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Abstract

Purpose: Current methods for patient-specific voxel-level dosimetry in radionu-

clide therapy suffer from a trade-off between accuracy and computational effi-

ciency. Monte Carlo (MC) radiation transport algorithms are considered the

gold standard for voxel-level dosimetry but can be computationally expensive,

whereas faster dose voxel kernel (DVK) convolution can be suboptimal in the

presence of tissue heterogeneities. Furthermore, the accuracies of both these

methods are limited by the spatial resolution of the reconstructed emission

image.To overcome these limitations, this paper considers a single deep convo-

lutional neural network (CNN) with residual learning (named DblurDoseNet) that

learns to produce dose-rate maps while compensating for the limited resolution

of SPECT images.

Methods: We trained our CNN using MC-generated dose-rate maps that

directly corresponded to the true activity maps in virtual patient phantoms.

Residual learning was applied such that our CNN learned only the difference

between the true dose-rate map and DVK dose-rate map with density scaling.

Our CNN consists of a 3D depth feature extractor followed by a 2D U-Net,where

the input was 11 slices (3.3 cm) of a given Lu-177 SPECT/CT image and den-

sity map, and the output was the dose-rate map corresponding to the center

slice. The CNN was trained with nine virtual patient phantoms and tested on

five different phantoms plus 42 SPECT/CT scans of patients who underwent

Lu-177 DOTATATE therapy.

Results: When testing on virtual patient phantoms, the lesion/organ mean

dose-rate error and the normalized root mean square error (NRMSE) rela-

tive to the ground truth of the CNN method was consistently lower than DVK

and MC, when applied to SPECT images. Compared to DVK/MC, the average

improvement for the CNN in mean dose-rate error was 55%/53% and 66%/56%;

and in NRMSE was 18%/17% and 10%/11% for lesion and kidney regions,

respectively. Line profiles and dose–volume histograms demonstrated compen-

sation for SPECT resolution effects in the CNN-generated dose-rate maps.The

ensemble noise standard deviation, determined from multiple Poisson realiza-

tions, was improved by 21%/27% compared to DVK/MC. In patients, potential

improvements from CNN dose-rate maps compared to DVK/MC were illustrated

qualitatively, due to the absence of ground truth. The trained residual CNN took

about 30 s on a single GPU (Tesla V100) to generate a 512 × 512 × 130 dose-

rate map for a patient.

Conclusion: The proposed residual CNN, trained using phantoms generated

from patient images, has potential for real-time patient-specific dosimetry in
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clinical treatment planning due to its demonstrated improvement in accuracy,

resolution, noise, and speed over the DVK/MC approaches.
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1 INTRODUCTION

Accurate and computationally efficient methods for

patient-specific absorbed dose estimation are essen-

tial for clinical implementation of dosimetry-guided treat-

ment planning in radionuclide therapy. For example,

current Lu-177 DOTATATE therapy for neuroendocrine

tumors uses a fixed activity basis (four cycles of 7.4

GBq), whereas SPECT/CT imaging-based dosimetry

after one cycle can be used to individualize the next

administration to potentially enhance tumor response

while keeping toxicity to critical organs like kidney at

an acceptable level.1 Traditionally, the mean absorbed

doses in volumes of interest (VOIs) are the reported

quantity. However, voxel-level calculation enables con-

sideration of multiple alternative dose metrics, such

as statistics from dose-rate volume histogram (DRVH)

analyses that are potentially more relevant to treatment

planning. Explicit Monte Carlo (MC) radiation trans-

port using the patient’s emission (PET or SPECT) and

anatomical images (CT) as input is broadly accepted as

the gold standard for voxel-level patient-specific dosime-

try. However, it is computationally expensive to gener-

ate estimates with low statistical uncertainty. In con-

trast, faster and simpler dose voxel kernel (DVK) con-

volution methods2 can be inaccurate in the presence of

heterogeneous tissues, for example, at the liver–lung or

bone–marrow interfaces. Moreover, even though MC is

theoretically accurate, the dose accuracies of both MC

and DVK methods are degraded by reconstruction arti-

facts and the limited spatial resolution of SPECT and

PET images.

Over the past few years, deep learning methods have

been broadly used in many fields of medical imaging.3–7

For example, one of the most popular deep neural net-

works,the U-Net,8 achieved state-of -the-art accuracy on

the 2012 International Symposium on Biomedical Imag-

ing challenge for segmentation of neuronal structures in

electron microscopic stacks.Recently, there is increased

interest in studies that apply deep neural networks in

nuclear medicine applications.9–13 However,deep learn-

ing applications in radionuclide therapy dosimetry are

limited.14–17 Akhavanallaf et al.14 employed a modi-

fied ResNet18 that represented voxel S-values kernels2

to predict the distribution of the deposited energy in

whole-body organ-level dosimetry and demonstrated

comparable performance to the direct MC approach.

Lee et al.15 implemented a 3D U-Net8 that used PET

and CT-based density image patches to predict 3D

voxel-level dose-rate maps. Götz et al.16 proposed a

hybrid method based on a combination of a modified

U-Net and an empirical mode decomposition of den-

sity maps to enhance the accuracy/reliability of radiation

dose estimation. Götz et al.17 also trained a neural net-

work to predict dose voxel kernels (DVK) for dosimetry in

Lu-177 targeted radionuclide therapies. Despite promis-

ing results, a limitation of the training approaches in

these prior studies14–17 is that they used MC-generated

dose-rate maps derived from each patient’s measured

SPECT or PET images as the training label, which are

degraded by the camera spatial resolution and recon-

struction artifacts. Moreover, the concept of residual

learning can be adopted in a convolutional neural net-

work (CNN) dosimetry model by exploiting a fast DVK

convolution dose-rate map as an initial estimate. Resid-

ual learning for image denoising was first proposed to

improve the effectiveness and efficiency of a denoising

CNN19 and was further applied to low-dose PET and CT

reconstruction.20,21

The aim of this study was to develop a deep learning-

based absorbed dose-rate estimation method that can

overcome the accuracy-efficiency trade-off associated

with current voxel dosimetry methods and attempt to

learn to reduce the degrading effects of spatial reso-

lution and reconstruction artifacts. Specifically, we used

dose-rate estimates directly corresponding to phan-

tom (virtual patient) activity maps as the training label,

instead of the patient SPECT-derived dose-rate images

(Figure 1). Furthermore, unlike prior studies where a

CNN was trained to directly estimate the dose-rate

map or S-value kernels, we first used the approximate

physics-based fast Fourier transform (FFT) DVK con-

volution method (with density scaling) to produce ini-

tial estimates, and then trained the CNN to learn the

subtle residual differences between the initial estimate

and the true dose-rate maps. We trained and tested the

proposed CNN for SPECT/CT imaging-based dosimetry

following Lu-177 DOTATATE therapy of neuroendocrine

tumors (NETs).

2 MATERIALS AND METHODS

2.1 Virtual patient phantom generation
for training and testing

Figure 2 gives an overview of our data genera-

tion and training process. To define the true activity
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F IGURE 1 Illustration of blurring of dose-rate maps due to the limited resolution of the SPECT-based input activity map and the potential

for a learning-based method to outperform MC, the current gold-standard. The CNN* used in this illustration was trained and tested on different

XCAT22 phantoms

F IGURE 2 Overview of phantom data generation for training/testing and the network training process

maps of virtual patient phantoms, we chose to use

PET instead of SPECT-based activity maps because

PET offers substantially higher spatial resolution than

SPECT as evident in the top branch of Figure 2.

These images were readily available because, prior

to Lu-177 DOTATATE, patients underwent diagnostic

Ga-68 DOTATATE PET/CT imaging (Siemens Biograph

mCT) to determine eligibility for therapy. The Ga-68
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DOTATATE distribution in patients is expected to be sim-

ilar to the Lu-177 DOTATATE distribution and hence

our virtual patient phantoms can provide a reason-

able approximation to the activity distribution of Lu-177

patients. The PET images (of size 200 × 200 × 577,

voxel size is 4.073 × 4.073 × 2mm3) were obtained from

our Siemens mCT (resolution is 5–6 mm FWHM23)

and reconstructed using the standard clinic protocol:

3D ordered subset expectation maximization (OSEM)

with three iterations, 21 subsets that included resolu-

tion recovery, time-of -flight, and a 5 mm (FWHM) Gaus-

sian post-reconstruction filter. We selected 14 such PET

images from our clinic database to generate anthro-

pomorphic phantoms for training and testing, with Uni-

versity of Michigan Institutional Review Board (IRB)

approval for retrospective analysis. The selected cases

covered a diverse range with regard to sex (nine males

and five females), age (35–88 years), weight (49–

100 kg), and lesions of different sizes and locations

(within and outside the liver). The PET/CT images were

first extracted into 195 slices with 0.2 cm slice width

that covered the SPECT field-of -view (39 cm) with the

liver and kidney centered, which is the typical region

imaged following Lu-177 DOTATATE. Meanwhile, the

corresponding density maps were generated using an

experimentally derived CT-to-density calibration curve.

Next, Lu-177 SPECT projections corresponding to

each phantom’s activity/density maps were generated

using the SIMIND MC code24 (Figure 2, top branch)

simulating approximately 2 billion histories per projec-

tion. The SIMIND model parameters were based on Lu-

177 patient imaging in our clinic (Siemens Intevo with

medium energy collimators, a 5/8′′ crystal, a 20% pho-

topeak window at 208 keV, and two adjacent 10% scat-

ter windows). Poisson noise was simulated after the

128 projection views were scaled to a count-level in

the range of 3–20 million total counts, corresponding to

the range in post-therapy imaging. SPECT reconstruc-

tion used an in-house 3D OSEM algorithm with CT-

based attenuation correction, triple energy window scat-

ter correction and collimator-detector response mod-

eling (four subsets and 16 iterations, 128 × 128 × 81

matrix with voxel size 4.8 × 4.8 × 4.8 mm3, no Gaus-

sian smoothing). All images were finally registered

into CT image space (512 × 512 × 130 with voxel size

0.98 × 0.98 × 3 mm3).

Out of 14 virtual patient phantoms, we randomly

selected nine for training and five for testing. Out of

the training dataset, to assess under/over-fitting,we ran-

domly selected 20% of the total slices to serve as a val-

idation dataset.

2.2 Patient data

In addition to the above virtual patients, our testing data

included a total of 42 scans from 12 patients imaged at

up to 4 time points during the first week following cycle 1

of standard Lu-177 DOTATATE (7.4 GBq). The images

were acquired as part of an ongoing University of Michi-

gan IRB approved research study, where all subjects

signed an informed consent form. SPECT acquisition

time was 25 min and all other SPECT imaging recon-

struction parameters were as described above for the

phantom simulation.The CT was performed in low-dose

mode (120 kVp; 15–80 mAs) with free breathing.

2.3 MC dosimetry and dose voxel
kernel convolution

2.3.1 Monte Carlo

The MC code that we used,called dose planning method

(DPM), was originally developed and validated for fast

dose-rate estimation in external beam radiotherapy.25

Previously, we adapted and benchmarked DPM for

internal radionuclide therapy applications.26 Because

DPM was optimized specifically for voxel-level elec-

tron/photon dose computations with full radiation trans-

port, it is faster than using general-purpose MC codes

for voxel-level dose estimation. We used DPM to gen-

erate the ground truth training labels (Figure 2) by sim-

ulating ∼1 billion histories to generate dose-rate maps

with reasonably low statistical uncertainty. For example,

with 1 billion histories for the phantom results shown

in Figures 4 and 5, the average statistical uncertainty

across the kidney and lesions was less than 0.1% for

both the ground truth MC run and the SPECT+MC run

(obtained from the uncertainty images available from

DPM).

2.3.2 DVK convolution with density
scaling

To provide DVK dose-rate maps for residual learning,

Lu-177 soft tissue (1.04 g∕cm3) voxel kernels were gen-

erated using DPM. The beta particle kernel size was

9 × 9 × 9 and the photon kernel size was 99 × 99 × 99

(both with voxel size 0.98 × 0.98 × 3mm3). We con-

volved the SPECT image with the DVKs using FFT-

convolution. Since using homogeneous soft tissue ker-

nels neglects tissue inhomogeneities, we applied den-

sity scaling that has been shown to be a reasonable cor-

rection in past reports.27 Here, after convolution, each

voxel was scaled by 1.04 (g∕cm3) and divided by the

local voxel density value (g∕cm3) derived from the CT

scan. Because our goal was to generate a reasonably

accurate and quick initial estimate for the residual learn-

ing process, we did not pursue other more sophisticated

approaches28,29 that account for tissue heterogeneities.

To address the very high dose-rate estimate in extra

low-density regions, for example, air gaps, we set the
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F IGURE 3 The architecture of our DblurDoseNet

dose-rate in regions where the density is less than 0.1

g∕cm3 to 0.

2.4 Network: DblurDoseNet

Our network design considers the decay properties of

Lu-177 and the physics of beta/photon interaction in tis-

sue. The mean energy of the emitted electrons in the

beta decay of Lu-177 is 134 keV and the maximum

energy is 497 keV, and the corresponding continuous

slowing down approximation ranges (in water) are 0.3

and 1.8 mm,respectively.30 The gamma-rays associated

with Lu-177 are low in intensity (113 (6.2%) and 208 keV

(10.4%)),and hence, the absorbed dose is dominated by

the beta component.

The input to the DVK method was an entire 3D SPECT

image volume and its output was a 3D dose-rate map.

In principle, a CNN could be designed similarly. How-

ever, for Lu-177 considering the short beta particle range

in tissue and the low photon contribution, we designed

a more memory efficient CNN that used a pack of 11

adjacent slices of the SPECT and density images at a

time to produce one output dose-rate map correspond-

ing to the middle slice of that pack.The CNN was applied

with an 11-slice sliding window to all axial slices using

padding that replicated the first and last slices at the top

and bottom boundaries, respectively. Thus, the input to

CNN was two arrays of size 512 × 512 × 11 (with voxel

size 0.98 × 0.98 × 3 mm3) and the output was an array

of size 512 × 512 that corresponded to the dosimetry

of the middle slice in the input arrays. During training

and testing, these 512 × 512 × 11 packs could be pro-

cessed sequentially, but GPU devices could accelerate

the processing by parallel computation.

As shown in Figure 3, we first concatenated the input

activity/density maps along the channel dimension, and

then applied three 3D convolutional layers (with ker-

nel size 7 × 7 × 5, 7 × 7× 3, 7 × 7× 3, respectively) to

extract depth features. Next, we implemented a 2D U-

Net that had four down-sample and up-sample layers,

where the first convolutional layer in the 2D U-Net had

16 filters. After each down-sample layer, the number of

filters at the next convolutional layer was increased by

a factor of two until it reached 128. We added the DVK

dose-rate map to the 2D U-Net output, as in the com-

mon residual learning approach.Finally,we obtained the

CNN dose-rate map estimate after setting the dose-rate

value in very low-density voxels (𝜌 < 0.1g∕cm3) to 0.

As discussed in Section 3, the residual CNN produced

consistently better dose-rate estimation accuracy than

a CNN without residual learning.

The CNN was trained by minimizing the mean square

error between the ground-truth and CNN dose-rate

maps using a batch size of 32. We used the Adam

optimizer31 with a dynamic learning rate (an initial value

0.001 with ReduceOnPlateau management strategy)

and trained our CNN for 200 epochs on two Nvidia Tesla

V100 GPUs.The training/validation loss converged visu-

ally to 288/410 after 4 h of training (Figure S1). To

cover different input count levels, we normalized each

SPECT activity map so that all its voxels summed to

one, and then inversely scaled the dose-rate map esti-

mate accordingly. To potentially improve convergence

during training, we also scaled the normalized SPECT

and dose-rate maps with a constant value so that they

have a similar range as the density maps.

2.5 Evaluation in test phantoms

In test phantoms, we used MC with the phantom activity

and density maps to calculate the ground truth dose-

rate maps for performance evaluation. The estimated
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dose-rate maps generated from SPECT/CT with the

DVK (with density scaling), MC (with 1 billion histories),

and CNN methods were evaluated qualitatively by visual

comparison of images, line profiles, and DRVHs with

those corresponding to the ground truth. For quantita-

tive evaluations, we used the following metrics.

2.5.1 Dose-rate error

For each VOI, the dose-rate error is the absolute error

across the whole VOI calculated relative to the ground

truth. This error was calculated for the mean absorbed

dose and DRVH statistics (DR10, DR30, DR70, DR90),

corresponding to the minimum dose-rate to 10%, 30%,

70%, and 90% of the VOI, respectively.

2.5.2 Normalized root mean square error

The normalized root mean square error (NRMSE) is

defined as

NRMSE =

√

1

np

∑np

j=1

(

x̂j − xj

)2

√

1

np

∑np

j=1
x2

j

,

where np denotes the total number of voxels in the

VOI. Subscript j, for example, xj , denotes the jth voxel

in the image. The true and estimated dose-rate image

are denoted by x and x̂, respectively.

2.5.3 Ensemble noise

The ensemble noise in spherical VOIs defined in non-

tumoral liver or spleen was calculated across 3 (M = 3)

Poisson noise realizations as:

Noise =

√

1

np

∑

j∈VOI

(

1

M−1

∑M

m=1

(

x̂m [j] − �j

)2
)

1

np

∑

j∈VOI
�j

× 100%,

where �j =
1

M

∑M

m = 1
x̂m[j],np is the total number of vox-

els in the VOI, and x̂m[j] denotes the jth voxel in the esti-

mated dose-rate image of the mth Poisson noise real-

ization.

The lesion VOIs for these quantitative evaluations

were defined manually on CT of SPECT/CT guided

by baseline diagnostic CT or MRI by a radiologist

with abdomen imaging expertise. Organ contours were

defined using semiautomatic CT segmentation tools.

The healthy liver was defined as liver minus lesions in

the liver.

3 RESULTS

3.1 Virtual patient phantom test results

3.1.1 Qualitative assessment

Generally, there was a better visual agreement between

CNN dose-rate maps and the ground truth than between

DVK/MC dose-rate maps and the ground truth. The

example images and line profiles in Figures 4 and 5 and

the DRVHs in Figure 6 provide qualitative evidence of

the superior performance of the CNN across multiple

regions (kidney, abdominal lesion, lung lesion).

3.1.2 Quantitative assessment

Table S1 reports the mean dose-rate values for

organs/lesions across five test phantoms. Figure 7 com-

pares the mean dose-rate error and NRMSE in lesions

and organs across all test phantoms. Similar to the

results of the qualitative assessment (Figures 4–6), the

CNN also consistently showed superior results com-

pared to DVK and MC in quantitative evaluations (Fig-

ure 7).For instance,compared to DVK and MC, the CNN

estimates showed an average improvement (in mean

dose-rate error) of 52%/20%, 55%/53%, 66%/50%,

66%/62%, 48%/49%, and 58%/39% in healthy liver,

lesion, left kidney, right kidney, spleen, and lumbar ver-

tebra, respectively. The NRMSE was also substantially

lower for the CNN than for DVK and MC across all

VOIs (Figure 7). The average improvement (in NRMSE)

demonstrated by the CNN compared to DVK/MC was

10%/9%, 18%/17%, 11%/12%, 9%/10%, 26%/27%, and

18%/10% in healthy liver, lesion, left kidney, right kid-

ney, spleen, and lumbar vertebra, respectively. In addi-

tion to the improvement in the average values, the maxi-

mum errors (denoted by the error bars in Figure 7) were

also consistently lower with CNN compared to DVK and

MC. In Figure 7, all three methods showed the high-

est errors for lesion and lumbar vertebra regions. This

was attributed to the smaller size of these VOIs com-

pared to other organs and the corresponding increase

in partial volume effects. In the case of lumbar verte-

bra, relevant to bone marrow dosimetry, the very low

uptake in these regions also contributed to higher dose-

rate errors. For lesions and lumbar vertebra that had

a relatively large sample size (15 and 18), a paired t-

test demonstrated that the differences of mean dose-

rate error and NRMSE between CNN and MC (DVK),as

shown in Figure 7,were statistically significant (Table S2

shows p-values). Moreover, DRVHs statistics (DR10,

DR30, DR70, DR90) as demonstrated in Figures 8
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F IGURE 4 One slice of the test virtual patient phantom #2. The top two branches show the true activity map defined based on Ga-68 PET,

SPECT, and CT images, the ground truth dose-rate map, and the dose-rate images from the different methods (DVK, MC, and CNN). The bottom

branch shows line profiles across the kidney and the residual map (the difference between CNN and DVK dose-rate map). The dose-rate units

were normalized to 1 MBq in the field-of -view in all figures

and 9 also show the superiority of the CNN compared

to DVK.

3.1.3 Noise evaluation

Table 1 shows a consistent reduction of ensemble noise

in background VOIs with an average of 21% and 27%

improvement demonstrated by the CNN compared to

DVK and MC (running 1 billion histories), where MC

had the highest level of noise due to its statistical

nature.

3.2 Patient results

In patients where there was no known ground truth,

results were instead compared visually. Figures 8

and 9 show examples of dose-rate maps correspond-

ing to high-count (day 1 post-therapy) and low-count

(day 7 post-therapy) imaging conditions post-Lu-177

DOTATATE. Although concrete conclusions could not

be drawn, as there was no known ground truth; visual

inspections implied potential reduction of SPECT

spatial resolution effects on dose-rate accuracy by

our DblurDoseNet. For instance, with the CNN, the

enlarged kidney map and line profiles of Figure 8 show

a larger decrease in dose-rate in the medulla and renal

pelvis areas, which could be due to the expected lower

physiological Lu-177 uptake in this part of the kidney

compared to the cortex region. In addition, in Figure 9,

the lesion with a necrotic center demonstrated a larger

drop in dose-rate at the center with the CNN compared

to DVK or MC, which could be due to the expected

lower uptake associated with necrosis. Moreover, to

demonstrate the generalizability of our CNN on patient

data, we tested our CNN using 42 SPECT/CT scans

of 12 patients and then compared with DVK and MC

dose-rate maps in terms of the mean dose-rate and

DRVH statistics (DR10,DR30,DR70,and DR90) across

lesions and kidneys. As demonstrated in Table 2, there

was a strong agreement between CNN and MC for

mean dose-rate in kidneys; and for mean dose-rate in

lesions, CNN showed higher values than MC, which

could be partially due to the compensation of SPECT

resolution effects. For DRVH statistics shown in Fig-

ure 6, the CNN and MC results also agreed well in

kidney; but for lesions, the CNN measurement showed

a lower dose-rate value in DR70 (DR90) and a higher

dose-rate value in DR30 (DR10), compared to MC and

DVK. The DRVHs in the lesions might be improved

because the blurring effects caused by the limited
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F IGURE 5 One slice of the test virtual patient phantom #5. The top two branches show the true activity map defined based on Ga-68 PET,

SPECT, and CT images, the ground truth dose-rate map, and the dose-rate images from the different methods (DVK, MC, and CNN). The bottom

branch shows line profiles across the kidney and the residual map (the difference between the CNN and DVK dose-rate maps)

SPECT camera resolution would lead to a higher DR70

(DR90) and a lower DR30 (DR10), but concrete conclu-

sions could not be made due to the absence of ground

truth.

3.3 Comparing performance with a
nonresidual network and a 2D network

To demonstrate the effectiveness of residual learning

and the 3D convolutional feature extractor that we imple-

mented, we also compared our proposed CNN with a

CNN that had the same architecture but without resid-

ual learning (not adding the DVK dose-rate map to the

output of 2D U-Net), and to a CNN without 3D fea-

ture extractor (a purely 2D U-Net where we treated

the depth dimension of input as channels). The non-

residual CNN and the 2D CNN were trained using the

same hyperparameters and the same training data as

for the proposed CNN. All the testing used the same

test phantoms demonstrated in the previous section.

As shown in Table 3, quantitative comparisons across

all test phantoms showed superior results of our pro-

posed CNN (DblurDoseNet) for almost all VOIs except

for some cases where all the networks show com-

parable results. Based on these promising results, we

believed the idea of residual learning was effective and

it was beneficial to include a few 3D convolutional lay-

ers to extract 3D information rather than using only 2D

convolutions.

3.4 Time cost

We compared the computation times of the different

methods for generating a dose-rate map corresponding

to the typical 512 × 512 × 130 patient SPECT/CT image

size on CPU (Intel Core i9 @2.3 GHz) or GPU (Tesla

V100). DVK with density scaling took ∼20 s on the CPU

and ∼10 s on the GPU. DPM MC code took ∼60 min

simulating 1 billion histories (for both ground truth and

test phantoms/patients) on the CPU while running DPM

on a GPU is not an option at this time (we are unaware

of any MC code for internal therapy running on a GPU).

The CNN took ∼20 min on the CPU and ∼20 s using the

GPU.After considering the DVK precomputation time for

the residual learning network, the total GPU time cost for

the CNN with residual learning is ∼20 + 10 s.

4 DISCUSSION

Reliable voxel-level dosimetry requires reliable dose-

rate images at multiple timepoints as well as dependable
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F IGURE 6 Tumor and kidney differential and cumulative dose-rate volume histograms corresponding to DVK, MC, CNN and the

ground-truth dose-rate maps of virtual patient phantoms. The sizes of tumors 1 and 2 are 4 and 65 ml, respectively

co-registration and fitting of the dose-rate versus time

data estimated at the voxel level. Performing reliable

voxel-level co-registration and fitting to generate dose

maps can be challenging, but the feasibility has been

demonstrated.32,33 In this work, we focused on gen-

erating reliable dose-rate maps. With evaluation both

on virtual patient phantoms that covered clinically rel-

evant conditions and patients who underwent Lu-177

DOTATATE therapy in our clinic, we demonstrated that

our CNN using residual learning framework could pro-

vide fast and accurate dose-rate estimation. Despite

using only a moderate amount of training data, Dblur-

DoseNet provided consistently superior performance

over conventional voxel dosimetry in terms of resolu-

tion, accuracy, and noise across multiple regions includ-

ing kidneys, lumbar vertebra, and lesions in soft tissue

and lung. Importantly, for clinical implementation, the

CNN voxel dose-rate map for a 512 × 512 × 130 patient

image could be generated in ∼30 s,which was a fraction

of the time associated with running MC, the current gold

standard. Although generating the ground-truth labels

for training by MC was computationally expensive, this

effort was needed only once at training time, for a given

SPECT imaging system.
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F IGURE 7 Mean dose-rate error, NRMSE, and error in DRVH statistics (DR10, DR30, DR70, DR90) comparison of DVK, MC, and CNN

relative to ground-truth dose-rate map across all test phantoms. Median (range) VOI volumes are as follows: healthy liver (liver minus lesions):

1607 ml (1164–2262 ml); lesion: 16 ml (4–181 ml); left kidney: 177 ml (98–211 ml); right kidney: 156 ml (76–249 ml); spleen: 191 ml

(131–467 ml); lumbar vertebra L2 to L5: 54 ml (34–68 ml)
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F IGURE 8 One slice across kidney of the input images (SPECT, CT) and output DVK, MC, and CNN dose-rate maps and line profiles for a

patient imaged after Lu-177 DOTATATE (at day 1 post-therapy). The residual map is the difference between CNN and DVK dose-rate map

The main limitation to accurate voxel-level patient-

specific dose-rate estimation with nonlearning-based

methods is the poor spatial resolution associated with

the input SPECT (or PET) images. This issue was evi-

dent in our results where the theoretically accurate MC-

based calculation only slightly outperformed DVK with

density scaling. In contrast, by using the true activity

map-based dose-rate estimates for training, our CNN

has the ability to “learn” the physics of dose deposition

and to compensate for the SPECT resolution effects that

both lead to blurring of the conventional (nonlearning-

based) dose-rate maps, as demonstrated in the phan-

tom results (Figures 4–7, Table 1). In patient studies,

potential mitigation of SPECT resolution effects was

demonstrated empirically. In Figure 8, the CNN-based

estimates show sharper line profiles and larger drops

in dose-rate over the medulla area of the kidney, analo-

gous to the illustration of Figure 1. In Figure 9, the larger

drop of dose-rate in the necrotic center of a tumor may

reflect what is expected based on physiology. Although

test results were promising over 42 scans originating

from 12 patients, further testing is planned as more

patient images become available.We did not investigate

training with more virtual patients, because simulating

Lu-177 SPECT projections by full MC simulation was

computationally expensive. Furthermore, we found that

our CNN, trained by nine virtual patient phantoms, was

able to generate promising dose-rate estimates across

a diverse range of test cases. We expect that applying

self/weakly supervised training may address the com-

putational inefficiency of simulating Lu-177 SPECT pro-

jections in the future. In addition, due to the lack of

ground truth, we were unable to make concrete conclu-

sions about the performance of our CNN on test patient

data. But the uncertainty of our CNN can be quanti-

fied by generating confidence maps34–36 using Bayesian

networks,37 an ensemble of multiple networks,38 or an

extension of the probabilistic U-Net,39 which can be one

direction to investigate in the future.

The mean dose-rate errors shown in Figure 7, espe-

cially for lesions, were generally lower than one would

expect based on reported activity recovery in quantita-

tive Lu-177 SPECT phantom studies. For example, for

72 OSEM updates, activity recovery of only 80% was
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F IGURE 9 One slice across lesion of the input images (SPECT, CT) and output DVK, MC, and CNN dose-rate maps and line profiles for a

patient imaged after Lu-177 DOTATATE (at day 7 post-therapy). The residual map is the difference between CNN and DVK dose-rate map

TABLE 1 Ensemble noise from three realizations for DVK, MC,

and CNN across all test phantoms. The number of voxels ranged

from 2527 to 23,411

Ensemble noise Background region DVK MC CNN

Phantom #1 Liver and spleen 4.6% 6.1% 3.4%

Phantom #2 Liver 12.6% 13.3% 9.2%

Phantom #3 Liver 14.0% 14.6% 12.9%

Phantom #4 Liver 20.3% 19.6% 14.8%

Phantom #5 Spleen 7.1% 7.6% 5.8%

reported for a 26.5 ml volume “hot” sphere in a “warm”

background region.40 The results of the current study

showed lower errors because, unlike in a physical phan-

tom, the assigned “true” activity values at the boundary

of the structures in our PET-based virtual patients did

not drop off sharply,and instead,were blurred out.More-

over, in Figure 7, all three methods showed the largest

mean dose-rate error for lesions and lumbar vertebra,

as expected due to the relatively smaller sizes of these

structures compared to other organs, and hence partial

volume effects associated with SPECT resolution were

higher. The large error for the lumbar region with DVK

(∼25%) was likely to be due to the heterogeneous tissue

within this region, which includes cortical bone, trabec-

ula bone, and yellow and red marrow. Regarding DVK,

the simple density scaling that was performed in our

study was potentially inadequate for this region.Further-

more, the Lu-177 uptake in a lumbar region was very

low, so the cross-dose contribution to dose-rate there,

including the photon cross-dose, could be significant.

Our 99 × 99 × 99 photon kernel may have been insuf-

ficient to capture the full photon cross dose contribution

to the lumbar vertebra. Our study did not include stan-

dard partial volume correction using volume-dependent

recovery coefficients (RCs) because such methods pro-

vide only a mean dose, not a voxel-level correction. Fur-

thermore, the limitations of standard RC methods due

to dependence on object shape, activity distribution and

target-to-background ratios are well known. Voxel-level

partial volume correction is much more challenging41

and their applications in SPECT are not well established.

Our results demonstrated that training using true dose-

rate maps could reduce the need for such corrections to

compensate for resolution effects.

To define our virtual patient activity maps, we chose

to use Ga-68 DOTATATE PET/CT to exploit the avail-

ability of these images that had finer resolution than

SPECT and showed similar uptake patterns as Lu-177

DOTATATE. Despite the standard practice of using Ga-

68 PET or Lu-177 SPECT as a theranostic pair, some

differences between the two distributions were to be

expected, but we did not expect this to impact our CNN
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TABLE 2 Dose-rate values (mean dose-rate and DRVH statistics) for DVK, MC, and CNN methods averaged across all 42 scans from 12

patients

Dose-rate* (nGy/MBq-sec)

DVK MC CNN

Lesion Mean dose-rate 13.7 (0.2–87.9) 13.9 (0.3–88.9) 14.4 (0.3–88.8)

DR10 25.1 (0.4–177) 25.4 (0.4–179) 27.8 (0.5–188)

DR30 15.8 (0.3–122) 16.1 (0.3–123) 16.9 (0.3–127)

DR70 8.2 (0.2–48.1) 8.3 (0.3–48.5) 8.1 (0.3–48.8)

DR90 5.4 (0.1–17.1) 5.6 (0.1–19.3) 5.0 (0.1–22.9)

Left kidney Mean dose-rate 3.7 (0.7–8.6) 3.8 (0.7–8.7) 3.8 (0.7–8.3)

DR10 6.0 (1.4–12.7) 6.1 (1.4–12.8) 5.8 (1.4–12.3)

DR30 4.6 (1.0–10.7) 4.7 (1.0–11.0) 4.6 (1.0–10.7)

DR70 2.7 (0.2–7.0) 2.7 (0.2–7.0) 2.8 (0.2–7.0)

DR90 1.6 (0.1–3.8) 1.7 (0.1–3.8) 1.6 (0.1–3.6)

Right kidney Mean dose-rate 4.2 (0.7–9.1) 4.3 (0.8–9.2) 4.2 (0.8–9.1)

DR10 7.1 (1.5–17.2) 7.2 (1.6–17.2) 7.0 (1.8–15.2)

DR30 5.2 (1.0–11.8) 5.3 (1.1–11.8) 5.3 (1.1–12.2)

DR70 2.8 (0.2–7.3) 2.9 (0.2–7.3) 2.8 (0.2–7.7)

DR90 1.6 (0.1–4.4) 1.7 (0.1–4.5) 1.5 (0.1–4.0)

Note: Minimum and maximum values are shown in parenthesis. The medians (ranges) for the VOI volumes are as follows: Lesion: 15 ml (2.3–582 ml); left kidney:

192 ml (105–275 ml); right kidney: 180 ml (122–259 ml).

*Reported dose-rates are normalized to 1 MBq in field-of -view.

TABLE 3 Mean (maximum) dose-rate error and NRMSE comparison between CNN with and without residual learning and with 2D and 3D

networks evaluated across VOIs in all test phantoms

Mean dose-rate error NRMSE

3D w/ res

(DblurDoseNet) 3D w/o res 2D w/ res

3D w/ res

(DblurDoseNet) 3D w/o res 2D w/ res

Healthy liver 1.4% (2.3%) 5.5% (7.0%) 1.2% (3.1%) 19.6% (33.2%) 21.6% (35.1%) 23.2% (33.3%)

Lesion 5.3% (13.0%) 6.9% (12.5%) 6.0% (13.9%) 21.2% (32.5%) 21.4% (31.5%) 21.8% (38.0%)

Liver 1.9% (3.5%) 5.7% (7.6%) 1.9% (4.8%) 20.6% (26.3%) 21.6% (27.6%) 22.8% (26.6%)

Left kidney 0.9% (2.1%) 5.2% (6.5%) 1.8% (3.8%) 19.2% (22.9%) 20.1% (22.0%) 19.0% (20.8%)

Right kidney 1.8% (5.1%) 5.8% (12.6%) 2.6% (7.5%) 19.6% (21.5%) 20.5% (24.3%) 20.0% (23.6%)

Spleen 2.5% (6.2%) 6.3% (9.5%) 2.2% (6.4%) 13.1% (17.7%) 14.4% (19.9%) 13.2% (18.2%)

Lumbar vertebra 11.1% (27.4%) 10.5% (27.2%) 12.1% (30.6%) 33.0% (51.4%) 32.9% (49.1%) 32.7% (50.2%)

performance because the PET images were used only

to define the virtual patient phantoms and not in the

training process itself, as proposed in another study.42

Ideally,however, images of higher resolution than clinical

PET should be considered as the true representation of

the activity map of patients when generating the virtual

patient training set,but usually they are not readily avail-

able.To circumvent this issue,we also investigated using

phantoms with piece-wise uniform uptake in CT-defined

organs/lesions for training (such as XCAT22 in Figure 1),

but we found that such training led to unnaturally uniform

dose-rate maps when tested on patient images.We also

fed our CNN with an all-zero activity map, as a sanity

check to our proposed framework as well as implemen-

tation. The output dose-rate map, as expected, was all

zeros. This illustrates that if there is no apparent sig-

nal in the reconstructed SPECT, then there will not be

any unexpected nonzero values in the dose-rate map.

A possible alternative to our PET-based virtual patient

activity maps is to assign distributions based on high-

resolution animal models, for instance, ex-vivo autora-

diography showing uptake distribution of DOTATATE in

kidney.43

Our results also demonstrate the advantage of resid-

ual learning framework exploiting the fast DVK approach

as an initial estimate, which was not utilized in the prior

studies.14–17 We also conjectured that incorporating

residual learning could not only improve performance

on the test data,but also accelerate the training process.

As shown in Figure S1, after 200 epochs of training, the

training/validation loss of residual CNN went down to

288/410 at the last 50 epochs, compared to 902/1250
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without residual learning, which means fewer epochs

are needed to train the residual CNN. Other than using

a fast DVK approach for residual learning, an alterna-

tive was to generate a quick MC (low number of his-

tories) estimate, which was not explored here. Another

advantage of our network is that we first implemented

a couple of depth feature extractor layers that shrink

the 3D input into 2D at the beginning of our network.

Compared to fully 3D approaches, this approach leads

to a network having fewer parameters (because 2D ker-

nels have fewer parameters than 3D kernels), so it is

less likely to overfit the training data, avoiding a com-

mon problem in deep learning applications for medical

imaging,where only moderate amount of training data is

available.Another option that we did not investigate is to

use 2.5D CNN architectures.44 A potential drawback of

our proposed CNN is possible discontinuity of pixel val-

ues in coronal slices; however, we did not observe such

discontinuity as evident in Figure S2, presumably due to

the 11-slice sliding window.

We expect that training a single CNN, as we did in the

current study,is simpler than training two separate CNNs

to learn the dosimetry and SPECT resolution effects.

Typically, there will be three stages needed to train two

separate CNNs;stage 1: training CNN-A for SPECT res-

olution; stage 2: training CNN-B for dosimetry; stage 3:

jointly fine-tuning CNN-A and CNN-B. Compared to our

proposed end-to-end network (DblurDoseNet), which

only involves one training stage,such 3-stage of training

will be more complex and potentially inefficient.However,

only through comprehensive comparisons can one draw

definite conclusions between these two approaches,

which we expect to undertake in the future.Although our

study only investigated Lu-177 dosimetry,we expect that

by changing the training dataset and making minor mod-

ifications to the architecture, our CNN approach can be

extended to other radionuclides including Y-90 that is a

pure-beta emitter and I-131 that has significant beta and

gamma contributions to the dose-rate.

5 CONCLUSION

We constructed and tested a residual CNN that was

trained on virtual patient phantom images to learn the

mapping from SPECT/CT images to the corresponding

dose-rate maps. We took the novel approach of using a

single CNN to learn not only the dose-rate estimation

but also to compensate for blurring of the dose-rate map

due to poor SPECT resolution. Across multiple regions

such as kidney, lumbar vertebra and lesions in both soft

tissue and lung, the proposed residual DblurDoseNet

was able to outperform conventional voxel-level

dosimetry methods, including the current “gold standard”

MC, in terms of accuracy, noise, and speed. Patient-

specific voxel-level dose rate maps can be generated

in ∼30 s on GPU; hence the CNN approach has much

promise for real-time clinical use in radionuclide therapy

dosimetry for treatment planning.
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SUPPLEMENT

This supplemental material is for the paper “A Deep Residual Learning Network for Voxel Radionuclide Dosimetry

Compensating for SPECT Imaging Resolution” by Zongyu Li, Jeffrey A. Fessler, Justin K. Mikell, Scott J.

Wilderman and Yuni K. Dewaraja. The paper is submitted to Medical Physics.

Fig. S.1 compares the training/validation loss curve (200 epochs, MSE loss) of residual learning with non-residual

learning. Fig. S.2 shows discontinuity of pixels along axial direction was not observed in our CNN method. Table I

shows the ground truth dose-rate values of test virtual patient phantoms across multiple volumes of interest (VOI)

including liver, lesion and kidneys, and corresponding values estimated by DVK, MC and CNN methods. Table II

shows p-values of 3 paired t-tests (DVK-MC, DVK-CNN, MC-CNN) using mean dose-rate error and NRMSE on

VOIs of test virtual patient phantoms.
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(a) Training with residual learning. Averaged train/valid
loss for last 50 epochs are 288/410.
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(b) Training without residual learning. Averaged
train/valid loss for last 50 epochs are 902/1250.

Fig. S.1: Train/valid loss curve of residual CNN vs. non-residual CNN during 200 epochs of training.
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Fig. S.2: GT and CNN dose-rate maps along coronal directions. The CNN maps are reasonably smooth

(discontinuities are not observed) along the axial direction, presumably due to the 11-slice sliding window

approach. Unit in all colorbars is nGy/MBq-sec.
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TABLE I: Dose-rate values comparing GT, DVK, MC and CNN in VOIs across all 5 test phantoms. The medians

(ranges) for the VOI volumes are: healthy liver: 1607mL (1164mL – 2262mL); lesion: 16mL (4mL – 181mL);

left kidney: 177mL (98mL – 211mL); right kidney: 156mL (76mL – 249mL); spleen: 191mL (131mL – 467mL);

lumbar: 54mL (34mL – 68mL). Healthy liver is defined as liver minus lesions. Lumbar vertebra covers L2 to L5.

*Reported dose-rates are normalized to 1 MBq in field-of-view.

Organ/Dose-rate* (nGy/MBq-sec) GT DVK MC CNN

Healthy liver 3.4 (2.3 – 4.4) 3.3 (2.1 – 4.4) 3.4 (2.2 – 4.4) 3.4 (2.2 – 4.4)

Lesion 12.4 (2.8 – 15.2) 10.9 (2.6 – 14.8) 10.9 (2.7 – 14.9) 11.8 (2.6 – 14.7)

Liver 4.0 (2.3 – 5.2) 3.9 (2.1 – 5.1) 4.0 (2.2 – 5.1) 4.0 (2.2 – 5.1)

Left kidney 5.5 (3.7 – 7.2) 5.3 (3.6 – 7.0) 5.4 (3.6 – 7.1) 5.5 (3.7 – 7.0)

Right kidney 5.7 (3.7 – 7.8) 5.6 (3.5 – 8.2) 5.6 (3.5 – 8.2) 5.7 (3.7 – 8.0)

Spleen 8.1 (5.3 – 11.4) 8.3 (5.0 – 11.7) 8.3 (5.0 – 11.7) 8.0 (5.0 – 11.2)

Lumbar vertebra 0.88 (0.35 – 3.4) 0.67 (0.17 – 2.7) 0.73 (0.21 – 2.7) 0.79 (0.26 – 3.0)

TABLE II: P-value of the paired t-test using mean dose-rate error (NRMSE) of VOIs in 5 virtual phantoms.

Organ/p-value sample size DVK-MC DVK-CNN MC-CNN

Healthy liver 5 0.271 (0.002) 0.064 (0.02) 0.736 (0.01)

Lesion 15 0.016 (0.048) 4.0E-4 (2.1E-5) 0.002 (2.1E-4)

Left kidney 5 0.003 (0.036) 0.051 (0.084) 0.304 (0.075)

Right kidney 5 0.347 (0.122) 0.015 (0.016) 0.038 (0.003)

Liver 5 0.177 (0.187) 0.261 (0.004) 0.767 (0.003)

Spleen 5 0.781 (0.049) 0.049 (0.004) 0.066 (0.004)

Lumbar vertebra 18 3.4E-10 (9.3E-9) 1.5E-7 (1.8E-5) 1.0E-4 (3.1E-4)
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