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Abstract— This paper proposes a new method for joint
design of radiofrequency (RF) and gradient waveforms in
Magnetic Resonance Imaging (MRI), and applies it to the
design of 3D spatially tailored saturation and inversion
pulses. The joint design of both waveforms is characterized
by the ODE Bloch equations, to which there is no known
direct solution. Existing approaches therefore typically rely
on simplified problem formulations basedon, e.g., the small-
tip approximationor constraining the gradient waveforms to
particular shapes, and often apply only to specific objective
functions for a narrow set of design goals (e.g., ignoring
hardware constraints). This paper develops and exploits
an auto-differentiable Bloch simulator to directly compute
Jacobians of the (Bloch-simulated) excitation pattern with
respect to RF and gradient waveforms. This approach is
compatible with arbitrary sub-differentiable loss functions,
and optimizes the RF and gradients directly without restrict-
ing the waveform shapes. For computational efficiency,
we derive and implement explicit Bloch simulator Jaco-
bians (approximately halving computation time and mem-
ory usage). To enforce hardware limits (peak RF, gradient,
and slew rate), we use a change of variables that makes
the 3D pulse design problem effectively unconstrained;
we then optimize the resulting problem directly using the
proposed auto-differentiation framework. We demonstrate
our approach with two kinds of 3D excitation pulses that
cannot be easily designed with conventional approaches:
Outer-volume saturation (90◦ flip angle), and inner-volume
inversion.

Index Terms— Auto-differentiable Bloch simulator,
constrained joint pulse design, inner-volume inversion,
large flip-angle pulse, outer-volume saturation, tailored
RF pulse design.

I. INTRODUCTION

IN A magnetic resonance imaging (MRI) experiment,

the dynamic system relationship between the applied
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radiofrequency (RF) and gradient magnetic fields, and the

instantaneous spin magnetization change they induce, is con-

cisely described by the Bloch equation. While it is straightfor-

ward to calculate the magnetization pattern resulting from a

given set of RF and gradient waveforms and tissue parameters,

inverting the Bloch equation to obtain the waveforms that

produce a given desired excitation pattern can be challenging.

This Bloch inversion task is conventionally called an

“RF pulse design” problem, reflecting the fact that the most

common way to design excitation pulses in MRI is to pre-

define the gradients in some way, and then optimize only

the (complex) RF waveform. Even with that simplifica-

tion, the design problem remains non-linear and non-convex.

Another common simplification is to apply the small-tip

approximation [1] that can give reasonable excitation accuracy

even for flip angles as high as 90◦, at least for conventional 1D

(slice-selective) excitations where the instantaneous flip angle

during RF excitation remains relatively low. The small-tip

approximation leads to a linear (Fourier) relationship between

applied fields and the resulting magnetization pattern, and

provides intuition about the excitation process by defining an

“excitation k-space” trajectory and viewing RF transmission

as depositing energy along that trajectory.

The more difficult problem of jointly optimizing both RF

and gradient waveforms has been approached in various ways.

Several methods are based on the small-tip approximation, and

on optimizing the gradients over a restricted set of waveform

shapes, such as “spoke” or “kt-point” locations in excitation

k-space [2]–[6] or parameterized echo-planar or non-Cartesian

trajectories [7]–[11]. A more general small-tip design approach

for 3D tailored excitation used a B-spline parametrization

of the gradient trajectory that is not restricted to particular

fixed waveform shapes [12]. These approaches work well

for small-tip excitations, but not for applications such as

tailored saturation or inversion. In addition, even when the final

desired flip angle is small, the instantaneous flip angle during

RF excitation can be large enough to violate the small-tip

assumption [13]. This model mismatch can cause noticeable

differences between the Bloch-simulated excitation pattern and

that predicted by the small-tip model used in the design.

Another limitation of previous approaches is that the design

loss functions are typically limited to certain forms such as

least squares (LS) based on the complex transverse excited

magnetization, although adaptations to magnitude least squares

(MLS) costs have been proposed [14]. Adding hardware

constraints to the design formulation adds an additional
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layer of complexity that is often either ignored during pulse

design, or controlled indirectly via, e.g., Tikhonov regulariza-

tion of the RF waveform [6].

This work1 approaches the Bloch inversion task in a more

direct and general way that is applicable to the joint design

of RF and gradient waveforms for tailored multi-dimensional

excitation in MRI. We temporally discretize the pulse, assum-

ing piecewise constant gradient and RF within every time

segment. Our method does not rely on the small-tip approx-

imation, works for arbitrary sub-differentiable loss functions,

and incorporates hardware constraints. Our approach contains

three key elements: First, we derive analytic expressions for

the Jacobian operations needed for the Bloch inversion for

a unit (discrete) time step. Second, we incorporate these

discrete-time Jacobian operations into an automatic differen-

tiation framework [15], to obtain the Jacobian that relates the

final magnetization pattern (at the end of the pulse) to the RF

and gradient waveforms. Third, we enforce hardware limits

by a change of variables that makes the optimization problem

effectively unconstrained.

The paper is organized as follows. Section II gives a

general form of the joint design problem, and derives the

explicit Jacobians useful for accelerating the proposed auto-

differentiation pulse design tools. Sections III and IV apply

our pulse design tool to two large-tip excitation prob-

lems, and validate the results experimentally on a 3T MRI

scanner. Sections V and VI discuss and conclude this

work.

II. THEORY

A. Problem Formation

We discretize 3D space on a regular grid with a total

nM voxels (“spins”). These spins can have different parame-

ters, e.g. T1, T2, and off-resonance. Let nT denote the length

(number of time points) of the pulse to be designed. For (single

coil) joint design of complex RF waveform b ∈ CnT and

gradient g ∈ R
nT ×3 we are interested in tackling the following

general problem:

arg min
g∈RnT ×3, b∈CnT

L := f (MT (g, b), MD) + λR

s. t. ||b||∞ ≤ bmax

||g||∞,∞ ≤ gmax

||Dg||∞,∞ ≤ smax, (1)

where L is the loss function; MD ∈ RnM ×3 is the target

(Desired) magnetization pattern (a 3-dimensional magnetiza-

tion vector at each spatial location); MT ∈ R
nM ×3 is the

magnetization at the end of the pulse (time T ) obtained by

integrating the Bloch equation; f is the excitation error metric

(e.g., a common choice is least-square error of transverse

magnetization, i.e., kMT [:, 1:2] − MD [:, 1:2]k2
F ); and R is

an optional regularizer with weight λ (a common choice is

R = kbk2
2 to control peak RF amplitudes and SAR indirectly).

For the constraints, we have bmax, gmax, and smax for peak RF,

gradient, and slew rate, respectively; D ∈ RnT ×nT is the

temporal difference matrix divided by δt , i.e., Dg takes the

1st order temporal derivative of g and yields the slew rate;

1Open sourced, github.com/tianrluo/AutoDiffPulses.

and k · k∞, and k · k∞,∞ are entry-wise norm returning the

largest absolute value of the operand elements.

Problem (1) is challenging for two main reasons: First,

the objective is non-convex with respect to its arguments, and

is constrained. Second, neither MT (g, b), nor its Jacobians

∂MT /∂g and ∂MT /∂b that would be needed to directly mini-

mize (1), have an explicit expression in g and b. To the best of

our knowledge, existing methods all deal with simplifications

of problem (1) based on, e.g., the small-tip, or spin domain

models. In this work, we minimize (1) directly, and assume

only that the temporal integration of the Bloch equation is

well-approximated by a discrete-time Bloch simulator.

B. Auto-Differentiation

We propose to compute the necessary derivatives2 using

auto-differentiation [17], such that problem (1) can be opti-

mized for arbitrary error metric f and regularization R.

Auto-differentiation tools, e.g., PyTorch [15], decouples com-

putations into stages, and constructs the Jacobian operations

at each stage. These single-stage Jacobians are eventually

combined using the chain rule. For instance, with a PyTorch

based Bloch simulator that computes MT (g, b), one implicitly

obtains ∂MT /∂g and ∂MT /∂b. The loss derivatives with

respect to the variables we wish to optimize, i.e., ∂L/∂g, and

∂L/∂b, can then be obtained by combining these expressions

with ∂L/∂MT . This approach allows us to directly optimize

g and b with respect to arbitrary losses.

C. Explicit Jacobian Operations

Auto-differentiation tools provide implicit Jacobian opera-

tions (also known as the default backward operations in auto-

differentiation context) formed from tracking all elementary

computations (e.g., addition, multiplication, etc). Such tools

also allow users to substitute default Jacobian operations with

their own implementations. In practice, such explicitly imple-

mented Jacobian operations can be more efficient both com-

putationally and memory-wise. Bloch simulation is typically

the most computationally expensive stage in relating pulse

waveforms to objective costs. Having explicit Jacobians of the

Bloch simulator can therefore accelerate the computation.

To derive discrete time (δt ) explicit Jacobians in the rotating

frame, for all magnetic spins, we assume equilibrium spin

magnitudes of 1, relaxation constants e1 := exp(−δt/T1),
e2 := exp(−δt/T2), and gyromagnetic ratio γ . At time t ,

the rotating frame effective magnetic field (B-effective), Bt ∈

R
3, causes the magnetic spin state mt ∈ R

3, to precess (rotate)

about an axis ut := Bt/kBtk2 by angle φt := −γ δtkBtk2. One

iteration of discrete time Bloch simulation can be expressed

as:

mt+1 = E Rt mt + e, (2)

where E := diag([e2, e2, e1]), e := [0, 0, 1 − e1]
T model

the relaxations; Rt = cos(φt )I + (1 − cos(φt ))ut u
T
t +

sin(φt )[ut ]× models the rotation; I is the 3D identity matrix,

diag([1, 1, 1]); and [ut ]× denotes the cross product matrix of

ut , i.e., [ut ]×mt = ut ×mt . The rotation matrix Rt is spatially

dependent, as it accounts for B-effective which incorporates

2Or Clarke generalized subdifferentials for non-smooth objectives [16].
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applied gradients, off-resonance, etc. Relaxation terms, as they

depend on the underlying tissue property, are generally also

spatially dependent. To avoid notation clutter, we have not

indicated those spatial dependencies in Eq. (2); rather, Eq. (2)

can be considered to hold for a single spin isochromat, with

the appropriate Rt and relaxation terms for that isochromat.

One can verify the following recursive expressions for

partial derivatives of the loss with respect to mt and Bt :

∂ L

∂ mt

= RT
t E

∂ L

∂ mt+1
=: ht ,

∂ L

∂ Bt

= γ δt/φt (ut u
T
t − I )

∂ L

∂ ut

− γ δt
∂ L

∂ φt

ut ,

∂ L

∂ ut

= φt

(

ct (mt u
T
t + mT

t ut I ) + st [mt ]×

)

Eht+1,

∂ L

∂ φt

= ([ut ]× Rt mt )
T Eht+1, (3)

where ct := (1 − cos(φt ))/φt , st := sin(φt )/φt . Given

∂ Bt/∂gt and ∂ Bt/∂bt (which are easy to compute), we obtain

the necessary derivatives for the joint optimization by the chain

rule:

∂ L

∂ gt

=
∂ L

∂ Bt

·
∂ Bt

∂ gt

,
∂ L

∂ bt

=
∂ L

∂ Bt

·
∂ Bt

∂ bt

.

Using the explicit Jacobians in (3) for the Bloch simulator

operations halved both the computation time and memory use

compared to the default implicit Jacobian operations provided

by PyTorch (v1.3).

The remaining Jacobians, such as ∂L/∂MT , ∂ Bt/∂bt , and

∂ Bt/∂gt , typically do not involve complicated computations.

Also, they can vary with different objectives, e.g., switching

from LS to MLS; or with different excitation settings, e.g.,

uniform vs non-uniform transmit sensitivities. For program

generality, we left these remaining Jacobians to be obtained

implicitly by the auto-differentiation framework.

D. Constraints

Constrained optimization often requires extra effort to

ensure solution feasibility, such as feasible set projection and

constraint substitution with penalizations. This would involve

crafting projection algorithms, and tuning penalty parameters.

For problem (1), in the absence of convexity, we use a

change of variables [18], [19] that converts the problem into

an effectively unconstrained one and avoids such extra effort

during optimization.

Let s ∈ RnT ×3 denote the slew rate, i.e., s = Dg. Define

s̃ = tan(π/2 · s/smax); ρ̃ := tan(π/2 · |b|/bmax), θ := 6 b.

We automatically have ||b||∞ ≤ bmax and ||s||∞,∞ ≤ smax

always satisfied (Fig. 1). Thus, we reformulate problem (1)

as:

arg min
s̃∈RnT ×3; ρ̃, θ∈RnT

L := f (MT (g, b), MD) + λR

s. t. ||g||∞,∞ ≤ gmax

Dg = 2smax/π · tan−1(s̃)

b = 2bmax/π · exp(ιθ) tan−1(ρ̃). (4)

In practice, for change of variable, tan−1 can be replaced

with any other strictly monotone function, e.g., sigmoid, that

maps an unconstrained domain to an interval.

Fig. 1. Turning constrained slew rate s into unconstrained s̃, by change
of variable tan−1.

Empirically, for 3D tailored pulse design, we observe

that, with extended kt-points initializations [12], gradient

amplitudes are well below typical max gradient constraints

((5 G cm−1) prior to and throughout the optimization proce-

dure. Hence, while problem (4) is still constrained formally,

its max gradient is practically inactive. We thus treated it as

an unconstrained problem for the results shown in this paper.

E. Optimization Algorithm

We select initial waveforms g and b that satisfy the

constraints. To minimize (4), we alternatingly update ρ̃, θ ,

and s̃, as shown in Algorithm 1. This alternating strategy is

commonly used in existing joint design approaches [7], [12],

and helps reduce the problem size for the L-BFGS algorithm

used in updating the pulse. With auto-differentiation, the opti-

mization algorithm can be formulated without reference to

the specific loss function, as demonstrated with very different

design problems in section III. We use the L-BFGS optimizer

provided by PyTorch for updating the variables within an

iteration. The number of iterations may depend on pulse

initializations. We empirically choose N = 10 for experiments

in this work. This choice can vary with applications.

Algorithm 1 Alternating Minimization

1: Inputs: Variables: g, b; Number of iterations: N

2: Compute ρ̃, θ and s̃ from g, b

3: for n = 1 to N do

4: Fix s̃; Optimize ρ̃, θ , using L-BFGS

5: Fix ρ̃, θ ; Optimize s̃, using L-BFGS

6: end for

7: Compute g and b, from ρ̃, θ and s̃

8: return g, b

III. METHODS

To demonstrate the utility and generality of our approach,

we designed two different kinds of 3D tailored pulses: outer-

volume (OV) saturation, and inner-volume (IV) inversion.

A. 3D Outer-Volume Saturation Pulse Design

Outer-volume saturation pulses can be used to limit the

imaging field of view (FOV), and hence has the potential

to reduce both the time needed for data acquisition as well

as motion artifacts from, e.g., the chest wall or abdomen in

body imaging applications [20]–[22]. OV saturation pulses

should ideally have a high flip angle in the OV region

(e.g., 90 degrees), while leaving the IV unperturbed. These

pulses are typically followed immediately by a gradient

crusher. Since the phase of OV magnetization prior to the
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crusher is unimportant, we use MLS loss in design, and include

a regularization term on RF power to indirectly control SAR

as well as to demonstrate the generality of our approach:

L90 = |||MT [:, 1:2]| − |MD[:, 1:2]|||22 + λ||b||22, (5)

where, |M[:, 1:2]| := abs(M[:, 1]+ ιM[:, 2]), is a vector func-

tion computing magnitudes of spin transverse magnetizations.

For the target excitation profile, we set rows in MD to [1, 0, 0]

for OV spins, and [0, 0, 1] for IV spins. We implemented this

loss in PyTorch to obtain the Jacobian ∂L90/∂MT as described

in the Theory section.

In principle, small-tip based 3D tailored design approaches

can also be applied to this loss by scaling the designed RF

pulse to attain the desired 90◦ flip (although the resulting

pulse may exceed peak RF limits). We therefore compare our

approach with the small-tip method in [12], starting with the

same initial b and g waveforms in both cases (initialized as

described in III-C).

B. Inner-Volume Inversion Pulse Design

Next we designed another type of excitation pulse that

is difficult to design using conventional approaches: an IV

inversion pulse. Such a pulse may be useful for, e.g., selective

inversion of arterial blood for flow territory mapping in

perfusion imaging. For this pulse we propose a very different

excitation loss based on the longitudinal magnetization:

L180 = kMT [:, 3] − MD[:, 3]k2
2 + λkbk2

2. (6)

We set rows in MD to [0, 0, 1] for OV spins, and [0, 0,−1]

for IV spins. We also implement this loss in PyTorch.

C. Pulse Initializations

The loss in problem (4) is non-convex, and the choice of

initial g and b waveforms influences the final excitation result.

How best to initialize these waveforms is an open problem.

In [12], the initialization problem (in the context of small-

tip 3D tailored excitation) was addressed by evaluating two

popular choices for the excitation k-space trajectory, stack-

of-spirals and SPINS [11], along with a novel alternative

approach, “extended kt-points”, that chooses gradients based

on the desired (target) excitation pattern. Sun et al. showed that

the extended kt-points approach produces comparable or better

excitation accuracy than stack-of-spirals or SPINS [12], so we

chose it for the experiments in this work.

Once the gradients were initialized in this way, we initial-

ized b using the approach in [23]. These initial RF waveforms

were scaled down when necessary to satisfy the bmax con-

straint.

D. B-Effective Computation

The particular form of B-effective depends on the excitation

objective and other application-specific components. Besides

the RF and gradient waveforms, it often also contains an

off-resonance map (that may vary with time) and transmit

sensitivity maps. Other factors such as gradient non-linearity

can also be included in B-effective. For the single transmit

coil phantom studies in this work, B-effective accounts for

RF, gradient, and a static off-resonance map. Specifically,

TABLE I

PULSE DURATION AND TR/TE

at time t , let bt ∈ C and gt ∈ R
3 denote the instantaneous

RF and gradients, respectively. For position r relative to the

scanner iso-center, with off-resonance ω(r), the instantaneous

B-effective is:

Bt = [R(bt ),I(bt ), hgt , ri + ω(r)/γ ], (7)

where R and I extract the real and imaginary component,

respectively.

E. Phantom Experiments

We performed validation experiments in an Agar phantom

on a GE MR750 3T scanner. Fig. 2 illustrates the experimen-

tal setup, including the prescribed IV and OV regions. All

experiments used the same observed off-resonance map in the

pulse design (Fig. 2). We used T1 = 1.47 s, T2 = 70 ms in the

Bloch simulation during designs. For all studies, we conducted

the 3D design on a 32 × 32 × 20 voxel grid of FOV

24 × 24 × 24 cm; with RF power weighting coefficient

λ = 4, and constraints: bmax = 0.25 G, gmax = 5 G cm−1,

smax = 12 G cm−1 ms−1. We quantified excitation perfor-

mance in simulations with normalized root mean squared

error (NRMSE). Spins in “don’t care” regions (Fig. 2) were

excluded when calculating the NRMSE. We ran our design

programs on an NVidia 2080 Ti graphics card. With the

settings above, our method uses around 1.1 GB GPU RAM

for all 3 designs. This includes the intrinsic GPU RAM usage

of the PyTorch environment.

We performed three different experiments: 1. OV 90◦ exci-

tation using the cuboid target pattern shown in Fig. 2 (OV90);

2. IV inversion using that same cuboid target pattern (IV180);

and 3. IV inversion with a block-M target pattern (IV180M).

The experiments were implemented using a vendor-agnostic

platform for rapid prototyping of MR pulse sequences

[24], [25]. IV dimensions were 9 × 9 × 4.8 cm3 and 9 ×

12.8 × 4.8 cm3 for the cuboid and block-M target patterns,

respectively. We used a single channel transmit/receive bird-

cage coil for all experiments and assumed uniform RF transmit

sensitivity during pulse design. To mitigate Gibbs ringing

artifacts, we acquired the phantom images at a matrix size of

120 × 120 × 48 and then downsized in image space to match

the design grid size 32 × 32 × 20.

We used long TR to wait for spin full recovery from satura-

tion and inversion. For the OV90 experiment, as a substantial

volume of the phantom is excited with large angle, we used

TE = 15 ms to intentionally decay signal intensity and avoid

saturating amplifiers in signal receiver during acquisition. We

use minimum TE for the inversion experiments.

For inversion performance validation, we use the sequence

in Fig. 3 to obtain both phase and magnitude phantom

images, with tip-down angle set to 10◦. We expect a π phase

difference between inverted (IV) non-inverted (OV) regions,
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Fig. 2. Experimental phantom, and the two target patterns (IV/OV divisions) used in our experiments. Top left: Magnitude image of the uniform Agar
phantom. Top right: Observed field map, used in the pulse design to account for B0 inhomogeneity. A conservative mask that is 1-voxel-wide larger
than the phantom support was used to ensure that the phantom boundary was included in the design. This expanded mask is the likely cause for the
relatively large B0 values in some pixels at the edge of the mask (that are likely just outside the phantom). Bottom: Cuboid (left) and “block-M” (right)
target patterns. We prescribed a “don’t care” (region with arrows) at the boundary between the IV and OV regions that is excluded when calculating
the design loss. For the cuboid pattern, the don’t care region included the entire 3D IV/OV boundary, whereas for the block-M pattern, only the top
and bottom slices (slices 6 and 11; slice numbers increase left-to-right and top-to-bottom) were included due to the low in-plane spatial resolution
of the design grid.

Fig. 3. Schematic diagram of the imaging sequence used to characterize
(validate) the 3D tailored inversion pulses.

as the excitation pulse should tip inverted and non-inverted

spins in opposite directions. In addition to the IV180 and

IV180M excitation pulses, we imaged the phantom using the

same sequence settings (TE/TR, flip angle, matrix size) using

a conventional slab-selective Shinnar-Le Roux (SLR) pulse.

We normalized the inversion images using this “non-inversion”

image to eliminate receive coil sensitivity weighting (both

magnitude and phase) in the inversion images. For complete-

ness, the unnormalized images are shown in supplemental

materials (Fig. S5).

IV. RESULTS

A. OV90

Figure 4 shows the OV saturation pulses obtained with the

proposed method and the small-tip approach in [12], and Fig. 5

shows the corresponding phantom imaging results. To keep the

small-tip RF pulse within peak amplitude limits, we applied

VERSE [26] near the end of the pulse. Our approach required

10 min for design, longer than the small-tip approach (2 min).

While the RF waveforms differ markedly, the (excitation)

k-space trajectories are more similar, though differences are

clearly observed in the 3D trajectory plot (Fig. 4).

We observe excellent agreement between simulated and

acquired excitation patterns (Fig. 5). Also, the proposed

method produces much lower excitation error than the small-

tip design (46% lower NRMSE error overall); this is expected

as the small-tip assumption is violated after scaling the RF to

attain the desired 90◦ flip angle in the OV, which reduces the

error in the OV at the expense of increased error in the IV.

B. IV180

Fig. 6 shows the results of the cuboid IV inversion exper-

iment. Pulse waveforms and images from simulation and

phantom experiments are shown. Pulse design took 6 min.

Simulations and acquired images are in excellent agreement,

and indicate successful inversion within the IV with errors

mainly located at the IV/OV boundary as expected. In par-

ticular, we observe dark bands along the IV/OV boundary

in the magnitude image. Spins in this region are not fully

inverted, resulting in low signal intensities in the magnitude

image. The phase image shows an abrupt π transition at the

IV/OV boundary, indicating successful IV inversion.

C. IV180M

Fig. 7 shows the results of the block-M IV inversion exper-

iment. Pulse design took 6 min. Slew rates are near the limit,

similar to the IV180 experiment. Simulation and acquired
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Fig. 4. OV saturation pulses for the cuboid IV (Fig. 2), designed with our approach (Proposed) and the small-tip method in [12] (experiment
OV90). The left panel shows the 3D k-space trajectories and their orthogonal projections: The two trajectories explore largely overlapping regions
in excitation k-space. The right two panels show RF, gradient, and slew rate waveforms. Both designs satisfy the constraints, but for the small-tip
design it was necessary to apply the VERSE [26] algorithm near the end of the pulse (see Discussion). Gradient peak amplitudes remain quite small
(� 5 G cm−1), whereas the gradient slew rates are frequently near their limit.

Fig. 5. Experimental validation of the pulses shown in Fig. 4. The left panel shows the error map from simulation. Our approach has much smaller
(−46%) NRMSE in simulation compared to Small-Tip. Acquired results (right) agree with the simulations (middle). Small-Tip approach has larger
error inside the IV: This is expected, as the method produces only small-tip pulses, that we then scaled to meet the large-tip objective. The scaling
increases excitation error inside IV while reducing error in the OV. Our approach directly designs large-tip pulses without this type of ‘scaling’ error.

images again indicate successful inversion. The NRMSE is

larger than in the IV180 experiment, suggesting a trade-

off between geometry complexity and excitation accuracy.

Excitation error is largest near the in-plane edge of the block-

M, where target Mz changes sharply from 1 to −1. We again

observe dark bands along the IV/OV boundary, and an abrupt

phase change across that boundary, as expected.

V. DISCUSSION

We have demonstrated a new approach to joint multi-

dimensional excitation pulse design that directly optimizes

both RF and gradient waveforms. Our approach is not limited

to small-tip design problems, and is compatible with quite

general loss/design functions such as those that involve lon-

gitudinal and/or magnitude magnetization. We validated our

approach with 3D tailored large-tip objectives. For this type

of application, the “extended kt-points” small-tip initializa-

tion [12] led to excellent large-tip results.

We chose to implement our auto-differentiable Bloch sim-

ulator with B-effective as its input for its generality: one

can possibly prepend to it arbitrary functions that compute

B-effective from various parameters, such as multi-coil parallel
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Fig. 6. IV inversion results for the cuboid IV pattern (Experiment IV180). As desired, the 4.2ms pulse satisfies all constraints. The gradient waveform
is again far from its peak constraint of 5G cm−1 . Compared to the OV90 experiment, the pulse has more extreme slew rate waveforms. The acquired
magnitude and phase (i.e., the “observed inversion”) were obtained with the sequence in Fig. 3. We observe good agreement between simulated
and acquired inversion patterns. The designed pulse successfully inverts the IV, as indicated by similar magnitude image intensity in the IV and OV
regions (apart from transmit/receive coil shading) and a π phase shift across the IV/OV boundary. The dark bands in the acquired images at the
IV/OV boundary are due to spin saturation from incomplete inversion (and overlap substantially with the prescribed “don’t care” region).

transmit (pTx) sensitivities, spin movements, and even non-

linear response of gradient amplifiers, gradient delays, etc.

This choice that favors generality may require more memory

than software designs that take RF and gradients as inputs

directly, and may require more expensive hardware with

adequate memory for high-dimensional design problems. In

particular, an interface that uses RF, gradient and spin location

inputs requires a memory size proportional to (NT + NT ×3+

NM ×3), whereas our interface requires memory proportional

to (NM ×3× NT + NM ×3). Our implementation can find use
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Fig. 7. IV inversion results for the block-M target pattern (Experiment IV180M). The 4.5ms pulse satisfies all constraints. The gradient waveforms
are again well below the peak amplitude constraint of 5 G cm−1, and slew rates are near the constraint for significant portions of the waveform
duration. As in Fig. 6, the pulse successfully inverts the IV. The dark bands in the acquired magnitude image at the IV/OV boundary are due to
saturation effects arising from the finite resolution (excitation k-space extent) of the pulse – even though only slices 6 and 11 were included in the
“don’t care” region in the design due to the low in-plane spatial resolution of the design grid (see Fig. 2).

in different scenarios for proof-of-principle designs that one

could then follow by customized simulators that meet specific

computational requirements.

For the Bloch simulator, one may alternatively consider

using the hard pulse approximation, which splits the instan-

taneous rotation matrix Rt into two rotations: RF rotation,

and transversal rotation due to the applied gradients and

off-resonance. The hard pulse approximation is the basis

for the SLR pulse design algorithm, and is crucial for the

development of that algorithm. In our case, however, such

splitting actually increases the number of elementary computa-

tions: when multiplying a vector, RF and transversal rotations

require 9 and 4 multiplications, respectively, while direct

multiplication by Rt requires only 9. We therefore believe that
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the hard pulse approximation does not confer any particular

advantages on our approach.

Apart from the explicit Jacobians introduced here, additional

steps may be taken to reduce computation time. Computation

time is primarily determined by pulse length, and not on the

grid size (number of voxels) since computations are done

voxel-wise and can be easily parallelized to within GPU RAM

limits. Apart from increasing the simulation expense, longer

pulses may also slow down Algorithm 1, since we used L-

BFGS for updating RF and gradients. In the future, to shorten

the optimization time for online pulse design tasks, it may

be helpful to use coarser δt in the Bloch simulation [27]

(here we used 4µs to match our scanner’s hardware dwell

time), or parameterize the gradient waveforms to reduce the

optimization problem size (e.g., using B-splines as in [12]).

For the experiments presented, we used voxel resolution

7.5 × 7.5 × 12 mm3 and grid size 32 × 32 × 20 for the

pulse design. For more complex target excitation patterns

and/or a larger FOV (e.g., as in the ISMRM parallel transmit

pulse design challenge [28]), it may be desirable to increase

the spatial resolution (maximum extent in excitation k-space)

and/or grid size for finer excitation accuracy control. For

instance, with a larger grid size, we would have space for

in-plane “don’t care” region for the IV180M experiment,

which may help reduce excitation error. A larger grid size

will increase the memory usage in simulation, for which the

use of multiple graphics cards may be needed to parallelize

simulations across voxels.

In the OV90 experiment (Figs. 4–5), we were able to apply

VERSE [26], [29] to the pulse designed with the small-

tip approach [12] to avoid violating the RF amplitude limit

(after scaling to attain 90◦ flip angle in the OV). However,

this adjustment was possible only because the 6.5 ms pulse

happened to exceed peak RF only near the end of the pulse,

allowing us to apply the VERSE strategy in a relatively

straightforward way. In the more general case, where peak

RF is exceeded during the middle of the pulse, it is more

difficult to apply the VERSE technique to 3D RF pulses

such as those designed here. We found empirically that in

the OV90 experiment, shorter pulses designed with the small-

tip approach tended to exceed peak RF during one or more

intermediate intervals (after scaling), and that we were there-

fore unable to carry out an effective experimental evaluation

for the purposes of the comparison presented here (Figs. 4–5).

The proposed approach avoids this difficulty because peak RF

is constrained as described in II-D; our approach was in fact

able to design a shorter (4 ms) OV saturation pulse with the

same excitation error as in Fig. 5 (not shown). In future work,

a design approach that integrates VERSE into our method

may be useful to further shorten a pulse for a given excitation

objective.

Pulse design problems are in general non-convex in terms

of b and g. Due to a lack of theoretical tools for non-

convex problem convergence analysis, it is unclear how to best

design an optimization algorithm for such problems a priori.

In Algorithm 1, instead of simultaneously updating both RF

and gradient waveforms, we chose to update them alternatingly

as often done in existing small-tip joint designs [2], [7],

[12], [30]. In supplemental Figs. S6-S7, we compared the

alternating scheme with the simultaneous scheme, and found

empirically that the alternating scheme optimizes faster than

the simultaneous scheme for the specific problem settings we

have in this work. Unfortunately, the non-convexity prevents

us from fully comprehending this behavior, and we make no

claims that the alternating approach used here is optimal over

the many possible alternatives. Iteration stopping criteria for

updating b and g are also commonly chosen ad hoc. Besides

limiting the maximum number of iterations as we have done in

Algorithm 1, another option can be setting a threshold to assert

large-enough loss decreases and/or updates of the variables at

each iteration. However, due to the tan−1 change of variables,

a minuscule update of b and s near their limits will be mapped

to a vast difference in the optimization variables ρ̃ and s̃,

respectively. As an alternative to the updates of variables, one

can threshold the norms of variable derivatives, or the change

of b and s as the iteration stopping criteria.

Our approach may remind readers of optimal control (OC)

based pulse design methods [31], [32]. Comparing the

OC formulation with our approach, we can make the following

observations (ignoring the penalization and relaxation terms):

Eq. (2) is the forward propagation of spin states in OC

(state equation); the first identity in Eq. (3) is the backward

propagation of OC Lagrange multiplier (costate equation);

the second identity in Eq. (3) is the derivative for iteratively

optimizing B-effective as the control. Being one step in the

computation of excitation losses, our auto-differentiable Bloch

simulator enables reusing the forward and backward iterations

regardless of the actual design loss function chosen, and

propagating the derivatives to the actual controls, i.e., the

RF and gradient waveforms. In future works, it may be

beneficial to employ tools from control research. For instance,

optimization algorithms from OC may accelerate or replace

algorithm 1.

Like many other pulse design works [2], [7], [12], [30],

the experiments we presented in this work assumes that the

off-resonance map is known. We have not attempted to enforce

robustness to unknown off-resonance patterns, however the

auto-differentiation nature of this work allows incorporating

such robustness into the loss as an error metric or regulariza-

tion for the joint design. In particular, noting the relation of our

tool to the control framework, we anticipate that incorporation

of robust control methods can improve robustness to off-

resonance errors.

A major advantage of our approach is that it enables designs

involving arbitrary loss functions, enabling novel design for-

mulations that have so far not been tractable. For example,

we demonstrated in (6) a loss involving only longitudinal

magnetization. Other possibilities may include the addition of

constraints or regularization terms involving specific absorp-

tion rate (SAR) or peripheral nerve stimulation (PNS). Another

important feature is that the method back-propagates deriv-

atives throughout the Bloch simulator, which may facilitate

development of neural network based pulse design approaches.

A limitation of our method is that it only works for fixed

pulse length, as determined by the initial waveforms. As shown

in the pulse plots in Figs. 4, 6, and 7, there are temporal

intervals where neither the RF, gradients, nor slew rates are

hitting their constraints. This may suggest that the pulses can

be shortened without sacrificing excitation accuracy. Pulse

shortening can be formed as a minimum-time pulse design

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 03,2021 at 02:58:48 UTC from IEEE Xplore.  Restrictions apply. 



3314 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 12, DECEMBER 2021

problem [31] in the OC context. Noting the relation of our

method to the OC approach, for future work, we expect

employing existing OC tools to be helpful in overcoming the

fixed length limitation.

VI. CONCLUSION

In this work, we have proposed a novel approach based

on auto-differentiation tools for the joint design of RF and

gradient waveforms, and validated it with multi-dimensional

spatially tailored excitation tasks in MRI. Using short (<5 ms)

excitation pulses and single (body) coil RF transmission,

we demonstrated experimentally that even a fairly complex

3D spatial pattern (block-M) can be selectively inverted. Our

method is not limited to specific design objectives. To reduce

computation time and memory requirements, we derived

explicit Jacobians for the Bloch simulator, as the simulation

steps are typically the most computationally demanding. We

used a change of variables to enforce hardware limits, enabling

use of simpler unconstrained optimization. We anticipate that

the proposed method will be useful for a broad range of

excitation pulse design problems in MRI.
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Supporting Information: Joint Design of RF and gradient waveforms
via auto-differentiation for 3D tailored excitation in MRI

Tianrui Luo, Douglas C. Noll, Jeffrey A. Fessler, Jon-Fredrik Nielsen

I. ADDITIONAL SIMULATION RESULTS

For completeness, we present here both the initial pulses

designed as described in III-C in the main text, and the

corresponding optimized pulses obtained with the proposed

approach. In the case of OV90, we also include the small-tip

pulse. In each case, we show the simulated excitation pattern

for each pulse.

In addition to IV90, IV180, IV180M, we include here

a cuboid IV inversion pulse based on the B0 field map

acquired in the brain of a healthy volunteer. This is done to

demonstrate the feasibility of designing an IV inversion pulse

with the proposed approach using a more realistic B0 map

than that shown in Fig. 3. In addition, for that simulation

experiment we compare the optimized pulse with a pulse

obtained by only optimizing the RF waveform, i.e., keeping

the gradient waveforms fixed at their initial shapes. This is

done to assess the relative importance of also optimizing the

gradient waveforms.

The key takeaways from these figures are: (1) The excitation

patterns produced by the initial pulses are substantially inferior

to the optimized patterns. (2) The initial and optimized exci-

tation k-space trajectories tend to be similar, suggesting that

a local minimum is obtained. (3) The initial and optimized

RF waveforms (amplitude and phase), on the other hand,

differ markedly from each other, suggesting relatively weak

dependence on initial RF waveform. This may be due to the

fact that each RF sample can be optimized independently of

the other samples, unlike gradient waveforms that are subject

to slew rate constraints. (4) Despite the similarity between

the initial and optimized gradient waveforms, the optimized

waveforms produce a more accurate excitation than the pulse

obtained by optimizing only the RF waveform (Fig. S4).

A. OV90

B. IV180

C. IV180M

D. Brain Simulation

II. UNNORMALIZED INVERSION IMAGES

In Fig. S5, we show the unnormalized images for the 3D

spatially tailored inversion experiments (IV180, IV180M). In

the main text, we normalized the “Cuboidal” and “Block-M”

images by element-wise division by the “No Inversion” image,

which eliminates the image intensity and phase variations due

to receiver coil sensitivity.

III. ALTERNATING VS SIMULTANEOUS MINIMIZATION

Here we compare the alternating optimization used in the

main text with a simultaneous update scheme that optimizes b

(RF waveform) and g (the three gradient waveforms) together

at each iteration rather than fixing one and optimizing the

other. We observe empirically that for the L90 and L180 losses

defined in the main text, with extended kt-points initializations,

the alternating update decreases the design losses faster than

the simultaneous update. However, the two objectives are

both non-convex in terms of b and g, which makes this

behavior difficult to analyze. We therefore cannot claim that

this alternating scheme will outperform simultaneous updates

in the general case (i.e., for all other design problems).

IV. IMPACT OF A SMALL GRADIENT DELAY

On modern MRI scanners, the physically realized gradient

waveforms are typically slightly misaligned in time relative

to the RF waveform, even after the vendor’s built-in gradient

delay correction is applied. This delay is on the order of the

gradient sampling (dwell, or raster) time, which on our scanner

is 4 µs. To assess robustness against such delays, we simulated

the excitation produced by the OV90 and IV180 pulses for

delays of 4 µs and −4 µs. As shown in Fig. S8, such delays led

to excitation patterns that are visually nearly indistinguishable

from the original patterns with no delay, and degraded the

performance of our designed pulses by less than 1 percentage

point in NRMSE.

V. IMPACT OF INCORRECT OFF-RESONANCE

Motion or respiratory effects can cause mismatch between

the acquired and actual off-resonance patterns. To assess

robustness against such mismatch, we simulated the excitation

produced by the same OV90 and IV180 pulses under different

off-resonance maps: (i) the acquired off-resonance map, and

(ii) the acquired off-resonance map scaled by a multiplicative

factor of 3. As shown in Fig. S9, such mismatch led to a

very similar excited patterns with about 1 percentage point

increases in NRMSE.
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Fig. S2. Cuboid IV inversion (experiment IV180 in the main manuscript). The lower left panel compares the RF waveforms of the initial and optimized
(Proposed) pulses. The lower right panel compares the k-space trajectories of the two pulses.
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Fig. S3. Block-M IV inversion pulse (experiment IV180M in the main manuscript). The lower left panel compares the RF waveforms of the initial
and optimized (Proposed) pulses. The lower right panel compares the k-space trajectories of the two pulses.
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Fig. S4. Cuboid IV inversion based on a B0 (off-resonance) map obtained in a volunteer. Three pulses are compared: (1) Initial, (2) ’RF Only’,
obtained by keeping the gradients fixed at their initial shapes and optimizing only the RF waveform with the proposed auto-differentiation approach,
and (3) the proposed jointly optimized pulse. While our optimized k-space trajectory is similar to the initial k-space trajectory, the jointly optimized
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also reflected in the convergence (L180 loss history) plot.
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Fig. S6. Comparison of alternating (Alter.) and Simultaneous (Simul.) minimization. The two approaches find similar but different local minima
according to the RF and k-space plots (Left Panel). On the Top Right, the loss for the first 40 iterations is plotted. The computation time for each
iteration is slightly longer for the simultaneous L-BFGS updates. The simultaneous updating scheme converges slightly slower, while the eventual
excitation performance of the two schemes is comparable (Lower Right).
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Fig. S7. Same comparison as in Fig. S6, for the IV180 design. The simultaneous approach attains a slightly better inversion, but ends with a higher
loss value (likely due to the RF power penalization term).
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Fig. S8. Simulated excitation performances of our designed OV90 and IV180 pulses under different delays of the applied gradient fields.

-1

0

1

0

0.04

0.08

0.12

0.16

0.2

O
V
9
0
	E
r
ro
r
	M
a
p

O
V
9
0
	|M

x
y
|

0

0.2

0.4

0.6

0.8

1

-0.2

-0.1

0

0.1

0.2

NRMSE: 0.045 NRMSE: 0.057

NRMSE: 0.075 NRMSE: 0.081

IV
1
8
0
	E
r
ro
r
	M
a
p

IV
1
8
0
	M

z

With	Acquired	B0-Map With	3x	Scaled	B0-Map

-80

-40

0

40

-80

-40

0

40

Acquired	B0-Map	(Hz)

3x	Scaled	B0-Map	(Hz)

Fig. S9. Simulated excitation performances of our designed OV90 and IV180 pulses under different off-resonance maps.
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