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Purpose: Arterial Spin Labeling (ASL) is a quantitative, non-invasive alternative for 
perfusion imaging that does not use contrast agents. The magnetic resonance finger-
printing (MRF) framework can be adapted to ASL to estimate multiple physiological 
parameters simultaneously. In this work, we introduce an optimization scheme to 
increase the sensitivity of the ASL fingerprint. We also propose a regression based 
estimation framework for MRF-ASL.
Methods: To improve the sensitivity of MRF-ASL signals to underlying parameters, 
we optimized ASL labeling durations using the Cramer-Rao Lower Bound (CRLB). 
This paper also proposes a neural network regression based estimation framework 
trained using noisy synthetic signals generated from our ASL signal model. We 
tested our methods in silico and in vivo, and compared with multiple post labeling 
delay (multi-PLD) ASL and unoptimized MRF-ASL. We present comparisons of 
estimated maps for the six parameters of our signal model.
Results: The scan design process facilitated precise estimates of multiple hemody-
namic parameters and tissue properties from a single scan, in regions of normal gray 
and white matter, as well as regions with anomalous perfusion activity in the brain. In 
particular, there was a 86.7% correlation of perfusion estimates with the ground truth 
in silico, using our proposed techniques. In vivo, there was roughly a 7 fold improve-
ment in the Coefficient of Variation (CoV) for white matter perfusion, and 2 fold 
improvement in gray matter perfusion CoV in comparison to a reference Multi PLD 
method. The regression based estimation approach provided perfusion estimates rap-
idly, with estimation times of around 1s per map.
Conclusions: Scan design optimization, coupled with regression-based estimation is 
a powerful tool for improving precision in MRF-ASL
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1  |   INTRODUCTION

Quantitative imaging of tissue properties is gaining in-
creasing prominence in the diagnosis, prognosis and treat-
ment planning of several diseases, eg.1-4 Moving beyond 
the variations associated with qualitative intensity-based 
imaging allows gleaning information focused on the phys-
iological phenomena being investigated. In the context of 
cerebrovascular disorders, quantitative perfusion imaging 
has found several applications.5-13 Typically, quantitative 
imaging of perfusion involves gadolinium-based contrast 
enhanced MRI, which suffers from lack of fast repeatabil-
ity and risks involved in cases of subjects with nephrogenic 
disorders.14,15

Arterial Spin Labeling (ASL)16 provides an alternative 
to contrast agent based MRI by magnetically labeling blood 
flowing into organs or tissues of interest. ASL  involves 
temporary inversion of the spins present in flowing blood 
upstream of the organ under scrutiny, by applying radiof-
requency (RF) magnetic pulses. These inverted spins then 
behave like an endogenous tracer that is detectable after it 
perfuses into the tissue in the relevant organ shortly after-
wards. ASL is non-invasive, non-toxic, quickly repeatable 
and has a much simpler workflow than contrast enhanced 
MRI. However, ASL images are limited by low spatial and 
temporal signal-to-noise ratio (SNR).17-19 This drawback is 
more pronounced in white matter, where traditional ASL 
methods perform poorly.20 Estimating perfusion using 
ASL requires knowledge of a number of tissue properties 
or hemodynamic factors that are usually fixed to literature 
values. In reality, some of these (tissue eg, T1) vary signifi-
cantly from region to region. Fixing these parameter values 
can lead to significant biases in perfusion estimates and 
efforts to estimate such factors from separate scans can be 
undesirably time-consuming.

MRF is a recently developed technique21 that estimates 
multiple hemodynamic parameters and tissue properties 
simultaneously from a single acquisition. This approach 
improves accuracy at the possible expense of precision in esti-
mates. Nevertheless, information accrued from the additional 
estimated parameter maps may aid understanding of physio-
logical conditions. MRF utilizes transient signals obtained by 
varying imaging parameters such as the repetition time (TR) 
or flip angles as identifiers for the underlying physiological 
factors. A standard approach to multiparametric estimation 
using such a technique involves searching through ‘dictionar-
ies’ consisting of signals generated by feasible combinations 
of parameters, in a Maximum Likelihood manner. In an ASL 
based fingerprinting22,23 setting, the observed signal depends 
on several parameters (typically 5-7), presenting a consid-
erable challenge to precise estimation. For example, with 
more parameters to estimate, it becomes difficult to maintain 
and search a ‘fine’ dictionary. Specifically,22 reports a 2 hr 

estimation time for a single slice, with a dictionary quantiza-
tion of 6 mL/100 g/min for perfusion.

As an alternative, this paper uses a regression-based es-
timator to generate predictions from fingerprint data. While 
the use of regressors for MRF-based estimation has become 
more prevalent recently,24,25 our preliminary work26 was 
the first to investigate neural network regression for ASL 
Fingerprinting, where there are considerably more parame-
ters to estimate. Estimation using neural network regression 
allows for much faster estimation, and overcomes quantiza-
tion error.

Regardless of the estimation technique used, if the ASL 
fingerprints themselves are insufficiently sensitive to the un-
derlying parameters, then estimates obtained from them will 
lack precision. Thus, the first goal of this paper is to increase 
the information conveyed by fingerprints. This is done using 
Cramer-Rao bound based optimization of scan parameters in 
ASL. An example of such scan parameters are the labeling du-
rations in the scan. While there has been some work on optimiz-
ing scan-design for MR sequences in quantitative imaging,27,28 
and even specifically in ASL,29,30 our work is the first to investi-
gate it in an ASL fingerprint setting. While most other pertinent 
methods focused on providing precise results in regions of gray 
matter, we use a cost function having a comprehensive uniform 
prior. This enables precise estimation over a wide range of 
feasible parameter values, including white matter or potential 
anomalies. We also constrain our optimization procedure to ad-
here to a fixed scan time for practicality. The primary focus of 
our work is to establish the need for scan design optimization 
regardless of the estimation technique involved. Through our 
work, we establish that optimized scan design coupled with re-
gression-based estimation should further the transition of ASL 
Fingerprinting to clinical use.

The rest of the paper is organized as follows: Section 2 
introduces the ASL signal model used in this work. This 
model, along with a Cramer-Rao bound based cost func-
tion, is used to optimize our scan design. Next, we design 
a neural network regressor for estimating hemodynamic pa-
rameters and tissue properties. The neural network is trained 
using fingerprints simulated with a combination of the opti-
mized scan design and the described model. We also devise a 
post-processing technique to mitigate nuisance effects in our 
acquisitions. Thereafter, we describe the creation of in-silico 
datasets to test the performance of our methods, as well the 
methods we compare to in our work. We then describe the 
in-vivo experiments we performed in the validation of our 
designed methods. Section 3 shows the theoretical predic-
tions of the performance of our scan design, as well as the 
results of comparisons in-silico and in-vivo with other meth-
ods, namely two other MRF ASL scans found in literature 
and multi-PLD ASL. Section 4 elaborates upon these results 
and the inferences we draw from them. Section 5 describes 
our conclusions.
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2  |   METHODS

2.1  |  ASL signal model

To describe the ASL signal in the brain for scan design 
optimization and parameter estimation, we used the two- 
compartment model depicted in Figure 1. Although the single 
compartment model introduced in31 has been the de-facto 
standard in ASL literature in the past, several works32-36 have 
raised issues of oversimplification associated with single-
compartment modeling, and have adopted two-compartment 
models. For ASL fingerprinting, such models have been 
highlighted in.23,37 Our chosen model for the ASL signal 
consisted of separate compartments for blood in tissue and 
arteries, as well as an additional compartment to incorporate 
Magnetization Transfer effects. In the model, magnetically 
labelled blood flows into the arterial compartment through the 
arterioles, and perfuses into the tissue compartment therein. 
The Cerebral Blood Volume fraction (CBVa) determines the 
portion of the acquired signal to which each compartment 
contributes, and T1 relaxation of blood and tissue is accounted 
for in the signal description. The longitudinal magnetization 
of the tissue compartment thus evolved as: 

where Mtis and Mart represent the magnetization in the tissue- 
compartment and the arterial compartment respectively, λ is 
the blood-brain partition coefficient, Km is the Magnetization 
Transfer rate (MTR), f is the rate of perfusion. Here, T1,art is 
the arterial relaxation time, and T1,tis (truncated to T1 in later 
sections) the relaxation time of tissue. The input to the arte-
rial compartment was determined by a labeling function, that is 
described in Equation (2). The arterial magnetization was de-
scribed using an input or labeling function as follows: 

where α is the inversion efficiency, δ is the Bolus Arrival Time 
(BAT), and 

The total longitudinal magnetization was thus described as: 

where CBVa is the Cerebral Blood Volume fraction described 
earlier. The observed ASL-MRF signal, M(t)· sin (β), where β is 
the flip angle, was sampled at the time(s) of acquisition, which 
were dictated by the scan schedule. We used signals generated 
using this model for both optimization of scan design as well 
as for training the neural network estimators. For the purposes 
of our work, the values of λ and α were set to 0.9 and 85% 
respectively.

2.2  |  Pulse sequence

In ASL Fingerprinting, each repetition time (TR) in the se-
quence consists of a labeling period (Ttag), post labeling delay 
(Tdelay), followed by a small period for signal acquisition (Taq), 
(ideally instantaneous, but usually accounted for) and a period 
for adjustment (Tadjust) before the next label/control occurs. 
Every pulse in the sequence can either be a label, control, 
or ‘silence’ (where there is no RF excitation at all). In this 
work, we vary the TR by changing the labeling durations, 
while holding all other parameters of the pulse sequence fixed 
(Tdelay = 55  ms, Taq = 32.4  ms, Tadjust = 50  ms). The TRs 
in our sequence were varied to generate a signal that is in-
formative of the underlying parameters. Section 2.3 describes 
how we optimized the aforementioned labeling durations by 
picking from a set of candidate schedules. The label-control 
order (also referred to as the ‘label order’ later) was pseudo-
randomized, but had approximately equal numbers of label, 
control and silence pulses. We ensured that the total duration 
of the scan was fixed regardless of the number of pulses, or 
the duration of individual TRs. This fixed total duration was 
discretionary. Here, we acquired 700 images for our finger-
print, with a total scan duration of 600s for a single slice.

2.3  |  Optimization with CRLB

A major focus of our work was to investigate the benefits of 
scan design optimization in ASL Fingerprinting. From an in-
formation theoretic standpoint, the total information present 

(1)
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−Mtis(t)

T1,tis
+ f ⋅Mart(t)−

f

�
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{
1, for labelling pulses
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F I G U R E  1   Two compartment ASL signal model used for 
both optimization and estimation. The unknowns in the model were: 
perfusion from the arteriole to the tissue, arrival time of the labeled 
blood bolus at the arteriole, the magnetization transfer rate, the arterial 
blood volume fraction, and the relaxation time of water in tissue
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in a signal about the underlying parameters that generated it 
is independent of the estimator used to quantify the param-
eters themselves. For example, in a regression-based estima-
tion framework, if the signals (or “fingerprints”) themselves 
are too correlated, corresponding estimates will be imprecise. 
This is regardless of whether kernel methods or neural net-
works are used. In an effort to make our fingerprints more 
informative or sensitive to parameters like perfusion or BAT, 
we used the Cramer-Rao Lower Bound (CRLB) to optimize 
the scan design parameters (namely, the labeling durations).

The CRLB represents the minimum variance in estimates 
that any unbiased estimator can achieve, for a particular signal 
model and noise level. We focused on magnitude image data 
and modeled the noise as real additive white Gaussian noise 
(AWGN) with standard deviation σ (empirically calculated to 
be 0.01, which was low enough to justify the assumption of 
Gaussian noise in regions with sufficient SNR). Our signal 
model was s(�; �):(ℝp × ℝ

l)→ℝ
t, where � ∈ ℝ

p represents 
the p hemodynamic parameters of interest, and � ∈ ℝ

l are 
the l scan parameters for a scan with t time points. The CRLB 
is expressed as the inverse of the Fisher Information matrix. 
Fisher Information describes the amount of information con-
veyed by an observable random variable about the parameters 
that generated it. It can be considered to be a measure of sen-
sitivity of a signal to underlying parameters and is expressed 
as the p × p matrix: 

where we calculated the signal gradient matrix, ∇
�
s(�; �) ∈ ℝ

t× p 
numerically at each time point using Newton’s central differ-
ence method. (∇

�
s(�; �) =

s(�+h;�)−s(�−h;�)

2h
∈ ℝ

t for a single 
parameter θ). To design a “good” fingerprinting sequence, we 
optimized over a set of feasible scan design parameters � ∈ , 
which in our case were the labeling durations. In our optimiza-
tion, we minimized our design cost function at a representative 
collection or set of true parameter values, Θ. These values were 
spread uniformly over a range. We picked our ‘optimized’ la-
beling schedule as the one that, among all others in the feasible 
set , minimized the following cost function: 

where     denotes Hadamard division, W is a diagonal weighting 
matrix assigning priority to each hemodynamic parameter in 
the cost function, |Θ| denotes the number of points at which 
the normalized standard deviation is evaluated in the cost, and 
N(�)= (�0.5)(�0.5)T is a normalization matrix that is divided 
element-wise into the inverse Fisher Information matrix.

We used exhaustive search to minimize the design cost 
function (5) to ensure that our optimized scan yields precise 

estimates over the set Θ of ‘ground truth’ parameter values. 
Minimizing the above expression is tantamount to minimiz-
ing the average normalized standard deviation of parameter 
estimates, weighted appropriately, over a set of ground truth 
parameter values. Using normalized standard deviation by-
passes having to combine variances of different values and 
units, and emphasizes cases when the standard deviation is 
comparable to the ground truth parameter value. For our ex-
periments, we assigned twice the weight to perfusion preci-
sion as to all the other parameters in the cost function, which 
were weighted equally. The cost was evaluated numerically. 
For the optimized scheme to function well even at values 
seen in pathological conditions, we used an adequately large 
feasible range for Θ. Specifically, the parameter ranges we 
used were: 12-90 mL/100g/min for perfusion, 0.002-0.03 for 
CBVa, 0.36-1.7 s for BAT, 0.01-0.03 s−1 for MTR, 0.3-3.3 s 
for T1 and 54-112 degrees for flip angles. |Θ| was picked to 
be 50 during labeling schedule optimization, and 75 during 
label order optimization and 250 for final evaluation of the 
designed scan. These points were picked using a uniform ran-
dom distribution on the range for Θ described earlier. | Θ| was 
set to a lower number during optimization because increased 
number of parameter space evaluations would increase opti-
mization time. We chose a uniform random distribution for 
the points to capture a wide variety of anomalous behaviour.

The set of feasible candidate labeling schedules, ,  
consisted of ASL timing sequences with variable labeling 
times but fixed pre and post labeling delays. Thus, TR was 
allowed to vary depending on the labeling duration. As 
shown in Figure 2, each labeling schedule (essentially a 
collection of labeling durations) in this set was described 
using a linear interpolation between 5 points in the ‘label-
ing space’. These points were spaced at a regular number 
of frame intervals (here, 175). Candidate schedules were 
created in a ‘connect-the-dots’ fashion from the resulting 
grid of points in the labeling space, as depicted in Figure 2. 
The total number of feasible schedules in this case is 115.  
We chose linear interpolation as it allowed us to explore 
this labeling space effectively. It also allows for flexible 
finer sampling of the labeling space upon increasing the 
number of interpolation points or possible labeling dura-
tions. Albeit, this refinement would require more optimi-
zation time. Feasible schedules were scaled to be a fixed 
total duration (or scan duration), before the cost function 
was evaluated. Because there is a trade-off between sacri-
ficing scan duration and sacrificing precision, the total du-
ration may vary based upon the required precision. For our 
work, the scan duration is set to 600s. Acquiring a small 
number of images for this total scan duration would create 
labeling schedules with unreasonably long tagging times, 
while acquiring a large number of images increases mem-
ory and storage overhead. Under these considerations, we 
choose to acquire 700 images. Figure 2 also depicts the 

(4)F(�; �)=
1

�2
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�
s(�; �)]T [∇

�
s(�; �)],
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1
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∑
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(

W ⋅ (|F−1(�, 𝜈)|0.5ØN(�)) ⋅W
)

,
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optimized scan. Having obtained an optimized labeling 
schedule, we further minimized the predicted precision 
of flow estimates by trying several pseudo-random label- 
control-silence schedules while maintaining that the num-
ber of each are equal in our schedules. In Section 3.1, we 
compare the theoretical performance of this labeling sched-
ule to two others commonly encountered in MRF literature, 
with |Θ| set to 250. While the neural network-based esti-
mation framework described in Section 2.4 may provide 
biased estimates, these CRLB predictions serve as a use-
ful indicator for the performance of a schedule in terms of 
precision in estimates obtained from it. We also note that 
given the non-convexity of the optimization space, and our 
use of discrete search in solving the problem, the resulting 
scan cannot be dubbed ‘optimal’. However, it should per-
form better than the other evaluated candidates. Because it 
is the result of our optimization, we call the output ‘opti-
mized’ ASL-MRF scan.

2.4  |  Estimation with neural networks

We used a neural network based framework to estimate  
5 hemodynamic properties of relevance in our model. 
Namely, these were the Perfusion f (CBF), the Bolus 
Arrival Time (BAT) or δ, the Cerebral Blood Volume in 
artery (CBVa), Magnetization Transfer Rate (K), and the 
tissue relaxation time, henceforth called T1 for simplicity. 
Additionally, we also estimated a field map of the Flip an-
gles enacted by the scanner. Separate neural networks were 
used in the estimation of each parameter. The reason for 
moving away from the combined neural network framework 
used in our previous work26 is to avoid the need for the rela-
tive weighting of targets during network training. Table 1 
provides the architectural specifications of the networks 

used. The neural networks were chosen from a small set of 
candidate networks. When choosing, the performance of 
these was tested using three validation datasets similar to the 
simulated phantom described in Section 2.6.1, but with dif-
ferent ground truth values. Some of the networks required 
fewer nodes/layers than the others. This may be because of 
the varying degree of non-linear dependence of the finger-
prints on different parameters.

To train our networks, we used 6×106 samples of syn-
thetic fingerprints generated from the model described in 
Section 2.1, with added real white Gaussian noise with stan-
dard deviation 0.01, along with the corresponding generating 
parameters (Figure 3). The same training dataset was used 
across all neural networks. We used an independent uniform 
prior on values of each parameter for generating this data. 
The associated parameter ranges are also depicted in Table 1.  
We selected the ground truth parameter values for training 
signals from independent uniform distributions. We did this 
in hopes that the trained network can perform well at esti-
mating possible anomalies in combinations of hemodynamic 
properties. (For example, elevated arterial transit time, but 
normative perfusion etc.) Each signal was normalized by the 
value of the first frame in the fingerprint. We applied the 
same process to signals obtained from the scanner, thereby 
ensuring consistency during testing and training. The cost 
function used to train the neural networks was Mean Square 
Error, the optimizer associated was ADAM,38 and the 
non-linearities were implemented as ReLU-s. Training times 
for the networks were roughly 15-20 min. Once trained, the 
network was tested on a gamut of test datasets described in 
Section 3.

For training, we used simulated noisy fingerprints from 
the signal model instead of real fingerprints for two reasons: 
(a) ground truth estimates for real data are difficult to obtain. 
In a wide-scale multiparametric setting such as ours, they 

F I G U R E  2   The red dots depict the 
feasible points for interpolating between 
or exploring the labeling space. The blue 
squares depict the label durations for the 
five interpolation points that, once scaled, 
leads to our optimized schedule. The green 
line depicts this scaled, best (among other 
candidates) schedule
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would suffer from granularity owing to the use of dictionary 
based methods in calculating the ground truth for training. 
They may also be biased because they were obtained from 
non-MRF techniques (b) limited availability of real training 
data would pose a significant risk of overfitting neural net-
works (especially deeper ones).

2.5  |  Signal Preconditioning

Presence of scanner drift or cardio noise and breathing can 
cause severe distortions in the fingerprints from the hypoth-
esized model.39,40 However, the labeling scheme modulates 
the perfusion information into the high frequency bands of 
the fingerprint signal similar to.41,42 This property, combined 
with the fact that the aforementioned nuisances generally 
manifest as low frequency components, motivated us to high-
pass filter the fingerprints (both during training and testing) 
of the neural networks associated with perfusion, bolus ar-
rival time, magnetization transfer rate and the cerebral blood 
volume fraction. We applied a 4-th order Butterworth filter 
with a cutoff at 0.05 Hz (when assuming the fingerprint was 
sampled at 1 Hz) for this purpose.

2.6  |  Data collection

2.6.1  |  Simulated anthropomorphic 
pathological phantoms

We synthesized a set of test data from hemodynamic parame-
ter maps that closely reflected the corresponding spatial distri-
butions in a digital phantom generated from standard gray and 
white matter maps (SPM12).43 We then introduced regions of 
abnormally elevated and reduced perfusion to it to quantify 
the performance of our methods on a range of normative and 
pathological parameter values. Real AWGN with standard 
deviation 0.01 was added to the fingerprints after generation. 
When estimating perfusion, CBVa, and BATs, the data was 
high-pass filtered as explained in Section 2.5. Figure 4 com-
pares the predictions with the corresponding ground truths.

2.6.2  |  In vivo experiments

In-vivo data was acquired on a 3T General Electric MR750 
scanner. The imaging parameters were: a single slice placed 
above the ventricles, single shot spiral readout, nominal 

F I G U R E  3   Diagram depicts a neural network regressor used as an estimator in our work, in the training stage. The targets for the training 
and the inputs are related through the forward model depicted in Figure 1 with additive noise. Separate networks are trained for the different 
unknowns in the model. Once trained, the estimators can predict the generating parameters for a new fingerprint

T A B L E  1   Description of the neural network architectures used in estimating hemodynamic parameters in our signal model, as well as the 
respective maximum and minimum values of the ranges used in the training data

Parameter Depth Architecture (nodes per layer) min value max value

Perfusion 3 10-10-10 0 mL/100 g/min 90 mL/100 g/min

CBVa 3 10-10-10 0 0.015

BAT 2 10-5 0.3 s 3.0 s

MTR 4 10-10-5-5 0 s−1 0.03 s−1

T
1

1 20 0.33 s 3.33 s

Flip 1 20 48
◦

112
◦

Notes: The “Architecture” column provides the number of nodes in every layer, separated by hyphens, starting from the input. Each node in the network learns a 
weight and a bias during training. The input to the networks are fingerprints generated from our designed optimized sequence, which has 700 frames.
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resolution = 3.5 × 3.5 × 7 mm3, matrix size = 64 × 64, band-
width = 125 Hz and TE = 5 ms, FOV = 240 mm. We tested 
our methods on data acquired from six human subjects. For 
four of these subjects, we also acquired data with two other 
MRF-ASL scan designs (similar to the ones used in22,23 

and described in more detail later). We compared our opti-
mized scan design to them using similar estimation tech-
niques (same neural network architecture and training target 
distribution in Table 1). Our goal was to show the benefits 
of labeling sequence optimization in ASL fingerprinting.  

F I G U R E  4   Performance of proposed neural network based estimation on the simulated dataset described in Section 2.6.1. The first column 
depicts the predictions from the networks, while the second shows the corresponding ground truth parameter images. The third column are ’truth-
vs-predicted’ scatter plots of the former columns
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For “random scan”, we sampled the labeling durations from 
a uniform random distribution, while in “decreasing affine 
scan”, the durations decrease linearly with the image index. 
Both schemes were designed to be 700 frames and 600 s long, 
and are collectively described as reference ASL-MRF scans 
later in this text. The metric for this comparison was the nor-
malized standard deviation of parameter estimates obtained 
from the numerical CRLB evaluation described in Section 2.3.

For all six subjects, we also performed a 409 s multi-PLD 
ASL29,44 experiment with 40 PLDs, involving a single average 
over label-control pairs at each PLD. The post-labeling delays 
were chosen according to the protocol presented in.29 No arte-
rial suppression was used. The CBF, CBVa, BAT and T1 maps 
obtained from these were compared to those from our methods. 
We fit the signals to a single compartment model in order to 
obtain CBF, BAT and T1. For fair comparison, we also fit these 
signals to a two-compartment model to account for the arterial 
signal and also estimate CBVa, as in the proposed MRF method.

We used a two-stage estimation technique to generate 
quantitative parameter maps from the multi-PLD data. In 
the first stage, we estimated the tissue T1 and M0 maps at 
every voxel by applying a least squares fit using the model in 
Equation (1). For this stage, all other parameters in the equa-
tion were fixed to nominal, or where applicable, normative 
values. Next, the entire process was repeated for estimating 
the CBF, CBVa and BAT at each voxel (only CBF and BAT 
for single compartment estimation), but using M0 and T1 val-
ues obtained in the previous stage. The MTR and flip angles 
were held fixed throughout.

3  |   RESULTS

3.1  |  Optimized scan design

We compared the predicted performance of our optimized 
scan design against two reference ASL MRF scan designs 
described in Section 2.6.2. Table 2 lists the predicted normal-
ized standard deviation in estimates of each parameter for all 
three labeling schemes, and the total weighted design cost 
associated with each scheme. Of the 115 schedules evaluated, 
371 were within 3% of the total cost. Of these, 150 schedules 
followed a similar pattern to the schedule with the minimum 
cost. While the other scans within the 3% margin were very 
different from the minimum-cost scan, these could also be 
grouped to be similar to ≈4−5 different scan designs.

3.2  |  Simulated anthropomorphic 
pathological phantoms

Figure 4 depicts the estimated maps from the Anthropomorphic 
Pathological phantom simulation, and the corresponding 
ground truth parameter images in the first two columns. From 

these images, we also generated “truth vs predicted” scatter 
plots for each estimated parameter map to better visualize the 
accuracy and precision of our methods, shown in the third 
column of Figure 4. For a more quantitative evaluation of the 
performance of our methods, Table 3 shows the correlations 
between the voxel values of the truth and estimated param-
eter maps, across multiple scan designs. The corresponding 
root mean squared errors (RMSEs) are provided as well.

3.3  |  In vivo performance

It took approximately 1 s to estimate each 64 × 64 parameter 
map for the MRF methods using the designated neural networks 
for the task on a 12GB NVIDIA Titan X Pascal GPU. The two 
stage fit for the multi-PLD data required approximately 1200s 
to estimate four 64 × 64 maps on a Intel Xeon E5-2650 with 
40 cores. Figure 5 compares the six estimated maps from a sin-
gle human subject across all evaluated techniques. To gauge a 
sense of agreement between two-compartmental estimates from 
regression based ASL Fingerprinting and multi-PLD methods, 
Figure 6 compares the mean gray matter CBF, BAT and CBVa 
across the six subjects, as well as the associated average T1s for 
both gray and white matter using scatter plots. Figure 7 shows 
a “goodness-of-fit” comparison between the acquired signal 
and a ‘synthetic’ signal produced from the modeled Equations 
(1)-(3) averaged over a region of interest. The synthetic signals 
were obtained by passing the parameters estimated from the 
neural networks through the ASL signal model.

4  |   DISCUSSION

This work established a CRLB based optimization method 
for labeling durations for improving the information within an 
MRF-ASL scan, as a means to get more precise estimates from 

T A B L E  2   Predicted normalized standard deviation of parameter 
estimates (in %) for ASL-MRF labeling schedules used in our 
comparisons

  Normalized SD deviation (%)

Parameter Optimized scan Random scan
Decreasing 
affine scan

Perfusion 46.4 51.0 46.1

CBVa 17.2 21.9 19.5

BAT 1.3 2.1 1.6

MTR 121.1 124.2 137.1

T
1

0.6 0.4 1.1

Flip 0.4 0.2 0.8

Cost 233.4 250.8 252.3

Note: The last row shows the overall weighted design cost associated with each 
scheme based on Equation (5).
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it for a fixed scan time. This enables us to ‘get the most’ out of 
available scan time, and is of particular importance because of 
the trade-off between total scan time and precision of estimates, 
regardless of the estimator. Of course, it would be possible to 
reduce the scanning duration at the expense of overall preci-
sion. We adopted a neural network regression based estimation 
framework to avoid the granularity/imprecision of dictionary-
search based estimators for problems with many parameters 
like ASL-MRF. The methods provided estimates for six pa-
rameters in both gray and white matter regions in the brain. 

We validated our methods in silico using a simulated anthro-
pomorphic phantom, and in vivo against a multi-PLD method 
as well as two reference ASL-MRF scans. For easy comparison 
with “state-of-the-art” MRF ASL, “decreasing affine scan” was 
very similar to the Perlin schedule used in,22 but comparatively 
yielded lower predictions of normalized standard deviation, 
while “random scan” was similar to the one used in.23 In most 
cases, the CRLB predictions were reflected in the performance 
of various methods in a relative sense. The following subsec-
tions elaborate on our observations from Section 3.

T A B L E  3   Correlation (in %) and RMSE (units in the parameter column) of each estimated parameter map with the corresponding ground 
truth map in the anthropomorphic digital phantom

  Optimized scan  Random scan  Decreasing affine scan

Parameter Corr. (%) RMSE Corr. (%) RMSE Corr. (%) RMSE

Perfusion (mL/100 g/min) 86.7 11.2 71.9 17.3 68.2 15.48

CBVa 86.7 1 × 10−3 80.0 2 × 10−3 81.6 2.6 × 10−3

MTR (s−1) 98.4 0.003 95.4 0.009 0 0.045

BAT (s) 91.7 0.14 90.0 0.18 89.1 0.19

T
1
 (s) 98.6 0.015 99.6 0.016 98.0 0.029

Flip (rad) 99.7 0.029 98.6 0.009 84.7 0.062

Note: In each row, the values in bold show the best (lowest) RMSE and (highest) correlation with the ground truth across different scans.

F I G U R E  5   Comparison of the parameter estimates from various tested methods for a single subject. None of the methods used any spatial 
smoothing of the estimated maps or the ASL signal volume
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F I G U R E  6   Scatter plots of slice-wide average estimates from optimized MRF vs multi-PLD of: A, gray matter CBF, B, gray matter BAT, C, 
gray matter CBVa and D, gray (blue dots) and white (red dots) matter T

1

F I G U R E  7   ROI-averaged comparison of acquired signals and simulated signals which were generated from our model, based on neural 
network estimates. The left and right panes show the signals before and after high pass filtering, respectively
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4.1  |  Optimized scan design

From the predicted standard deviations in Table 2, it is ap-
parent that the optimized scan either at least performs com-
parably, or outperforms the other two at precisely estimating 
all relevant parameters. In particular, the overall cost function 
for the optimized labeling schedule is significantly lower than 
that for the others. This hints its potential for improved preci-
sion at jointly estimating all the modeled dependencies in the 
ASL signal. The MTR parameter contributes significantly to 
the overall variance of estimates, but incorporating it into our 
model may provide additional information about tissue health 
and reduce bias in estimates of perfusion. We also find that 
while a lot of variation in the labeling durations can help in the 
estimation of T1 and Flip angles, it can be detrimental when at-
tempting to estimate Perfusion (CBF), Blood Volume Fraction 
(CBVa) or Arterial Transit Times (BAT). Importantly, some 
of the predicted normalized standard deviations are very high 
even after optimization, but this is because the reported CRLBs 
are the average value over a very broad range of parameter 
combinations. Many of these yield little ASL signal under any 
acquisition scheme (consider a voxel with very low perfusion 
and long transit time); the method performs significantly bet-
ter (normalized std. dev. of perfusion estimates decreases to 
22.5% , while that of MTR is 13.6%) when evaluated over a 
smaller, more normative range. (This normative range was 
±2.5% around ground truth perfusion 60 mL/100 g/min, BAT 
1.2 s, CBVa 0.01, MTR 0.01 s−1 and T1 1.4 s).

4.2  |  Simulated anthropomorphic 
pathological phantoms

Figure 4 illustrates that there is good agreement between the 
estimated and the ground truth maps across all parameters. 
Additionally, our estimation is able to capture both the abnor-
mally elevated and diminished regions of flow in the perfusion 
maps. This property is a consequence of: (a) optimizing the 
scan design over a large parameter range, (b) training the neural 
network using a wide range of training parameters (Table 1).

Table 3 shows that for most estimated parameters, in com-
parison to the reference scans, our optimization leads to com-
parable or better correlation coefficients between truth and 
estimates. For perfusion in particular, we noted that the op-
timized scan yielded estimates that were significantly more 
aligned to the truth than the other scans. It was also intriguing 
to note that “decreasing affine scan” regressed the same value 
of MTR (≈ 0.015) for all inputs, thereby returning a correla-
tion coefficient of 0%. Our conjecture is that this may be due 
to the neural network being unable to learn from the training 
data due to the insensitivity of the fingerprints to MTR. We 
also observed that the correlation coefficent associated with 
perfusion for this specific scan was lower than the others, 

even though its predicted normalized standard deviation was 
comparable to that of the optimized scan. We therefore hy-
pothesize that predictions of low normalized standard devi-
ation may not always translate to high correlation between 
truth and estimates in the case of a biased estimator. This 
is because variable estimation bias at different points in the 
parameter space may lead to low correlation, despite the pre-
cision in estimates. For each estimated parameter, we calcu-
lated the RMSE with respect to ground truth, and found that 
the optimized MRF-ASL scan estimates report lower values 
of RMSE than those from the reference MRF-ASL scans in 
a majority of parameters. We also noticed that some of the 
estimates show a consistent bias with the ground truth. This 
is possibly due to the difference in the distribution of ground 
truth parameter values in training and testing data. The train-
ing data had a uniform random prior, but the test data has the 
distribution of an SPM12 phantom.

4.3  |  In vivo performance

Figure 5 illustrates that the performance of our designed 
method is relatively consistent with the predictions from the 
Cramer-Rao Bound (see Table 2). The map corresponding 
to the magnetization transfer rate looks the noisiest, while 
parameters like T1 or BAT look much cleaner. The distinc-
tion between gray and white matter regions is also apparent 
across all relevant maps, even without any spatial smoothing 
or SNR boosting methods.

The comparisons between the optimized and reference 
MRF scans were also in accordance with our expectations 
based on Table 3. As evident in the depicted subject, “de-
creasing affine scan” fails to estimate the MTRs, and the 
estimated T1 maps have unreasonably high values in gray 
matter. Moreover, even the flip angle map for this scan shows 
significant artefactual contrast between gray and white mat-
ter, which are absent in the other MRF methods. The maps 
yielded by “random scan” show agreement with the opti-
mized scan, but we observe that the MTR maps from the for-
mer are less informative, and exhibit more artifacts. These 
trends between the optimized and reference scans were noted 
to be consistent across all four subjects studied.

Figure 5, shows that the MRF methods are able to es-
timate CBF, BAT and CBVa values in white matter, while 
the two-compartment multi-PLD method fails to do so: in-
stead, the corresponding maps show many near-zero perfu-
sion voxels in white matter regions, along with abnormally 
high transit times. The coefficient of variation (std. devia-
tion/mean) for white matter perfusion averaged across all 
six subjects was 1.19 for the multi-PLD method, compared 
to 0.16 for optimized MRF-ASL. In gray matter, the avg. 
coefficient of variation was 0.54 for multi-PLD and 0.27 
for optimized MRF-ASL. The obtained CBVa map from 
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the latter method also appears extremely noisy, and is un-
able to pick out vasculature in the slice as effectively. We 
hypothesize that the poor performance in the multi-PLD 
method was due to the fact that its acquisition parameters 
were optimized for a single compartment model that does 
not account for CBVa. We also noticed that the single com-
partment estimates reported higher values perfusion and 
lower BATs than two-compartment estimates. This is an 
expected observation due to the label present in the arter-
ies seeping into the acquired tissue signal under the single 
compartment assumption, considering that no arterial sup-
pression was used in our acquisition and the post-labeling 
delays weren’t very long.44

In Figure 6A,B we found the estimates from optimized 
MRF-ASL and multi-PLD to be fairly consistent, as ob-
served from the high correlation coefficients between the 
two methods, for measurements of CBF as well as BAT. 
However, we note that the multi-PLD method consistently 
reports higher BATs in gray matter with a two-compart-
ment fit. Figure 6C shows a similar scatter plot for CBVa, 
but there is little agreement between the methods. This 
may be due to the fact that the estimates of CBVa from the 
multi-PLD method have a lot of variance across the brain, 
for reasons explained above. The T1 estimates for the two 
methods are compared in Figure 6D, with the red dots in-
dicating white matter T1s, and the blue ones indicating gray 
matter T1s. We see that while the optimized MRF method 
generally yields higher values of T1, the measurements 
agree well.

Figure 7 reinforces that high pass filtering the finger-
print signals significantly improves the signal fidelity in 
the small, high frequency components, that correspond 
to manifestations of hemodynamic phenomenon. This in-
creased agreement is because using a high pass filter re-
moves low frequency components related to receiver drift, 
etc. that introduces discrepancies that were not accounted 
for in the model.

5  |   CONCLUSION

We have developed a framework for optimizing the scan 
design for MRF-ASL that yields more precise estimates in 
gray and white matter, than other scan designs for MRF-
ASL used in literature, and has a lower coefficent of 
variation in white matter and gray matter perfusion than 
a reference multi-PLD method, while mainitaining agree-
ment in gray matter perfusion and transit times. We also 
introduced a neural network regressor for fast precise es-
timates from ASL fingerprints. Combined with scan opti-
mization, the neural networks can estimate six parameters 
from a single 600  s ASL scan in a very short process-
ing time and bypass quantization errors. While the work 

presented here is intended to serve as proof of concept, our 
comparisons with reference scans show that we are able 
to significantly improve upon the precision of the state-
of-the-art in MR Fingerprinting ASL. Future work will 
focus on adapting the present scheme for 3D acquisition, 
including background suppression pulses and reducing the 
scan duration to make the technique practical in the clini-
cal setting.
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