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Abstract
Objective. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imagingmodality
that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap
comparedwith 2Dmammography.However, DBT suffers fromnoise and blur problems that can
lower the detectability of subtle signs of cancers such asmicrocalcifications (MCs). Our goal is to
improve the image quality ofDBT in terms of image noise andMCconspicuity.Approach.We
proposed amodel-based deep convolutional neural network (deepCNNorDCNN) regularized
reconstruction (MDR) forDBT. It combined amodel-based iterative reconstruction (MBIR)method
thatmodels the detector blur and correlated noise of theDBT system and the learning-basedDCNN
denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality
assessment, we also proposed twoDCNN tools for image evaluation: a noise estimator (CNN-NE)
trained to estimate the root-mean-square (RMS) noise of the images, and anMCclassifier (CNN-MC)
as aDCNNmodel observer to evaluate the detectability of clusteredMCs in human subjectDBTs.
Main results.We demonstrated the efficacies of CNN-NE andCNN-MCon a set of physical phantom
DBTs. TheMDRmethod achieved lowRMSnoise and the highest detection area under the receiver
operating characteristic curve (AUC) rankings evaluated byCNN-NE andCNN-MCamong the
reconstructionmethods studied on an independent test set of human subject DBTs. Significance. The
CNN-NE andCNN-MCmay serve as a cost-effective surrogate for human observers to provide task-
specificmetrics for image quality comparisons. The proposed reconstructionmethod shows the
promise of combining physics-basedMBIR and learning-basedDCNNs forDBT image reconstruc-
tion, whichmay potentially lead to lower dose and higher sensitivity and specificity forMCdetection
in breast cancer screening and diagnosis.

1. Introduction

Digital breast tomosynthesis (DBT) is a quasi-three-dimensional (3D) breast imagingmodality and is becoming
awidely used tool for breast cancer detection (Chan et al 2014, Gilbert et al 2016, Chong et al 2019, Gao et al
2021b). It improves sensitivity and recall rate in screening aswell as diagnostic accuracy because it reduces
fibroglandular tissue overlap comparedwith 2Dmammography.However, DBT suffers fromnoise and blur
problems caused by low dose exposure, oblique beam incidence at large projection angles, and sourcemotion in
DBT systemswith a continuouslymoving x-ray source (Sundell et al 2019, Zheng et al 2019). These factors can
lower the detectability of subtle signs of cancers such asmicrocalcifications (MCs) at the early stage. Enhancing
the visibility ofMCs inDBTwithout introducing artifacts or noise is a challenge. Our goal is to improve the
image quality ofDBT in terms of noise andMCconspicuity bymodel-based reconstruction and deep learning
denoising.
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DBT reconstruction is an under-determined and ill-posed inverse problemdue to the limited-angle scan
and incomplete sampling. Iterative reconstructionwith orwithout regularization have been developed forDBT
(Zhang et al 2006, Sidky et al 2009,Das et al 2011).Model-based iterative reconstruction (MBIR) is a
tomographic reconstruction approach thatmodels the imaging physics and noise statistics and includes a
regularization term as a prior of the unknown image (Lange and Fessler 1995,Nuyts et al 2013).MBIRhas been
applied toDBT and has shown good reconstruction quality. For example, Haneda et al (2014) usedMBIRwith
regularization to improve the quality of spherical signals in a uniform background. Xu et al (2015) employed a
Poisson likelihood function and aGaussianMarkov randomfield prior and improved the detectability ofMCs.
Zheng et al (2018) developedMBIR forDBTby incorporating detector blur and correlated noise (DBCN)
modeling and an edge-preserving (EP) regularizer to improve the contrast-to-noise ratio (CNR) and sharpness
ofMCs.

Medical image denoising and restoration havemade remarkable progresses by using deep convolutional
neural networks (deepCNNs orDCNNs) (Wolterink et al 2017, Yang et al 2018, Shan et al 2019). This data-
driven approach learns the image and noise features from training data for denoising. In thefield of DBT,
denoising projection views (PVs) before reconstructionwas performed usingDCNN trainedwith themean
squared error (MSE) loss (Badal et al 2019), the combination of CNR, perceptual, and adversarial loss (Gao et al
2020), generative adversarial network (GAN) (Sahu et al 2019), and conditional GAN (Gomi et al 2022). Gao et al
(2021a) developed a denoising network for the reconstructedDBT images calledDNGANand improved theMC
conspicuity in terms of the detectability index (d′) and human observer detection sensitivity (Chan et al 2023).
Although straightforward and fast, image domain and PVdomain denoisingmethods have limitations because
they do not fully exploitmeasurement statistics and imaging physics.

There is a growing interest in combiningDCNNwithMBIR (Wang et al 2020, 2021). One idea is to unroll
the iterative reconstruction loops and replace some steps in the iterations with networks (Yang et al 2016,
Aggarwal et al 2019,Monga et al 2021). Teuwen et al (2021) applied a learned primal-dualmethod toDBT
reconstruction for breast density and dose estimation.Wu et al (2020) unrolled the proximal gradient descent
algorithm forDBT reconstruction and achieved better in-depth resolution. Su et al (2021) proposedDIR-
DBTnet and reduced artifacts. However, all these studies worked on low-resolution or downsampled 3DDBT
images because the full-resolution images were too large tofit intomemory. Another approach is to use pre-
trained denoisers as priors in the reconstruction. Such frameworks include plug-and-play (Venkatakrishnan
et al 2013) and regularization by denoising (RED) (Romano et al 2017). Thesemethods take advantage of the
DCNNdenoisers for denoising between data-consistency steps and allow one to train the denoisers separately to
reduce computation compared to end-to-end training. This approach has shownpromising results forMRI
(Ahmad et al 2020), CT (Ye et al 2018,He et al 2019), and PET (Xie et al 2020). In this study, we adopted the RED
framework to combineDNGANandDBCNmodeling and proposed a newmodel-basedDCNN-regularized
reconstruction (MDR)method forDBT.

Task-based image quality assessment is an approach that evaluates the quality ofmedical images based on
their specific utility for clinical tasks, such as tumor detection, lesion segmentation, or disease classification
(ICRU1996). It aligns with the ultimate goal ofmedical imaging to support accurate diagnosis and treatment.
Model observers have been developed as a surrogate for human observers to provide task-based image quality
assessment in research and development stageswhere systematic and controlled evaluations are required
(Barrett et al 1993). Their usage offers several advantages over human observers such as consistency,
objectiveness, and computational efficiency. They are alsomore informative than the genericmetrics such as
MSE or structural similarity (SSIM)which primarily focus on pixel-level differences between imageswithout
considering the specific diagnostic goals.

The clinical task of interest of this work is the detection ofMC clusters inDBT. For signal-known-exactly
detection tasks, channelizedHotelling observer (CHO) and non-prewhitening observer with eye filter (NPWE)
are commonly used and have shown good correlationwith human observers (Gang et al 2011, Solomon and
Samei 2016, Petrov et al 2019). However, as a signal-known-statistically (SKS) task,MC clusters have various
number ofMCs, shapes and spatial distributions. Some studies designedCHOandNPWE forMCs but
considered either a single sphericalMC (HuandZhao 2011, Balta et al 2019) or an artificialMC cluster with a
fixed layout (Michielsen et al 2016, Zeng et al 2020). Recently, Zhang et al (2021) trained aDCNN to
approximate the ideal observer for simulatedMCclusters in syntheticmammograms. In the current study, we
proposed aDCNNmodel observer calledCNN-MC to evaluate the detectability ofMC clusters in human
subject DBTs, and aDCNNnoise estimator calledCNN-NE to evaluate theDBTnoise levels.We usedCNN-NE
andCNN-MCas task-based image qualitymeasures to guide the optimization ofDBT reconstruction and to
compare several reconstruction and denoisingmethods forDBT.
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2.Methods andmaterials

2.1.DBT reconstruction
2.1.1. Background ofMBIR andDBCN reconstruction
Assume the post-log PV at the ith scan angle is yi

MÎ where M is the number of detector pixels,
i N1, , ,p= ¼ Np is the number of scan angles, and the unknownDBT volume is x NÎ where N is the
number of voxels. InMBIR, image reconstruction is formulated as an optimization problemwith the following
cost function:

ˆ ( ) ( ) ( )x L x R xargmin , 1
x

b= + ⋅

where ( )L x is the negative log-likelihood or data-fit term thatmeasures the fidelity between themeasurement
and the reconstructed image, ( )R x is the regularization term, and b is a regularization parameter. If the
measurement noise is additive Gaussian, y A x ,i i ie= + N( )K0, ,i ie ~ where Ai

M NÎ ´ is the linear system
matrix at the ith scan angle, Ki

M MÎ ´ is the noise covariancematrix, then the data-fit termbecomes an
inverse-covariance weighted Euclidean norm:
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where‖ ‖v v WvW
2 = ¢ and ¢ denotesmatrix transpose. Usually, Ai does notmodel the detector blur caused by

finite detector pixel size, crosstalk, or the light spread in the scintillator of an indirect detector. Zheng et al (2018)
introduced a detector blurmatrix B M MÎ ´ in front of Ai andmodeled the resulting noise correlation in the
covariancematrix K :i
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where Kq i
M M

, Î ´ is the diagonal quantumnoisematrix of the ith scan angle, Kr
M MÎ ´ is the diagonal

detector readout noisematrix. In the actual implementation, Zheng et al (2018) assumed the quantumnoise
variances and readout noise variances to be constant across all detector pixels, i.e. IKq i q i, ,

2s= ⋅ and

IKr r
2s= ⋅ where I denotes the identitymatrix. Let ( )S BK B K .i q i r,

1 2/= ¢ + - Then ( )L xDBCN has the following
equivalent formusing the prewhitened PV, y ,i and theDBCN systemmatrix A :i

   ( ) ‖ ‖ ( )L x y A x y S y A S BA
1

2
, where , . 4

i

N

i i i i i i i iDBCN
1

2
2

p

å= - = =
=

Here, Si serves as a prewhiteningmatrix that boosts high frequency signals but also amplifies noise.
Zheng et al (2018) introduced an EP regularizer to control the noise level inDBCN reconstruction:
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where  C C C C, , , N NÎ 
´ are thefinite differencing operators between neighboring pixels along the

horizontal, vertical, and two diagonal directions in theDBT slices, g is an adjustable weight in the diagonal

directions, and ( ) ( ( ) )t t1 12 2/h d d= + - is the hyperbola potential function.

2.1.2. DNGANdenoising
TheDNGANdenoiser is aDCNNwith trainable weights designed to denoiseDBT images (Gao et al 2021a).
DNGANwas trainedwith a supervised approach using pairs of noisyDBT image and target low-noise image of
the same objects. In the training stage, the denoiser took pairs of image patches extracted from the two sets of
DBT slices as input and target output and learned to produce the denoised image patch. The denoiser training
loss was a weighted combination of theMSE loss and adversarial loss. The adversarial loss was derived from the
WassersteinGANwith gradient penalty (Gulrajani et al 2017)where the denoiser acted as the generator.We
implemented the discriminator in theGANas a trainable VGG-Net (Simonyan andZisserman 2015). After
training, theDNGANdenoiser can be deployed to full DBT slices of any size since it is fully convolutional. The
performance ofDNGANdenoiser was validatedwith both phantom and human subjectDBT (Gao et al 2021a).

2.1.3.Model-basedDCNN-regularized reconstruction (MDR)
We integrated theDNGANdenoiser into the iterative reconstruction loop in the general reconstruction
optimization problem (1). REDdefines a regularizer based on a general imagefilter or denoiser (Romano et al
2017), which in this work is the trainedDNGANdenoiser denoted as G:

3
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( ) ( ( )) ( )R x x x G x
1

2
. 6RED = ¢ -

This regularizer promotes the cross-correlation between the residual after denoising and the image, or the
residual itself, to be small.

By combining theDBCNdata-fit term, the EP regularizer, and the RED regularizer withDNGANdenoiser,
we formulated the overall optimization problem for the proposedmodel-basedDCNN-regularized
reconstruction (MDR):

ˆ ( ) ( ) ( ) ( )x L x R x R xargmin , 7
x

DBCN EP EP RED REDb b= + ⋅ + ⋅

where EPb and REDb are the regularization parameters.
A variety of optimization algorithms exist for inverse problemswith ( )R xRED (Romano et al 2017, Reehorst

and Schniter 2019).We used the REDproximal gradientmethod (Reehorst and Schniter 2019) to solve (7). It
introduces a secondary image variable z NÎ and updates the primary image variable x and the secondary
image variable z alternately:

( ) ( ) ‖ ‖ ( )x L x R x x zargmin
2

8n
x

nDBCN EP EP
RED

1
2b

b
= + ⋅ + - -

( ) ( )z G x , 9n n=

where n N1, , iter= ¼ is the iteration index. Both ( )L xDBCN and ( )R xEP are convex and differentiable in x.We
used the diagonally preconditioned gradient descent with ordered subsets for the innerminimization problem
(8):
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where a is the step size, n is incremented after i goes through Ninner cycles of N1, , ,p¼ x x .n n
N N0

1
pinner= - Weused

the following preconditioningmatrix P whose inversemajorizes theHessian of the cost function (8):
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where 1N denotes the vector of ones of length N .

2.2. Task-based image qualitymeasures
2.2.1. CNNMCclassifier (CNN-MC)
ClusteredMCs are one of the important signs of early breast cancer and image noise can negatively impact its
diagnosis. The detectability ofMC clusters and the image noise are therefore important indicators of image
quality forDBT reconstruction.We developed anMCclassifier as amodel observer for the detection task of
differentiating breast structured backgroundwith andwithout clusteredMCs in human subject DBTs for image
quality evaluation. Importantly, reconstruction or other image processing processes can inadvertently enhance
artifactsmimicking calcifications in the normal tissue background. Image quality assessment byMCclassifiers
takes into account the false positives (FPs)while othermeasures such as the detectability index (d’) focus only on
the visibility of the target objects. TheMCclassifier was implemented as aDCNNwith trainable weights, and
therefore calledCNN-MC. It took an image region of interest (ROI) or patch as input. The training set included
MCpatches as positives with label of 1 andMC-free background patches as negatives with label of 0. The training
loss was the binary cross entropy (BCE) loss, which has been shown to give themaximum likelihood estimation
of theDCNNweights from the training data (Kupinski et al 2001). TheCNN-MCoutput a score between 0 and 1
indicating the likelihood that an input patch contained clusteredMCs. After training, the CNN-MCmodel with
frozenweights was applied to the test patches.

We trained theCNN-MC for each image condition and tested it accordingly. The area under the receiver
operating characteristic (ROC) curve (AUC) of the test set scores was used as anMCdetectabilitymeasure. If the
underlying image condition enhanced theMCs effectively, the CNN-MC should learn theMC featuresmore
accurately during training and have better classification ability between image patcheswith andwithoutMCs
during testing, resulting in a higher AUCmetric. AnyMC-like artifacts in the background patches would
degrade the classification performance of CNN-MCand reduce the AUC.We studied the use of CNN-MC to
rank the relative performances of differentDBT reconstruction and denoisingmethods.

There are variations in theCNN-MCobservermodeling. DCNNclassifiers with different network structures
learn image features differently. Even for the same network structure, the randomness inDCNN training such as
kernel initialization or data batching can lead to different localminima. These are akin to the interobserver and
intraobserver variabilities of human observers. To account for these variations, we investigated theVGG-Net
(Simonyan andZisserman 2015), the ResNet (He et al 2016) and theConvNeXt (Liu et al 2022) of similar sizes, as

4

Phys.Med. Biol. 68 (2023) 245024 MGao et al



shown in table 1, as the backbone structures of CNN-MC.We also repeated the trainingmultiple timeswith
different random initialization for each structure. The image condition rankings from the individualmodels and
thefinal combined rankingswere analyzed.

2.2.2. CNNnoise estimator (CNN-NE)
It is important to assess the image noise for an image processing technique because enhancing the signals is
always associatedwith a change in noise.We developed aDCNNnoise estimator (CNN-NE) to quantify the
root-mean-square (RMS)noise level of its input image patch.We designed their network structures to be the
same as those for CNN-MC (table 1), except for without the exit softmax function, to facilitate transfer learning
(discussed next). The training set containedDBT image patches of breast structured backgroundwith the
training labels calculated by anROI-basedmethod for each patch as follows: the patchwas divided into 10× 10
pixel ROIswith 25 pixel spacing on a grid, the ROI background trendwas removed by a quadratic fitting, the
RMS variations of the ROI pixel values were then calculated and averaged over all ROIs as the RMSnoise. The
CNN-NEwas implemented as a regressionmodel. The training loss was theMSE loss between the estimated
RMSnoise and the training labels. After training, the CNN-NEmodel was applied to the test set patches. The
average of the estimated RMSnoise over all patches was used as a noisemeasure of the entire set.

2.2.3. Transfer learning
For trainingCNN-NE andCNN-MC,we adopted the training technique of transfer learning (Yosinski et al
2014, Samala et al 2019). TheCNN-NE required only breast structured background images with a range of noise
levels so that a large training set could be obtained relatively easily. The trainedCNN-NE then served as the pre-
trainedmodel to be furtherfine-tuned as CNN-MCby transfer learning. Since the availability ofMC-positive
samples was limited, transfer learning reduced the training sample size required and improved themodel
robustness. It also reused theweights that themodel learned from the source task of noise estimation to
encourage theCNN-MC to focus on the background noise patterns in the downstream task ofMCdetection.

2.3.Data sets
Wemodeled threeDCNNs:DNGAN,CNN-NE andCNN-MC, for denoising, noise estimation, andMC
classification, respectively, in this work. To facilitate the training, validation, and testing of theseDCNNs, we
prepared two primaryDBT sources: virtual phantomDBTs and human subject DBTs. This sectionfirst provides
an overview of these data sources and how theywere used for the data sets, as summarized in table 2, and then
delves into the details in the following subsections.

Gao et al (2021a) performed training and validation ofDNGANusing virtual phantomDBTs and
demonstrated its transferability to human subjectDBTs. In the current work, we used the virtual phantomDBTs
for theDNGAN training set. This choicewasmotivated by their flexibility and controllability in generating a
wide range of image noise levels with different breast densities and thicknesses. Similar toGao et al (2021a), we

Table 1.Network structures of CNN-MCandCNN-NE in this study.

*The input to themodels is a 128× 128 pixel image patch. BN: batch normalization. LN: layer normalization. Convolutional layers are

specified by the kernel size andnumber offilters. ‘d’ denotes the depth-wise convolution. ‘s2’ denotes the stride-2 operation. The brackets

denote ResNet block orConvNeXt block.
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chose a small training patch size of 32× 32 pixels forDNGAN, allowing it to concentrate on local image
structures during adversarial training (Isola et al 2017). The denoiser was fully convolutional at deployment so
that the training patch size would not affect the image sizes for which it could be used.

The training set, validation set and independent test set of CNN-MCwere prepared using human subject
DBTs becausewewere interested in evaluating the detectability ofMC clusters in real patient data and it is
difficult to simulate thewide variations in features of realMC clusters by virtual phantom software. The input
patch size of CNN-MCwas 128× 128 pixels. This patch size was chosen to cover typicalMC clusters in patient
cases while keeping the processing timemodest.

TheCNN-NE training set was extracted from the virtual phantomDBTs that had awide noise range, similar
to themotivation of theDNGAN training set. For theCNN-NE validation and test sets, we had to use the same
human subject DBTs as those for CNN-MC. This enabled us to calculate the RMSnoise for each reconstruction,
which complemented theAUCmetric forMCdetectability byCNN-MC. These twoCNNs therefore provided
the twometrics for the task-based image quality assessment plot, as detailed in the Results section below. The
input patch size of CNN-NEwas the same asCNN-MCbecause the two networks shared the same structures for
transfer learning.

In addition, Chan et al (2023) conducted an observer studywith radiologists using a set of physical phantom
DBTswith simulatedMCclusters to demonstrate the improvement ofMCdetection byDNGANdenoising. In
the current study, we reused their data set to test the capability of CNN-MC in rankingMCdetectability relative
to human readers.We calculated the relative rankings of the CNN-MCAUC for theMCclusters in the physical
phantomDBTs, and then compared themwith the relative performance of radiologists’ reading under the image
conditions of the observer study.

2.3.1. Virtual phantomDBTs
Wegenerated a collection of virtual breast phantoms at a voxel resolution of 0.05mmusing the
anthropomorphic breastmodel from theVirtual ImagingClinical Trial for Regulatory Evaluation (VICTRE)
package (Badano et al 2018). TheVICTREproject considered four breast density categories and one compressed
thickness for each category. They stated that this designmirrored the cohort demographics of their comparative
clinical trial. In our study, we used the same breast density setting as VICTRE, and slightly varied the thicknesses
tomake itmore varied like human data. In particular, a total of 70 phantomswere simulated at a range of
glandular volume fractions (GVF), including 10 almost entirely fatty (5%GVF), 10 scattered fibroglandular
dense (15%GVF), 25 heterogeneously dense (34%GVF), and 25 extremely dense (60%GVF). The thicknesses
of the compressed phantoms for the four density categories were 52–70 mmat every 2 mm, 46–64 mmat every
2 mm, 36–60 mmat every 1 mm, and 31–55 mmat every 1 mm, respectively.

We generated the PVs using theMonte Carlo x-ray imaging simulator (Badal et al 2021).We configured the
scan geometry as 9 PVs in 25° scan angle and 3.125° increments and the x-ray spectrum as 34 kVpRh/Ag to

Table 2. Summary of data sets forDCNNs.

*Pixel size of all patches is 0.1mm× 0.1mm.
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model the PristinaDBT system (GEHealthcare,Waukesha,WI). The distances between source and isocenter,
isocenter and breast support, breast support and detector were 617mm, 20mm, 23mm, respectively. Scatter
and electronic noise were not simulated. The exposure was adjusted for each phantom so that the estimated
mean glandular dosematched themeasured value for that breast thickness from the automatic exposure control
(AEC) of Pristina. To simulate awide range of noise levels, we repeated the simulations and varied the exposure
by factors of 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.75, 1, 1.4, 2, 3. These exposure factors were selected such that the noise
standard deviations of the post-log x-ray intensity on the PVs, and hence the reconstructedDBT images, were
evenly spaced. Finally, we reconstructed theDBT images using 3 iterations of the simultaneous algebraic
reconstruction technique (SART) (Zhang et al 2006).

2.3.2. DNGAN training set
ForDNGAN training, we used the virtual phantomDBTswith an exposure factor of 3 as the training high dose
(HD) targets and theDBTswith the remaining 10 exposure levels as the training low dose (LD) inputs. To ensure
thatDNGANcovered awide range ofDBTnoise levels due to variations in patient sizes and other factors in
clinical settings, we trained a suite ofDNGANdenoisers, each of which can handle a certain range of image noise
levels. To do so, we calculated the average RMSnoise for eachDBT volume using themethod described in
section 2.2.2 and obtained the range of the noise values for the entire set of virtual DBT volumes.We empirically
grouped the volumes into 12 groups so that the noise interval of each groupwas reasonably small.We then
extracted training patcheswithin the breast regions from each group. This resulted in 12 groups ofDNGAN
training datawith an average of 449 245 (min: 343 498;max: 547 595)LD/HDpairs of 32× 32 pixel training
patches for training a denoiser for each group.

2.3.3. CNN-NE training set
We randomly extracted 128× 128 pixel patches within the breast regions from all the 70 virtual phantomDBTs
and 11 exposure levels to form theCNN-NE training set. This gave a total of 256 194 patches. The low-frequency
backgroundwas removed from the patches to reduce the nonuniformity caused by heterogeneous breast
structures (Chan et al 1995).

2.3.4. Human subject DBTs
Wehad 238 human subject cases with biopsy-provenMCs collectedwith Institutional ReviewBoard approval
andwritten informed consent. Two-viewedDBTs of the breast withMCswere acquired for each case using the
GEN2prototypeDBT system (GEGlobal Research,Niskayuna, NY). The system acquired 21 PVs in 60° scan
angle and 3° increments with a 29 kVpRh/Rh x-ray beam. The distances between source and isocenter and
between isocenter and detector were 640 mmand 20 mm, respectively. The breast support was at the same
height as the isocenter. For our reconstructions, we used the central 9 PVs in 24° angle so that the scan geometry
was similar to that of theGE commercial PristinaDBT system. The radiation doses at 9 PVswere similar to those
of the Pristina system. AMammographyQuality Standards Act (MQSA) approved radiologistmarked the
biopsiedMCswith 3Dbounding boxes in the reconstructedDBT images based on all available clinical
information.

2.3.5. CNN-MC training set and CNN-NE/CNN-MCvalidation and test set
We split the human subject DBTs by case into three disjoint sets for training, validation and testing. The training
set consisted of 64 cases, or 127DBT views (one viewwas lost due to technical issue). The validation set consisted
of 52 cases, or 104DBT views. The remaining 122 cases with 246 views (one case had bilateralMCs)were
sequestered as independent test set. For each data set, positive patches of size 128× 128× 3 pixels containing
clusteredMCswere extracted inside the radiologist’s 3D boxes on a regular gridwith centers separated by 128
pixels in the two directions along a slice and separated by 1 slicewith offset centers along the depth direction. An
MCcluster thereforemight be extractedmultiple times in part or inwhole but spatially shifted in each patch,
which served as augmented samples to reduce the imbalance between the two classes. Non-overlapping negative
patches of the same sizewere randomly extracted outside the 3Dboxes in the structured breast background. For
theCNN-MC,we obtained 751 positive and 19 079 negative patches for the training set, 709 positive and 1955
negative patches for the validation set, and 2289 positive and 6176 negative patches for the test set. For each
patch, we removed the low-frequency background and tookmaximum intensity projection (MIP) over the three
slices to emphasize theMCs, if any. Figure 1 shows exampleMIP patches from theCNN-MC training set. For the
validation and test sets of CNN-NE, the same sets of negative patches for CNN-MCwere extracted except that
only the central slices withoutMIPwere used.
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2.3.6. Physical phantomDBTs
The physical phantomDBTswere used in a previous observer studywith radiologists to detectMC clusters
under three image conditions (Chan et al 2023). Each of the six breast phantomswere 5 cm thick andmade of
50%glandular/50%adipose heterogeneous breast-tissue-equivalentmaterials. Clusters of simulatedMCs of
four nominal speck diameters (0.125–0.150 mm, 0.150–0.180 mm, 0.180–0.212 mm, 0.212–0.250 mm)were
embedded in the phantoms. Therewere 36 clusters for each diameter range, giving a total of 144 clusters. The
phantomswere imaged twice using two automatic exposuremodes of the PristinaDBT system: the standard
(STD)mode, whichwas for routine patient imaging, and the STD+mode, which used about 54%more dose
than that of STD. TheDBT images were reconstructed by the built-in commercial algorithm. A third image set
called dnSTDwas obtained by denoising the STD set using theDNGANdenoiser. The denoiser was trained and
validated byGao et al (2021a) using a separate set of physical phantoms that shared the samematerials but had
different designs from the test phantoms in theChan et al (2023) study. For each image set and eachMC speck
size, we extracted a total of 36 128× 128 pixel background-corrected 3-sliceMIP patches centered at theMC
clusters as positives and paired themwith 75MC-free backgroundMIP patches as negatives for CNN-MC
testing. The set of 75 negative patches was extracted fromdifferent random locations for eachMCpositive set.

2.4. Implementation
ForMDR, the implementation of ( )L xDBCN and ( )R xEP was described in Zheng et al (2018). The 12DNGAN
denoisers were trained separately following the process described inGao et al (2021a).We retrainedDNGAN
using our newly generated training set that had awider range of noise levels and breast characteristics while
keeping all training settings unchanged.WhenDNGANwas called during reconstruction, the algorithm
automatically estimated the RMSnoise of theDBT volume at that iteration and selected the denoiser with the
closest-matched noise from the 12 trained denoisers for deployment.We chose Niter and Ninner to 3
experimentally. Section 3.2 discusses the selections of EPb and .REDb Both x and z were initialized to 0. The
image variable z was saved as the final reconstructed image. All the PVs had a pixel size of 0.1mm× 0.1mm. The
reconstructed images had a voxel size of 0.1mm× 0.1mm× 1mmandwere saved inDICOM formatwith a

Figure 1.Example 3-sliceMIP patches withMCs (top two rows) andwithoutMCs (bottom two rows) from theCNN-MC training set
of human subject DBTs. The patch size is 128× 128 pixels (12.8mm× 12.8mm).
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pixel value range of [ ]0, 4095 .Metal artifact reduction (Lu et al 2017) and truncated projection artifact reduction
(Lu et al 2013)were implemented tominimize these artifacts in the reconstructedDBT volumes.

For theCNN-NE (CNN-MC) training, we set the number of epochs to 600 (300) and themini-batch size to
2048 (512). TheAdamoptimizer was set with an initial learning rate of 10 3- (10 5- ) and dropped by a factor of 0.8
for every 20 (10) epochs.We initialized the kernel weights of CNN-NE randomly and initialized CNN-MCwith
the trainedCNN-NE. InCNN-MC training, the positive patches were augmented by a factor of 8 (4 rotations by
90 degrees and another 4 rotations afterflipping). DuringCNN-MCdeployment, we augmented every patch
and averaged the 8 output scores as the patch score.We further averaged the patch scores of all positive patches
from the sameMC cluster byDBT view for the ROC analysis.We repeated the training of CNN-NE andfine-
tuning of CNN-MC5 times. Each repeated experiment used a different random seed for theweight initialization
of CNN-NE and the data batching duringCNN-NE training andCNN-MCfine-tuning.We reported themean
and standard deviation of the 5CNN-MCAUCs.We reported only themean of the 5CNN-NERMS estimates
because all standard deviationswere smaller than 2%of one pixel value.

2.5. Image conditions
WecomparedMDRwith other approaches, including SART (Zhang et al 2006), SARTwithmultiscale bilateral
filtering (MSBF) regularization (Lu et al 2015), DBCN reconstruction (Zheng et al 2018), RED reconstruction
withoutDBCNmodeling, and post-reconstructionDNGANdenoising on SART andDBCN images. Gao et al
(2023) evaluatedDNGANdenoising of PVs for SART reconstruction and observed that it suffered fromblurry
MCs. Therefore, PVdenoisingwas not considered in this study.

3. Results

3.1. Effectiveness ofDNGAN,CNN-NE andCNN-MC
As an example, we deployed one of the fiveCNN-NEmodels withVGG-Net backbone trainedwith different
random initializations to theCNN-NE validation set from2 iterations of SART images. Figure 2 shows that the
CNN-NERMSnoise of the individual patches correlatedwell with the analytical calculations (correlation
coefficient= 0.993, p< 0.0001), indicating that CNN-NE can accurately estimate the RMSnoise of an input
patch. Similar correlationswere observed for other reconstructions (not shown).While CNN-NEwas trained
usingVICTRE images from3 iterations of SART, it was applicable to other reconstructions and human subject
images at deployment because it was designed to assess the RMS variations in noisy pixels without relying on the
specific image conditions.

Figure 2.The scatter plot of theCNN-NE estimated RMSnoise versus the analytically calculated RMSnoise for the individual patches
in theCNN-NE validation set (human subject DBT images). The dotted line is the diagonal line. TheRMSnoise is plotted in terms of
pixel values.
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Chan et al (2023) conducted an observer study using physical phantomDBTs and had seven radiologists
detect theMCclusters in the STD, dnSTD, and STD+ conditions. Figure 3 shows example of theMCclusters.
The study found that the average sensitivities of detectingMCclusters in dnSTD, obtained fromDNGAN
denoising of the STD images, were higher than those in STD for all 4MC speck sizes andwere comparable to
those in STD+. This shows the effectiveness of theDNGANdenoiser to reduce noise and enhanceMCs inDBT.

To demonstrate the potential of usingCNN-MC in estimating the relative detectability ofMC clusters, we
applied theCNN-MCmodels to the extracted patches from the phantomDBTs used in the observer study. The
CNN-MCmodels usedVGG-Net backbone andwere trained for 2 iterations of SART images. The solid lines in
figure 4 show that the AUCs increasedwithMC speck size. TheAUCs of dnSTDwere higher than STD and close

Figure 3.Example images (18mm× 18mm)withMC clusters from the physical phantomDBTs acquired and reconstructed by aGE
PristinaDBT system. The dnSTD images were obtained byDNGANdenoising on the STD images. The STD+mode used 54%more
dose than the STDmode.

Figure 4.AUCs of CNN-MC for the classification of image patches with andwithoutMC clusters in the physical phantomDBTs of 3
image conditions. The data points and error bars were obtained from themean and standard deviation of the 5 repeatedmodels
trainedwith different random initialization. The points are slightly shifted horizontally to avoid overlap.
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to STD+. The relative rankings for the speck sizes and the image conditions given by theCNN-MCwere
consistent with the findings of the observer study. To show the benefit of transfer learning, we repeated the
experiment but trained theCNN-MCmodels from scratch instead of from the pre-trainedCNN-NE. In this
case, theCNN-MC failed to learn and likely estimated the patch scores based on image features unrelated toMC
detectability. This led to very lowAUCs and a lack of correlation betweenMC size andAUC, as shown by the
dotted lines in figure 4.

3.2. Parameter selection forMDRregularization
To select the regularization parameters EPb and REDb inMDR,we performed a grid searchwith EPb = 30, 50, 70,
90 and REDb = 100, 500, 1000, 5000. Figure 5 shows the task-based image quality assessment plot of CNN-MC
AUCversus CNN-NERMSnoise for theVGG-Net backbone on the validation set for the different parameters.
At a low EPb value of 30, the AUCswere low because the noise was poorly suppressed and thus obscuredMC
conspicuity. As EPb increased to 50, theMC signals were enhanced relative to noise and the AUCswere
improved. But if EPb further increased to 70 or 90, the regularization became so strong that the trueMCswere
smoothed, resulting in lower AUCs. For a given ,EPb decreasing REDb meant aweaker regularization, resulting in
higher image noise. On the other hand, reduced regularization placed greater emphasis on the data-fit term, thus
enhancing theMC signals. This explains whywe observed slight increase in AUC as REDb decreased.We selected

REDb = 500 to balance the tradeoff between noise reduction and signal enhancement. In other parts of this study,
we set the regularization parameter EPb to 50 and REDb to 500 if not specified.

3.3.MDRablation study
Weconducted an ablation study to illustrate the effects of the three terms in theMDR cost function (7). The
three terms could be turned on or off separately to create 6 partialmodels. To turn off ( )L x ,DBCN weused the

regular data-fit term ( )L x y A xi
N

i iregular
1

2 1 2

2
p= å -= instead of (4). ( )R xEP was turned off by setting EPb to 0.

( )R xRED was turned off by setting REDb to 0 and skipping all DNGANdenoising.
Figure 6 shows the task-based image quality assessment plot for theVGG-Net backbone on the validation set

for the different partialMDRmodels in comparison to the fullMDRmodel. Figure 7 shows examples ofMIP
patches with andwithoutMCs from the human subject validation set. From ‘REP Only’, we found that the EP
regularizer ( EPb = 50) encouraged the smoothness of the images but sacrificed the sharpness of theMCs. The
LDBCN term contributed to signal enhancement, as can be seen from theAUC improvement between ‘REP Only’
and ‘L RDBCN EP+ ’, although it produced exceptionally noisy images if used alone. The ‘LDBCN Only’ condition
(RMSnoise: 101.1, AUC: 0.846± 0.004) is outside the plot range offigure 6 and is not shown infigure 7. The
‘L RDBCN EP+ ’ condition had a highAUCbut also a high RMSnoise. From ‘RRED Only’, we observed that the
RED regularizer ( REDb = 500) powered byDNGANwas good at noise reduction and signal preservation, but
sometimes it falsely enhanced the background tissue structures. ThoseMC-like enhancements were detected as
false positives byCNN-MCand led to an overall lowAUC. The false enhancementwas evenmore severe for
‘L RDBCN RED+ ’which had the lowest AUC infigure 6.With ‘R REP RED+ ’, the false positives in the ‘RRED Only’

Figure 5.The task-based image quality assessment plot showing the tradeoff betweenMCcluster detectability (CNN-MCAUC)
versus image noise (CNN-NERMSnoise) on the validation set reconstructedwith different regularization parameters EPb and REDb
inMDR. The data points obtainedwith afixed EPb are linked by a solid line and data points for afixed REDb are shownwith the same
symbol.
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conditionwere suppressed and the RMSnoise was the lowest, but it overly smoothed theMCs. Finally, the full
MDRmodel took advantage of all three terms and achieved reasonably lowRMSnoise and the highest AUC.

3.4. Comparisons on validation set and independent test set
Wecompared eight image conditions in this section: (a) SART iteration 2; (b) SART iteration 3; (c) SART
iteration 3with post-reconstructionDNGANdenoising; (d)REDwithoutDBCNmodeling, equivalent to ‘RRED

Only’ in section 3.3; (e)DBCN (b = 70); (f)DBCN (b = 50)with post-reconstructionDNGANdenoising; (g)
MSBF; (h)MDR. Figure 8 shows the task-based image quality assessment plot for the validation set and the
independent test set using theVGG-Net, ResNet andConvNeXt backbones. TheVGG-Net andResNet had
smaller error bars for AUCs and thus better reproducibility thanConvNeXt. TheAUCandRMSnoise rankings
given by the three networks had some variations but weremostly consistent within the error bars. Table 3
summarizes the RMSnoise andAUC ranking results infigure 8. Thefinal rankings were obtained by summing
the individual rankings. The rankings on the validation set largely agreedwith those on the independent test set
withminor variations between adjacent ranks except forDBCN, indicating reasonable generalizability of the
proposedDCNN image quality assessment approach to the unseen test set.

Figure 9 shows the exampleMIP patches ofMC clusters and figure 10 shows example images of a spiculated
mass from the human subject test set. The visual judgment of the noise levelsmatched the quantitative RMS
noise estimation. The SART images (conditions (a) and (b))were noisy with poorMCconspicuity as it is an
unregularized reconstructionmethod (Jiang andWang 2003). Increasing the number of SART iterations
enhanced the signal, but it also amplified noise, resulting in comparable signal-to-noise ratios and thus AUCs, as

Figure 6.The task-based image quality assessment plot on the validation set showing the tradeoffs of the different terms in theMDR
ablation study.

Figure 7.Example 3-sliceMIP patches (12.8mm× 12.8mm) from the human subject validation set for theMDR ablation study. In
each pair, a positive patch ofMCcluster is shown on the left and a negativeMC-free patch on the right.
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illustrated infigure 8. This observation reaffirmed our understanding of SART that therewas no benefit of
continuing SART iterations without regularization. Furthermore, it highlighted the advantage of our task-based
metric usingCNN-MC,which focused on the detectability of theMCclusters and provided amore informative
assessment. DBCN (condition (e)) had relatively large variations of AUC rankings among the three CNN-MCs
and twodata sets, possibly because its patchy and noisy background confused the image features andmade the
training set less representative of the data distribution. Post-reconstruction denoising withDNGANwasflexible
for application to different reconstruction techniques, reducing image noise and improving the AUCas shown
in the examples for both SART (condition (c) in comparison to (b)) andDBCN (condition (f) in comparison to
(e)). Note that, withDNGANdenoising, SART andDBCNcould use parameters of strongerMC enhancement
(3 iterations instead of 2 in SART, and b = 50 instead of 70 inDBCN). AlthoughRED (condition (d)) reached a
very lownoise level and its visual signal quality was comparable to that ofMDR, its AUCwas low due to false
enhancement as discussed in section 3.3. The conspicuous bright spots resemblingMCs in the examples shown

Figure 8.The task-based image quality assessment plot on the human subject validation set (first row) and test set (second row) using
the VGG-Net (left column), ResNet (middle column) andConvNeXt (right column) for comparing the reconstruction and denoising
approaches. The labels (a) to (h) are defined in section 3.4 and table 3.

Table 3. Summary of rankings for different reconstruction and denoising approaches usingDCNN task-based image quality assessment in
figure 8.
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infigure 7 (lower right) andfigure 10(d) reiterated this downside of RED. TheAUC ranking ofMSBF (condition
(g))was high, but its noise also remained high. The proposedMDR (condition (h)) achieved one of the lowest
RMSnoise and the highest AUC rankings than other image conditions. The high visibility of the subtleMCs and
smooth background of theMDR images can also be clearly seen infigure 9.Moreover, it preserved the fine
texture details and had a satisfactory visual quality ofmassmargins without creating artifact infigure 10.

3.5.Qualitative comparison betweenMDRand commercial reconstruction
TheGEN2DBT systemused for acquiring the human subject DBTswas developed as a prototype for research
purposes, so it lacked a built-in reconstructionmethod. To compare the proposedMDRwith gold standard
reconstruction, we reconstructed a human subject DBT case acquiredwith the commercial GEPristinaDBT
system. Figure 11 shows a qualitative comparison of the full DBT slices and the zoomed-in views of anMC
cluster obtainedwith the Pristina reconstruction and ourMDRapproach. The full slice image ofMDRhad
reduced noise levels compared to the Pristina reconstruction. The zoomed images facilitated the visualization of
the nuances of theMC signals, surrounding tissue structures, and noise. TheMDRnot only achieved a
substantial reduction in noise, but also preserved details and enhanced the subtleMC specks, demonstrating
superior image quality than the commercial reconstruction.

The darkening of breast periphery as seen in theMDR reconstructed image infigure 11 resulted from the
physics of x-ray imaging. The reduction in tissue thickness and thus increasing penetration of x-ray exposure to
the detector caused varying image intensities near the breast boundaries. Commercial DBT images are generally
processedwith peripheral equalization software to facilitate radiologists’ reading.We did not attempt to address
this issue becausewe did not have access to any breast peripheral equalization software and its development was
outside the scope of this study.One can always view the peripheral regions by adjusting the display contrast and

Figure 9.Example 3-sliceMIP patches (12.8mm× 12.8mm) of twoMCclusters (example 1: ductal carcinoma in situ; example 2:
invasive ductal carcinoma) from the human subject test set. The labels (a) to (h) are defined in section 3.4 and table 3.
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brightness properly. As demonstrated infigure 11, the proposedMDRmethod enhanced theMC signals
regardless of their location. Despite being near the breast periphery, the enlarged ROI still shows the
improvement of image quality by theMDR.

4.Discussion

DBCNandDNGANrepresent two distinct approaches for enhancing the subtle signals inDBT. TheDBCN
method approximates the deblurring and noise decorrelation by the inverse of the detector point spread filter
and the prewhitening filter. Both operations boost the high frequency signals, which inevitably amplify high
frequency noise at the same time. DBCN therefore is incorporatedwith an EP regularizer to control the noise.
DNGANemphasizes the signals by smoothing the surrounding backgrounds like a regularizer. It also increases
the contrast of the signals to some extent, but sometimes falsely enhances the high frequency structures and
createsMC-like artifacts.We explored combining the twomethods to take advantage of both.We implemented
the newly proposedMDRmethod in an efficient way so that it could reconstruct the full-sized 3DDBT images at
full resolution. Quantitative results using our newly developedDCNN image qualitymeasures on the
independent test set of human subjectDBTs revealed thatMDR achieved the highest AUC rankings forMC
detectability and lownoise among the reconstruction and denoising approaches studied. This study shows the
promise of combining the physics-basedMBIR and the learning-basedDCNNs for reconstruction.

TheCNN-MCmodel observer can characterize the detectability of theMCclusters in human subjectDBTs.
Because of the complexity of the SKSMCclusters, we trained theCNN-MC to learn the signal representations
through back-propagation, unlike CHOand d’where the target signal is trained to befittedwith channelized
functions ormathematically defined.Moreover, the CNN-MCcan include the assessment of image background
with andwithoutMC-like false enhancement (shown in section 3.3) that the traditional image qualitymeasures
such as d’ cannot achieve because they focus on individual signals. Assessing potential false information
generated by an image processingmethod is crucial for evaluating its feasibility in clinical applications.

The role of CNN-NE can be understood from two aspects. First, CNN-NEplayed a pivotal role in our
training and processing pipeline because it served as the pre-trainedmodel of CNN-MC,whichworkedwell
only when transfer-learned fromCNN-NE (figure 4). The advantages of transfer learningwere elaborated in
section 2.2.3. Second, despite the possibility of analytically calculating theRMSnoise of an image patch, our
work showcased the ability of deepCNN to approximate this calculation. There is also a growing interest in
applyingCNNs for noise quantification inmedical imaging (Huber et al 2023). The development of CNN-NE
provides users theflexibility of choosing between analytical andCNNcalculations for estimating the RMSnoise.
It is noteworthy that CNN-NEhas superior computational efficiencywhen run on aGPU, compared to the
time-consuming grid-based calculationmethod.We proposed to use CNN-NE andCNN-MC together to guide

Figure 10.Example images (20mm× 20mm) of a spiculatedmass (invasive ductal carcinoma) of a human subjectDBT. The labels (a)
to (h) are defined in section 3.4 and table 3.
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the selection of the reconstruction parameters and compare different reconstruction techniques and denoising
approaches. The task-based image quality assessment plot of CNN-MCAUCversus CNN-NERMSnoise clearly
illustrates the tradeoff between the detectability and noise of the different image conditions.

The RMSnoise calculation introduced in section 2.2.2 involved a quadratic fitting step to remove the
background trend. Given that we usedVICTRE simulation data for CNN-NE training and simulations can
produce (nearly)noise-free images, it is possible to remove the background structures using such noise-free
images. To verify that the RMSnoise in images could be effectively estimated by the quadratic fitting background
removalmethod, we simulated the nearly noise-free images using an exposure factor of 10, and then calculated
the RMS values for theCNN-NE training image patches with the exposure factor of 1 using the two approaches.
The result showed that the two sets of RMS values were close and exhibited a strong linear correlation
(correlation coefficient= 0.983, p< 0.0001), indicating the effectiveness of quadratic fitting for background
removal.While using noise-free imagesmay be the ideal approach for accurate RMS calculations, its real-world
impact is limited due to the linearity and small differences.More importantly, having the noise-free images is a

Figure 11.Qualitative comparison between the commercial GEPristina reconstruction and the proposedMDR. Top row: full DBT
slices (84.4mm× 170mm). Bottom row: zoomed-in views of themarked regions (20mm× 15mm) containing anMCcluster (ductal
carcinoma in situ).
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special case and they are typically unavailable for actual scanned images. Therefore, we employed the fitting
method in ourwork due to its practicality in general scenarios in case others wouldwant to adopt themethod for
their applications.

A suboptimal CNN-MCmodel observer is preferred for evaluating the effectiveness of image processing
techniques since image processing is not expected to improve the performance of an ideal observer. Zhang et al
(2021) showed that aDCNNcould be trained to approximate an ideal observer or a suboptimal observer,
depending on its learning capacity and the available training sample size, for the task of detectingMCclusters in
a simulation study. This is consistent with the observations in our study.We found thatDCNNs of very deep
structures reached anAUCof 1 regardless of the image conditions.We had to constrain the learning capacity by
limiting the network sizes such that they could discriminate between the image conditions. In addition, it is
known that human observers are suboptimal, as also demonstrated byChan et al (2023). Since there are no
specific guides for selecting theDCNNstructure for a given task, we investigated three CNN-MCbackbones.
The pooled performance of themultiplemodelsmay partly alleviate the learning variability, in analogy to the use
ofmultiple observers to account for the interobserver variability in human reader studies. TheCNN-NE trained
as a regressionmodel wasmuchmore stable, as observed from the small variances among the different
initializations and different CNNbackbones.

We did not analyze the convergence property ofMDR in this study. Due to the limited-angle nature of the
DBT scan and the fact that radiologists are accustomed to the tissue texture appearance of the 2Dprojection
mammograms, we usually do early stopping on theDBT reconstruction so that the soft tissue structured
backgrounds are not overly enhanced. The truncation artifact correction (Lu et al 2013) during reconstruction
essentially changes the systemmatrices and also complicates the convergence analysis. Furthermore, the RED
assumptions are not satisfied bymany popular denoisers includingDNGAN (Reehorst and Schniter 2019).
Without the explicit expression andminimization of a cost function, RED serves only as amotivation and one
can at best hope to obtain the fixed-point convergence or an equilibriumof the reconstruction (Buzzard et al
2018, Ryu et al 2019). For these reasons, we focused on image quality instead of seeking the convergence of the
iterates.

There are limitations in the current study. First, theDNGANdenoisers were trained on the SART images but
were directly applied to the intermediate images ofMDR. This introduced a noisemismatch between the
denoiser and the images to be denoised. The fact that theDNGANworkswell inMDR indicates the flexibility of
the application, but it also leaves room for improvement by fine-tuning theDNGANdenoisers at everyMDR
iteration, whichwill tradeoff computational efficiency, however. Second, the number ofMC clusters in our data
set is limited. A larger CNN-MC training setmay further improve the generalizability of the CNN-MCmodel
observer and reduce the AUC variations among the different DCNNmodels or between training and
deployment to unseen cases. Third, althoughMDRachieved the highestMCdetectability ranking and lownoise,
postDBCN reconstructionwithDNGANdenoisingwas also among the top three rankings. Post-reconstruction
denoising is the only practical approach if the raw PVs are not available for user-designed reconstruction. It will
be of interest to evaluate the effectiveness ofDNGANdenoising for theDBT images reconstructed by the various
commercial DBT systemswhen large human subject data sets with subtleMCs from these systems become
available. Fourth, the proposedDCNN image evaluation approach only focused on image noise andMC
detectability. The evaluations ofmass and tissue textures still relied on visual judgment. It will be useful if DCNN
models can be developed to assess the quality of these important image features aswell in the future. Finally, we
do not address the time efficiency ofMBIR as it falls outside the primary scope of this paper.We encourage
future research to tackle this issue, whichmay complement and enhance the utility of the proposedmethod.

5. Conclusion

WeproposedMDRby combiningDBCNmodeling andDNGANdenoising using the RED framework forDBT
reconstruction. To facilitate the task-based image quality assessment, we also proposed twoDCNN tools. The
CNN-NEwas trained to estimate the RMSnoise of theDBT images. TheCNN-MCwas trained to be amodel
observer to evaluate the detectability of clusteredMCs. The efficacies ofDNGAN,CNN-NE andCNN-MCwere
demonstrated using physical phantomDBTs and human subject DBTs.We investigated the impacts of theMDR
regularization parameters and the cost function terms.MDR reduced image noise and improvedMC
detectability on an independent test set of human subjectDBTs. The proposedCNN-NE andCNN-MC
evaluationmethod can serve as a surrogate for human observers to provide task-specificmetrics and rank the
imaging systems in a cost-effective way. The proposed reconstructionmethodmay potentially lead to lower dose
and higher sensitivity and specificity forMCdetection in breast cancer screening and diagnosis.
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