
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021 4819

HePPCAT: Probabilistic PCA for Data With
Heteroscedastic Noise

David Hong , Member, IEEE, Kyle Gilman , Student Member, IEEE, Laura Balzano , Senior Member, IEEE,
and Jeffrey A. Fessler , Fellow, IEEE

Abstract—Principal component analysis (PCA) is a classical and
ubiquitous method for reducing data dimensionality, but it is sub-
optimal for heterogeneous data that are increasingly common in
modern applications. PCA treats all samples uniformly so degrades
when the noise is heteroscedastic across samples, as occurs, e.g.,
when samples come from sources of heterogeneous quality. This
paper develops a probabilistic PCA variant that estimates and
accounts for this heterogeneity by incorporating it in the statistical
model. Unlike in the homoscedastic setting, the resulting nonconvex
optimization problem is not seemingly solved by singular value
decomposition. This paper develops a heteroscedastic probabilistic
PCA technique (HePPCAT) that uses efficient alternating maxi-
mization algorithms to jointly estimate both the underlying fac-
tors and the unknown noise variances. Simulation experiments
illustrate the comparative speed of the algorithms, the benefit
of accounting for heteroscedasticity, and the seemingly favorable
optimization landscape of this problem. Real data experiments
on environmental air quality data show that HePPCAT can give
a better PCA estimate than techniques that do not account for
heteroscedasticity.

Index Terms—Principal component analysis, heterogeneous
data, maximum likelihood estimation, latent factors, nonconvex
optimization.

I. INTRODUCTION

PRINCIPAL component analysis (PCA) is a workhorse
method for unsupervised dimensionality reduction. It plays

a foundational role in the analysis of modern high-dimensional
data, and continues to be successfully applied across all of
engineering and science. However, PCA does not account for
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samples having heterogeneous quality and instead treats them
uniformly. Consequently, the performance of PCA can degrade
dramatically under heteroscedastic noise; its ability to discover
underlying components is sometimes essentially determined by
the noisiest samples alone [1].

At the same time, heterogeneous quality among samples is
common in practice, arising easily when samples are obtained
under varying conditions. For example, in the field of air quality
monitoring, there is a wide array of sensors available for different
entities to deploy: governments use very high-quality sensors
that require regular maintenance but are very accurate, and
individuals purchase off-the-shelf sensor devices that can be
deployed and left alone but have much less reliable output. These
devices are measuring the same phenomenon through very dif-
ferent noise characteristics. In the field of analytical chemistry,
[2] considers spectrophotometric data that are averages over in-
creasingly long windows of time. This heterogeneity arises natu-
rally when measuring signals that undergo both periods of rapid
change (requiring short windows) as well as periods of relatively
stable behavior (allowing for longer windows). The shorter
windows cannot denoise by averaging as much, resulting in het-
eroscedasticity. Another source of heteroscedasticity is changing
ambient conditions; e.g., [3] considers astronomical data with
atmospheric noise that varies across nights. As large datasets
are increasingly formed by combining samples from diverse
sources, one can expect that heteroscedastic noise will be the
norm. Modern data analysis needs PCA methods that are robust
to heterogeneity and make effective use of all the available data.

This paper develops a heteroscedastic probabilistic PCA tech-
nique (HePPCAT) that attains robustness to heteroscedastic
noise by incorporating it in the statistical likelihood. The method
jointly estimates both the latent factors as well as the unknown
sample-wise noise variances. Additionally, if a block of samples
are expected to have equal noise variance (e.g., because they are
from the same source or sensor), the proposed approach seam-
lessly incorporates this knowledge and can yield significantly
improved estimates. A further extension to the case where some
variances are known and some are unknown is straightforward.
Unlike the homoscedastic setting, the resulting optimization
problem seems not to have a direct SVD solution. Because it
is nonconvex and nontrivial, we develop and compare several
alternating ascent algorithms.

HePPCAT is an extension of our previous work [4] that
considered data with known heterogeneous noise variances and
focused on estimating the latent factors alone. In this paper, the
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noise variances are unknown and jointly estimated with the latent
factors. This extension is important in practice because hetero-
geneous data often have unknown noise variances. It is also non-
trivial to do efficiently. As discussed in Section IV, the Expec-
tation Maximization (EM) approach used for the latent factors
in [4] does not readily yield an efficient approach in this joint
estimation setting. Thus, we develop and study efficient block
coordinate ascent algorithms that alternate between updating es-
timates of the latent factors and estimates of the noise variances.

Section II describes the model and the resulting optimization
problem for HePPCAT. Section III discusses related works.
Section IV derives a natural EM approach, and explains why
the resulting M-step is challenging. This difficulty motivates
alternating approaches that are derived in Section V and com-
pared in Sections VI and VII. Section VIII carries out several
experiments illustrating the favorable statistical performance
of HePPCAT. Section IX illustrates HePPCAT on real data.
Section X investigates the seemingly favorable landscape of the
nonconvex objective, illustrating that the proposed algorithms
appear to converge from even random initializations. A Julia
package implementing HePPCAT and code to reproduce all ex-
periments will be available online at: https://gitlab.com/heppcat-
group/heteroscedastic-probabilistic-pca.

II. HETEROSCEDASTIC PROBABILISTIC PCA

As in [4], we model n1 + · · ·+ nL = n data samples in Rd

from L noise level groups as:

y�,i = Fz�,i + ε�,i, i ∈ {1, . . . , n�}, � ∈ {1, . . . , L}, (1)

where F ∈ Rd×k is a deterministic factor matrix to estimate,
z�,i ∼ N (0k, Ik) are independent and identically distributed
(i.i.d.) coefficients, ε�,i ∼ N (0d, v�Id) are i.i.d. noise vectors,
and v1, . . . , vL are deterministic noise variances to estimate.
Equivalently, the samples are independent with distributions

y�,i ∼ N (0d,FF
′ + v�Id),

and joint log-likelihood, dropping the ln(2π)−nd/2 constant:

L(F,v) � 1

2

L∑
�=1

[
n� ln det(FF

′ + v�Id)
−1

−tr
{
Y′

�(FF
′ + v�Id)

−1Y�

}]
, (2)

where Y� � [y�,1, . . . ,y�,n�
] ∈ Rd×n� for � ∈ {1, . . . , L} are

the sample matrices associated with each of the L groups.
Note that F′ denotes the matrix transpose for real-valued F;
the methods generalize easily to complex matrices using the
Hermitian transpose.

Given the sample matrices Y1, . . . ,YL and the rank k,
HePPCAT estimates the latent factors F ∈ Rd×k and the
noise variances v � (v1, . . . , vL) by maximizing the statistical
log-likelihood (2). Fig. 1 shows an illustrative example with
L = 2 noise variances v1 = 0.01 and v2 = 1. When the
noise is assumed homoscedastic, i.e., L = 1, this nonconvex
optimization problem can be solved via eigendecomposition of
the sample covariance matrix [5, Section 3.2], but the same is
not true in general.

Fig. 1. Illustrative heteroscedastic examples with k = 1 factor and L = 2
noise variances v1 = 0.01 and v2 = 1. HePPCAT estimates variances to ac-
count for heteroscedasticity, recovering the true latent subspace much better
than PCA.

The groupings give a natural way to incorporate structural
assumptions by grouping together samples that are expected to
have equal noise variance, e.g., samples from the same source or
sensor. They are given and not estimated. In the absence of such
knowledge, each sample can be given its own group by taking
n1 = · · · = nL = 1 and L = n. HePPCAT estimates a separate
noise variance for each sample in that case, and we study some
of the resulting trade-offs in Section VIII-D.

Representing the factors by the rank-k eigendecomposition
FF′ = U diag(λ)U′ where U = [u1, . . . ,uk] ∈ Rd×k and λ ∈
Rk yields an alternative form for the likelihood:

L(U,λ,v)

=
1

2

L∑
�=1

[
− n�

{ k∑
j=1

ln(λj + v�) + (d− k) ln v�

}

− ‖Y�‖2F
v�

+ tr {Y′
�UW(λ, v�)U

′Y�}
]
, (3)

with weighting matrices

W(λ, v) � diag

(
λ1/v

λ1 + v
, . . . ,

λk/v

λk + v

)
. (4)

Maximizing (3) with respect to U resembles a weighted PCA,
but, unlike weighted PCA, it is not readily solved by eigen-
decomposition in general since the weight matrices W(λ, v�)
can vary with �. Jointly optimizing further complicates the
problem. Following a review of related work, the remainder of
this paper investigates various alternating algorithms for this
joint maximization.

III. RELATED WORKS

A. Factor Analysis and (homoscedastic) Probabilistic PCA

In conventional factor analysis, samples in d dimensions are
modeled as follows:1

yi = Fzi + εi, i ∈ {1, . . . , n},
where F ∈ Rd×k contains the k factors, zi

iid∼ N (0k, Ik) are

random coefficients, and εi
iid∼ N (0d,Ψ) are random noise with

1While more general versions exist, for simplicity, we omit the mean and
focus here on the conventional setting with Gaussian coefficients and additive
Gaussian noise that is most closely related.
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diagonal covariance Ψ. The quantities F, zi, εi and Ψ are all
unknown. Marginalizing out zi and εi yields a model where
only F and Ψ are to be estimated by maximizing the marginal
likelihood. In general, the column space of a maximum likeli-
hood estimate for F will not coincide with the corresponding
principal subspace of the data. Indeed, factor analysis and PCA
are somewhat distinct approaches to dimensionality reduction;
see, e.g., [6, Chapter 7].

However, maximum likelihood estimation does produce the
principal subspace if the noise covariance is assumed to be
isotropic, i.e., Ψ = v Id for some noise variance v. This model
is the setting of probabilistic PCA [5]. In this case, the log-
likelihood is

LPPCA(F, v) � 1

2

[
n ln det(FF′ + vI)−1

−tr
{
Y′(FF′ + vI)−1Y

}]
,

and is maximized by F = Û diag1/2(λ̂1 − λ̄, . . . , λ̂k − λ̄) and
v = λ̄, where the columns of Û ∈ Rd×k are principal eigenvec-
tors of the sample covariance matrix (y1y

′
1 + · · ·+ yny

′
n)/n,

λ̂1, . . . , λ̂k are the corresponding eigenvalues, and λ̄ is the
average of the remaining d− k eigenvalues [5], [7], [8]. More-
over, [5], [9] characterize stationary points as well as the global
maxima of the likelihood objective function. They also derive
an efficient expectation maximization (EM) algorithm related
to one derived for factor analysis [10], and illustrate how the
approach naturally generalizes to similar models.

Here we develop a new probabilistic PCA method; unlike
previous settings, the samples are no longer identically dis-
tributed. Noise variances are now heterogeneous, i.e., the noise
is heteroscedastic across samples. The resulting likelihood is
no longer maximized by scaled eigenvectors of the sample
covariance, so new algorithms are needed. We developed an EM
algorithm for estimating the factors given known noise variances
in [4]; this paper extends that work by jointly estimating both
the factors and the unknown noise variances.

B. Accounting for Heteroscedastic Noise Via Weighted PCA

A natural way to account for heteroscedastic noise is to use
a weighted PCA [6, Section 14.2.1] that replaces the sample
covariance with a weighted sample covariance. Namely, given
weights w1, . . . , wL, weighted PCA returns the leading eigen-
vectors û1, . . . , ûk of

∑L
�=1 w�Y�Y

′
�. These eigenvectors solve

the weighted optimization problem

Û � [û1, . . . , ûk] ∈ argmaxU∈Rd×k:U′U=Ik

L∑
�=1

w� ‖U′Y�‖2F .

A typical choice for the weights is inverse noise variance, i.e.,
w� = 1/v�, so samples that are twice as noisy get half as much
weight. Doing so effectively whitens the noise, is a type of max-
imum likelihood weighting [11], and can significantly improve
performance [12]. However, as analyzed in [12], it can be better
to more aggressively downweight noisier samples, especially for
low signal-to-noise ratio (SNR) regimes. In particular, optimal
weights for recovery of any individual component is between

inverse noise variance and square inverse noise variance, which
more aggressively downweights noisier samples. Weighted PCA
with general weights does not have an obvious maximum like-
lihood formulation.

In contrast, this paper considers the maximum likelihood
estimation of underlying factors and noise variances jointly. The
resulting optimization problem does not appear to reduce to PCA
with a weighted sample covariance, yielding a distinct approach
to accounting for heteroscedasticity.

C. Heteroscedasticity Across Features

This paper focuses on noise that is heteroscedastic across
samples, i.e., the samples are of varying quality. Noise can also
be heteroscedastic across features. Indeed, much of the general
literature on heteroscedasticity focuses on this manifestation.
In the context of PCA, recent works have begun to study
how to account for this form of heteroscedasticity. Notably,
this heteroscedasticity induces a bias along the diagonal of
the covariance matrix, causing conventional PCA to produce
inaccurate components. To correct for this bias, [13] describes
the HeteroPCA method that treats the diagonal entries as miss-
ing and iteratively imputes the values. Alternatively, [14], [15]
combine whitening of the data with spectral shrinkages tailored
to optimize, e.g., matrix denoising.

D. Accounting for Heterogeneous Clutter in RADAR

In the context of estimating low-rank clutter, [16]–[18] model
n independent samples y1, . . . ,yn ∈ Cd as

yi = εi + ci, i ∈ {1, . . . , n},

where εi
iid∼ CN (0d, Id) is complex white Gaussian noise, and

the clutter ci ∼ CN (0d, τiΣ) share a common rank-k covari-
ance Σ that is scaled by heterogeneous power factors τi. Equiv-
alently, yi ∼ CN (0d, τiΣ+ Id) for i ∈ {1, . . . , n}. The goal is
to estimate τ1, . . . , τn and Σ.

The low-rank covariance term τiΣ is heterogeneous, while
the noise is homogeneous. In contrast, the low-rank factor co-
variance in this paper is common among all the samples, and
instead the noise is heterogeneous. The two models are related
through an unknown heterogeneous rescaling because

1√
τi
yi ∼ CN{0d,Σ+ (1/τi)Id}, i ∈ {1, . . . , n},

corresponds to a common low-rank factor covariance Σ and
heteroscedastic noise with variances 1/τ1, . . . , 1/τn. As a re-
sult, the two problems share some common challenges and
approaches. Notably, the EM factor update (Section V-A) is
essentially the same (up to rescaling) as [18, Section III-B].

Nevertheless, the problems remain distinct due to the differ-
ence in how the unknown heterogeneity manifests. For example,
heterogeneous power factors are only identifiable up to scale,
since any change in scale can be absorbed by Σ. The heteroge-
neous noise model we study does not have this scale ambiguity.
Moreover, the likelihood for heterogeneous noise as a function
of noise variances has a similar form as that for heterogeneous
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power factors, but with significant differences. Notably, decreas-
ing a noise variance to zero sends the log-likelihood to−∞ with
unbounded curvature in the common case where the data are not
perfectly fit. As a result, approaches well-designed for updating
power factor estimates, such as the minorizer [18, Proposition
1], cannot always be directly applied to update the noise variance
estimates. Different algorithms are needed.

In the context of heterogeneous power factors, [19] derives
bounds on estimation performance and [20] places priors on the
clutter subspace. These are also interesting directions for future
work on heterogeneous noise.

E. Matrix Factorization

The model (1) that this paper focuses on can also be inter-
preted as a matrix factorization formulation that has Gaussian
coefficients and additive noise. Within this framework there exist
generalizations where one assumes other coefficient and noise
distributions or even treats the factors or noise variances as
random with a prior distribution. That is, one may generalize
(1) to allow other distributions on z�,i, ε�,i and/or put a distri-
bution on F or v1, . . . , vL. There is a great deal of literature
for factor analysis in a variety of settings, such as non-negative
matrix factorization [21], Poisson matrix estimation [22], robust
PCA [23], logistic PCA [24], and others [25]–[29]. Extending
these models for heterogeneous noise is an interesting direction
for future work.

In addition to this modeling work, great progress has been
made in recent years to better understand why standard op-
timization algorithms perform well, even seeming to find the
global minima/maxima, when applied to nonconvex matrix fac-
torization problems [30]–[37]. Three recent surveys summarize
much of this progress [38]–[40] and thoroughly treat this related
work. An overview of minorize maximize (MM) techniques and
how they are applied to related problems can be found in [41].
Recent guarantees applied specifically to EM are found in [38].
None of the existing results apply directly to our setting for
two reasons: first our model has noise that is not identically
distributed across columns, and second we seek to optimize
over both the factor matrix F and the additive noise variances
v in our maximum likelihood formulation. If we consider only
the problem of optimizing over the factor matrix, one could
potentially extend results from [5], [32], [35] to characterize the
stationary points of our objective.

Numerous works that involve matrix factorization use a spec-
tral initialization, and several show that this initialization is
sufficiently close to a good optima [30], [42]. We also use
spectral initialization in our nonconvex optimization methods.

IV. EXPECTATION MAXIMIZATION

A natural way to maximize the log-likelihood (2) is through
an expectation maximization (EM) approach that produces a se-
quence of iteratesFt andvt with non-decreasing log-likelihood.
At each iteration, an EM method sets up a minorizer based on
conditional expectation (E-step) that it then maximizes (M-step).
This section derives an EM minorizer for the HePPCAT log-
likelihood (2) at the iterates Ft and vt, where t denotes iteration
index. The resulting minorizer turns out to be challenging to

maximize efficiently, so instead Section V proposes alternating
algorithms, where some of the updates are based on the EM
minorizer derived here.

Taking as complete data the samples Y1, . . . ,YL and (un-
known) coefficientsZ1, . . . ,ZL, whereZ� � [z�,1, . . . , z�,n�

] ∈
Rk×n� for � ∈ {1, . . . , L}, yields the following complete data
log-likelihood

Lc(F,v) � ln p(Y,Z;F,v)

= ln p(Y|Z;F,v) + ln p(Z;F,v)

=

L∑
�=1

(
− dn�

2
ln v� − ‖Y� − FZ�‖2F

2v�
− ‖Z�‖2F

2

)
,

(5)

where (5) drops the constants ln(2π)−nd/2 and ln(2π)−nk/2.
For the E-step, take the expectation of (5) with respect to the

conditionally independent distributions (from Bayes’ rule and
the matrix inversion lemma):

z�,i|Y,Ft,vt
ind∼ N (Mt,�F

′
ty�,i, vt,�Mt,�), (6)

where Mt,� � (F′
tFt + vt,�Ik)

−1, yielding minorizer

L̄(F,v;Ft,vt) �
L∑

�=1

[
− dn�

2
ln v� − ‖Y�‖2F

2v�

+
1

v�
tr(Y′

�FZ̄t,�)

− 1

2v�
tr{F′F(Z̄t,�Z̄

′
t,� + n�vt,�Mt,�)}

]
,

(7)

where Z̄t,� � Mt,�F
′
tY� ∈ Rk×n� for � ∈ {1, . . . , L}, and (7)

drops terms that are constant with respect to F and v.
The corresponding M-step involves jointly maximizing (7)

with respect to both v and F, but doing so is challenging
because the interaction of the variables remains complicated.
See Appendix A for more discussion. However, optimization
with respect to either (with the other fixed) is relatively easy,
and Sections V-A and V-B2 use this minorizer to obtain efficient
updates for the individual variables.

V. ALTERNATING ALGORITHMS

The challenge of jointly optimizing F and v using (2) or (7)
motivates approaches that alternate between: a) optimizing F for
fixed v, and b) optimizing v for fixed F. Namely, we consider a
block-coordinate ascent of (2) with F and v as the two blocks of
variables. These sub-problems are simpler but the sub-problem
for updating v using (2) or (3) is still nontrivial so this section
considers several methods for updating v given F. When either
the F or v update involves the conditional expectation with re-
spect to some complete data, then such alternation is an instance
of a space-alternating generalized EM (SAGE) algorithm [43].

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 04,2021 at 00:49:38 UTC from IEEE Xplore.  Restrictions apply. 



HONG et al.: HEPPCAT: PROBABILISTIC PCA FOR DATA WITH HETEROSCEDASTIC NOISE 4823

A. Optimizing F for Fixed v (Via Expectation Maximization)

Fixing v at vt, maximizing the minorizer L̄(F,vt;Ft,vt) in
(7) with respect to F yields the EM step of [4]:

Ft+1 =

( L∑
�=1

Y�Z̄
′
t,�

vt,�

)( L∑
�=1

Z̄t,�Z̄
′
t,�

vt,�
+ n�Mt,�

)−1

, (8)

that we compute via the SVD Ft = UtΛ
1/2
t V′

t:

Ft+1 =

( L∑
�=1

Y�Z̃
′
t,�

vt,�

)( L∑
�=1

Z̃t,�Z̃
′
t,�

vt,�
+ n�Dt,�

)−1

V′
t,

(9)
where Z̃t,� � Dt,�Λ

1/2
t U′

tY� and Dt,� � (Λt + vt,�Ik)
−1 is

easily inverted because Λt and Dt,� are diagonal. To show
that this form is equivalent, note that Mt,� = VtDt,�V

′
t and

Z̄t,� = VtZ̃t,�. See [4, Section 3] and [18, Section III-B] for
similar derivations.

B. Optimizing v for Fixed F

FixingF atFt, maximization of (3) with respect tov separates
into L univariate maximizations (over v� ≥ 0) of:

L�(v�) � −
k∑

j=0

{
αj ln(γj + v�) +

βj

γj + v�

}
, (10)

where α0 � d− k, β0 � ‖(Id −UtU
′
t)Y�‖2F/n�, γ0 � 0,

j ≥ 1 : αj � 1, βj � ‖Y′
�ut,j‖22/n�, γj � λt,j ,

and Ut = [ut,1, . . . ,ut,k] and λt = (λt,1, . . . , λt,k) are the
eigenvectors and eigenvalues of FtF

′
t. Equation (10) drops all

terms from (3) that are constant with respect to v� as well as a
factor of n�/2, and we define

L�(0) � L�(0
+) =

{
+∞, if βt,� �

∑
j∈J0

βj = 0,

−∞, otherwise,
(11)

where J0 � {j : γj = 0}. Note also that L�(+∞) = −∞ and
∀v�∈(0,∞) L�(v�) < ∞. Lacking an analytical solution for the
critical points of (10) when k > 1, we next describe several
iterative methods for maximizing L�(v�).

1) Global Maximization Via Root-Finding: If βt,� = 0, then
(10) is maximized by v� = 0. Otherwise, L�(0

+) = −∞ and
global maxima occur only at critical points. Differentiating (10)
with respect to v� yields

L̇�(v�) �
k∑

j=0

{
− αj

γj + v�
+

βj

(γj + v�)2

}
. (12)

An upper bound for nonnegative roots of (12) can be obtained
from general root bounds for polynomials, e.g., [44], [45]. We
exploit the structure here to find a specialized bound. The k +
1 summands in (12) are, respectively, positive to the left and
negative to the right of βj/αj − γj . As a result,

L̇�(v�) > 0 for v� < vmin
� � min

j
(βj/αj − γj),

L̇�(v�) < 0 for v� > vmax
� � max

j
(βj/αj − γj),

so all nonnegative critical points occur in [vmin
� , vmax

� ] ∩ [0,∞)
and can be found, e.g., via interval root-finding2 [46, Ch. 8].
Choosing the best among these critical points yields global
maximizers.

This update maximally ascends the likelihood, and is perhaps
the most natural choice. However, finding all the roots can
be computationally expensive. Moreover, it is unclear whether
fully maximizing the likelihood in this step is desirable since
this update occurs within a broader alternating maximization.
The current estimate of F may be far from optimal, so fully
optimizing v might slow convergence. These reasons motivate
alternative methods that we derive next.

2) Expectation Maximization: Although jointly updating F
and v using (7) is challenging, it is fairly easy to update v when
F is fixed. Replacing F in (7) with the current estimate Ft and
simplifying leads to the following minorizer of (3) with respect
to v�:

L̄(Ft,v;Ft,vt) =

L∑
�=1

n�

2

(
− d ln v� − ρt,�

v�

)
, (13)

where

ρt,� �
1

n�

[
‖Y�‖2F − 2tr(Y′

�FtZ̄t,�)

+ tr{F′
tFt(Z̄t,�Z̄

′
t,� + n�vt,�Mt,�)}

]
= ‖(Id − FtMt,�F

′
t)Y�‖2F /n� + vt,�tr(FtMt,�F

′
t).
(14)

Maximizing (13) w.r.t. v� leads to the simple update:

vt+1,� =
ρt,�
d

. (15)

Since FtMt,�F
′
t = UtΛt(Λt + vt,�Ik)

−1U′
t, expanding and

simplifying yields the following alternative formula for (14):

ρt,� =

k∑
j=0

(
1− γj

γj + vt,�

)2

βj + vt,�

k∑
j=1

λt,j

λt,j + vt,�
, (16)

providing a more efficient form as well as a link to (10).
3) Difference of Concave Approach: The univariate objec-

tive (10) is a “difference of concave” or concave+convex cost
function. One standard way to optimize such functions is to
minorize each convex term with an affine function, leading to
the following concave minorizer (ignoring constants):

L̃�(v�; vt,�) � −
k∑

j=0

{
αj

γj + vt,�
v� +

βj

γj + v�

}
. (17)

Concavity of (17) eases maximization. If its derivative,

˙̃L�(v�; vt,�) �
k∑

j=0

{
− αj

γj + vt,�
+

βj

(γj + v�)2

}
,

is nonpositive at the origin, i.e., ˙̃L�(0
+; vt,�) ≤ 0, then (17) is

maximized by v� = 0. Otherwise, at least one βj > 0 so (17)
is necessarily strictly concave and is maximized at its unique

2We used the Julia package IntervalRootFinding.jl.
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critical point over v� > 0. This critical point can be efficiently

computed, e.g., via bisection by noting that ˙̃L�(v�; vt,�) < 0 for
v� > maxj{

√
(βj/αj)(γj + vt,�)− γj}.

4) Quadratic Solvable Minorizer: To derive a MM approach
with a simple update, we separate the summation in (10) into
the terms where γj is zero and nonzero and apply the affine
minorizer of (17) to the ln terms where γj > 0 as follows:

L̆�(v�; vt,�) = − αt,� ln v� − βt,�

v�
− ζt,� v�

−
∑
j/∈J0

βj

γj + v�
, (18)

where αt,� �
∑

j∈J0
αj , ζt,� �

∑
j/∈J0

αj

γj+vt,�
, and βt,� was

defined in (11).
For j /∈ J0, let πj � γj

γj+vt,�
∈ (0, 1) and rewrite (18) as

L̆�(v�; vt,�) = −αt,� ln v� − βt,�

v�
− ζt,� v�

−
∑
j/∈J0

βj

πj

(
γj

πj

)
+ (1− πj)

(
v�

1−πj

)

≥ φ(v�; vt,�) � −αt,� ln v� − βt,�

v�
− ζt,� v�

−
∑
j/∈J0

βj

(
πj

1

γj/πj
+ (1− πj)

1

v�/(1− πj)

)

= −αt,� ln v� − Bt,�

v�
− ζt,�v�, (19)

using the concavity of the function −1/x, ignoring irrelevant
constants, and defining

Bt,� = βt,� +
∑
j/∈J0

βj

v2t,�
(γj + vt,�)2

.

One can verify that, by design, φ(vt,�; vt,�) = L̆�(vt,�; vt,�). The
choice ofπj originates from an EM algorithm for PET [43], [47].
Differentiating the concave minorizer φ yields:

0 = −αt,�

v�
+

Bt,�

v2�
− ζt,�. (20)

This equation is solvable by the quadratic formula for ζt,�v2� +
αt,�v� −Bt,� that has exactly one positive root.

5) Cubic Solvable Minorizer: Because γj > 0 in the final
term of the concave minorizer in (18), that term has bounded
curvature for v� ≥ 0, with maximum (absolute) curvature

c�,j = −2βj/γ
3
j .

Thus we have the following partially quadratic concave mi-
norizer for (10) (ignoring constants):

Ql(v�; vt,�) = − αt,� ln v� − βt,�

v�
− ζt,� v�

+
∑
j/∈J0

{
βj

(γj + vt,�)2
v� +

1

2
c�,j(v� − vt,�)

2

}
.

(21)

Differentiating and equating to zero yields

0 =
−αt,�

v�
+

βt,�

v2�
+ γt,� + ct,� (v� − vt,�),

γt,� � −ζt,� +
∑

j/∈J0

βj

(γj + vt,�)2
,

ct,� �
∑

j/∈J0

c�,j . (22)

This v� update corresponds to finding the appropriate root of a
cubic polynomial. One could apply multiple v� updates based on
(22). The fixed points of the resulting MM iteration are identical
to the roots described by (12), so this approach is essentially
an iterative root finding method with the nice MM property of
monotonically increasing the log-likelihood.

C. Convergence and Stopping Criterion

All of the updates described above for F and v are based
on minorizers, so like all block MM methods they provide
updates that ensure the log-likelihood is monotonically non-
decreasing. However, monotonicity alone is insufficient to en-
sure convergence when the individual updates may not have
unique maximizers [48]. An alternative to simple alternation
between the F and v blocks is the “maximum improvement”
variant that calculates an update for both blocks and chooses
the one that increases the likelihood the most [49]. This variant
ensures convergence under modest regularity conditions (not
requiring convexity or uniqueness) appropriate for the HeP-
PCAT problem [50, Thm. 3]. To save computation, we used
the simpler alternating maximization approach for the empirical
results shown below.

A natural choice for stopping criterion is to stop once the
change in the factor matrix is sufficiently small. Namely, iterate
until ‖Ft+1 − Ft‖F/‖Ft‖F ≤ ε, where ε ≥ 0 is a user-provided
tolerance, as shown in Algorithm 1. That said, there are cer-
tainly other natural choices. For example, one could require
sufficiently small changes in the noise variance estimates or in
the log-likelihood.

D. Initialization by Homoscedastic PPCA

Without prior knowledge of the noise variances, a natural
choice to initialize v and F = U diag1/2(λ) is the homoscedas-
tic PPCA solution [5, Section 3.2]:

U0 � Û, λ0 � (λ̂1 − λ̄, . . . , λ̂k − λ̄), v0 � λ̄1L,

where the k columns of Û ∈ Rd×k are principal eigenvectors
of the sample covariance matrix (Y1Y

′
1 + · · ·+YLY

′
L)/n,

λ̂1, . . . , λ̂k are the corresponding eigenvalues, and λ̄ is the
average of the remaining d− k eigenvalues.

The HePPCAT optimization problem is nonconvex, so better
maximizers might be found by taking the best among many
random initializations, but we have not so far encountered such a
case; see, e.g., the experiments in Section X. The landscape of the
objective appears to be favorable despite its nonconvexity. More-
over, initializing via homoscedastic PPCA provides a reasonable
and nicely interpretable choice. If the samples are in fact close
to homoscedastic, this initialization is likely close to optimal
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already. Even if not, it provides a homoscedastic baseline to im-
prove upon via the alternating updates of Sections V-A and V-B.
All the updates are non-descending, so all iterates are guaranteed
to have likelihood no worse than homoscedastic PPCA.

VI. COMPUTATIONAL COMPLEXITY

The primary sources of computational complexity in the EM
update (8) for F are matrix multiplications and inverses. For
each � ∈ {1, . . . , L}, computing Mt,� costs O(k2d+ k3) after
which computing Z̄t,� costs O(k2d+ kdn�), yielding a total
cost of O(Lk3 + Lk2d+ kdn). The remaining multiplications
and inverses cost O(kdn+ k2n+ k2d+ k3). Combining these
terms and noting that k < d, n yields O(Lk2d+ kdn). The
alternative form (9) incurs an initial cost of O(k2d) to obtain
the SVD of Ft, but gains efficiency since Dt,� and Z̃t,� then
cost O(k) and O(kdn�), respectively. As a result, this form has
a final cost of O(kdn) overall.

A leading order source of computational complexity for all
of the v� update methods is in calculating the associated coeffi-
cients β0, . . . , βk. Doing so incurs a cost of O(kdn�) for each
� ∈ {1, . . . , L}, yielding a cost of O(kdn) overall. For all the v�
updates (Sections V-B1 to V-B5), the additional computational
cost is independent of d and n. Thus, one might suppose (since
k � d, n typically) that all the updates have essentially equal
runtime. However, this is not the case. Global maximization
(Section V-B1) and the difference of concave approach (Sec-
tion V-B3) both use iterative algorithms for root-finding, and
the runtime can depend significantly on not only k but also
properties of (10). Moreover, when L is large, e.g., for block
sizes of n� = 1, constant factors not captured by computational
complexity can also have a significant impact. Section VII
compares the convergence speed of the various updates in prac-
tice, accounting for both their runtime costs and per-iteration
improvement in likelihood.

To further improve computational efficiency, note that all the
updates depend on Y� implicitly through Y�Y

′
�, so one could

replaceY� in the updates with any proxy Y̆� for which Y̆�Y̆
′
� =

Y�Y
′
�. In some cases, e.g., when n� 
 d, doing so can yield

significant savings.

VII. COMPARISON OF UPDATE METHODS

Section V described several update methods for v based on a
variety of minorizers. It is not obvious a priori which choice is
best, so this section compares their relative performance. We
consider n = 103 samples in d = 102 dimensions generated
according to the model (1) with k = 3 factors generated as
F̃ = Ũ diag1/2(λ̃), where Ũ = (ũ1, . . . , ũk) ∈ Rd×k is drawn
uniformly at random from among d× k matrices having or-
thonormal columns3 and λ̃ = (4, 2, 1). The first n1 = 200 sam-
ples have noise variance ṽ1 = 1, and the remaining n2 = 800
have noise variance ṽ2.

Fig. 2 considers the homoscedastic setting where ṽ2 = 1 (yet
the two variances are still unknown to the algorithm). As a
baseline, we take F� and v� to be the solutions obtained by
1000 iterations of Expectation Maximization updates for both
F and v. The associated log-likelihood is L� � L(F�,v�).
Fig. 2(a) plots convergence of the log-likelihoodL� − L(Ft,vt)
versus walltime for iterates (Ft,vt) obtained by the various
choices for the v update. Note that L� − L(Ft,vt) is the
log of the likelihood-ratio between the converged solution
(F�,v�) and iterate (Ft,vt). Fig. 2(b) plots convergence for
the F iterates with respect to the normalized factor difference
‖FtF

′
t − F�F�′‖F/‖F�F�′‖F. Iterations are indicated on both

plots by the markers, and walltime only includes the updates
themselves (i.e., not calculation of the log-likelihood).

Among the v update methods, global maximization typically
ascends the log-likelihood the most per iteration, but is also the
most computationally expensive. As a result, it converges more
slowly with respect to walltime. The difference of concave
update is computationally cheaper but ascends the least per
iteration initially. The final three updates (Cubic solvable MM,
Expectation Maximization, Quadratic solvable MM) have fairly
similar computational cost and log-likelihood increase per
iteration.

The global maximization update corresponds to maximizing
the univariate functions L�(v�). The remaining update meth-
ods each correspond to maximizing an associated minorizer.
Fig. 2(c) plots these minorizers at the homoscedastic PPCA
initialization (Section V-D), shifted to be zero at the current
iterate. For this homoscedastic case, the homoscedastic PPCA
initialization is already close to optimal and the minorizers (with
the exception of the difference of concave minorizer) closely
follow the log-likelihood.

Fig. 3 considers a heteroscedastic case with ṽ2 = 4. As in the
homoscedastic case, global maximization converges the most
slowly overall due to its high computational cost per iteration
(more so in fact). Likewise, the difference of concave update is
again computationally cheaper but ascends the least per iteration
initially, and the remaining three update methods converge the
most rapidly. Fig. 3(c) illustrates the comparative tightness of

3Specifically, drawn according to the Haar measure on the Stiefel manifold,
see, e.g., [51, Section 2.5.1], as implemented in the Julia package Manifolds.jl.
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Fig. 2. Convergence of alternating maximization w.r.t. F and v for various v updates. We consider n = 103 samples in d = 102 dimensions with k = 3

underlying factors λ̃ = (4, 2, 1). The noise is homoscedastic: both the first n1 = 200 and remaining n2 = 800 samples have noise variance ṽ1 = ṽ2 = 1.
Walltimes are medians taken over 100 runs of the algorithm to reduce the effect of experimental noise. Markers denote each iteration.

Fig. 3. Same as Fig. 2 except here the noise is heteroscedastic with ṽ2 = 4 and markers are placed every five iterations.

Fig. 4. Comparison with homoscedastic PPCA applied on: i) full data, ii) only group 1, i.e, the n1 = 200 samples with noise variance ṽ1 = 1, and iii) only group
2, i.e., the n2 = 800 samples with noise variance ṽ2 = σ2

2 . Lower is better in (a), and higher is better in (b)-(d). Heteroscedastic PPCA (HePPCAT) outperforms
the homoscedastic methods on all four metrics. The mean and interquartile intervals (25th to 75th percentile) from 100 data realizations are shown as curves and
ribbons, respectively.

the various minorizers at the homoscedastic PPCA initialization.
The initialization is far from optimal for this heteroscedastic
case, and the relative differences in tightness among the mi-
norizers are more clearly visible. Based on these experiments,
we recommend using the EM minorizer or the quadratic solvable
minorizer for the v updates.

VIII. STATISTICAL PERFORMANCE EXPERIMENTS

This section evaluates the statistical performance of HeP-
PCAT through simulation. We consider n = 103 samples in
d = 102 dimensions generated according to the model (1) with
k = 3 factors generated as F̃ = Ũ diag1/2(λ̃), where Ũ =

[ũ1, . . . , ũk] ∈ Rd×k is drawn uniformly at random from among
d× k matrices having orthonormal columns and λ̃ = (4, 2, 1).
The first n1 = 200 samples have noise variance ṽ1 = 1, and the
remaining n2 = 800 have ṽ2 = σ2

2 , where we sweep σ2 from 0
to 3. We use 100 iterations of alternating EM updates for F and
v with the homoscedastic PPCA initialization.

A. Comparison With Homoscedastic Methods

Fig. 4 compares the recovery of the latent factors F̃ by HePP-
CAT with those obtained by applying homoscedastic PPCA on:
a) the full data, b) only group 1, i.e, the n1 = 200 samples with
noise variance ṽ1 = 1, and c) only group 2, i.e., the n2 = 800
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Fig. 5. Comparison with heteroscedastic methods: HeteroPCA [13] and weighted PCA (inverse and square inverse noise variance weights calculated using the
true noise variances). Lower is better in (a), and higher is better in (b)-(d). HePPCAT is among the best heteroscedastic methods. The mean and interquartile
intervals (25th to 75th percentile) from 100 data realizations are shown as curves and ribbons, respectively.

samples with noise variance ṽ2 = σ2
2 . These homoscedastic

PPCA approaches are reasonable and common choices in the
absence of reliable heteroscedastic algorithms; it is worthwhile
to understand their performance. The mean and interquartile
intervals (25th to 75th percentile) from 100 data realizations are
shown as curves and ribbons, respectively.

Fig. 4(a) plots the normalized factor covariance estimation
error, defined as ‖F̂F̂′ − F̃F̃′‖F/‖F̃F̃′‖F where F̂ ∈ Rd×k is
the estimated factor matrix. Figs. 4(b) to 4(d) plot the component
recoveries |û′

1ũ1|2, . . . , |û′
3ũ3|2, where û1, . . . , û3 ∈ Rd are

the principal eigenvectors of F̂F̂′. Lower is better for estimation
error and higher is better for component recovery.

When σ2 is small enough, homoscedastic PPCA applied
to only group 2 performs the best among the homoscedastic
PPCA’s. In this case, group 2 is relatively clean, and the com-
ponents are reliably recovered. Using the full data incorporates
more samples, but in this case including the noisier group 1 data
does more harm than good since homoscedastic PPCA treats
them uniformly. There is a tradeoff here between having more
samples and including noisier samples. Finally, using only group
1 performs worst; it is smaller and noisier.

With increasing σ2, the performance of homoscedastic PPCA
degrades when applied to the full data or group 2 since they
incorporate these increasingly noisy samples. The effect is more
pronounced for using only group 2, and eventually the trade-
off reverses; using the full data becomes best among the ho-
moscedastic PPCA options. In particular, when σ2 = 1, the full
data actually has homoscedastic noise and there is no statistical
benefit to using only either group. As σ2 continues to increase,
group 2 data is eventually so noisy that it becomes best to only
use group 1. Just past σ2 > 1, however, using only group 1
remains worse than using only the noisier group 2 data. In this
regime, the more abundant samples in group 2 win out over
the cleaner samples in group 1. Which homoscedastic PPCA
option performs best depends crucially on the interplay of these
tradeoffs, making it unclear a priori which to use.

HePPCAT uses all the data but estimates and accounts for
the heteroscedastic noise. In Fig. 4, it essentially matches or
outperforms all three homoscedastic PPCA options across the
entire range of σ2. In particular, for small σ2, it closely matches
the performance of using only group 2, and for large σ2 it

closely matches that of using only group 1. In some sense, it
appears to automatically ignore unreliable data. For moderate
σ2, it outperforms the three homoscedastic PPCA options. In
this regime, it is suboptimal to ignore either group of data or to
use both but treat them uniformly, and HePPCAT appropriately
combines them.

Notably, HePPCAT performs nearly the same across this
sweep as the variant developed in [4] that assumed known noise
variances, even though the noise variances are now unknown
and jointly estimated. See Fig. 14. Sections VIII-C and VIII-D
study the quality of the noise variance estimates.

B. Comparison With Heteroscedastic Methods

Fig. 5 compares the recovery of the latent components Ũ
by HePPCAT with those obtained by HeteroPCA [13] and by
weighted PCA with: a) inverse noise variance weights, and b)
square inverse noise variance weights. HeteroPCA is an iterative
method designed for noise that is heteroscedastic within each
sample; here we use 10 iterations. Weighted PCA is a simple
and efficient variant of PCA that accounts for heteroscedasticity
across samples by down-weighting noisier samples. A typical
choice for weights is inverse noise variance weighting that
effectively rescales samples so their (scaled) noise becomes
homoscedastic. Square inverse noise variance weighting is a
choice of weights that more aggressively down-weights noisier
samples. It can be more effective for weak signals, as revealed
by the analysis in [12].

Fig. 5(a) plots the normalized subspace estimation error,
defined as ‖ÛÛ′ − ŨŨ′‖F/‖ŨŨ′‖F where we denote the
estimated factor eigenvectors as Û = [û1, . . . , ûk] ∈ Rd×k.
Figs. 5(b) to 5(d) plot the corresponding component recoveries
|û′

1ũ1|2, . . . , |û′
3ũ3|2. As before, the mean and interquartile

intervals (25th to 75th percentile) from 100 data realizations are
shown as curves and ribbons, respectively, and lower is better
for estimation error and higher is better for component recovery.

When σ2 is small, both weighted PCA methods perform simi-
larly to HePPCAT. They both down-weight group 1 samples and
benefit from the clean group 2 samples. As σ2 increases, a gap
in the performance appears between inverse noise variance and
square inverse noise variance weighted PCA. In this regime, the

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 04,2021 at 00:49:38 UTC from IEEE Xplore.  Restrictions apply. 



4828 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Fig. 6. Relative bias of HePPCAT estimates for noise variances and factor
eigenvalues. The mean and interquartile intervals (25th to 75th percentile) from
100 data realizations are shown as curves and ribbons, respectively.

more aggressive square inverse noise variance weights perform
better for the weaker second and third components. For the
stronger first component, inverse noise variance weights remain
comparable and are, in fact, better for moderate σ2. Throughout
the sweep, HePPCAT matches or slightly outperforms the statis-
tical performance of both weighted PCA methods. The relatively
favorable performance of these methods highlights the benefit
of accounting for heteroscedasticity across samples. Doing so
enables them to make better use of all the available data. Note
that unlike the two weighted PCA methods, HePPCAT is not
given the noise variances and instead estimates them. Moreover,
to apply the weighted PCA methods shown here, one must
choose between the two weights (neither is uniformly better
than the other), whereas HePPCAT works well across the range
of noise variances.

HeteroPCA also accounts for heteroscedastic noise, but does
so primarily for heteroscedasticity within each sample, rather
than across samples. Heteroscedasticity within each sample
biases the diagonal of the covariance matrix, even in expectation,
and HeteroPCA corrects for this. However, it treats the samples
themselves fairly uniformly. Consequently, its performance here
closely resembles that of homoscedastic PPCA on the full data,
as shown in Fig. 4. This behavior highlights the qualitative
difference between heteroscedasticity within and heteroscedas-
ticity across samples; they manifest differently and must both be
addressed. Section VIII-E considers a setting with noise that is
heteroscedastic in both ways and illustrates the opportunity for
further works considering the combination.

C. Bias in Estimated Noise Variances and Factor Eigenvalues

Fig. 6 plots the relative biases of the estimated noise variances
v̂1 and v̂2, as well as those of the estimated factor covari-
ance eigenvalues λ̂ = (λ̂1, . . . , λ̂3). As before, the mean and
interquartile intervals (25th to 75th percentile) from 100 data
realizations are shown as curves and ribbons, respectively, but
now closer to zero is better. Positive values mean that HeP-
PCAT has overestimated, and negative values indicate that it
has underestimated. Taken together, Fig. 6(a) and 6(b) show a
general negative bias in the estimated noise variances paired
with a general positive bias in the estimated factor eigenvalues.
This behavior is consistent with a corresponding behavior for

Fig. 7. Estimated noise variances for varying block sizes.

homoscedastic PPCA in the setting of homoscedastic noise [52].
Providing a similar characterization for HePPCAT and a cor-
responding de-biasing procedure is an exciting, but nontrivial,
direction for future work.

D. Dependence of Noise Variance Estimates on Block Sizes

Fig. 7 fixes the noise variance of group 2 at ṽ2 = 4, i.e.,
σ2 = 2, and shows the noise variances estimated for all of the
n = 103 samples when the samples are passed to HePPCAT in
(non-overlapping) blocks of size 1, 10 and 100. Doing so reveals
how the estimates depend on block size, and captures settings
where the true latent groupings are unknown. Notably, a block
size of 1 incorporates no a priori knowledge of the groupings.
Fig. 7(a) shows a single representative data realization, and
Fig. 7(b) shows the mean and interquartile intervals (25th to 75th
percentile) obtained from 100 data realizations. Both include
corresponding histograms on the right showing the distributions
of estimated noise variances.

Notably, the estimates are fairly concentrated around the true
latent noise variances of ṽ = (1, 4) at blocks of size 100 even
though this choice splits the first group of n1 = 200 samples
into two groups and the second group of n2 = 800 into eight
groups. These groups are visible in Fig. 7(a) as bars that tie
together samples in the same block. Interestingly, blocks of
size 10 are not much more noisy, while being significantly less
restrictive. Moreover, even using blocks of size 1, at which point
each sample is allowed its own noise variance estimate, provides
relatively reliable estimates that cluster around the latent noise
variances. The data contain enough information to obtain rea-
sonable estimates of these noise variances. Nevertheless, when
samples can be reasonably grouped together into blocks, e.g.,
grouping them by source or sensor, doing so can significantly
denoise the estimates even when the blocks are relatively small.
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Fig. 8. Normalized factor estimation error (median and interquartile inter-
vals) for varying block sizes. The three block sizes have practically identical
performance.

Fig. 9. Heteroscedasticity across both features and samples.

An interesting direction for future work is to jointly estimate
these clusters from the data.

Fig. 8 plots the corresponding normalized factor estimation
errors for v2 = σ2

2 where σ2 ranges from 0 to 3. The median and
interquartile intervals (25th to 75th percentile) from 100 data
realizations are shown as curves and ribbons, respectively. We
use the median here because the means for runs of block size 1,
which are likely the most challenging, appeared to be skewed
by outliers. Notably, all three block sizes perform quite closely
to HePPCAT with known blocks and outperform homoscedastic
variants (cf. Fig. 4(a)).

E. Additional Heteroscedasticity Within Samples

Fig. 9 considers data that is heteroscedastic not just across
samples, but also within samples. As before, the first group
of n1 = 200 samples have noise variance v1 = 1, but now the
second group of n2 = 800 samples have a noise variance fixed
at v(1)2 = 4 for the first d(1) = 20 features and noise variance

v
(2)
2 = σ2

2 for the remaining d(2) = 80 features, whereσ2 ranges
from 0 to 3. Noise in the first group is homoscedastic within

each sample, but except for σ2 = 2, noise in the second group is
heteroscedastic within each sample. Fig. 9(a) shows an example
data realization for σ2 = 3; observe that the first group are
uniformly noisy, the first 20 features of the second group are
noisier, and the final 80 features are noisiest.

Fig. 9(b) plots the subspace estimation error across this range
of heteroscedastic settings for homoscedastic PPCA; HePPCAT,
which accounts for heteroscedasticity across samples; and Het-
eroPCA [13], which primarily accounts for heteroscedasticity
within each sample. Namely, HeteroPCA accounts for bias in
the diagonal of the covariance that is caused by within-sample
heteroscedasticity, but treats the samples themselves uniformly.
When σ2 is small, accounting for heteroscedasticity within each
sample is more important and HeteroPCA is better. However,
the tradeoff reverses and HePPCAT becomes better as σ2 grows
towards σ2 = 2, at which point samples are heteroscedastic only
across samples. Interestingly, heteroscedasticity across samples
appears to continue to dominate for σ2 > 2. Homoscedastic
PPCA is generally worst, as it does not account for either
heteroscedasticity. HePPCAT performs similarly for small σ2,
where within-sample heteroscedasticity seems to dominate, and
HeteroPCA is similar for large σ2, where across-sample het-
eroscedasticity seems to dominate. These results highlight a
qualitative difference between across-sample and within-sample
heteroscedasticity; both must be addressed. Developing methods
that simultaneously handle both types of heteroscedasticity,
which outperform all three methods across this range, is an
exciting direction for future work.

IX. REAL DATA EXPERIMENTS

This section applies HePPCAT to environmental monitoring
data containing air quality measurements from both a few high
precision instruments and a large network of low-cost consumer-
grade sensors. High precision measurements are provided by the
U.S. Environmental Protection Agency (EPA) and its partners.
They maintain a nationwide network of Air Quality Index (AQI)
sensor stations that measure, monitor, and distribute air quality
data on the AirNow platform [53]. The recent proliferation of
low-cost consumer-grade AQI sensors, such as PurpleAir [54],
provides a second source of data. These sensors stream data
continuously to developer platforms, such as ThingSpeak [55],
creating a network of crowd-sourced air quality data with greater
spatial coverage and resolution but generally lower precision.

We consider PM2.5 particulate concentration readings (in
μg/m3) from the AirNow platform and from outdoor PurpleAir
sensors across the central California region, i.e., within longi-
tudes (-123.948, -119.246) and latitudes (35.853, 39.724), at the
top of every hour from February 9-13, 2021. We chose 10 random
PurpleAir sensors nearby each of 46 AirNow sensors to obtain
balanced sensing coverage, and omitted hours where at least
one of the AirNow sensors did not record a measurement. This
gave n1 = 46 AirNow samples y1,i and n2 = 460 PurpleAir
samples y2,i, where each sample y�,i is a vector of d = 108
readings of PM2.5 across time. Fig. 10 displays the map of the
sensor locations for visualization. AirNow measurements are
calibrated and averaged over hour-long windows by the U.S.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 04,2021 at 00:49:38 UTC from IEEE Xplore.  Restrictions apply. 



4830 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Fig. 10. Sensor locations of AirNow (green triangles) and PurpleAir (purple
circles) in the central California region of our experiments.

EPA, whereas we collected the instantaneous readings from the
PurpleAir sensors nearest to each hour. We centered the two
sensor groups Y1 and Y2 separately by subtracting from each
its sample mean.

Lacking ground truth, we evaluate how well the subspace
learned by HePPCAT on a subset of the samples generalizes
to the rest. Namely, we randomly select n(train)

1 = 25 AirNow

samples and n
(train)
2 = 250 PurpleAir samples as training data

Y(train) ∈ Rd×n(train)
. The remaining n

(test)
1 = 21 AirNow

samples and n
(test)
2 = 210 PurpleAir samples serve as test data

Y(test) ∈ Rd×n(test)
. The training data Y(train) is then used to

estimate a basis for a k = 30 dimensional subspace Û ∈ Rd×k

using PPCA and HePPCAT. We also consider PPCA-AN (PPCA
on only the AirNow group Y

(train)
1 ) and PPCA-PA (PPCA

on only the PurpleAir group Y
(train)
2 ). For each estimated

Û, the performance on test data Y(test) is quantified by the
normalized root mean-squared error (NRMSE) of the subspace
reconstruction, i.e., ‖Y(test) − ÛÛ′Y(test)‖F/‖Y(test)‖F. We
also consider the corresponding NRMSE evaluated on only the
AirNow test data Y

(test)
1 and on only the PurpleAir test data

Y
(test)
2 , as well as all the training data counterparts.
We repeated this experiment for 200 random train-test splits

of the data. Fig. 11(a) shows the noise variance estimates
from HePPCAT from a representative trial. The estimated noise
variance for the PurpleAir samples is substantially higher than
that for AirNow samples, illustrating heterogeneity within this
data. This is reasonable given that the PurpleAir data comes
from low-cost consumer-grade sensors, while the AirNow data
comes from high precision instruments. The corresponding box
plots (indicating median, interquartile range, and outliers) in
Fig. 11(b) show the spread of these estimates across the 200
trials. The estimates remain fairly consistent.

Fig. 12 shows boxplots for the training and test NRMSEs
across the 200 trials. As expected, PPCA (on full data) generally
has the lowest training NRMSE on full data, PPCA-AN is gen-
erally best on AirNow training data, and likewise for PPCA-PA
on PurpleAir training data. Compared with PPCA (on full data),

Fig. 11. Noise variance estimates from HePPCAT for a single representative
trial (a), and across all 200 trials (b). In (a), the first 25 samples in green are from
AirNow, and the remaining purple samples are from PurpleAir. A single noise
variance is estimated for each group. Boxplots in (b) show the spread of these
estimates across the 200 trials. Units are in (μg/m3)2.

HePPCAT has worse training NRMSE on the full data and on the
PurpleAir data, but has better training NRMSE on the cleaner
AirNow data. Turning to test NRMSE, however, HePPCAT is
among the best with respect to not only AirNow data, but also
the full data and even the PurpleAir data. HePPCAT appears
to more effectively leverage information from both the cleaner
but fewer AirNow samples and the noisier but more numerous
PurpleAir samples.

Overall, the experiments here with air quality data illustrate
heterogeneity arising naturally in real data and the potential for
improved generalization by using HePPCAT.

X. INVESTIGATION OF THE LANDSCAPE

This section empirically illustrates the favorable landscape of
our optimization problem and our algorithms’ convergence to
the globally optimal solution for synthetically generated data.
Even though the nonconvexity of the problem might lead one
to wonder if the choice of initialization matters, we find that
does not appear to be the case. We generate the same low-
rank heteroscedastic model as described in Section VIII and
sweep across σ2

2 values 0.1, 1.0, 2.0, and 3.0. The first regime
should see HePPCAT largely down-weight group 1 and perform
PCA on just group 2. At σ2

2 = 1, the dataset is statistically
homoscedastic, and we expect the landscape to behave similarly
to that of PCA, which enjoys a well-known landscape that
features no spurious local maxima and strict saddles [32]. As
σ2
2 increases, the distribution of the noise variances becomes

more bimodal, and the PPCA solution deviates farther from the
optimal log-likelihood value. In the low-noise end, the second
data block has four times as many samples as the first block and
a tenth of the noise variance. In the noisiest setting, the second
data block has three times the noise variance.

For each noise setting, we record each algorithms’ log-
likelihood at iteration t and in Fig. 13 show the difference to the
maximum log-likelihood found among all algorithms and trials.
We run 100 trials of each HePPCAT algorithm with the initial
estimate of F drawn randomly with i.i.d. Gaussian N (0, 1)
entries and the initial estimate of v drawn randomly with i.i.d.
entries uniform on [0,1). We also examine initializations from
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Fig. 12. Air quality data were split into training and test sets. A k = 30 dimensional subspace basis Û was estimated from the training data using PPCA and
HePPCAT, as well as PPCA-AN (PPCA trained using only the AirNow group) and PPCA-PA (PPCA trained using only the PurpleAir group). We evaluate the
NRMSE ‖Y − ÛÛ′Y‖F/‖Y‖F with respect to both training and test data (as well as their AirNow and PurpleAir subsets). Lower is better for all plots. As
expected, HePPCAT is never best on training data. However, it is among the best on all test cases, indicating that it has found explanatory components across both
data sources.

Fig. 13. Convergence gaps of each algorithm to the maximum converged log-likelihood per heteroscedastic noise experiment. n = [200, 800] and v1 = 1.0.
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the homoscedastic PPCA solution and from the oracle planted
model parameters. The converged likelihood values for each
algorithm and choice of initialization concentrate tightly around
the same maximum, with this behavior consistent across a wide
range of heteroscedastic noise levels, indicating a well-behaved
landscape.

In the homoscedastic regime, the results are consistent with
our expectation that the PPCA initialization should be close to
optimal, as shown in the second column of Fig. 13. We observe
as the data noise variances become more imbalanced, the PPCA
initialization becomes farther away from the global maximum,
but is still orders of magnitude better in likelihood than random
initialization. The oracle initialization has the best likelihood
for all the heteroscedastic settings as expected, but is still sub-
optimal since we are maximizing a finite-sample likelihood. An
interesting direction is to study how heteroscedastic noise affects
the likelihood and its maximum in finite sample settings.

XI. CONCLUSION

This paper developed efficient algorithms for jointly esti-
mating latent factors and noise variances from data with het-
eroscedastic noise. Maximizing the likelihood is a nontrivial
nonconvex optimization problem, and unlike the homoscedastic
setting, it is seemingly unsolvable via singular value decompo-
sition. The proposed algorithms alternate between updating the
factor estimates and the noise variance estimates, with several
choices for the noise variance update. It is unclear a priori which
choice is best, and we compared their empirical convergence
speeds in practice. Further numerical experiments studying the
statistical performance highlighted the significant benefits of
properly accounting for heteroscedasticity. Experiments on air
quality data illustrated heterogeneity arising naturally in real
data and improved generalization by using HePPCAT. Given
the nonconvexity of the problem, one might wonder if initial-
izing differently could lead to better maximizers. We provided
empirical evidence that this is not the case; the landscape, while
nonconvex, appears favorable.

Extensions of the approach to handle more general settings,
e.g., missing data or additional heterogeneity across features,
are interesting directions for further work. Likewise, there are
many variations of PCA, e.g., nonnegative matrix factorization,
and generalizations, e.g., unions of subspaces, that one could
consider. An extension to consider kernel PCA would be interest-
ing [56], [57], as noted by a reviewer. One might also incorporate
a clustering step in the alternating algorithm to estimate not only
the noise variances but also the blocks sharing a common noise
variance. Alternatively, one could consider the L groupings to
be another latent variable in the log-likelihood, and attempt to
jointly estimate them. Estimating the rank is another direction
for further work. Many classical methods were designed for
homoscedastic noise, and recent works, e.g., [14], [58]–[60],
have begun to explore this problem under heteroscedastic set-
tings. Some avenues for improving convergence speed are using
momentum / extrapolation [61] of the alternating maximiza-
tion updates, as well as incremental variants. One could also
consider tackling the M-step in Section IV via an inner block

coordinate ascent with updates similar to those in Sections V-A
and V-B2 that ascend the EM minorizer (7). This paper also
raises several natural conjectures about the landscape of the
nonconvex objective, which are beyond our present scope and
are exciting areas for further theoretical analysis. Finally, it
was observed in the homoscedastic setting that noise variance
estimates tend to have a downward bias that can be characterized
and accounted for [52]. A similar bias in variance estimates
appears to occur in the heteroscedastic setting, and extending
the previous approaches is a promising direction.

APPENDIX A
CHALLENGES IN EXPECTATION MAXIMIZATION

To carry out Expectation Maximization via Section IV, one
might attempt to maximize (7) with respect to both v and F by
first completing the square:

L̄(F,v;Ft,vt) = −
L∑

�=1

(
dn�

2
ln v� +

‖Y�‖2F
2v�

)

+
1

2
tr
{
T(v)S(v)−1T(v)′

}
− 1

2

∥∥∥FS(v)1/2 −T(v)S(v)−1/2
∥∥∥2
F
,

where the first two lines are constant with respect to F, and

T(v) �
L∑

�=1

1

v�
Y�Z̄

′
t,�,

S(v) �
L∑

�=1

1

v�
(Z̄t,�Z̄

′
t,� + n�vt,�Mt,�).

Thus (7) is maximized with respect to F by F = T(v)S(v)−1,
yielding the maximization problem with respect to v of

L̄(T(v)S(v)−1,v;Ft,vt)

=
1

2
tr
{
T(v)S(v)−1T(v)′

}−
L∑

�=1

(
dn�

2
ln v� +

‖Y�‖2F
2v�

)
.

(23)

Equation (23) is not easily optimized with respect to v for
L > 1 because of the matrix product in the trace. This term
introduces coupling among the noise variances v� that may
keep the problem from separating into L univariate problems.
Intuitively, the noise variances v� appear to be coupled via their
impact on the optimal latent factors F. Novel approaches to
efficiently optimize (23), e.g., by studying its critical points, is
an interesting direction for future work.

APPENDIX B
COMPARISON WITH KNOWN NOISE VARIANCES

Fig. 14 compares HePPCAT with the oracle variant developed
in [4] that used known noise variances; the experimental setup
matches that of Sections VIII-A and VIII-B. Even though the
noise variances are unknown and jointly estimated in HePPCAT,
the performance is nearly the same.
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Fig. 14. Comparison of the statistical performance of HePPCAT with the vari-
ant developed in [4] that assumed known noise variances, under the experimental
sweep in Sections VIII-A and VIII-B. Lower is better in (a), and higher is better
in (b)-(d). HePPCAT performs nearly the same even though the noise variances
are now unknown and jointly estimated.
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