
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 11, NOVEMBER 2021 3113

Blind Primed Supervised (BLIPS) Learning
for MR Image Reconstruction

Anish Lahiri , Member, IEEE, Guanhua Wang , Student Member, IEEE,

Saiprasad Ravishankar , Senior Member, IEEE, and Jeffrey A. Fessler , Fellow, IEEE

Abstract— This paper examines a combined supervised-
unsupervised framework involving dictionary-based blind
learning and deep supervised learning for MR image recon-
struction from under-sampled k-space data. A major focus
of the work is to investigate the possible synergy of learned
features in traditionalshallowreconstructionusing adaptive
sparsity-based priors and deep prior-based reconstruction.
Specifically, we propose a framework that uses an unrolled
network to refine a blind dictionary learning-based recon-
struction. We compare the proposed method with strictly
superviseddeep learning-basedreconstructionapproaches
on several datasets of varying sizes and anatomies. We also
compare the proposed method to alternative approaches
for combining dictionary-based methods with supervised
learning in MR image reconstruction. The improvements
yielded by the proposed framework suggest that the blind
dictionary-basedapproachpreserves fine image details that
the supervised approach can iteratively refine, suggesting
that the features learned using the two methods are com-
plementary.

Index Terms— Magnetic resonance image reconstruc-
tion, deep learning, dictionary learning, inverse problems,
unrolled neural networks, sparse representations.

I. INTRODUCTION

R
ECONSTRUCTION of images from limited measure-

ments requires solving an ill-posed inverse problem.

In such problems, additional regularization is typically used.

Often, such regularization reflects ‘prior’ knowledge about the

class of images being reconstructed. Traditional regularizers

exploit the sparsity of images in some domains [1], [2], or low-

rankness [3], [4]. Compared to using a fixed regularizer, such

as total variation (TV) or wavelet sparsity-based regularization,
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data-driven or adaptive regularization has proven to be very

beneficial in several applications [5]–[10]. In this form of

reconstruction, one or more components of the regularizer,

such as a dictionary or sparsifying transform, are learned

from data adaptively, rather than being fixed to mathematical

models like the discrete cosine transform (DCT) or wavelets.

In particular, methods that exploit the sparsity of image

patches in a learned transform domain or express image

patches as a sparse linear combination of learned dictionary

atoms have found widespread use in regularized MR image

reconstruction [11]–[15].

A subset of this class of adaptive reconstruction algo-

rithms relies only upon the measurements of the image being

reconstructed to learn dictionaries or transforms, and uses

no additional training data. These methods are dubbed blind

learning-based reconstruction algorithms or blind compressed-

sensing methods [16], [17]. One advantage of patch-based

dictionary-blind reconstruction algorithms is that they do not

require much (or any) training data to operate, and effectively

leverage unique patterns present in the underlying data.

With the success of deep-learning-based methods for com-

puter vision and natural language processing, there has

also been a rise in methods that use neural networks to

“regularize” (often in implicit manner) MRI reconstruction

problems [18]–[22]. Some works treat reconstruction as a

domain adaptation problem similar to style transfer and

in-painting [23]–[26]. Correspondingly, image refinement net-

works, such as the U-net [27], were adopted to correct the

aliasing artifacts of the under-sampled input images. Although

such CNN-based reconstruction methods achieved improved

results compared to compressed sensing (CS) based recon-

struction, the stability and interpretability of these models is

a concern [28].

Besides improvements through algorithms, another driving

force for supervised learning-based reconstruction is the cura-

tion of publicly available datasets for training. The availability

of pairwise training data owing to initiatives like [29], [30]

has further helped showcase the ability of deep learning-based

algorithms for extracting or representing image features, and

in learning richer models for image reconstruction in MR

applications. These methods, due to their reliance on pixel-

wise supervision perform exclusively supervised learning-

based reconstruction, barring a few exceptions [31], [32].

Consequently, due to the popularity and computational effi-

ciency of deep learning approaches across MRI applications,

there has been a rising trend of favoring deep supervised
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methods over shallower dictionary-based methods— perhaps

because the latter methods use “handcrafted” priors.

The rising popularity of supervised deep learning compared

to shallow blind-dictionary learning may be based on an

underlying assumption that the features learned using rel-

atively unrestricted supervised deep models subsume those

learned in a blind fashion, and other sparsity-based priors that

are deemed “handcrafted”. Though supervised deep-learned

regularization may allow for the learning of richer models in

reconstructing MR images, the aforementioned assumption is

largely untested. Moreover, deep CNNs often require relatively

large datasets to train well. This paper seeks to address these

issues.

This work studies the processes of blind learning-based

and supervised learning-based MRI reconstruction from under-

sampled data, and highlights the complementarity of the two

approaches by proposing a framework that combines the two

in a residual fashion. We implement and compare multiple

approaches for combining supervised and blind learning.

Our results indicate that supervised and dictionary-based

blind learning may learn complementary features, and com-

bining both frameworks using “BLInd Primed” Supervised

(BLIPS) learning can significantly improve reconstruction

quality. In particular, the combined reconstruction better pre-

serves fine higher-frequency details that are very important in

many clinical settings. We also find that this improvement from

combining blind and supervised learning is relatively robust to

changes in training dataset size, and across different imaging

protocols.

The rest of this paper is organized as follows. Section II

describes the blind and supervised learning-based approaches

and the proposed strategies for combining them. Section III

details the experiment settings, including datasets, hyper-

parameters, and control methods. Section IV presents the

results and Section V provides related discussion. Finally,

Section VI explains our conclusions and plans for future work.

II. PROBLEM SETUP AND ALGORITHMS

This work combines two modern approaches to MR image

reconstruction: dictionary-based blind learning reconstruction

and CNN-based supervised learning reconstruction. The for-

mer approach capitalizes on the sparsity of natural images in

an adaptive dictionary model. Usually, this method involves

expressing patches in the MR image as a linear combination

of a small subset of atoms or columns of a dictionary.

Across several applications, including MR image reconstruc-

tion, learned or adaptive dictionaries often provide better

representations of signals than fixed dictionaries. When these

dictionaries are learned from the image being reconstructed,

using no additional information, they are called blind, and can

be considered to be ‘tailored’ specifically to the reconstruction

at hand. Since individual image patches are approximated by

different atoms, overcomplete dictionaries are often preferred

for this approach because of their ability to provide richer

representations of data.

For supervised learning reconstruction, this paper uses

an unrolled network algorithm similar to the state-of-the-art

method MoDL [20], whose variants have achieved top perfor-

mance in recent open data-driven competitions in MR recon-

struction [18], [33]. As ‘unrolled’ implies, the method consists

of multiple iterations or blocks. In each iteration, a CNN-

based denoiser updates the image from the previous iteration.

A subsequent data-consistency update ensures the recon-

structed image is consistent with the acquired k-space

measurements. By incorporating CNNs into iterative recon-

struction, MoDL demonstrates improved reconstruction qual-

ity and stability compared to other direct inversion networks

on large public datasets [18].

Given a set of k-space measurements yc ∈ Cp, c =
1, . . . , Nc, from Nc coils with corresponding system matrices

Ac ∈ Cp×q , c = 1, . . . , Nc, this section reviews the proce-

dures of reconstruction using blind and supervised learning,

and then proposes a method for combining them, along with

a few special cases. We write the system matrix for the cth

coil as Ac = PFV c, where P ∈ {0, 1}p×q incorporates the

mask that describes the sampling pattern, F ∈ Cq×q is the

Fourier transform matrix and V c ∈ Cq×q is the cth coil-

sensitivity diagonal matrix, pre-computed from fully sampled

k-space using the E-SPIRiT algorithm [34].

A. Reconstruction Using Blind Dictionary Learning

Like most model-based regularized reconstruction appro-

aches, the blind sparsifying dictionary learning-based recon-

struction scheme solves for an image x that is consistent

with acquired measurements, and possesses properties that are

ascribed to the image (or a class of images). Mathematically,

the approach optimizes a cost function that balances a data-

fidelity term and a data-driven sparsity inspired regularization

term as follows [11]:

arg min
x

ν

Nc
∑

c=1

kAcx − yck2
2 + R(x), (1)

where ν > 0 reflects confidence in data fidelity and R(x) is

a regularizer that, in the case of synthesis dictionary-based

regularization, reflects the presumed sparsity of image patches

as follows:

R(x) = min
D,Z

N1
∑

j=1

kP j x − De jk2
2 + λ2ke j k0

s.t. kduk2 = 1 ∀ u, (2)

where P j extracts the j th
√

r × √
r overlapping patch of

an image as a vector, D ∈ Cr×U denotes an overcomplete

dicitionary, du its uth atom, e j the sparse codes for the j th

patch and the j th column of Z, and λ is the sparsity penalty

weight for dictionary learning, respectively.

A typical approach to solving this blind dictionary learning

reconstruction problem is to alternate between updating the

dictionary and sparse representation in (2) using the current

estimate of the image x, called dictionary learning, and

then updating the reconstructed image itself (image update)

through (1) using the current estimate of the regularizer

parameters [35]. This alternation between dictionary learning

and image update is repeated several times to obtain a clean
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reconstruction. Let Bi (·) denote the function representing

the i th iteration of this algorithm, and xi ∈ Cq be the

reconstructed image at the start of the iteration, then we have

xi+1 = Bi (xi ) = B
(

xi ; νi , λi , {Ac, yc}Nc

c=1

)

, (3)

where νi , λi denote regularization parameters at the i th itera-

tion for data fidelity and for dictionary learning, respectively.

After K iterations, we have,

xblind = xK =
(

K−1

♠
i=0

Bi

)

(x0), (4)

where ❤F
i=1 represents the composition of F functions fF ◦

fF−1◦. . .◦ f1, and x0 is an initial image, possibly a zero-filled

reconstruction.

In this work, we used a few iterations of the SOUP-DIL

algorithm [35] for the dictionary and sparse representation

update (or dictionary learning) in (2) and the conjugate gra-

dient method for the image update step. (See next section for

details.) We also denote blind learning reconstruction as B in

several figures and tables in subsequent sections.

In our comparisons, we also investigated a similar iterative

scheme as in (3), but the dictionary D in (2) is not learned

from data, and is instead fixed (e.g., to a discrete cosine

transform (DCT) or wavelet basis).

B. Reconstruction Using Supervised Learning

The supervised learning module (MoDL [20]) also aims to

solve (1). Introducing an auxiliary variable z, (1) becomes:

arg min
x,z

ν

Nc
∑

c=1

kAc x − yck2
2 + µkx − zk2

2 + R(z), (5)

where µ controls the consistency penalty between x and z.

MODL updates x and z in alternation. The z update is:

zl+1 = arg min
z

R(z) + µkxl − zk2
2. (6)

We replace the proximal operator in (6) with a residually

connected denoiser Dθ + I applied to xl , where I is the

identity mapping.

The x update involves a regularized least-squares minimiza-

tion problem:

xl = arg min
x

ν

Nc
∑

c=1

kAcx − yck2
2 + µkx − zlk2

2, (7)

solved via conjugate gradient method.

Similar to blind learning, the lth iteration of supervised

residual learning-based reconstruction algorithm can be writ-

ten:

xl+1 = Sθ
l (xl) = S

(

xl; νl , {Ac, yc}Nc

c=1

)

,

S
(

x̄; ν, {Ac, yc}Nc

c=1

)

� arg min
x

ν

Nc
∑

c=1

kAcx − yck2
2 + kx −

(

Dθ (x̄) + x̄
)

k2
2,

(8)

where x̄ denotes the input image for the residual learning-

based reconstruction algorithm. After L iterations, we have

xsupervised = xL =
(

L−1

♠
l=0

Sl
θ

)

(x0). (9)

The network parameters θ are learned in a supervised

manner so that xsupervised matches known ground truths

(e.g., in mean squared error or other metrics) on a training

data set. We also denote supervised learning reconstruction as

S in several figures and tables in subsequent sections.

C. Combining Blind and Supervised Reconstruction

Fig. 1 (P1) depicts our proposed BLIPS approach to com-

bining blind and supervised learning. The skipped connection

in the deep network enables the addition of the previous iterate

to the output of the denoiser during supervised reconstruction,

and ensures separation (the output of the residual denoiser

gets added to the blind image going into data consistency)

of the blind learned image and the supervised learned image

in the first iteration when the aforementioned algorithms are

combined. In subsequent iterations, this skipped connection

also causes the denoiser to learn residual features after the

combination of blind and supervised learning in the previous

iteration. The output of the full pipeline of our proposed

method Fig. 1 (P1) is:

(P1) x̂ =
(

L−1

♠
l=0

Sl
θ

K−1

♠
i=0

Bi

)

(x0) � Mθ (x0). (10)

We also refer to this pipeline as B+S in subsequent sections

and figures.

D. Training the Denoiser Network

The denoiser Dθ shares weights across iterations. To train it,

we use the output of our proposed pipeline (P1) in a combined

`1 and `2 norm training loss function as follows:

θ̂ = arg min
θ

N2
∑

n=1

Cβ(Mθ (x
(n)
0 ); x

(n)
true) = arg min

θ

N2
∑

n=1

(
∥

∥x
(n)
true − Mθ (x

(n)
0 )

∥

∥

2

2
+ β

∥

∥x
(n)
true − Mθ (x

(n)
0 )

∥

∥

1

)

,

where n indexes the training data consisting of target

images x
(n)
true reconstructed from fully sampled measurements

and corresponding undersampled k-space measurements, and

Cβ(x̂; xtrue) denotes the training loss function. The initial

x
(n)
0 are obtained from the undersampled k-space measure-

ments using a simple analytical reconstruction such as zero-

filling inverse FFT reconstruction. Our implementation used

β = 0.01 in (11), which was chosen empirically.

E. Direct Addition of Blind and Supervised Learning

A special case we investigate is when there is no residual

connection in (P1), and we add the blind reconstruction

output directly to the output of the supervised deep network

during the data consistency update, as described in (11) below.
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Fig. 1. Proposed pipelines (P1), (P2) and (P3) for combining blind and supervised learning-based MR image reconstruction.

Similar to (P1), the input to the supervised module is also the

blind reconstruction output. We express an iteration of such

an algorithm as follows:

xl+1 = S̃
l

θ (xl) = S̃
(

xl; xblind, νl , {Ac, yc}Nc

c=1

)

,

S̃(x; x0, ν, {Ac, yc}Nc

c=1)

= arg min
x̄

ν

Nc
∑

c=1

kAc x̄ − yck2
2 + kx̄ −

(

Dθ (x) + x0)k2
2,

(11)

where x0 = x0 is the initial input to the supervised module.

After L iterations, the reconstruction is:

(P2) x̃ =
(

L−1

♠
l=0

)

S̃
l

θ (xl) = M̃θ (xblind), (12)

where xblind =
(

❤K−1
i=0 Bi

)

(x0), as depicted in Fig. 1 (P2).

The training loss for this variation is:

θ̂ = arg min
θ

N2
∑

n=1

Cβ(M̃θ (x
(n)
blind); x

(n)
true). (13)

F. Combined Supervised and Blind Learning With
Feedback

Since iterations of blind learning-based reconstruction take

significantly longer than propagating an image through a

deep network, we investigated a feedback-based pipeline that

reduces computation by only approximately optimizing the

objective of blind learning reconstruction (using an outer

single iteration of the blind learning module) that in turn
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is warm-started by a supervised learning reconstruction. The

result of partial blind learning is then fed into a second stage

with a supervised deep network similar to (P1), as depicted

in Fig. 1 (P3), introducing image-adaptive features that may

improve image quality. Essentially, the output for this pipeline

can be expressed as:

(P3)x̂ =
(

L2−1

♠
l=0

Sl
θ2

◦ B1 ◦
L1−1

♠
l=0

Sl
θ1

)

(x0)

= M̄θ1,θ2(x0), (14)

where θ1 and θ2 are the weights of the initial and second stage

unrolled networks, respectively. The training losses for these

unrolled networks are:

θ̂1 = arg min
θ1

N2
∑

n=1

Cβ(M̄θ1(x
(n)
0 ); x

(n)
true),

θ̂2 = arg min
θ2

N2
∑

n=1

Cβ(M̄θ1,θ2(x
(n)
0 ); x

(n)
true), (15)

respectively, where M̄θ1(x0) =
(

❤L1−1
l=0 Sl

θ1

)

(x0) and the

other symbols are as explained above. We train θ1 and θ2

separately in two stages. The training of θ2 starts after θ1

converges. The combination of supervised and partial blind

learning could be iterated. We worked with a two-stage

network architecture and a single iteration of blind learning

optimization to keep computations low. In subsequent sections

and figures, we also refer to this pipeline as S+B+S.

III. EXPERIMENTAL FRAMEWORK

A. Training and Test Dataset

We trained and tested both our method and a strict super-

vised learning-based method with the same deep learning

architecture (described below) on two datasets.1 The first was a

randomly selected subset from the fastMRI knee dataset, while

the second consisted of the entire fastMRI brain dataset [29].

In the first case, our dataset for training and testing consisted

of 8705 knee images, and were used in experiments involving

the proposed pipelines in (P1) and (P2). We used smaller and

randomly-selected subsets for our various experiments, which

is described in detail in section IV.

To test the pipeline proposed in (P3), we used the fastMRI

Brain dataset, consisting of 23220 T1 weighted images,

42250 T2 weighted images and 5787 FLAIR slices. For each

contrast, we reserved 500 images as the test data and the rest

for training and validation.

All sensitivity maps were estimated using the ESPIRiT [34]

method. The details of the algorithms in our work are

explained below.

B. Undersampling Masks

For experiments with the pipeline (P1), we used three

types of undersampling masks. First, we used the 5× Carte-

sian phase encode undersampling mask shown in Fig. 2(a)

1See https://github.com/JeffFessler/BLIPSrecon for code.

Fig. 2. Undersampling masks used in experiments: (a) 5-fold undersam-
pled 1D Cartesian phase-encoded; (b) 20-fold undersampled Cartesian
Poisson-disk; and (c) 8-fold equidistant.

that was held fixed across training and test images. This

pattern had 29 fully sampled lines in the center of the

k-space, and the remaining lines were sampled uniformly at

random. We similarly tested (P1) on 2D Poisson-disk Carte-

sian undersampling at 20× acceleration. Finally, we tested

(P1) by varying the 1D phase encode undersampling mask

Fig. 2(a) used across training and test images randomly, to fur-

ther evaluate its generalizability across different sampling pat-

terns. For this purpose, we used ≈ 4.5× undersampling, and

24 fully sampled k-space lines. Pipeline (P2) was tested using

only the sampling pattern in Fig. 2(a), while (P3) was tested

using 8× equidistant acceleration mask shown in Fig. 2(c),

as well as the 1D phase encode mask in Fig. 2(a). This mask

had 4% fully sampled lines at the center of k-space [29].

C. Blind Dictionary Learning-Based Reconstruction

We used the SOUP-DIL algorithm [35] to perform blind dic-

tionary learning-based reconstruction initialized with a ‘zero-

filled’ reconstruction of the data. In both (P1) and (P2), we set

the number of outer iterations to be K = 20, and each

outer iteration had 5 inner iterations of dictionary learning

and sparse-coding. We set νi = 8 × 10−4 and λi = 0.2

across iterations, respectively. The dictionary size was 36×144

and the initial dictionary was an overcomplete inverse DCT

matrix, while the sparse code matrix was initialized with

zeros. We used conjugate gradient method to perform the

data consistent image update. It required ≈ 170 seconds to

perform 20 iterations of SOUP-DIL reconstruction of a single

640 × 368 image slice, on an Intel(R) Xeon(R) E5-2698 with

40 cores. For (P3), we used only one (K = 1) iteration of

SOUP-DIL reconstruction with ν = 0.5 and λ = 0.8 on

the fastMRI brain dataset (when used on the knee dataset,

these were fixed to values mentioned earlier). For experiments

involving the fastMRI brain dataset and pipeline (P1), we only

use K = 3 outer iterations of SOUP-DIL reconstruction, due

to the huge dataset size. A single iteration of SOUP-DIL took

≈ 6.5 seconds to reconstruct a 640 × 320 image on the same

server. (Table VIII in the Supplementary Materials compares

reconstruction time for different methods.)

When performing non-adaptive dictionary-based reconstruc-

tion, we fixed the dictionary to its inverse DCT initialization

across all iterations, while keeping all other algorithm para-

meters unchanged. The experiment and results are shown in

Sec. VII-A of Supplementary Materials.

An additional experiment compared the compressed sensing

algorithm against blind dictionary learning. We used the
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TABLE I

COMPARISON OF SUPERVISED LEARNING-BASED RECONSTRUCTION (S) VERSUS OUR PROPOSED COMBINED BLIND AND SUPERVISED

LEARNING-BASED RECONSTRUCTION (B+S) USING (P1) AT VARIOUS KNEE TRAINING DATASET SIZES FOR 5× ACCELERATION USING

1D CARTESIAN UNDERSAMPLING. THE UNDERSAMPLING MASK IN Fig. 2a WAS HELD FIXED FOR TRAINING AND TESTING. BOLD DIGITS

INDICATE THAT B+S METHOD PERFORMED SIGNIFICANTLY BETTER THAN THE S METHOD UNDER PAIRWISE T-TEST (P < 0.005)

MRI reconstruction instance included in the SigPy package,2

which uses the primal-dual hybrid gradient (PDHG) algorithm

and 30 iterations. The sparsity penalty is the `1 norm of a

orthogonal discrete wavelet transform, with a weight of 10−7

compared with the data-fidelity term.

D. Supervised Reconstruction

The denoiser Dθ we used is the Deep Iterative Down-Up

Network [36], which has been shown to be efficient on previ-

ous benchmark research with the same fastMRI dataset [18]

and in an image denoising competition [37]. Real and imagi-

nary component of the complex-valued images are formulated

as two input channels of the network. The magnitude of the

input image is normalized by the median absolute value. The

batch size is set to 4. We set the data-fidelity weight ν = 2

for the supervised learning.

In each iteration of (8), we used the conjugate gradient

method to solve the least-squares minimization problem. Back-

propagation of the least-squares problem (calculation of the

Jacobian-vector product) is also performed using the conjugate

gradient method. Here we set L = 6 to balance reconstruction

quality and model dimension. In the inference phase, the time

cost is around 1.2s for a 20-channel 640 × 320 slice on a

single Nvidia(R) GTX1080Ti GPU. For a fair comparison,

the denoiser training settings are the same between different

scenarios in Section IV. The number of epochs is set to 40,

with a linearly decaying learning rate from 1e-4 to 0. The

optimizer was Adam [38], with parameter βs = [0.5, 0.999].

E. Performance Metrics

For a quantitative comparison of the reconstruction quality,

we used three common metrics: peak signal-to-noise ratio

(PSNR, in dB), structural similarity index (SSIM) [39], and

high-frequency error norm (HFEN) [12], to measure the simi-

larity between reconstructions and ground truth. The HFEN

was computed as the `2 norm of the difference of edges

between the input and reference images. Laplacian of Gaussian

(LoG) filter was used as the edge detector. The kernel size was

set to 15 × 15, with a standard deviation of 1.5 pixels.

IV. RESULTS

A. Comparing Blind+Supervised vs. Strictly Supervised
Reconstruction

Table I compares the performance of combined blind and

supervised learning versus strictly supervised learning on

2https://github.com/mikgroup/sigpy

TABLE II

COMPARISON OF SUPERVISED LEARNING-BASED RECONSTRUCTION

VERSUS OUR PROPOSED BLIPS AND BLIND LEARNING-BASED

RECONSTRUCTION USING (P1) FOR 20 × ACCELERATION USING

CARTESIAN 2D POISSON DISK UNDERSAMPLING WITH MASK

SHOWN IN Fig. 2b. THE FASTMRI KNEE DATASET WAS

USED FOR TRAINING AND TESTING. BOLD DIGITS INDICATE

THAT B+S METHOD PERFORMED SIGNIFICANTLY BETTER

THAN THE S METHOD UNDER PAIRED T-TEST (P < 0.005)

datasets of various sizes using (P1). We used 4 training dataset

sizes: 1105, 2244, 4198, and 8205 slices. 10% for each training

set was reserved for validation purposes. The test set consisted

of 500 different slices. Training/validation set and test set are

from different subjects to avoid data leakage between slices.

Our proposed method’s improvements are fairly robust

even when the total dataset size increases, as illustrated in

Fig. 3 that depicts Table I as a bar chart. Moreover, for

small-scale datasets, which are usually the case in medical

imaging, our method still provides significant improvements

over the strict supervised scheme. We conjecture that the

blind learning-based reconstruction provides an image where

many artifacts have been resolved and details have been

restored that the supervised learning reconstruction can further

refine.

Tables II and III display the quantitative results with the

2D Poisson disk Cartesian sampling pattern and 1D variable

density Cartesian sampling mask (changing randomly across

training and test cases), respectively. The training/validation

set consisted of 4198 slices and the test set consisted

of 500 slices (same as the 4198/500 slices in the previous

case). The improvement provided by our scheme (B+S) over

strict supervised learning (S) holds for multiple sampling

masks, and is significant under the paired t-test (P < 0.005).

To support the assertion that BLIPS can learn different

features than supervised learning, Figs. 4, 5, and 6 also

display example slices. Compared to supervised learning,

the most obvious difference in the combined model is the

better restoration of fine details. It can be seen that in the

blind dictionary learning results, a fair amount of fine structure

is already recovered from the aliasing artifacts. The dictionary

learning results provide a foundation for supervised learning to

then residually reduce aliasing artifacts while preserving these

details. This is also strongly implied by our observations in

Section VII B and accompanying Fig. 9.
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Fig. 3. Comparison of strict supervised learning-based reconstruction
with BLIPS reconstruction across various knee dataset sizes. Table I
shows the corresponding quantitative values.

Table IV compares the proposed BLIPS techniques to strict

supervised learning, and to supervised learning initialized with

compressed sensing. The compared methods were trained and

tested on identical datasets (4198 slices). The results indicate

that the S+B+S BLIPS reconstruction yields the best perfor-

mance, and the B+S reconstruction provides the second best

performance. However, even compressed sensing reconstruc-

tion combined with supervised learning-based reconstruction

performs better than strict supervised learning-based recon-

struction.

B. Strict Separation of Blind and Supervised Learning
Reconstruction

Table V compares explicitly combining blind and supervised

learning using (P2) without residual learning against the

TABLE III

COMPARISON OF PERFORMANCE OF SUPERVISED LEARNING-BASED

RECONSTRUCTION AGAINST OUR PROPOSED BLIPS AND BLIND

LEARNING-BASED RECONSTRUCTION USING (P1) FOR ≈ 4.5×
ACCELERATION USING RANDOM VARIABLE DENSITY

1D SAMPLING MASK (CHANGING RANDOMLY ACROSS

TRAINING AND TEST CASES). THE FASTMRI KNEE

DATASET WAS USED FOR TRAINING AND TESTING.

BOLD DIGITS INDICATE THAT B+S METHOD

PERFORMED SIGNIFICANTLY BETTER THAN

THE S METHOD UNDER PAIRED

T-TEST (P < 0.005)

TABLE IV

COMPARISON OF SUPERVISED LEARNING-BASED RECONSTRUCTION

VERSUS VARIOUS PROPOSED BLIPS RECONSTRUCTION

APPROACHES USING (P1) AND (P2), AND CS-INITIALIZED

SUPERVISED RECONSTRUCTION FOR 5× ACCELERATION

USING 1D CARTESIAN UNDERSAMPLING WITH MASK

SHOWN IN Fig. 2a. TRAINING WAS PERFORMED USING

4198 KNEE SLICES FROM THE FASTMRI KNEE DATASET.

BOLD DIGITS INDICATE THAT S+B+S METHOD

PERFORMED SIGNIFICANTLY BETTER THAN THE

S METHOD AND CS+S METHOD UNDER

PAIRED T-TEST (P < 0.005)

TABLE V

COMPARISON OF COMBINED BLIND AND SUPERVISED LEARNING

USING (P1) VERSUS EXPLICIT ADDITION OF BLIND AND

SUPERVISED LEARNING USING (P2) FOR THE MASK

IN Fig. 2a. TRAINING WAS PERFORMED USING

4198 KNEE SLICES FROM THE FASTMRI KNEE

DATASET. BOLD DIGITS INDICATE THAT B+S

METHOD PERFORMED SIGNIFICANTLY BETTER

THAN THE EXPLICIT BLIND + SUPERVISED

METHOD UNDER PAIRED

T-TEST (P < 0.005)

proposed method for combining blind and supervised learning.

The sampling pattern here is the same as in Fig. 2a. The

dataset is the same as the 8205/500 case in Table I. Compared

to explicit consistency with blind learning results, our latent

approach reaches a better result. The results demonstrate that

rather than a fidelity prior, the blind learned reconstruction

works better as an input to the deep residual network for

further refinement.

C. Combined Supervised and Blind Learning With
Feedback

For the large-scale brain dataset, we tested the idea of

using a supervised learning network’s output as a potentially
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Fig. 4. Comparison of reconstructions for a knee image using the
proposed method versus strict supervised learning, blind dictionary
learning, and zero-filled reconstruction for the 5× undersampling mask
depicted in Fig. 2a. Metrics listed below each reconstruction correspond
to PSNR/SSIM/HFEN respectively. The inset panel on the bottom left
in each image corresponds to regions of interest (indicated by the red
bounding box in the image) in the image that benefits significantly from
BLIPS reconstruction, while the inset on the bottom right depicts the
corresponding error map.

improved initialization for blind learning (14). The blind

learning cost is then optimized for a single iteration with

this improved initialization to incorporate additional details

captured with blind learning to improve the first super-

vised network’s reconstruction. The blind learning result is

passed on to another (second) stage of supervised learning.

The networks’ parameters θ1 and θ2 are pre-trained on all

three contrasts and fine-tuned on individual contrast, including

T1w, T2w and FLAIR. As a control method, we concatenated

two supervised learned networks sequentially, which can also

improve the reconstruction performance compared with a

single unrolled supervised network, and demonstrates substan-

tial improvements in PSNR, SSIM, and HFEN for S+B+S

Fig. 5. Comparison of reconstructions of a knee image using the pro-
posed method versus strict supervised learning, blind dictionary learning,
and zero-filled reconstruction for the 20× Poisson-disk undersampling
mask depicted in Fig. 2b. Metrics listed below each reconstruction
correspond to PSNR/SSIM/HFEN respectively. The inset panel on the
bottom left in each image corresponds to regions of interest (indicated by
the red bounding box in the image) in the image that benefits significantly
from BLIPS reconstruction, while the inset on the bottom right depicts the
corresponding error map.

with a large dataset. We also compare to deep supervised

reconstruction preceded by a few iterations of blind dictionary

learning. (We used 3 iterations here due to the time constraints

associated with generating data for the large fastMRI brain

dataset.)

Table VI summarizes the results of this comparison, show-

ing that while S+B+S performs the best, even B+S (which

on the brain dataset, only used 3 iterations of SOUP-DIL

reconstruction in the blind module) manages to outperform

strict supervised learning in most contrasts. Fig. 7 shows an

example slice for this comparison. Again, combined blind and

supervised learning using (P3) preserves finer details better

than cascaded strict supervised learning. Since our proposed
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Fig. 6. Comparison of reconstructions of a knee image using the
proposed method versus strict supervised learning, blind dictionary
learning, and zero-filled reconstruction for the random 1D undersampling
masks (≈4.5×). Metrics listed below each reconstruction correspond
to PSNR/SSIM/HFEN respectively. The inset panel on the bottom left
in each image corresponds to regions of interest (indicated by the red
bounding box in the image) in the image that benefits significantly from
BLIPS reconstruction, while the inset on the bottom right depicts the
corresponding error map.

method is dubbed blind primed supervised learning, in this

comparison S+B+S is considered to be the BLIPS recon-

struction, and S+B is the dictionary learning initialization.

D. Performance in the Presence of Planted Features

To compare the ability of BLIPS reconstruction and strictly

supervised reconstruction to faithfully reproduce image fea-

tures that are not present in the training dataset (as is

often the case with identifying pathologies, etc.), we planted

some features in a knee image from the fastMRI dataset,

from which raw k-space was simulated and undersampled,

inspired by [28]. The undersampling pattern was 1D variable

Fig. 7. Comparison of reconstructions for two T2w brain images
using the S+B+S learning reconstruction method proposed in (P3)
versus cascaded S+S strict supervised learning-based reconstruction,
S+B reconstruction, and zero-filled reconstruction for an 8× equidis-
tant undersampling mask. The S+B reconstruction depicts the output
of one iteration of blind reconstruction initialized with a supervised
reconstruction. Metrics listed below each reconstruction correspond to
PSNR/SSIM/HFEN respectively.The inset panel on the bottom left in
each image corresponds to regions of interest (indicated by the red
bounding box in the image) in the image that benefits significantly from
BLIPS reconstruction, while the inset on the bottom right depicts the
corresponding error map. The blue arrows indicate the position of image
detail that is present in the BLIPS reconstruction, but not strict supervised
learning-based reconstruction.

density ≈ 4.5×, and was chosen at random to further test

robustness.

Fig. 8 shows the aforementioned comparison. The BLIPS

reconstruction reproduces the planted features with signifi-

cantly higher fidelity than strict supervised reconstruction, and

has much fewer aliasing artifacts, as is evident from the residue

maps (also pointed out by the blue arrows in the figure). The

details or edges of the planted features are better preserved

in the BLIPS reconstruction compared to strict supervised
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TABLE VI

COMPARISON OF STRICTLY SUPERVISED LEARNING-BASED RECONSTRUCTION (S+S) VERSUS THE PROPOSED COMBINED

BLIND AND SUPERVISED LEARNING-BASED RECONSTRUCTION (S+B+S) IN (P3) FOR THE FASTMRI

BRAIN DATASET WITH 8× UNDERSAMPLING WITH THE MASK IN Fig. 2c

Fig. 8. Comparison of reconstructions of a knee image using the proposed method versus strict supervised learning for an image slice with
artificially planted features. The undersampling mask was chosen to be random ≈4.5×. Metrics listed below each reconstruction correspond
to PSNR/SSIM/HFEN respectively. The inset panels on the bottom in each image correspond to regions of interest (indicated by the red/green
bounding boxes in the image) in the image that benefit significantly from BLIPS reconstruction, while the insets on the top depicts the corresponding
error map. The blue arrows indicate the position of an aliasing artifact that is present in the zero-filled reconstruction and strict supervised learning,
but not in the BLIPS reconstruction.

learning-based reconstruction. The phenomena are consistent

across simulated attempts we have tried.

V. DISCUSSION

This work investigated the combination of blind and

supervised learning algorithms for MR image reconstruc-

tion. Specifically, we proposed a method that combines

dictionary learning-based blind reconstruction with model-

based supervised deep reconstruction in a residual fashion.

Considering both S+B+S and B+S reconstruction under

the same umbrella of BLIPS methods, comparisons against

strictly supervised learning-based reconstruction indicate that

the proposed reconstruction method significantly improves

reconstruction quality in terms of metrics including PSNR,

SSIM, and HFEN, across a range of undersampling and accel-

eration factors. The robustness of these improvements to the

training dataset size suggests that the features learned during

blind learning-based reconstruction using a sparse dictionary

adapted separately for each training and testing image may

differ significantly from features learned by deep networks
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trained on a large dataset with strictly pixel-wise supervision.

While the latter showcases the potential for removing global

aliasing artifacts, the former successfully leverages patterns

in an image that are learned just from its measurements,

thereby preserving the finer details of the image in the

reconstruction. This claim is further supported by the error

maps of regions of interest of reconstructed image slices.

Moreover, the experiments using planted features suggest that

BLIPS reconstruction can adapt to, and reproduce unfamil-

iar (absent from the training set) features better than strict

supervised learning-based reconstruction. This ability may

be a distinct benefit in the context of identifying pathology

in MRI images. The combination of compressed sensing

MRI and deep-supervised learning-based reconstruction also

outperformed strict supervised learning-based reconstruction,

reinforcing that features learned using supervision may not

subsume traditional sparsity-based priors.

Past studies have shown that deep learning-based recon-

struction is good at reducing aliasing artifacts compared with

model-based iterative methods such as compressed sensing.

The majority of supervised models are trained with pixel-wise

`1/`2 norm loss. These approaches generally produce smooth

images with high PSNR but can also introduce blurring.

Other methods use GANs or perceptual loss to preserve

details. However, these data-driven methods are often known

to introduce realistic artifacts, which is very risky for medical

imaging reconstruction. In our approach, the intrinsic sparsity

of MR images is exploited in the dictionary learning phase to

preserve fine structures. Thus, our method combines the advan-

tages of both worlds: the representation ability of CNNs to

resolve aliasing artifacts and dictionary-based signal modeling

to recover high-frequency details. The superior performance

in fine-detail recovery is reflected in the smaller HFEN values

that quantify high-frequency features.

From the network training perspective, compared to the

pure supervised model our network demonstrates improved

stability and generalizability since it is powered and com-

plemented by both model-based and adaptive dictionary

learning-based components. First, on a relatively small dataset

(1105/2244 images), the method still achieved similar results

as with the full (8205 images) training dataset. This means

that our method has clearly lower requirements on the amount

of training data to work well compared to the massive amount

of training data needed by typical deep learning-based recon-

struction algorithms. Second, the improvements hold across

different sampling patterns with very different PSFs. Third,

although 40 training epochs were used in experiments, our

approach requires only 5-8 epochs to converge (with no

obvious over-fitting seen thereafter). In contrast, the supervised

model required 20-30 epochs for the training loss to converge.

Due to the serial nature of the SOUP-DIL algorithm [35]

used for dictionary learning here, our algorithm’s reconstruc-

tion time is higher than that of strictly supervised recon-

struction. The computational bottleneck is in the atom-wise

block-coordinate descent approach to dictionary updating,

which cannot be accelerated by simple vectorization. These

alternating updates between each dictionary atom and the

corresponding sparse codes [35] allow for the blind algorithm

to residually learn and represent features in the reconstructed

image. Further acceleration of the blind dictionary learning

approach might be needed to use the approach in clinical

settings that need a real-time imaging reconstruction workflow.

However, it may be still acceptable for most conventional

settings since the scanning itself is often the throughput

bottleneck. The proposed S+B+S approach involves a much

quicker (partial) dictionary learning-based step compared to

the proposed vanilla B+S approach. Other fast blind learning

approaches involving transform learning [12] could also make

our schemes much more efficient.

VI. CONCLUSION AND FUTURE WORK

This paper investigated a combination of shallow dictionary

learning and deep supervised learning for MR image recon-

struction that leverages the complementary nature of the two

methods to bolster the quality of the reconstructed image.

We verify this benefit by comparisons using a variety of

metrics (including SSIM, PSNR, and HFEN) against strictly

supervised learning-based reconstruction, reconstruction as

initialization. We also investigate alternative approaches for

combining the two forms of reconstruction. Our observations

suggest that the primary benefits of including blind learning

in the reconstruction pipeline are the preservation of ‘finer’

details in the output image and robustness to the availability

of training data.

In the future, we aim to apply our methods to non-

Cartesian undersampling patterns such as radial and spiral

patterns, and to other modalities. The generalizability of the

method, especially with heterogeneous datasets, will be further

explored. We observed some variation in the performance of

our method to the imposed sparsity level in (2). More careful

tuning of hyperparameters will be necessary to optimize the

overall performance of such methods. Curiously, we also

observed that using additional iterations of blind learning

reconstruction in (14) adversely impacted the performance

of our methods. The cause for this behavior is unknown

(beyond oversmoothing), and needs further investigation. We

also plan to investigate the benefits of multiple iterations of

combined blind and supervised learning based reconstruction,

extending the S+B+S approach considered here. Aside from

the benefits of traditional ‘handcrafted’ priors in combination

with supervised deep learning, from the perspective of learning

only from measurements of the image being reconstructed, and

then filling in the gaps with supervised data-driven learning,

it would be interesting to study the combination of deep blind

approaches [40]–[43] with deep supervised learning.
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VII. SUPPLEMENTARY MATERIALS

A. Comparison with Non-Adaptive Dictionary-based

Initialization for Supervised Learning

In this experiment, we fixed the dictionary D in (2) to be

an overcomplete inverse DCT matrix and did not update it.

We then used the resulting reconstructed image to initialize

the supervised reconstruction algorithm. Table VII compares

the results of proposed blind+supervised learning versus non-

adaptive dictionary-based initialization for supervised learning.

The sampling pattern remains the same as in the previous case.

4198 slices were used for training, with 10% left for validation.

The test set consisted of 500 slices.

Recon. Method Fixed Dictionary+Supervised Blind+Supervised

SSIM 0.945 0.946
PSNR (dB) 35.37 35.53

HFEN 0.452 0.443

Table VII: Comparison of performance of non-adaptive dictionary-based
initialization for supervised learning-based reconstruction versus our
proposed combined blind and supervised learning-based reconstruction,
for the undersampling mask shown in Fig. 2b. The data set is the
4198/500 slices from the fastMRI knee dataset.

We surmise that the reason for relatively small improve-

ments with blind learning over a fixed dictionary initialization

in our proposed pipeline is due to the lack of proper parameter

tuning during dictionary learning. One way to remedy this

would be to vary the sparsity penalty weight, λ, across outer-

iterations of dictionary learning-based reconstruction as is

done in [36]. Furthermore, the initialization for blind dictio-

nary learning was a zero-filled reconstruction, which can be

detrimental to learning a ‘good’ dictionary. We expect that

addressing these issues could further bolster the performance

of BLIPS reconstruction.

B. Contribution of Residual Supervised Learning

To gain more insight into the mechanism of the proposed

BLIPS reconstruction, we examined the residual component

added to the blind dictionary learning-based reconstruction

by the supervised learning-based reconstruction component.

Essentially, we removed the blind learning output from the

BLIPS reconstruction to study the contribution of the super-

vised module. Fig. 9 shows the contribution of the supervised

learning component for Fig. 5.

We observe that the supervised learning module mainly con-

tributes to removing left-over aliasing artifacts from the blind

learning-based reconstruction, and also focuses on sharpening

the details in the blind reconstruction. This observation rein-

forces the concept of complementarity of blind and supervised

learning-based reconstruction.

C. Reconstruction Times

Table VIII lists the reconstruction times for the various

methods proposed and compared to in this work. Strict su-

pervised learning is the fastest, while the BLIPS approach in

Fig. 1 (P1) is the slowest, because it requires several iterations

of the SOUP-DIL algorithm [36], currently implemented in

Matlab. This drawback may be remedied by providing a

better initialization for dictionary learning and using GPUs

for acceleration.

Fig. 9. Residual contribution of the supervised learning module for the
image in Fig. 5, obtained by removing the blind dictionary learning output
from the BLIPS reconstructed image.

Recon Method Recon Time (s)

S 1.2
B 170

CS+S 80.2
B+S 171.2

S+B+S 8.7

Table VIII: Comparison of reconstruction times of various
methods explored in this paper.


