
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020 153
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Abstract—Sparsity and low-rank models have been popular for
reconstructing images and videos from limited or corrupted mea-
surements. Dictionary or transform learning methods are useful
in applications such as denoising, inpainting, and medical image
reconstruction. In this paper, we propose a framework for online
(or time-sequential) adaptive reconstruction of dynamic image
sequences from linear (typically undersampled) measurements. We
model the spatiotemporal patches of the underlying dynamic image
sequence as sparse in a dictionary, and we simultaneously estimate
the dictionary and the images sequentially from streaming mea-
surements. Multiple constraints on the adapted dictionary are also
considered such as a unitary matrix, or low-rank dictionary atoms
that provide additional efficiency or robustness. The proposed
online algorithms are memory efficient and involve simple updates
of the dictionary atoms, sparse coefficients, and images. Numerical
experiments demonstrate the usefulness of the proposed methods
in inverse problems such as video reconstruction or inpainting from
noisy, subsampled pixels, and dynamic magnetic resonance image
reconstruction from very limited measurements.

Index Terms—Online methods, sparse representations, dic-
tionary learning, machine learning, inverse problems, video
processing, dynamic magnetic resonance imaging.

I. INTRODUCTION

M
ODELS of signals and images based on sparsity, low-

rank, and other properties are useful in image and video

processing. In ill-posed or ill-conditioned inverse problems, it

is often useful to employ signal models that reflect known or

assumed properties of the latent images. Such models are often

used to construct appropriate regularization. For example, the

sparsity of images in wavelet or discrete cosine transform (DCT)

domains has been exploited for image and video reconstruction

tasks [1]–[3]. In particular, the learning of such models has been
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explored in various settings [4]–[10], where they may potentially

outperform fixed models since they adapt to signals and signal

classes.

There has been growing interest in such dictionary learning-

based image restoration or reconstruction methods [11]–[13].

For example, in blind compressed sensing [10], [12], [13], a dic-

tionary for the underlying image or video is estimated together

with the image from undersampled measurements. This allows

the dictionary to adapt to the current data, which may enable

learning novel features, providing improved reconstructions.

For inverse problems involving large-scale or streaming data,

e.g., in interventional imaging or restoring (e.g, denoising,

inpainting) large or streaming videos, etc., it is often critical

to obtain reconstructions in an online or time-sequential (or

data-sequential) manner to limit latency. Batch methods that

process all the data at once are often prohibitively expensive in

terms of time and memory usage, and infeasible for streaming

data. Methods for online learning of dictionary and sparsifying

transform models from streaming signals including noisy data

have been recently proposed [14]–[18] and shown to outper-

form state-of-the-art methods [19]–[21] including deep learning

methods for video denoising.

This paper focuses on methods for dynamic image recon-

struction from limited measurements such as video or medical

imaging data. One such important class of dynamic image

reconstruction problems arises in dynamic magnetic resonance

imaging (dMRI), where the data are inherently or naturally un-

dersampled because the object is changing as the data (samples

in k-space or Fourier space of the object acquired sequentially

over time) is collected. Various techniques have been proposed

for reconstructing such dynamic image sequences from limited

measurements [22]–[24]. Such methods may achieve improved

spatial or temporal resolution by using more explicit signal

models compared to conventional approaches (such as k-space

data sharing in dMRI, where data is pooled in time to make sets

of k-space data with sufficient samples [25]); these methods

typically achieve increased accuracy at the price of increased

computation.

Recently there has been substantial interest in developing

real-time dMRI reconstruction algorithms. This literature gen-

erally falls into one (or both) of the following categories [26]:

methods that model the measurements as a time sequential or

adaptive process, and those that generate reconstructions with

minimal physical latency and are suited for real-time use in

practice. Although the second of these categories is interesting
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and important, methods with online or time sequential properties

are valuable in their own right as they often provide benefits such

as adaptability to time-varying aspects of the data and reduced

memory usage and computation requirements.

While some reconstruction techniques are driven by sparsity

models and assume that the image sequence is sparse in some

transform domain or dictionary [22], other methods exploit

low-rank or other kinds of sophisticated models [24], [25],

[27]–[31]. For example, L+S methods [24], [31] assume that the

image sequence can be decomposed as the sum of low-rank and

sparse (either directly sparse or sparse in some known transform

domain) components that are estimated from measurements.

Dictionary learning-based approaches including with low-rank

models provide promising performance for dynamic image re-

construction [12], [32], [33]. Although these methods allow

adaptivity to data and provide improved reconstructions, they

involve batch processing and typically expensive computation

and memory use. Next, we outline our contributions, particularly

a new online framework that address these issues of state-of-the-

art batch reconstruction methods.

A. Contributions

This paper investigates a framework for Online Adaptive

Image Reconstruction, dubbed OnAIR, exploiting learned dic-

tionaries. We model spatiotemporal patches of the underlying

dynamic image sequence as sparse in an (unknown) dictionary,

and we propose a method to jointly and sequentially (over

time) estimate the dictionary, sparse codes, and images from

streaming measurements. Various constraints are considered

for the dictionary model such as a unitary matrix, or a matrix

whose atoms/columns are low-rank when reshaped into spatio-

temporal matrices. The proposed OnAIR algorithms involve

simple and efficient updates and require a small, fixed amount

of data to be stored in memory at a time. Our method allows for

time-varying image models that can adapt to temporal dynamics

of the underlying data. Note that we use the term “online” in this

work as it is used in the signal processing literature [34], not to

imply that it is designed to process streaming measurements with

sub-real-time latency. That is, our method is online in the sense

that it processes measurements in a time sequential manner and

can be interpreted in the empirical risk minimization framework

[35].

Numerical experiments demonstrate the effectiveness of the

proposed OnAIR methods for performing video inpainting from

subsampled and noisy pixels, and dynamic MRI reconstruction

from very limited k-t space measurements. The experiments

show that our proposed methods are able to learn dictionaries

adaptively from corrupted measurements with important repre-

sentational features that improve the quality of the reconstruc-

tions compared to non-adaptive schemes. Moreover, the OnAIR

methods provide better image quality than batch schemes with

a single adapted dictionary, and with much lower runtimes than

adaptive batch (or offline) reconstructions.

While dictionary learning was studied for image reconstruc-

tion in [33] and earlier works, the methods involved batch

processing, where the model is learned based on patches from the

entire dynamic dataset concurrently. Online dictionary learning

is an important and well-studied problem in the literature as

well [14]–[18]; however, this work is the first to study online

dictionary learning-driven reconstruction from limited dynamic

imaging data. Compared to previous batch reconstruction meth-

ods, the proposed OnAIR methods enjoy a number of advan-

tages. First, the proposed methods involve modest memory use

independent of the number of frames processed, while batch

learning methods such as in [33] have a high memory require-

ment because they process the entire dataset and its patches

synchronously, which is infeasible for large datasets. In addition,

our proposed OnAIR methods use warm start initializations

and sliding windows that make the method computationally

efficient, requiring only a few iterations per minibatch to update

the solution/model based on new data. On the other hand,

batch methods such as [33] require many iterations over the

entire dataset to ensure convergence. As a result, OnAIR enjoys

significant speedups over the batch method in [33] as discussed

in Section V. The OnAIR methods also allow for dictionaries

that evolve over time, thereby adapting to the dynamic changes

in the object. The experiments in Section V show that such

online learned dictionaries better model the data and outperform

the batch method from [33] in terms of image quality. Finally,

the OnAIR methods offer reduced latency compared to batch

methods such as [33] because the data can be processed and

reconstructed sequentially over time without waiting until the

entire dataset is measured, which is infeasible for applications

involving streaming data.1

Short versions of this work appeared recently in [36] and

[37]. This paper extends those initial works by exploring OnAIR

methods with multiple constraints on the learned models includ-

ing a Unitary Dictionary (OnAIR-UD) constraint, and a Low-

rank Dictionary atom (OnAIR-LD) constraint. Such constraints

may offer a degree of algorithmic efficiency and robustness

to artifacts in limited data settings. For example, the updates

per time instant in OnAIR-UD are simpler and non-sequential,

enabling it to be faster in practice than the other OnAIR schemes.

Importantly, this paper reports extensive numerical experiments

investigating and evaluating the performance of the proposed

online methods in multiple inverse problems, and comparing

their performance against recent related online and batch meth-

ods in the literature. Finally, we also compare the performance

of the OnAIR methods to an oracle online scheme, where the

dictionary is learned offline from the ground truth data, and

show that the proposed online learning from highly limited and

corrupted streaming measurements performs comparably to the

oracle scheme.

B. Organization

The rest of this paper is organized as follows. Section II

reviews the dictionary learning framework that forms the basis of

1We also note that [33] includes a model called LASSI that incorporates a
global low-rank property along with the dictionary learning model. This method
was shown to provide small improvements over DINO-KAT (a dictionary
learning-only method) in Tables I-III of [33]. Extending the OnAIR framework
presented here to include such global low-rank models or other priors is an
interesting problem that we leave to future work.
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our online schemes. Section III describes our formulations for

online adaptive image reconstruction and Section IV presents

algorithms for solving the problems. Section V presents exten-

sive numerical experiments that demonstrate the promising per-

formance of our proposed methods in inverse problem settings

such as video inpainting and dynamic MRI reconstruction from

highly limited data. Finally, Section VI concludes with proposals

for future work.

II. DICTIONARY LEARNING MODELS

Here, we briefly review some prior works on dictionary learn-

ing that helps build our OnAIR framework. Given a set of signals

(or vectorized image patches) that are represented as columns

of a matrix P ∈ C
n×M , the goal of dictionary learning (DL) is

to learn a dictionary D ∈ C
n×m and a matrix Z ∈ C

m×M of

sparse codes such that P ≈ DZ. Traditionally, the DL problem

is often formulated [4] as follows:

min
D,Z

‖P −DZ‖2F

s.t. ‖di‖2 = 1, ‖zl‖0 ≤ s, ∀i, l, (1)

where di and zl denote the ith column of D and the lth column

of Z, respectively, and s denotes a target sparsity level for each

signal. Here, the ℓ0 “norm” counts the number of non-zero

entries of its argument, and the columns ofD are set to unit norm

to avoid scaling ambiguity between D and Z [38]. Alternatives

to (1) exist that replace the ℓ0 “norm” constraint with other

sparsity-promoting constraints, or enforce additional properties

on the dictionary [39]–[41], or enable online dictionary learning

[14].

Dictionary learning algorithms [4], [5], [14], [42]–[44] typi-

cally attempt to solve (1) or its variants in an alternating manner

by performing a sparse coding step (updating Z) followed by a

dictionary update step (updating D). Methods such as K-SVD

[4] also partially update the coefficients in Z in the dictionary

update step, while some recent methods update the variables

jointly and iteratively [45]. Algorithms for (1) typically repeat-

edly update Z (involves an NP-hard sparse coding problem) and

tend to be computationally expensive.

The DINO-KAT learning problem [13] is an alternative dic-

tionary learning framework that imposes a low-rank constraint

on reshaped dictionary atoms (columns). The corresponding

problem formulation is

min
D,Z

‖P −DZ‖2F + λ
2‖Z‖0

s.t. rank(R(di)) ≤ r, ‖di‖2 = 1, ‖zl‖∞ ≤ L, ∀i, l, (2)

where the ℓ0 “norm” counts the total number of nonzeros in

Z. The operator R(·) reshapes dictionary atoms di ∈ C
n into

matrices of sizen1 × n2 for somen1 andn2 such thatn = n1n2,

and r > 0 is the maximum allowed rank for each reshaped

atom. The dimensions of the reshaped atoms can be chosen

on an application-specific basis. For example, when learning

D from 2D image patches, the reshaped atoms can have the

dimensions of the 2D patch. In the case where spatiotemporal

(3D) patches are vectorized and extracted from dynamic data,

the atoms could be reshaped into space-time (2D) matrices.

Spatiotemporal patches of videos often have high temporal

correlation, so they may be well represented by a dictionary

with low-rank space-time (reshaped) atoms [13]. The parameter

λ > 0 in (2) controls the overall sparsity of Z. Penalizing the

overall or aggregate sparsity ofZ enables variable sparsity levels

across training signals (a more flexible model than (1)). The

ℓ∞ constraints for L > 0 prevent pathologies (e.g., unbounded

algorithm iterates) due to the non-coercive objective [46]. In

practice, we set L very large, and the constraint is typically inac-

tive. We proposed an efficient algorithm in [13] for Problem (2)

that requires less computation than algorithms such as K-SVD.

Another alternative to the DL problems in (1) and (2) in-

volves replacing the constraints in (2) with the unitary con-

straintDHD = I , where I is the n× n identity matrix. Learned

unitary operators work well in image denoising and more

general reconstruction problems [47], [48]. Moreover, algo-

rithms for learning unitary dictionaries tend to be computation-

ally cheap [47]. Our OnAIR framework exploits some of the

aforementioned dictionary structures.

III. PROBLEM FORMULATIONS

This section formulates data-driven online image reconstruc-

tion. First, we propose an online image reconstruction frame-

work based on an adaptive dictionary regularizer as in (2). Let

{f t ∈ C
Nx×Ny} denote the sequence of dynamic image frames

to be reconstructed. We assume that noisy, undersampled linear

measurements of these frames are observed. We process the

streaming measurements in minibatches, with each minibatch

containing measurements of M̃ ≥ 1 consecutive frames. Let

xt denote the vectorized version of the 3D tensor obtained

by (temporally) concatenating M̃ consecutive frames of the

unknown dynamic images. In practice, we construct the se-

quence {xt} using a sliding window (over time) strategy, which

may involve overlapping or non-overlapping minibatches. We

model the spatiotemporal (3D) patches of each xt as sparse with

respect to a latent dictionary D. Under this model, we propose

to solve the following online dictionary learning-driven image

reconstruction problem for each time t = 1, 2, 3, . . .

(P1)
{
x̂t, D̂t, Ẑt

}
= argmin

xt,D,Zt

1

Kt

t∑

j=1

ρt−j‖yj −Ajxj‖22

+
λS

Kt

t∑

j=1

ρt−j

(
M∑

l=1

‖Plx
j −Dzjl ‖

2
2 + λ

2
Z‖Z

j‖0

)

s.t. ‖ztl‖∞ ≤ L, rank(R(di)) ≤ r, ‖di‖2 = 1, ∀i, l.

Here j indexes time, and yt denotes the (typically undersam-

pled) measurements that are related to the underlying frames xt

(that we would like to reconstruct) through the linear sensing

operator At. For example, in video inpainting, At samples a

subset of pixels in xt, or in dynamic MRI, At corresponds to an

undersampled Fourier encoding. Typically—and, in particular,

in this work—the subsampling occurs per frame using a different

random sampling pattern for each frame. For example, in dMRI,

measurements are pooled in time to form sets of k-space data (the



156 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

corresponding underlying object is often written in the form of a

Casorati matrix [25], whose rows represent voxels and columns

denote temporal frames). The operator Pl is a patch extraction

matrix that extracts the lth nx × ny × nt spatiotemporal patch

from xt as a vector. A total of M (possibly) overlapping 3D

patches are assumed. MatrixD ∈ C
n×m withn = nxnynt is the

synthesis dictionary to be learned and ztl ∈ C
m is the unknown

sparse code for the lth patch of xt, with Plx
t ≈ Dztl . Matrix Zt

has ztl as its columns, and the ℓ0 “norm” in (P1) penalizes the

aggregate sparsity (i.e., the total number of nonzeros) ofZt. The

weights λS , λZ ≥ 0 are regularization parameters that control

the relative adaptive dictionary regularization and sparsity of

Z, respectively, in the model. The parameter 0 < ρ ≤ 1 is an

exponential forgetting factor that controls the influence of old

(previous values of t) data in (P1), and Kt =
∑t

j=1 ρ
t−j is a

normalization constant for the objective.

Problem (P1) has a form often used for online optimization

[14], [49]. The objective is a weighted average of the function

h(yt, D, xt, Zt) = ‖yt −Atxt‖22 + λS(
∑M

l=1 ‖Plx
t −Dztl‖

2
2

+ λ
2
Z‖Z

t‖0), with the constraints defining the feasible sets for

D and the sparse codes. Kt serves as a normalization of the

objective so that the cost can be viewed as a weighted average

of the instantaneous cost h(yt, D, xt, Zt).2, 3 When ρ = 1, this

normalization also prevents the cost from becoming unbounded

as t → ∞. In practice, this is not an issue when processing

finite-size time-series data or with ρ < 1. Hence, for simplicity,

we may omit this normalization constant.

Problem (P1) jointly estimates the adaptive dictionary model

for the patches of xt together with the underlying image frames.

Note that, for each time index t, we solve (P1) only for the

latest group of frames xt and the latest sparse coefficients Zt,

while the previous images and sparse coefficients are set to

their estimates from previous minibatches (i.e., xj = x̂j and

Zj = Ẑj for j < t). However, the dictionary D is adapted

to all the spatiotemporal patches observed up to time t. We

emphasize the global dependence of D on all previous data by

using the optimization variable D within the objective rather

than a time-indexed variable as done for the variables xt and

Zt. Assuming ρ = 1, the objective in (P1) with respect to D
acts as a surrogate (upper bound) for the usual empirical (batch)

risk function [14], [49] that uses the optimal reconstructions and

sparse codes (i.e., those that minimize the cost) for all the data.

The exponential factor ρt−j diminishes the influence of “old”

data on the dictionary adaptation process. When the dynamic

object or scene changes slowly over time, a large ρ (close to

1) is preferable so that past information has more influence and

vice versa.

As written in (P1), the dictionary D is updated based

on patches from all previous times; however, the proposed

2We include the normalization constant Kt in (P1) to parallel the cost
functions in online optimization works in the literature [14], [49].

3The minimization in (P1) (and later in (P2)) is only with respect to the
variables xt, D, and Zt for time t, so one could omit the summation terms
involving xj and Zj for j < t if desired. However, we retain these terms
to emphasize the connection to existing methods in the online optimization
literature [14], [49].

algorithm does not need to store this information during op-

timization. Indeed, our algorithm in Section IV computes only

a few constant-sized matrices that contain the necessary cumu-

lative (over time) information to solve (P1).

When minibatches xt and xt+1 do not overlap (i.e., no com-

mon frames), each frame f t is reconstructed exactly once in its

corresponding window in (P1). However, it is often beneficial

to construct xt using an overlapping sliding window strategy

[17], in which case a frame f t may be reconstructed in multiple

windows (minibatches of frames). In this case, we independently

produce estimates x̂t for each time index as indicated in (P1),

and then we produce a final estimate of the underlying frame

f t by computing a weighted average of the reconstructions of

that frame from each window in which it appeared. We found

empirically that an exponentially ρ-weighted average (similar

to that in (P1)) performed better than alternatives such as an

unweighted average of the estimates from each window or using

only the most recent reconstruction from the latest window.

In (P1), we imposed a low-rank constraint on the dictionary

atoms. As an alternative, we consider constraining the dictionary

to be a unitary matrix. The online optimization problem in this

case is as follows:

(P2)
{
x̂t, D̂t, Ẑt

}
= argmin

xt,D,Zt

1

Kt

t∑

j=1

ρt−j‖yj −Ajxj‖22

+
λS

Kt

t∑

j=1

ρt−j

(
M∑

l=1

‖Plx
j −Dzjl ‖

2
2 + λ

2
Z‖Z

j‖0

)

s.t. DHD = I,

where all terms in (P2) are defined as in (P1). Note that (P2) does

not require the ℓ∞-norm constraints on the sparse coefficients

Zt because the unitary constraint on the dictionary precludes

the possibility of repeated dictionary atoms, which was the

motivation for including these constraints in (P1) [46].

IV. ALGORITHMS AND PROPERTIES

This section presents the algorithms for Problems (P1)

and (P2) and their properties. We propose an alternating

minimization-type scheme for (P1) and (P2) and exploit the

online nature of the optimization to minimize the costs effi-

ciently. At each time index t, we alternate a few times between

updating (D,Zt)while holdingxt fixed (the dictionary learning

step) and then updating xt with (D,Zt) held fixed (the image

update step). For each t, we use a warm start for (initializing)

the alternating approach. We initialize the dictionary D with the

most recent dictionary (D̂t−1). Frames of xt that were estimated

in the previous (temporal) windows are initialized with the

most recent ρ-weighted reconstructions, and new frames are

initialized using simple approaches (e.g., interpolation in the

case of inpainting). Initializing the sparse coefficients Zt with

the codes estimated in the preceding window (Ẑt−1) worked

well in practice. All updates are performed efficiently and with

modest memory usage as will be shown next. Fig. 1 provides a

graphical flowchart depicting our proposed online scheme. The
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Fig. 1. Flowchart of the proposed online adaptive dictionary learning-driven
image reconstruction scheme at time t. The input is a vector yt containing
the streaming measurements for the current minibatch of frames, x̂t denotes
the corresponding reconstructed minibatch, and xt denotes intermediate recon-
structions in the alternating scheme. In the dictionary learning step (D,Ct) are
updated with xt held fixed, by performing block coordinate descent over the
columns of Ct (sparse coding) and the columns of D (dictionary atom update).
Then, the frames xt are updated (the image update step) with (D,Ct) held
fixed. This process is repeated a few times, and the final frame estimates x̂t

are integrated into the streaming reconstruction, x̂. xt
0

denotes the initialization
(warm start).

next subsections present the alternating scheme for each time t
in more detail.

A. Dictionary Learning Step for (P1)

Let Ct � (Zt)H . Minimizing (P1) with respect to (D,Ct)
yields the following optimization problem:

min
D,Ct

t∑

j=1

ρt−j‖P j −D(Cj)H‖2F + λ
2
Z‖C

t‖0

s.t. ‖cti‖∞ ≤ L, rank(R(di)) ≤ r, ‖di‖2 = 1∀i, (3)

where P j ∈ C
n×M is the matrix whose columns contain the

patches Plx
j for 1 ≤ l ≤ M , and cti is the ith column of Ct.

We use a block coordinate descent approach [46] (with few

iterations) to update the sparse coefficients cti and atoms di
(columns of D) in (3) sequentially. For each 1 ≤ i ≤ m, we first

minimize (3) with respect to cti keeping the other variables fixed

(sparse coding step), and then we update di keeping the other

variables fixed (dictionary atom update step). These updates

are performed in an efficient online manner as described in the

following subsections.

Note that to theoretically converge to a solution of Prob-

lem (3), the block coordinate descent updates described here

would have to be iterated many times. Fortunately, exhaustive

subproblem updates are not necessary in practice for online

sliding window optimization problems [14], [49], because warm

starts of variables from the previous window(s) can be used as

high quality initializations for the updates in the current time

window. As such, a few iterations suffice to further update the

variables based on new data. In the proposed OnAIR algorithm,

the dictionary is continuously updated over many iterations to

adapt to the time-series of measurements. If the streaming data

all agree with a common dictionary model, it is reasonable to

expect that the online dictionary updates presented below will

converge over time.

1) Sparse Coding Step: Minimizing (3) with respect to cti
leads to the following subproblem:

min
ct
i
∈CM

‖Et
i − di(c

t
i)

H‖2F + λ
2
Z‖c

t
i‖0

s.t. ‖cti‖∞ ≤ L,
(4)

where the matrix

Et
i := P t −

∑

k 
=i

dk(c
t
k)

H (5)

is defined based on the most recent estimates of the other atoms

and sparse coefficients. The solution to (4), assuming L > λZ ,

is given by [46]

ĉti = min
(
|HλZ

((Et
i )

Hdi)|, L1M
)
⊙ ej∠(Et

i )
Hdi , (6)

whereHλZ
(·) is the elementwise hard thresholding operator that

sets entries with (complex) magnitude less than λZ to zero and

leaves other entries unaffected, 1M is a length-M vector of ones,

⊙ and min(·, ·) denote elementwise multiplication and element-

wise minimum respectively, and ej∠· is computed elementwise,

with ∠ denoting the phase. We do not construct Et
i in (6) ex-

plicitly; rather we efficiently compute the matrix-vector product

(Et
i )

Hdi = (P t)Hdi − CtDHdi + cti based on the most recent

estimates of each quantity using sparse matrix-vector operations

[46].

2) Dictionary Atom Update Step: Here, we minimize (3)

with respect to di. This update uses past information via the for-

getting factor ρ. Let P̃ j :=
√

ρt−jP j and C̃j :=
√

ρt−jCj de-

note theρ-weighted patches and sparse coefficients, respectively,

and let P̃ 1:t and C̃1:t denote the matrices formed by stacking

the P̃ j’s horizontally and C̃j’s vertically, respectively, for times

1 to t. Finally, define Ẽ1:t
i := P̃ 1:t −

∑

k 
=i dk(c̃
1:t
k )H using the

most recent estimates of all variables, with c̃1:tk denoting the kth

column of C̃1:t. Using this notation, the minimization of (3) with

respect to di becomes

min
di∈Cn

‖Ẽ1:t
i − di(c̃

1:t
i )H‖2F

s.t. rank(R(di)) ≤ r, ‖di‖2 = 1.
(7)

Let UrΣrV
H
r be the rank-r truncated singular value decom-

position (SVD) of the matrix R(Ẽ1:t
i c̃1:ti ) that is obtained by

computing the r leading singular vectors and singular values of

the full SVD R(Ẽ1:t
i c̃1:ti ) := UΣV H . Then a solution to (7) is

given by [13]

R(d̂i) =

⎧

⎨

⎩

UrΣrV
H
r

‖Σr‖F
, if c̃1:ti 
= 0

W, if c̃1:ti = 0,
(8)

where W is any matrix of appropriate dimension with rank at

most r such that ‖W‖F = 1. In our experiments, we set W to

be the reshaped first column of the n× n identity matrix, which

worked well.

The main computation in (8) is computing Ẽ1:t
i c̃1:ti , since

the SVD of the small nynx × nt (i.e., space-time matrix with

nt < nynx typically) matrix R(Ẽ1:t
i c̃1:ti ) has negligible com-

putational cost. In principle, the matrix-vector multiplication
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Ẽ1:t
i c̃1:ti depends on all past information processed by the

streaming algorithm; however, it can be recursively computed

using constant time and memory. Indeed, observe that

Ẽ1:t
i c̃1:ti =

t∑

j=1

Ẽj
i c̃

j
i =

t∑

j=1

ρt−jEj
i c

j
i

=
t∑

j=1

ρt−j
(

P j −D(Cj)H + di(c
j
i )

H
)

cji

=

[
t∑

j=1

ρt−jP jcji

]

︸ ︷︷ ︸

=:qt
i

−D

[
t∑

j=1

ρt−j(Cj)Hcji

]

︸ ︷︷ ︸

=:gt
i

+ di

[
t∑

j=1

ρt−j‖cji‖
2

]

︸ ︷︷ ︸

=[gt
i
]i

, (9)

where [z]i denotes the ith element of a vector z. The vectors qti
and gti depend on all previous data, but they can be recursively

computed over time as

qti = ρqt−1
i + P tcti,

gti = ρgt−1
i + (Ct)Hcti,

(10)

where for each column index i, the matrix Ct is understood to

contain the latest versions of the sparse codes already updated

(sequentially) during the dictionary learning step. Using these

recursive formulae, the product Ẽ1:t
i c̃1:ti can be readily computed

each time in our algorithm. Thus, the update in (8) can be

performed in a fully online manner (i.e., without storing all the

past data).

Alternatively, we can collect the vectors qt−1
i and gt−1

i as

columns of matrices Qt−1 ∈ C
n×m and Gt−1 ∈ C

m×m, and

perform the following recursive updates once at the end of of the

overall algorithm for (P1) (i.e., once per minibatch of frames):

Qt = ρQt−1 + P tCt

Gt = ρGt−1 + (Ct)HCt.
(11)

Here Ct denotes the final sparse codes estimate from the algo-

rithm for (P1). In this case, when performing the inner update

(9), the contributions of the two terms on the right hand side of

(10) are incorporated separately. The matrices Qt ∈ C
n×m and

Gt ∈ C
m×m are small, constant-sized matrices whose dimen-

sions are independent of the time index t and the dimensions

of the frame sequence, so they are stored for efficient use in

the next minibatch. Moreover, the matrix Ct is sparse, so all

the matrix-matrix multiplications in (11) (or the matrix-vector

multiplications in (10)) are computed using efficient sparse

operations.

B. The Unitary Dictionary Variation

In the case of (P2), unlike for (P1), we do not perform block

coordinate descent over the columns of D and (Zt)H . Instead

we minimize (P2) with respect to each of the matrices Zt and D

directly and exploit simple closed-form solutions for the matrix-

valued updates. The following subsections describe the solutions

to the Zt and D update subproblems.

1) Sparse Coding Step: SinceD is a unitary matrix, minimiz-

ing (P2) with respect to Zt yields the following subproblem:

min
Zt∈Cn×M

‖DHP t − Zt‖2F + λ
2
Z‖Z‖0, (12)

where P t is again the matrix whose lth column is Plx
t. The

solution to (12) is given by the elementwise hard-thresholding

(at threshold λZ) operation

Ẑt = HλZ
(DHP t). (13)

2) Dictionary Update Step: Minimizing (P2) with respect to

D results in the following optimization:

min
D∈Cn×n

t∑

j=1

ρt−j‖P j −D(Cj)H‖2F

s.t. DHD = I,

(14)

where Cj � (Zj)H is used for notational convenience. Using

the definitions of the matrices P̃ 1:t and C̃1:t from the dictionary

atom updates in Section IV-A2, we can equivalently write (14)

as

min
D∈Cn×n

‖P̃ 1:t −D(C̃1:t)H‖2F s.t. DHD = I. (15)

Problem (15) is a well-known orthogonal Procrustes problem

[50]. The solution is given by

D̂ = UV H , (16)

where UΣV H is a full SVD of P̃ 1:tC̃1:t. Similarly as in (11),

let Qt = P̃ 1:tC̃1:t. The matrix Qt ∈ C
n×n can be recursively

updated over time according to (11) (or (10)), so the dictionary

update step can be performed efficiently and fully online.

C. Image Update Step

Minimizing (P1) or (P2) with respect to the minibatch xt

yields the following quadratic sub-problem:

min
xt∈CNxNyM̃

‖Atxt − yt‖22 + λS

M∑

l=1

‖Plx
t −Dztl‖

2
2. (17)

Problem (17) is a least squares problem with normal equation

(

(At)HAt + λS

M∑

l=1

PT
l Pl

)

xt = (At)Hyt + λS

M∑

l=1

PT
l Dztl .

(18)

In applications such as video denoising or inpainting, the matrix

pre-multiplying xt in (18) is a diagonal matrix that can be

efficiently pre-computed and inverted. More generally, in inverse

problems where the matrix pre-multiplying xt (i.e., (At)HAt

in particular) in (18) is not diagonal or readily diagonalizable

(e.g., in dynamic MRI with multiple coils), we minimize (17)

by applying an iterative optimization method. One can use any

classical algorithm in this case, such as the conjugate gradient

(CG) method. For the experiments shown in Section V, we used

a few iterations (indexed by i) of the simple proximal gradient
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Fig. 2. The OnAIR algorithms for Problems (P1) and (P2), respectively.
Superscript t denotes the time or minibatch index.

method [51], [52] with updates of the form

xt,i+1 = proxτiθ

(
xt,i − τi(A

t)H(Atxt,i − yt)
)
, (19)

where θ(x) := λS

∑M
l=1 ‖Plx−Dztl‖

2
2 and the proximal oper-

ator of a function h is proxh(x) := argminz 0.5‖x− z‖22 +
h(z). The proximal operation in (19) corresponds to a simple

least squares problem that is solved efficiently by inverting a

diagonal matrix I + 2τiλS

∑M
l=1 P

T
l Pl (arising from the normal

equation of the proximal operation), which is pre-computed. A

constant step-size τi = τ < 2/‖At‖22 suffices for convergence

[51]. Moreover, the iterations (19) monotonically decrease the

objective in (17) when a constant step size τ ≤ 1/‖At‖22 is used

[52].

Fig. 2 summarizes the overall OnAIR algorithms for the online

optimization Problems (P1) and (P2). In practice, we typically

use more iterations K for reconstructing the first minibatch of

frames, to create a good warm start for further efficient online

optimization. The initial D̂0 in the algorithm can be set to an

analytical dictionary (e.g., based on the DCT or wavelets) and

we set the initial Ẑ0 to a zero matrix.

D. Cost and Convergence

The computational cost for each time index t of the proposed

algorithms for solving the online image reconstruction problems

(P1) and (P2) scales as O(n2M), where D ∈ C
n×m with m ∝

n assumed, and M is the number of (overlapping) patches in

each temporal window. The cost is dominated by various matrix-

vector multiplications. Assuming each window’s length M̃ ≪
n, the memory (storage) requirement for the proposed algorithm

scales as O(nM), which is the space required to store the image

patches of xt when performing the updates for (P1) or (P2).

Typically the minibatch size M̃ is small (to allow better tracking

of temporal dynamics), so the number and maximum temporal

width of 3D patches in each window are also small, ensuring

modest memory usage for the proposed online methods.

While the overall computational cost and memory require-

ments for each time index t are similar for the algorithms for (P1)

and (P2), the simple matrix-valued forms of the dictionary and

sparse code updates for (P2) result in practice, in a several-fold

decrease in actual runtimes due to optimizations inherent to

matrix-valued computations in modern linear algebra libraries.

We emphasize that the OnAIR framework is computationally

cheap in the sense that it requires only a small number of effi-

cient updates in order to achieve high quality reconstructions in

practice. Our proposed algorithm uses warm start initializations

and sliding windows, and, at each step, we perform only a

few iterations of descent updates to update the variables based

on the new minibatch of data. Since the dictionary is updated

continuously over time and the sparse coefficients and frames are

also estimated over multiple windows, the warm start procedures

produce high quality initializations that enable limited iterations

in each time window. Limiting to a few iterations can also prevent

over-fitting of the model to the (noise or artifacts in the) new

data, which can be a concern especially for smaller values of ρ
(less memory). Such algorithmic strategies are also adopted in

the online optimization literature [14], [49], where solving each

instantaneous problem exhaustively is not the goal (indeed this

would be infeasible when processing streaming data); instead,

online algorithms efficiently improve/adapt estimates over time,

usually with asymptotic convergence guarantees wherein the

model converges as t → ∞ to stationary points of the expecta-

tion of the instantaneous cost.

The proposed algorithms involve either exact block coordi-

nate descent updates or for example, proximal gradient iterations

(with appropriate step size) when the matrix pre-multiplying xt

in (18) is not readily diagonalizable. These updates are guaran-

teed to monotonically decrease the objectives in (P1) and (P2) for

each time index t. Whether the overall iterate sequence produced

by the algorithms also converges over time (see e.g., [14]) is an

interesting open question that we leave for future work.

V. NUMERICAL EXPERIMENTS

This section presents extensive numerical experiments illus-

trating the usefulness of the proposed OnAIR methods. We
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consider two inverse problem applications in this work: video

reconstruction (inpainting) from noisy and subsampled pixels,

and dynamic MRI reconstruction from highly undersampled k-t

space data. The algorithm for (P1) is dubbed OnAIR-LD when

the parameter r is lower than its maximum setting (i.e., low-

rank dictionary atoms) and is dubbed OnAIR-FD (i.e., full-rank

dictionary atoms) otherwise. The algorithm for (P2) is dubbed

OnAIR-UD (unitary dictionary). The following subsections dis-

cuss the applications and results.4 See the supplementary mate-

rial of this manuscript for additional numerical experiments.

A. Video Inpainting

1) Framework: First, we consider video inpainting or recon-

struction from subsampled and potentially noisy pixels. We work

with the publicly available videos5 provided by the authors of

the BM4D method [53]. We process the first 150 frames of

each video at native resolution. We measure a (uniform) random

subset of the pixels in each frame of the videos, and also simulate

additive (zero mean) Gaussian noise for the measured pixels

in some experiments. The proposed OnAIR methods are then

used to reconstruct the videos from their corrupted (noisy and/or

subsampled) measurements.

The parameters for the proposed OnAIR methods are chosen

as follows. We used a sliding (temporal) window of length

M̃ = 5 frames with a temporal stride of 1 frame, to reconstruct

(maximally overlapping) minibatches of frames. In each win-

dow, we extracted8× 8× 5overlapping spatiotemporal patches

with a spatial stride of 2 pixels. We learned a square 320× 320
dictionary, and the operator R(·) reshaped dictionary atoms into

64× 5 space-time matrices. We ran the OnAIR algorithms for

(P1) and (P2) for K = 7 iterations in each temporal window

(minibatch), with K̂ = 1 inner iteration (of block coordinate

descent or alternation) for updating (D,Zt), and used a di-

rect reconstruction as per (18) in the image update step. A

forgetting factor ρ = 0.9 was observed to work well, and we

ran the algorithms for more (K = 50) iterations for the first

minibatch of data. We initialized dictionary D as the transpose

of the 3D discrete cosine transform (DCT) matrix6 (a sparsifying

transform), and the initial sparse codes were zero.

Newly arrived frames were first initialized (i.e., in the first

minibatch they occur) using 2D cubic interpolation. We sim-

ulated various levels of subsampling of the videos (with and

without noise), and we chose r = 5 or full-rank atoms in (P1),

which outperformed low-rank atoms in the experiments here.

The videos in this section have substantial temporal motion, so

allowing full-rank atoms enabled the algorithm to better learn the

dynamic temporal features of the data. Section V-B demonstrates

the usefulness of low-rank atoms in (P1). We tuned the weights

4The software to reproduce our results is available at http://web.eecs.umich.
edu/∼fessler.

5The data is available at http://www.cs.tut.fi/∼foi/GCF-BM3D.
6The 3D DCT matrix used here is obtained as the Kronecker product of

three one-dimensional DCTs of dimensions matching the patch dimensions (8×
8× 5). Applying the (separable) 3D DCT transform to a patch corresponds to
applying 1D DCTs along the row, column, and temporal dimensions of the patch.
Equivalently, the patch is sparse coded in the dictionary D that is the transpose
of the 3D DCT.

λS and λZ for (P1) and (P2) to achieve good reconstruction

quality at an intermediate undersampling factor (70% missing

pixels) for each video, and used the same parameters for other

factors.

We measure the performance of our methods using the (3D)

peak signal-to-noise ratio (PSNR) metric that is computed as

the ratio of the peak pixel intensity in the video to the root mean

square reconstruction error relative to the ground truth video.

All PSNR values are expressed in decibels (dB).

We compare the performance of the proposed OnAIR-FD

(r = 5) and OnAIR-UD methods for (P1) and (P2) with that

of an identical online algorithm but which uses a fixed DCT

dictionary. We refer to this variation henceforward as the Online

DCT method. In our experiments, we implemented the Online

DCT method as outlined in Fig. 2, but omitting the dictionary

atom update step in (8). We also produce reconstructions using

a “batch” version of the method for (P1) [13] (with r = 5) that

processes all video frames jointly; this method is equivalent to

the proposed online method for (P1) with M̃ set to the total

number of frames in the video. For each comparison method, we

used the same patch dimensions, initializations, etc., and tuned

the parameters λS and λZ of each method individually. The one

exception is that we used a spatial patch stride of 4 pixels for

the Batch Learning method rather than the 2 pixel spatial stride

used for the online methods. This change was made because the

batch method is memory intensive—it extracts and processes

image patches from the entire video concurrently—so it was

necessary to process fewer patches to make the computation

feasible. We ran the batch learning-based reconstruction for 20

iterations, which worked well. Finally, we also compare the

OnAIR reconstructions to baseline reconstructions produced by

2D (frame-by-frame cubic) interpolation and 3D interpolation

(using the natural neighbor method in MATLAB).

2) Results: Table I lists the PSNR values (in dB) for the var-

ious reconstruction methods for different levels of subsampling

(from 50% to 90% missing pixels) of three videos (without added

noise) from the BM4D dataset. Table II shows analogous results

for the Coastguard video when i.i.d. zero-mean Gaussian noise

with 25 dB PSNR was added before sampling the pixels. The

proposed OnAIR-FD method typically provides the best PSNRs

at higher undersampling factors, and the proposed OnAIR-UD

method, which uses a more structured (unitary) dictionary,7

performs better at lower undersampling factors.

The best PSNRs achieved by the OnAIR methods are typically

better (by up to 1.4 dB) than for the Batch Learning scheme. Both

OnAIR variations also typically outperform (by up to 2 dB) the

Online DCT method, which uses a fixed DCT dictionary—the

initial D in our methods.

Figs. 3 and 4 show the original and reconstructed frames for a

few representative frames of the Coastguard and Flower Garden

videos. Results for multiple methods are shown. Fig. 3 shows

that the proposed OnAIR-FD method produces visually more

accurate reconstructions of the texture in the waves and also

produces fewer artifacts near the boats in the water and the rocks

7OnAIR-UD can be interpreted as a unitary sparsifying transform model [6]
with DH denoting the sparsifying transform.
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TABLE I
PSNR VALUES IN DECIBELS (dB) FOR VIDEO INPAINTING FOR THREE VIDEOS FROM THE BM4D DATASET AT VARIOUS PERCENTAGES OF MISSING PIXELS. THE

METHODS CONSIDERED ARE THE PROPOSED ONAIR-FD METHOD (I.E., r = 5), THE PROPOSED ONAIR-UD METHOD, ONLINE INPAINTING WITH A FIXED DCT
DICTIONARY, THE BATCH DICTIONARY LEARNING-BASED RECONSTRUCTION METHOD WITH r = 5, 2-D (FRAME-BY-FRAME CUBIC) INTERPOLATION, AND 3-D

INTERPOLATION. THE BEST PSNR VALUE FOR EACH UNDERSAMPLING LEVEL FOR EACH VIDEO IS IN BOLD

I I I

I I I

Fig. 3. Two representative frames from the reconstructions produced by various methods for the Coastguard video with 80% missing pixels and no added noise
(top), and 80% missing pixels with 25 dB added Gaussian noise (bottom). Results are shown for the proposed OnAIR-FD (r = 5) method, the online method
with fixed DCT dictionary, the batch learning-based reconstruction method (r = 5), and 3-D interpolation. The true (reference) frames are also shown. Top:
OnAIR-FD achieves PSNR (of video) improvements of 2.0 dB, 1.0 dB, and 1.4 dB respectively, over the aforementioned methods. Bottom: OnAIR-FD achieves
PSNR improvements of 1.0 dB, 1.0 dB, and 1.5 dB respectively, over the aforementioned methods.

I l I

Fig. 4. Two representative frames from the reconstructions produced by various methods for the Flower Garden video with 80% missing pixels. The methods
considered are the proposed OnAIR-FD (r = 5) method, the online method with fixed DCT dictionary, the batch learning-based reconstruction method, and
3-D interpolation. The true frames are also shown. OnAIR-FD achieves PSNR (of video) improvements of 0.7 dB, 0.6 dB, and 1.3 dB respectively, over the
aforementioned competing methods.



162 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

TABLE II
PSNR VALUES IN DECIBELS (DB) FOR VIDEO INPAINTING FOR THE

COASTGUARD VIDEO CORRUPTED BY GAUSSIAN NOISE WITH 25DB PSNR, AT

VARIOUS PERCENTAGES OF MISSING PIXELS. THE FOLLOWING METHODS ARE

COMPARED: THE PROPOSED ONAIR-FD (r = 5) AND ONAIR-UD SCHEMES,
ONLINE INPAINTING WITH A FIXED DCT DICTIONARY, BATCH DICTIONARY

LEARNING-BASED RECONSTRUCTION (r = 5), 2-D (FRAME-BY-FRAME CUBIC)
INTERPOLATION, AND 3-D INTERPOLATION. THE BEST PSNR FOR EACH

UNDERSAMPLING IS IN BOLD

Fig. 5. Per-frame (2D) PSNR values (in dB) for the reconstructions produced
by OnAIR-FD (r = 5), OnAIR-UD, the online method with fixed DCT dictio-
nary, the batch learning-based method, and 3-D interpolation, for the Coastguard
video with 70% missing pixels.

on the shore. Fig. 4 illustrates that the proposed OnAIR method

produces a sharper reconstruction with less smoothing artifacts

than the online method with a fixed DCT dictionary and the

batch learning-based reconstruction method, and it is less noisy

than the interpolation-based reconstruction.

3) Properties: Fig. 5 shows the frame-by-frame (2D) PSNRs

for the Coastguard video inpainted from 70% missing pixels,

using various methods. Clearly the proposed OnAIR-FD method

achieves generally higher PSNRs across frames of the video. The

decrease in PSNR between frames 70 and 80 in the video is due

to the significant motion in the scene that occurs in these frames.

This change in performance is typical for dictionary learning-

based methods because the sparse codes for the corresponding

image patches and dictionary require a few iterations to adapt to

the scene. However, as illustrated in Fig. 3, the OnAIR methods

may produce visually superior reconstructions in such cases.

To assess the relative efficiency of the OnAIR methods com-

pared to the Batch Learning method, we measured runtimes on

the Coastguard video with the same fixed patch sizes, patch

strides, and numbers of iterations for each method. The ex-

periments were performed in MATLAB R2017b on a 2016

MacBook Pro with a 2.7 GHz Intel Core i7 processor and 16

GB RAM. With these settings, the OnAIR-FD and OnAIR-UD

methods required an average of 4.4 seconds and 1.9 seconds

to process each frame, respectively, while the Batch Learning

method required an average of 7.9 seconds. Thus the OnAIR-LD

and OnAIR-UD methods were 1.8x and 4.2x faster, respectively,

than the Batch Learning method. In addition, the OnAIR meth-

ods typically require much fewer iterations (per minibatch)

compared to the batch method to achieve their best reconstruc-

tion accuracies, so, in practice, when utilizing half as many

outer iterations, the OnAIR-FD and OnAIR-UD methods were

approximately 3.6x and 8.0x faster, respectively, than the batch

scheme.

The decreased memory requirement of the proposed OnAIR

method compared to batch learning methods such as from [33]

is often crucial in practice. Indeed, even on the modestly sized

Coastguard dataset, which contains 150 frames of resolution

144× 172, constructing the patch matrix and other associated

matrices necessary to run the Batch Learning method with patch

strides of 1× 1× 1 or 2× 2× 1would have required more than

the 16GB of RAM available on our computer (as a result, we

chose a 4× 4× 1 stride). Moreover, the memory requirement

of the Batch Learning method scales linearly with the number

of frames (since all frames are processed concurrently), so

increasing the length of the frame sequence to, say, 300 frames

would again necessitate more RAM than is available on typical

machines. Conversely, the OnAIR method has a small, fixed

memory footprint that is independent of the number of frames

in the dataset (it depends instead on the number of frames per

minibatch) and thus can process datasets of arbitrary length.

B. Dynamic MRI Reconstruction

1) Framework: Here, we demonstrate the usefulness of the

proposed OnAIR methods for reconstructing dynamic MRI data

from highly undersampled k-t space measurements. We work

with the multi-coil (12-element coil array) cardiac perfusion data

[24] and the PINCAT data [12], [54] from prior works. For the

cardiac perfusion data, we retrospectively undersampled the k-t

space using variable-density random Cartesian undersampling

with a different undersampling pattern for each time frame, and

for the PINCAT data we used pseudo-radial sampling with a

random rotation of radial lines between frames. The undersam-

pling factors tested are shown in Table III. For each dataset, we

obtained reconstructions using the proposed OnAIR methods,

the online method but with a fixed DCT dictionary, and the batch

learning-based reconstruction (based on (P1)) method [13]. We

also ran the recent L+S [24] and k-t SLR [55] methods, two

sophisticated batch methods for dynamic MRI reconstruction

that process all the frames jointly. Finally, we also computed

a baseline reconstruction in each experiment by performing

zeroth order interpolation across time at non-sampled k-t space

locations (by filling such locations with the nearest non-zero

entry along time) and then backpropagating the filled k-t space

to image space by pre-multiplying with the AH corresponding

to fully sampled data. The first estimates (f t
0) of newly arrived

frames in our OnAIR methods are also computed via such zeroth

order interpolation, but using only the estimated (i.e., already

once processed and reconstructed) nearest (older) frames.

For the online schemes, we used 8× 8× 5 spatiotemporal

patches with M̃ = 5 frames per temporal window (minibatch)

and a (temporal) window stride of 1 frame. We extracted over-

lapping patches in each minibatch using a spatial stride of 2
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TABLE III
NRMSE VALUES AS PERCENTAGES AT SEVERAL UNDERSAMPLING FACTORS FOR THE CARDIAC PERFUSION DATA WITH CARTESIAN SAMPLING (LEFT) AND FOR

THE PINCAT DATA WITH PSEUDO-RADIAL SAMPLING (RIGHT). THE METHODS COMPARED ARE THE PROPOSED ONAIR-LD (r = 1) METHOD, THE ONLINE

SCHEME WITH A FIXED DCT DICTIONARY, THE BATCH LEARNING-BASED RECONSTRUCTION (r = 1), THE L+S METHOD, THE K-T SLR METHOD, AND A

BASELINE RECONSTRUCTION. THE BEST NRMSE ACHIEVED FOR EACH UNDERSAMPLING AND EACH DATASET IS IN BOLD

pixels along each dimension. We learned a square 320× 320
dictionary whose atoms when reshaped into 64× 5 space-time

matrices had rank r = 1, which worked well in our experiments.

A forgetting factor of ρ = 0.9 was observed to work well. We

ran the online schemes forK = 7 outer iterations per minibatch,

with K̂ = 1 iteration in the dictionary learning step and K̃ = 10
proximal gradient steps in the image update step, respectively.

Prior to the first outer iteration for each minibatch in (P1),

the sparse coefficients were updated using 3 block coordinate

descent iterations to allow better adaptation to new patches. We

used K = 50 outer iterations for the first minibatch to warm

start the algorithm and used an initial DCT D̂0, and the initial

sparse codes were zero. After one complete pass of the online

schemes over all the frames, we performed another pass over the

frames, using the reconstructed frames and learned dictionary

from the first pass as the first initializations in the second pass.

The additional pass gives a slight image quality improvement

over the first (a single pass corresponds to a fully online scheme)

as will be shown later.

For the batch dictionary learning-based reconstruction

method, we used the same patch dimensions, strides, and ini-

tializations as for the online methods. We ran the batch method

for 50 iterations. For the L+S and k-t SLR methods, we used

the publicly available MATLAB implementations from [56] and

[57], respectively, and ran each method to convergence. The reg-

ularization parameters (weights) for all the methods here were

tuned for each dataset by sweeping them over a range of values

and selecting values that achieved good reconstruction quality at

intermediate k-t space undersampling factors. We measured the

dMRI reconstruction quality using the normalized root mean

square error (NRMSE) metric expressed as percentage that is

computed as

NRMSE(x̂) =
‖x̂− xref‖2
‖xref‖2

× 100%, (20)

where x̂ is a candidate reconstruction and xref is the reference

reconstruction (e.g., computed from “fully” sampled data).

2) Results and Comparisons: Table III shows the reconstruc-

tion NRMSE values obtained using various methods for the

cardiac perfusion and PINCAT datasets at several undersam-

pling factors. The proposed OnAIR-LD method achieves lower

NRMSE values in almost every case compared to the L+S and

k-t SLR methods, the Online DCT scheme, the baseline recon-

struction, and the batch learning-based reconstruction scheme.

In particular, OnAIR-LD achieves a peak improvement of 2.5 dB

compared to the Batch Learning method, and it achieves a

peak improvement of 1.3 dB compared to the Online DCT

method. Unlike the batch schemes (i.e., L+S, k-t SLR, and

the batch learning-based reconstruction) that process or learn

over all the data jointly, the OnAIR-LD scheme only directly

processes data corresponding to a minibatch of 5 frames at any

time. Yet OnAIR-LD outperforms the other methods because

of its memory (via the forgetting factor) and local temporal

adaptivity (or tracking). These results show that the proposed

OnAIR methods are well-suited for processing streaming data.

Fig. 6 shows the reconstructions and reconstruction error

maps (magnitudes displayed) for some representative frames

from the cardiac perfusion and PINCAT datasets at 12x and

7x undersampling, respectively. The error maps indicate that

the proposed OnAIR-LD scheme often produces fewer artifacts

compared to the existing methods.

Fig. 7 shows the reconstructed y − t profiles for various meth-

ods obtained by extracting the same vertical line segment from

each reconstructed frame of the PINCAT data and concatenating

them. The Online DCT scheme and the batch methods L+S and

k-t SLR show line-like or additional smoothing artifacts that are

not produced by the proposed OnAIR method, which suggests

that the OnAIR method produces reconstructions with greater

temporal resolution.

Note that we used full-rank (r = 5) atoms in the video in-

painting experiments, while in our dynamic MRI reconstruction

experiments we chose low-rank (r = 1) atoms. Intuitively, low-

rank atoms are a better model for the dynamic MRI data because

the videos have high temporal correlation and rank-1 atoms are

necessarily constant in their temporal dimension. Conversely,

the videos used in the inpainting experiments contained sig-

nificant camera motion and thus dictionary atoms with more

temporal variation (i.e., higher rank) enabled more accurate

reconstructions.

3) Properties: Table IV investigates the properties of the pro-

posed OnAIR methods in more detail using the cardiac perfusion

data. Specifically, it compares the NRMSE values produced by

the OnAIR-LD scheme with one or two passes over the data, the

OnAIR-UD method, and the online method with a fixed DCT

dictionary. In addition, we ran the online method but with a fixed

“oracle” dictionary learned from patches of the reference (true)

reconstruction by solving the DINO-KAT learning problem

(2). The oracle dictionary was computed based on the “fully”
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Fig. 6. Left: reconstructions of the cardiac perfusion data with 12x undersampling (Cartesian sampling). Right: reconstructions of the PINCAT data with 7x
undersampling (pseudo-radial sampling). Each panel shows two representative frames from a reference (fully sampled) reconstruction along with the corresponding
frames from the proposed OnAIR-LD (r = 1) scheme. The right four columns of each panel depict the corresponding reconstruction error magnitudes (w.r.t.
reference) for OnAIR-LD, the online method with a fixed DCT dictionary, the k-t SLR method, and the L+S method, respectively. Compared to the competing
methods, OnAIR-LD achieves (3-D) NRMSE improvements of 0.6 dB, 1.9 dB, and 0.7 dB, respectively, and 0.4 dB, 1.0 dB, and 2.3 dB, respectively, for the
cardiac perfusion and PINCAT data.

I I

Fig. 7. Temporal (y − t) profiles of a spatial vertical line cross section for the
reference PINCAT reconstruction, the proposed OnAIR-LD (r = 1) method,
the online method with fixed DCT dictionary, the k-t SLR method, and the L+S
method for 14x undersampling (pseudo-radial sampling).

TABLE IV
NRMSE VALUES AS PERCENTAGES FOR THE CARDIAC PERFUSION DATA AT

SEVERSAL UNDERSAMPLING FACTORS WITH CARTESIAN SAMPLING. THE

METHODS COMPARED ARE AN ORACLE ONLINE SCHEME (WHERE THE

DICTIONARY IS LEARNED FROM PATCHES OF THE REFERENCE AND FIXED

DURING RECONSTRUCTION), THE PROPOSED ONAIR-LD (r = 1) METHOD

WITH A SINGLE PASS OR TWO PASSES OVER THE FRAMES, THE PROPOSED

ONAIR-UD METHOD, AND THE ONLINE SCHEME WITH A FIXED DCT
DICTIONARY. THE BEST NRMSE FOR EACH UNDERSAMPLING IS IN BOLD

sampled data, so it can be viewed as the “best” dictionary that one

could learn from the undersampled dataset. From Table IV, we

see that the NRMSE values achieved by the OnAIR-LD scheme

with two passes are within 0.0%–0.5% of the oracle NRMSE

values, which suggests that the proposed scheme is able to learn

dictionaries with good representational (recovery) qualities from

highly undersampled data. Moreover, the performance of the

OnAIR-LD scheme with a single pass is almost identical to

that with two passes, demonstrating the promise of fully online

dMRI reconstruction. The OnAIR-LD method outperformed the

OnAIR-UD scheme for the cardiac perfusion data indicating

that temporal low-rank properties better characterize the dataset

than unitary models. The OnAIR schemes achieved NRMSEs

that were as much as 13.9% lower than the nonadaptive Online

DCT scheme at higher undersampling rates, which suggests that

the learned dictionaries were able to better uncover the hidden

structure of the scene.

To assess the relative efficiency of the OnAIR methods com-

pared to the Batch Learning method, we measured runtimes

on the PINCAT dataset with the same parameter settings for

each method used to generate the results in Table III. With these

settings, the OnAIR-LD and OnAIR-UD methods required an

average of 8.5 seconds and 2.1 seconds to process each frame, re-

spectively, while the Batch Learning method required an average

of 84.0 seconds. Thus the OnAIR-LD and OnAIR-UD methods

were 9.9x and 40.0x faster, respectively, than the Batch Learning

method. One key reason for these improvements is that 50 outer

iterations were required by the batch method while only 7 outer

iterations were required by the online methods (after the first

minibatch) to achieve the reported reconstruction accuracies;

this result suggests that the online dictionary adaptation per-

formed by the OnAIR methods is both computationally efficient

and allows the model to better adapt to the underlying structure of

the data. The additional speedup of the OnAIR-UD method with

respect to OnAIR-LD is attributable to the relative efficiency of

the matrix-valued (D,Z) updates of OnAIR-UD compared to

the less optimized block coordinate descent iterations over the

columns of D and C prescribed by OnAIR-LD.

VI. CONCLUSION

This paper has presented a framework for online estimation

of dynamic image sequences by learning dictionaries. Various

properties were also studied for the learned dictionary such as

a unitary property and low-rank atoms, which offer additional

efficiency or robustness to artifacts. The proposed OnAIR algo-

rithms sequentially and efficiently update the images, dictionary,

and sparse coefficients of image patches from streaming mea-

surements. Importantly, our algorithms can process arbitrarily

long video sequences with low memory usage over time. Our

numerical experiments demonstrated that the proposed methods

produce accurate reconstructions for video inpainting and dy-

namic MRI reconstruction. The proposed methods may also be

suitable for other inverse problems, including medical imaging

applications such as interventional imaging, and other video-

processing tasks from computer vision. We hope to investigate

other application domains as well as study potential real-time

applicability for OnAIR approaches in future work.
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This supplement contains more exposition to support our

manuscript [1]. Specifically, Section VII contains experimental

results that provide additional insights into the properties of

the proposed OnAIR algorithm.

VII. ADDITIONAL NUMERICAL RESULTS

Here we provide numerical results that extend our investi-

gation from Section V of our manuscript [1].

A. Additional Inpainting Results

Fig. 8 shows the frame-by-frame (2D) PSNRs for the

Bus video1 inpainted from 50% missing pixels using various

methods. Clearly the proposed OnAIR-UD scheme achieves

consistently higher PSNRs across all frames. The overall

trends in PSNR over frames are similar across the methods

and are due to motion in the original videos, with more motion

generally resulting in lower PSNRs.

Fig. 9 shows a representative example of a (final) learned

dictionary produced by the proposed OnAIR-FD method for

the Bus video, along with the initial (at t = 0) DCT dictionary.

The dictionaries each contain 320 atoms, each of which is

an 8 × 8 × 5 space-time tensor. We visualize each atom by

plotting the first 8×8 x−y slice of the atom and also plotting

the y − t profile from a vertical slice through the middle of

each atom tensor. The x − y (first slice) images show that

the learned dictionary has adapted to both smooth and sharp

gradients in the image, and the dynamic (evolved) nature of

the y−t profiles shows that the dictionary atoms have adapted

to temporal trends in the data.

B. Additional Dynamic MRI Reconstruction Results

Fig. 10 shows that the OnAIR-LD scheme typically achieves

better frame-by-frame NRMSE compared to the other dynamic

MRI reconstruction methods considered in this work. Note

that such higher quality reconstructions are obtained in spite

of the fact that the online scheme only processes and stores

data corresponding to 5 frames (in xt) at any time while the
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1The video was provided by the authors of the BM4D method [2]. The
dataset is publicly at http://www.cs.tut.fi/∼foi/GCF-BM3D.
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Fig. 8: Per-frame (2D) PSNR values (in dB) for the reconstruc-

tions produced by OnAIR-FD (r = 5), OnAIR-UD, Online

DCT, the Batch Learning method, and 3D interpolation, for

the Bus video with 50% missing pixels.

Initial (1st slice) Initial (y-t)

Learned (1st slice) Learned (y-t)

Fig. 9: Dictionaries for the Bus video with 50% missing pixels.

Top: the initial DCT dictionary. Bottom: the final learned

dictionary produced by OnAIR-FD. Left: the first 8×8 (x−y)

slice of each 8×8×5 dictionary atom. Right: the y−t profiles

from a vertical cross-section through each 8× 8× 5 atom.

L+S, k-t SLR, and batch DINO-KAT methods process all data

jointly.

Fig. 11 shows an example of a learned dictionary produced

http://www.cs.tut.fi/~foi/GCF-BM3D
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Fig. 10: Per-frame PSNR values for the reconstructions pro-

duced by OnAIR-LD (r = 1), Online DCT, and the k-t SLR

and L+S methods, for the PINCAT data from [3], [4] with 9x

undersampling and pseudo-radial sampling.

Initial Learned (real) Learned (imaginary)

Fig. 11: Dictionaries for the PINCAT data from [3], [4] with 9x

undersampling. Left: the atoms of the initial DCT dictionary.

Center and right: the real and imaginary parts of the final

learned dictionary produced by OnAIR-LD (r = 1). The

dictionary atoms are 8×8×5 tensors, and only the first 8×8

(x− y) slice of each atom is displayed.

by the proposed OnAIR-LD method on the PINCAT dataset

at 9x undersampling, which is compared with the initial

DCT dictionary. The dictionaries have 320 atoms, each a

8×8×5 complex-valued space-time tensor. Since the OnAIR

LD dictionary atoms have rank r = 1 when reshaped into

64 × 5 space-time matrices, we directly display the real and

imaginary parts of the first 8 × 8 (x − y) slice of each

learned atom. The initial DCT is also displayed similarly. The

(eventual) learned dictionary has clearly evolved significantly

from the initial DCT atoms and has adapted to certain smooth

and sharp textures at various orientations in the data.
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