest real roots
of Ay and B; 4, respectively. See supplementary material SM3.11 for the detailed derivations.

Even though 1, (p;) is defined only when 67 > 92,, the largest real roots o, and ;. are
always defined and always larger than max,(wpv,). Thus

- 62
6.25 0? > 02 = : & B; <0E Q< Biw < Aw(Biw) >0,

where the final two equivalences hold because Ay, () and B; () are both strictly increasing
functions for z > maxy(wevy) and Ay () = Bjw(Biw) = 0.
Finally, using (6.24) and (6.25) to rewrite (6.22) concludes the proof of Lemma 6.2.

6.2. Optimization of the almost sure limit. This section optimizes 7;(w) and shows that
the maximizer is unique (up to scaling).

Lemma 6.3 (optimization of the almost sure limit). The asymptotic performance 7;(w) is
continuous and is mazximized as

(6.26) {yw}:v>0}= argmax 7;(w), rF=  max 7;(w),
WERIZ'O\{OL} ’wGRIZ‘O\{OL}

except when 25:1 ce(Ni/ve)? <1, in which case 7;(w) =0 for all weights w € ]Réo \{0.}.

The remainder of this subsection proves Lemma 6.3. A major challenge for the proof is that
Ti(w) is defined implicitly via the root §; ., and setting the gradient equal to zero to obtain
local maxima yields a complicated nonlinear system of equations to solve. Surprisingly, the
system turns out to have a simple solution that we derive by carefully exploiting the structure
of the system. Moreover, we show that the solution is globally optimal, obtaining the optimal
weights and their corresponding performance.

Before deriving the gradient, note that 7;(w) is not always differentiable everywhere due
to its truncation at zero. However, it can be rewritten as

1 Aw (ﬁi,w)

(6.27) Filw) =max (0,75(w)),  where 7i(w) =g 5= 2,
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so the problem reduces to maximizing the differentiable function 7;(w) then checking whether
it is positive. Furthermore, 7;(w) achieves its maximum over the feasible region Réo \{0.}.
To see why, note that 7;(w) is scale-invariant, i.e.,

1 A'yw (/Bi,“/’w) 1 A'w(ﬁsz)

\/ B = - =7
>0 T (’Y’w) Bi,’yw Bz{,ww(ﬁi,’\/w) 'Yﬁi;w (1/’7)Bz{,w(ﬁi»w) ' (w)

since Ay () = Aw(2/7), Biyw(®) = Biw(z/7), and B, (v) = (1/7)B] ,,(z/7), resulting
additionally in £ yuw = ¥Biw. Thus, 7;(w) can equivalently be maximized over the compact
set Ap:={we Réo ;w1 + -+ +wp =1} and hence achieves its maximum.

Next, note that the feasible region RZ,\ {0} is not open, so we partition it into 2L — 1

sets according to which weights are zero. Namely, consider partitions of the form
Pr={we Réo Voer we =0,V we >0} for LC{1,..., L} a proper subset.

Since 7;(w) achieves its maximum, a maximizer exists within at least one of the partitions.
Moreover, since 7;(w) is differentiable, 7;(w) is maximized at a critical point of a partition.
It remains to identify and compare the critical points of all the partitions P .

First consider Py, i.e., the set of positive weights w1, ..., wr, >0, and let w; :=1/w;. This
parameterization ends up simplifying the manipulations. Differentiating 7;(w) and (6.3) with
respect to w; yields

Il e o e et ov T
(6.28b) &%ﬁ?”zAu@Mﬁ%j+%&@szpmm

(6.28¢) W = Biw(Biw) 8;5? oA (ﬂi,wgﬁ o e Awwwj—w
(6.28d) 0= W =B} (Biw) aaﬁg:’ + g &chj . Biw»

where one must carefully account for the fact that A (), Biw(z), and f; 4, are functions of
w;j. The problem now is to set 07;(w)/0w; equal to zero and carefully exploit the structure
of the system (6.28) to solve it.

In particular, rewriting (6.28b) and (6.28c) in terms of 0f; /0w, using (6.28d) yields

8Aw(ﬁz 'w) / QBz( w(ﬁi(w) U]z 8/81 w
2 FRwNVw) | AL (B ) — — _ LW
(6.29a) o, w (Biw) N Binotl; —v; | Ot
0B; ,(Biw) D 0B; B! . (Biw) 0B;
9 7,W ) _ B(/ o QB/ o 7 Lw LW s 7,W )
(6.200) %E[Z@w,w—,@w,%w@_w]a@ s
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Substituting (6.29a) and (6.29b) into (6.28a) then rearranging yields

XilBi i (W)W + v3

BiwWj — v;

8772(10) . 2 8Bi,w
(6.30) oW Nifiw OW;

NilNiw —

where the following term is independent of j:

Aw(Biaw) | Ay (Biw) B;{wwi,w)l

2By (Biw) [ Aw(Biw) Bl (Biw)

Since f3; 4 > maxy(weve) > 0, it follows from (6.28d) that 0;.4,/0w; # 0, so it follows from
(6.30) that Or;(w)/0w; is zero exactly when

/\iﬁiywﬂ-(w)u?j + 'Uj2-

6.31 PYTAVETE =
(6.31) ’w Biw; — vj

Rearranging (6.27) and substituting (6.31) yields

L

Z Cy 'Ug + )\zﬁz wrl( )’(Zlg)

ﬁz,wwf - UZ)Q

= A'w (Bz,w) - 'Fi ('w)ﬁi,w /Bl 'w
=1
Cy

=1-Ajwhi ) ——=——
Bty — vy

=1-Ajw(l = BiwBiw)) =1—Ajw,

s0 A = 1. Substituting into (6.31) and solving for ; yields

1 ()b i
(6.32) YIS T oo /N) o (Lo )

where the constant ~; . := (1 — 7;(w))Biw is (a) independent of j, (b) parameterizes the ray
of critical points in Py, and (c) can be chosen freely, e.g., as unity yielding w} from (2.5).

Solving (6.32) for f; v, substituting into 0 = B (Biw), and rearranging yields that the

ek

corresponding 7;(w}) is a root of

L
cy 1—2z
R; =1- .
Z’w(x) ;w/)\i ’U@//\i—i-l'

Since R; p(x) increases from negative infinity to one as x increases from —miny(v¢)/); to one,
it has exactly one real root in that domain. In particular, this root is the largest real root since
R, yp(x) > 1 for > 1. Furthermore, 7;(w}) increases continuously to one as c:=c; + -+ +cf,
increases to infinity, so 7;(w}) must be the largest real root.

Likewise, the critical points of other partitions P, are given by setting the positive weights

proportional to w} with the corresponding 7;(w}) given by the largest real root of
) 11—z
Rip(x):=1— .
Z7£( ) MZE’UZ/)\@ ’Uﬁ/)\z“l’x
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For £1 C L a proper subset, the largest real root of R; 2, is greater than that of R; 2, since
R; ¢, () < R; r,(z) for any « € (—ming(vs)/Ni,1). As a result, 7;(w) is maximized in Py.
Finally, we check when 7;(w}) is positive. Recalling that R; j(x) is an increasing function

on z € (0,1) and noting that R;y(0) =1 — S5 co(Nifvg)? yields that 7 (@}) is positive if
and only if 25:1 ce(Ni/ve)? > 1. When it is positive, the maximizers are given by the critical

points above; otherwise, 7;(w) =0 for all w. This concludes the proof of Lemma 6.3.

7. When signal and noise variances are unknown. The asymptotic optimal weights from
the main result (Theorem 2.1) depend on both the signal component variance A; and the
noise variances v, but one or both of these variances may be unknown in some settings. Of
course, one could estimate these variances using existing ideas and approaches, then plug them
into (2.5) in Theorem 2.1. The question then is, are these resulting estimated weights also
asymptotically optimal? Fortunately, it is straightforward to see that the answer is yes under
natural conditions on the variance estimates. The following proposition makes this statement
precise; it follows straightforwardly from Lemmas 6.2 and 6.3.

Proposition 7.1 (asymptotic optimality with estimated variances). Suppose A\(Y) and #(Y")
are consistent estimates of \; and v, i.e.,

(7.1) (V) 25500, (YY) 25 0.

Let wr(Y) be the estimated weights obtained by plugging ®(Y) and \(Y) into (2.5) in The-
orem 2.1, i.e.,

oK «— 1 1 1 1
(7.2) wi(Y):= (@1(Y) Lo (Y)/A(Y) oY) 14 @L(Y)/S‘i(Y)> |

Then the estimated weights and their corresponding performance converge to the asymptotic
optimal weights and performance, i.e.,

(7.3) Wi (Y) 22w} ri(wi(Y),Y) 257

PR A

Namely, the estimated weights are asymptotically optimal.

Thus, optimal weighting only needs consistent estimates of \; and v that may be obtained
using any one of various existing approaches; which one is most appropriate will depend on the
specific application. Here we consider a simple pair of estimators as an illustrative example.

Ezample 7.2 (variance estimators). As an illustrative example, consider the following simple
estimators for the signal and noise variances:

L
(14) Ji(Y) =% XSW(Y;@(Y));[Z@;(O?)] ’ fJ(Y):—<HY1H%,...,”YLH%>7

dn dn
=1 1 L
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asymptotic optimal asymptotic optimal
relative weight w7 5 /w7 4 performance 77

100 * 25 .

80 20
60 15
40 10
20 5
0 0
0 1/6 1/3 1/2 0 1/4 1/2 3/4 1
Estimated relative weight w7 »(Y") /w7 1(Y) Performance of estimated weights r1(wi(Y),Y)

Figure 7.1. Nonasymptotic empirical distributions of estimated weights wi(Y') from (7.2) and correspond-
ing performance 1 (w}(Y),Y) for an illustrative example with two blocks of data Y1 € R*™ and Y, € R¥"2
where the estimated weights are computed using the signal and noise variance estimators (7.4) from Example
7.2. The data blocks are generated with noise variances vi =1 and va = 3, one underlying component having
variance A1 = 1, and dimensions d = 1000, ni; = 4000, and ns = 8000.

where py:=¢y/c, c:=c1+ -+ g, and

L
3 (inv . . . 1/“@

7.5) Ay g) = ith lead 1 f§j<

(7.5) . (Y;v):=ith leading eigenvalue o R

(=1
(7.6) E(\;v) :=the larger root of the quadratic polynomial (z +v/c)(x 4+ v) — Az.

) Y, Y},

It is straightforward to verify with standard techniques (see supplementary material SM4 for
details) that these estimators are consistent as long as ¢ > (9/)\;)?, i.e., when inverse noise
variance weighting is above the phase transition. Thus, by Proposition 7.1, the resulting
estimated weights and their corresponding performance converge to the asymptotic optimal
weights and performance.

Figure 7.1 illustrates the nonasymptotic behavior of these estimated weights in numerical
simulations. The data is generated as in section 3, with dimensionality d = 1000 and block
sizes n = (4000,8000). The estimated weights and their performance generally concentrate
around the asymptotic optimal weights and performance. Moreover, the estimated weights
achieve performance closely matching the nonasymptotic empirically optimized weights in
Figure 3.1b.

8. lllustration on real data from astronomy. This section illustrates optimally weighted
PCA on real data from astronomy. In particular, we consider quasar spectra from the Sloan
Digital Sky Survey (SDSS) Data Release 16 [2] using the associated DR16Q quasar catalog
[32]. Each spectrum is a vector of flux measurements across wavelengths for a particular
quasar, and comes with associated noise variance estimates across wavelengths. The noise is
heteroscedastic across both quasars and wavelengths, but here we focus on a subset that is
somewhat homoscedastic across wavelengths. Supplementary material SM5 describes the de-
tails of the subset selected and the preprocessing performed (filtering, interpolation, centering,
normalization).
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Figure 8.1. Ground truth components computed from 5000 samples with smallest variances.
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(a) Data matrix Y € R¥™ (top) and associated noise (b) Example spectra with associated high, medium,
variances v € RS, (bottom). and low noise variances.

Figure 8.2. Quasar spectra dataset and example spectra.

The resulting data has d = 281 wavelengths measured for n(fl) = 10459 spectra, yielding a
data matrix Y € R with a vector of associated variances vl ¢ R’;(éum. Figure 8.1
shows plots of components u,...,us € R computed via an unweighted PCA on the 5000
samples from Y ") with smallest variances. We regard these components as “ground truth.”

To evaluate the various weighting schemes, we formed a test dataset Y € R%*™ containing
n = 5000 samples by combining the 3000 samples with the smallest variances (a subset of the
5000 samples used to produce ground truth) and the 2000 samples with the largest variances.
This provides a dataset with noise heteroscedasticity across samples, shown as a heatmap in
Figure 8.2a. Figure 8.2b shows a few sample spectra from the dataset; note that they have a
common shape but have varying levels of noise.

We computed the leading singular vectors w;(w1,Y),. .., us(ws,Y) via unweighted PCA,
inverse variance weighted PCA, and optimally weighted PCA; the optimally weighted PCA
has component-specific weights, so its weights are not the same across the components.” We
used the provided noise variances, and estimated the signal variances using the estimator from
Example 7.2 (with the provided noise variances substituted). Table 8.1 shows the recovery of
the ground truth singular vectors calculated from the “clean” samples above.

2While the components @1 (w3 (Y),Y),...,as(w:(Y),Y) from optimally weighted PCA are not guaranteed
to be orthogonal in general (due to the component-specific weighting), they were approximately orthogonal
here. In particular, max;.; |&; (@} (Y), Y)"a; (@} (Y),Y)[* ~0.00013.
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Table 8.1
Recoveries r;(w,Y) for unweighted PCA (we = 1), inverse variance weighted PCA (w¢ = 1/v¢), and
optimally weighted PCA. Higher is better, best value (up to rounding) is shown in bold.

Component 1 2 3 4 5

Unweighted PCA 0.003 0.307 0.009 0.004 0.018
Inverse variance weighted PCA  1.000 0.903 0.915 0.817 0.811
Optimally weighted PCA 1.000 0.920 0.934 0.884 0.880

The following observations apply to this data and also summarize some of the main themes
of this paper:
e unweighted PCA performs poorly for heteroscedastic data,
e inverse variance weighted PCA performs much better than unweighted PCA, and
e optimally weighted PCA performs even better than inverse variance weighted PCA.
Similar comparisons for these leading components occurred for many of the other test datasets
we tried. The comparisons were less consistent for components 6 and on; optimal weights were
sometimes better and inverse noise variance weights were sometimes better. This inconsistent
behavior is potentially due to the data not matching the model closely enough or perhaps the
ground truth needing to be chosen differently. A detailed investigation of this phenomenon is
beyond our present scope.
Overall, this example with quasar spectra coming from astronomy illustrates the potential
for optimally weighted PCA to improve the recovery of underlying principal components from
real data that has heteroscedastic noise.

9. Conclusion. This paper derived asymptotic optimal weights for weighted PCA when
the data is high-dimensional with noise that is heteroscedastic across samples. The optimal
weights are a simple function of the signal and noise variances, and are not the inverse noise
variance weights commonly used in practice. Numerical simulations illustrated that the as-
ymptotic optimal weights are often close to the optimal weights in finite dimensions when the
dimensions are large enough. Comparisons of the asymptotic optimal weights with existing
weighting schemes illustrated that the asymptotic optimal weights (a) are generally closer to
the optimal weights in finite dimensions, (b) appropriately combine all the data to achieve
the best performance, and (c) achieve nonzero asymptotic performance in the widest range of
settings. Additional simulations illustrated that optimally weighted PCA compares favorably
with other PCA methods designed for some form of heteroscedastic noise. Finally, we briefly
discussed how one can use estimated signal and noise variances when the true variances are
unknown, and illustrated the optimal weights on real data from astronomy.

Overall, optimally weighted PCA is a simple, principled, and promising method for esti-
mating underlying principal components from high-dimensional data with noise that is het-
eroscedastic across samples. However, many open questions remain. While the asymptotic
optimal performance (2.6) is often close to the performance of optimally weighted PCA in finite
dimensions, it would be useful to also derive higher-order asymptotics for the performance as
well as nonasymptotic characterizations. These results would provide refined estimates of the
performance. Another interesting variation of the asymptotic regime is to allow the number of
blocks L to grow with d, potentially with ny,...,ny =0(1). This regime may better capture
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datasets where each sample has its own associated noise variance (e.g., like the astronomy data
in section 8) or where the block structure is unknown. While the proof of Theorem 2.1 does
not seem to readily generalize to such cases, we conjecture that the optimal weights will still
have the same form and that estimates of the signal and noise variances can still be used when
the true variances are unknown. Another interesting direction is to study whether optimally
weighted PCA is optimal across not just weighted PCA but also across more general classes
of methods, e.g., by deriving fundamental bounds on the achievable performance. Finally, it
would be interesting to study how optimally weighted PCA might be combined with other
techniques to handle settings where the noise is not just heteroscedastic across samples but
also across features.
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