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1. Introduction

Interest in quantitative imaging of Y-90 is growing because transarterial radioembolization (RE) with Y-90 
loaded microspheres is a promising and minimally invasive treatment that is FDA approved for unresectable 
primary and metastatic liver tumors. These cancers are a leading cause of cancer mortality and morbidity. 
Radioembolization is a therapy that irradiates liver tumors with radioactive microspheres administered through 
a microcatheter placed in the hepatic arterial vasculature. Radioembolization is based on the principle that 
healthy liver and tumor are mainly vascularized by the portal vein and the hepatic artery respectively (Pasciak et al 
2016). As a result, radioactive microspheres are preferentially located in the lesions after they are administered via 
the hepatic artery.

Accurate quantitative Y-90 imaging based dosimetry is important for establishing absorbed dose versus 
outcome relationships for developing future treatment planning strategies in radioembolization. Additionally, 
accurately assessing the microsphere distribution is important for finding unexpected extra-hepatic deposition. 
However, imaging of Y-90 is complex as it is an almost pure beta emitter, with no associated gamma-rays. Y-90 
imaging involves SPECT via bremsstrahlung photons or PET via very low probability (∼3.2 × 10−5) positrons 
in the presence of increased singles events from bremsstrahlung photons and gammas from natural radioactivity 
in Lu-based crystals used in some PET systems. Due to these attributes of Y-90, positive bias in cold regions and 
underestimation in regions of interest are reported in many Y-90 PET papers (Pasciak et al 2014, Carlier et al 2015  
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Abstract
Most existing PET image reconstruction methods impose a nonnegativity constraint in the image 
domain that is natural physically, but can lead to biased reconstructions. This bias is particularly 
problematic for Y-90 PET because of the low probability positron production and high random 
coincidence fraction. This paper investigates a new PET reconstruction formulation that enforces 
nonnegativity of the projections instead of the voxel values. This formulation allows some negative 
voxel values, thereby potentially reducing bias. Unlike the previously reported NEG-ML approach 
that modifies the Poisson log-likelihood to allow negative values, the new formulation retains 
the classical Poisson statistical model. To relax the non-negativity constraint embedded in the 
standard methods for PET reconstruction, we used an alternating direction method of multipliers 
(ADMM). Because choice of ADMM parameters can greatly influence convergence rate, we applied 
an automatic parameter selection method to improve the convergence speed. We investigated the 
methods using lung to liver slices of XCAT phantom. We simulated low true coincidence count-
rates with high random fractions corresponding to the typical values from patient imaging in Y-90 
microsphere radioembolization. We compared our new methods with standard reconstruction 
algorithms and NEG-ML and a regularized version thereof. Both our new method and NEG-ML 
allow more accurate quantification in all volumes of interest while yielding lower noise than the 
standard method. The performance of NEG-ML can degrade when its user-defined parameter is 
tuned poorly, while the proposed algorithm is robust to any count level without requiring parameter 
tuning.
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and Strydhorst et al 2016). Those reports conclude that the bias is introduced by the current standard PET recon-
struction algorithms that enforce a nonnegativity constraint in the image domain. Figure 1(a) illustrates how 
the standard expectation maximization (EM) image reconstruction algorithm generates positive bias in a low 
count-rate setting.

Recent studies have demonstrated improved Y-90 PET imaging with time-of-flight (TOF) information and 
acquisitions that allow for randoms smoothing (Willowson et al 2015). However, quantitative imaging under the 
low count-rates typical for Y-90 PET remains challenging. Though not specific to Y-90, others have previously 
proposed reconstruction algorithms to mitigate the bias issue in low-statistics PET/SPECT. AB-EMML (Byrne 
1998) was devised for the deblurring problem, however, (Erlandsson et al 2000) used this method for low count-
rate scans because AB-EMML allows negative values when the lower boundary is set below 0. NEG-ML (Nuyts 
et al  2000) was introduced for non-attenuation corrected PET, but it was also shown to be effective to reduce the 
bias (Grezes-Besset et al 2007). A modified version of NEG-ML was introduced in Nuyts et al (2011) that includes 
two factors giving more flexibility for Gaussian distribution switching point and allowing faster convergence.

Both the AB-EMML and the NEG-ML approaches use modifications of the log-likelihood for Poisson 
data. Because ML estimation (based on the correct statistical model) is known to be asymptotically efficient 
(lowest possible variance), modifying the log-likelihood may affect image noise properties and the modifica-
tions require additional parameters to tune. Our objective is similar to these previous works, namely reducing 
the bias observed in low statistics PET, especially for Y-90 PET. However, our proposed algorithm is distinct 
in avoiding modifying or approximating the Poisson log-likelihood used in the data fit term. We propose a 
method to relax the conventional image-domain nonnegativity constraint by instead imposing a positivity 
constraint on the predicted measurement mean. We adopt ADMM to perform reconstruction that enforces 
this constraint. Figure 1(b) demonstrates how the proposed method overcomes the positive bias evident in 
figure 1(a).

Section 2 presents the formulation of our proposed PET reconstruction algorithm and reviews how the 
update in various algorithms changes when the cost function includes a regularization term. Section 3 explains 
the simulation method in the setting of Y-90 radioembolization and the evaluation metrics used for the  
quanti fication assessment. Section 4 investigates how the various reconstruction methods work when the num-
ber of projection angles replicates 3D and fully 3D PET and examines the impact of parameter selection. Sec-
tion 5 discusses the strengths and limitations of each method.

2. Methods

This section reviews the typical problem formulation in emission tomography. Then we explain how we formulate 
a new constrained reconstruction approach and we present various methods that incorporate regularization.

2.1. Emission tomography
The goal in emission tomography is to find an emission distribution x = (x1, ..., xnp) (counts) from a realization 
y = (y1, ..., ynd) (counts) of the projection measurement vector Y = (Y1, ..., Ynd), where np is the number of 
voxels of unknown functional image and nd is the number of rays. Emission measurement Y  follows Poisson 
statistical model as follows:

Figure 1. Reconstruction results when simulating realistic conditions of low count rates: (a) a histogram showing how the standard 
reconstruction algorithm (EM) can have a positive bias in the cold regions in the setting of lower count-rates. Cold region refers to 
the outside of the liver where the true image has no counts. An example slice of the true image is shown in figure 2. (b) A histogram 
illustrating how the proposed method avoids the positive bias by allowing negative values.

Phys. Med. Biol. 63 (2018) 035042 (14pp)
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Yi ∼ Poisson{ȳi(xtrue)}, i = 1, ..., nd, (1)

where xtrue is true unknown value that we want to estimate and ȳi(x) (counts) is the measurement mean:

ȳi(x) = E[Yi] =

np∑

j=1

aijxj + r̄i = [Ax]i + r̄i. (2)

The matrix A denotes the system model, incorporating factors such as attenuation coefficients, where aij 
(unitless) is the probability that an emission from the jth voxel is recorded in the ith ray. ̄ri denotes the mean back-
ground events such as scatter and random coincidence for the ith ray. The maximum likelihood (ML) estimate x̂ 
of xtrue minimizes the Poisson negative log-likelihood f (x):

f (x) c
=

nd∑

i=1

qi([Ax]i), (3)

where

qi(t) =

⎧
⎨

⎩

t + r̄i − yi log(t + r̄i), yi > 0, t + r̄i > 0
t + r̄i, yi = 0
∞, yi > 0, t + r̄i ! 0.

 (4)

Here, c
= indicates that we exclude constants independent of x. When x ! 0, f (x) matches with the original 

Poisson negative log-likelihood function. The following formulation summarizes the conventional emission 
tomography problem with a nonnegativity constraint:

x̂ = argmin
x

f (x) (5)

subject to x ! 0. (6)

The typical approach for solving this formulation is to find a surrogate function Q(x) of the log-likelihood 
that is easier to monotonically decrease than f (x). The following subsection briefly reviews a reconstruction 
algorithm based on this formulation.

2.1.1. SPS algorithm
The separable paraboloidal surrogate (SPS) algorithm for (5) uses a quadratic majorizer for f (x) and updates xj 
by minimizing the separable surrogate function QSPS,j  using Newton’s method:

x(n+1)
j =

[
x(n)

j −
∂QSPS,j(xj ;x

(n))
∂xj

|
xj=x(n)

j

∂2QSPS,j(xj ;x(n))
∂x2

j

]

+

, (7)

where [.]+ enforces the voxel nonnegativity constraint and (see Sotthivirat and Fessler (2002)):

QSPS,j(xj; x(n))
c
=

nd∑

i=1

(
aij(1 − yi

ȳ(n)
i

)(xj − x(n)
j ) +

c̆(n)
i ai

2
(xj − x(n)

j )2

)
 (8)

∂QSPS,j(xj; x(n))

∂xj
|
xj=x(n)

j
=

nd∑

i=1

(
1 − yi

ȳ(n)
i

)
aij =

∂f (x(n))

∂xj
 (9)

∂2QSPS,j(xj; x(n))

∂x2
j

=
nd∑

i=1

c̆(n)
i aijai (10)

c̆(n)
i =

2

(l(n)
i )2

[
l(n)
i q̇i(l

(n)
i ) + qi(0)− qi(l

(n)
i )

]
. (11)

ȳ(n)
i  denotes ȳi(x(n)) and x(n) is the estimated x at the nth iteration. l(n)

i  and ai denote [Ax(n)]i  and 
∑np

j=1 aij 
respectively. Considerations on the condition of r̄  (̄ri > 0), choosing the optimal curvature c̆(n)

i  and deriving 

separable surrogate function are shown in Fessler and Erdogan (1998) and Erdogan and Fessler (1999). The 
matrix-vector form of (7)–(10) is

x(n+1) =

[
x(n) −

(
D(n)

)−1∇f (xn)

]

+

, (12)
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where D(n) is a diagonal matrix with diagonal elements AT diag{c̆(n)
i }A1 where 1 denotes the vector of ones of 

length np and ∇f  is in (9).

2.1.2. NEG-ML algorithm
The approach of NEG-ML algorithm is similar to the SPS algorithm in that it uses a quadratic majorizer of the 
data fit term. However, NEG-ML minimizes a modified data fit term fNEG−ML(x) where the Poisson distribution 
is replaced by Gaussian distribution when the estimated measurement is below than the parameter ψ:

fNEG−ML(x)
c
=

nd∑

i=1

q̃i([Ax]i), (13)

where

q̃i(t) =

{
t + r̄i − yi log(t + r̄i), t + r̄i ! ψ
(yi−t−r̄i)

2

2ψ − yi logψ + ψ − (yi−ψ)2

2ψ , t + r̄i < ψ.
 (14)

Minimizing a separable surrogate function of (14) using Newton’s method leads to the following NEG-ML 
iteration:

x(n+1)
j = x(n)

j −

∑nd
i=1 aij

ȳ(n)
i −yi

max(ψ ,̄y(n)
i )∑nd

i=1 aij
ai

max(ψ ,̄y(n)
i )

. (15)

Derivation details are shown in Van Slambrouck et al (2015).

2.2. Proposed formulation
As shown in previous section, the standard methods for reconstructing emission images are based on 
nonnegativity constraint in image domain: x ! 0. This is a natural constraint as the activity distribution cannot 
have negative values physically. However, this constraint can cause positive biases in regions of low or no activity, 
especially when the measured counts are low and the background events ̄ri are dominant.

To loosen the nonnegativity constraint in hope of reducing the positive bias, we propose to allow nega-
tive values in image domain while keeping positivity in projection space. We propose the following form-
ulation:

x̂ = argmin
x

f (x), subject to Ax + r̄ > 0. (16)

The constraint Ax + r̄ > 0 is reasonable because likelihood function f (x) includes log(Ax + r̄) and the 
argument of a logarithm should be positive. We rewrite this optimization problem in the following unconstrained 
composite formulation:

x̂ = argmin
x∈Rnp

f (x) + g(Ax + r̄), (17)

where

g(ηi) =

{
∞, yi > 0, ηi < 0
0, else (18)

g(η) =
nd∑

i=1

gi(ηi) (19)

for a vector argument η ∈ Rnd. To perform this minimization, we introduce an auxiliary variable v leading to the 
following equality constrained optimization problem:

x̂ = argmin
x∈Rnp

min
v∈Rnd

1T(v + r̄)− yT log(v + r̄) + g(v + r̄) (20)

subject to v = Ax. (21)

We form an augmented Lagrangian based on that formulation:

Ψ(x, v,λ) = 1T(v + r̄)− yT log(v + r̄) + g(v + r̄) + λT(Ax − v) +
ρ

2
||Ax − v||22, (22)

where λ is a dual variable and ρ > 0 is called the penalty parameter and it affects the convergence rate but not the 

final minimum. Letting d = Ax − v, u = λ
ρ , we rewrite λT(Ax − v) + ρ

2 ||Ax − v||22 in a simpler form:

Phys. Med. Biol. 63 (2018) 035042 (14pp)
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λT(Ax − v) +
ρ

2
||Ax − v||22 = λTd +

ρ

2
||d||22

=
ρ

2
||d +

λ

ρ
||22 −

1
2ρ

||λ||22

=
ρ

2
||Ax − v + u||22 −

ρ

2
||u||22.

 (23)

Then the augmented Lagrangian becomes the following equivalent expression:

Ψ(x, v, u) = 1T(v + r̄)− yT log(v + r̄) + g(v + r̄) +
ρ

2
||Ax − v + u||22 −

ρ

2
||u||22. (24)

Finding the saddle point of (24) is equivalent to solving the problem (20) and (21):

x̂ = argmin
x∈Rnp

min
v∈Rnd

max
u∈Rnd

Ψ(x, v, u). (25)

ADMM (Boyd et al 2010) approaches the saddle point of the augmented Lagrangian function by updating 
variables x, v, u in the following sequential way:

x(n+1) = argmin
x

ρ

2
||Ax − v(n) + u(n)||22 (26)

v(n+1) = argmin
v

(
1T(v + r̄)− yT log(v + r̄) + g(v + r̄) +

ρ

2
||Ax(n+1) − v + u(n)||22

)
 (27)

u(n+1) = u(n) + (Ax(n+1) − v(n+1)). (28)

In the implementation, we initialize v(0) = Ax(0) and u(0) = 0. ADMM is an extension of the method of 
multipliers algorithm where (26) and (27) can be viewed as a finding primal optimal points in a sequential 
fashion and (28) as finding a dual optimal point.

2.2.1. x-update
An established minimization method to solve the quadratic problem in (26) is the conjugate gradient (CG) 
algorithm. In our implementation, we used just one iteration of CG, which is equivalent to one iteration of 
steepest descent (SD):

g(n) = ρAT(Ax(n) − v(n) + u(n)) (29)

ζn =
||g(n)||2

ρ||Ag(n)||2
 (30)

x(n+1) = x(n) − ζng(n). (31)

2.2.2. v-update
For the v-update, we first find the minimizer ̂v of (27) excluding the g(v + r̄) term using its separability:

1T(v + r̄)− yT log(v + r̄) +
ρ

2
||Ax(n+1) − v + u(n)||22 (32)

=
nd∑

i=1

(
vi + r̄i − yi log(vi + r̄i) +

ρ

2
([Ax(n+1)]i − vi + u(n)

i )2

)
=

nd∑

i=1

k(vi). (33)

Zeroing the derivative of k(vi) and finding the root leads to the minimizer:

v̂i =

⎧
⎪⎪⎨

⎪⎪⎩

[Ax(n+1)]i + u(n)
i − 1

ρ , yi = 0
√
β2 + γ − β, yi > 0, β < 0
ν√

β2+γ+β
, yi > 0, β ! 0,

 (34)

where

β =
1
2
(

1
ρ
+ r̄i − u(n)

i − [Ax(n+1)]i) (35)

γ = r̄i(u
(n)
i + [Ax(n+1)]i)−

r̄i − yi

ρ
. (36)

Phys. Med. Biol. 63 (2018) 035042 (14pp)
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Lastly, we consider g(v + r̄) constraint, leading to the final v update:

v(n+1)
i = [v̂i + r̄i]+ − r̄i. (37)

Note that both (35) and (29) require computing Ax(n) so an efficient implementation saves this product so only 
one new forward project per iteration is needed.

2.2.3. Parameter ρ selection
Manually selecting parameter ρ of ADMM algorithm often leads to slow convergence. Boyd et al (2010) 
introduced an approach to adaptively tune the parameter by comparing the primal and dual residual. We 
followed the comparison criteria choice in Boyd et al (2010).

2.3. Regularization
We also derived and implemented algorithms for minimizing cost functions that include a regularization term 
R(x) to penalize the image roughness and control noise:

R(x) =
K∑

k=1

ψk([Cx]k), (38)

where C is a K × np finite differencing matrix. It is preferable for potential function ψk to include continuity, 
symmetry, and positivity (Li 1998). There are several available choices for potential function and each option 
has its own advantage/disadvantage. For the results in this paper, we used a simple quadratic potential function:

ψ(t) =
t2

2
. (39)

We designed C to generate finite differences in 3D. Including a regularization term in the cost function for 
emission tomography leads to the following minimization problems:

x̂ = argmin
x

f (x) + βR(x) (40)

subject to Ax + r̄ ! 0( proposed) (41)

or x ! 0(conventional), (42)

where β is a parameter specifying how much we want to penalize the roughness. The following subsections briefly 
list solutions to (40)–(42) with the various approaches.

2.3.1. Regularized SPS algorithm
Finding optimal x for (40) with the standard constraint x ! 0 is an extension of the SPS algorithm. We used the 
standard separable surrogate function QR,j for βR(x) (De Pierro 1995):

QR,j(xj; x(n))
c
= β

K∑

k=1

(
ckj[Cx(n)]k(xj − x(n)

j ) +
1
2
|ckj|ck(xj − x(n)

j )2

)
, (43)

x(n+1)
j =

[
x(n)

j −
∂QSPS,j(xj ;x

(n))
∂xj

|
xj=x(n)

j
+

∂QR,j(xj ;x
(n))

∂xj
|
xj=x(n)

j

∂2QSPS,j(xj ;x(n))
∂x2

j
+

∂2QR,j(xj ;x(n))
∂x2

j

]

+

 (44)

=

[
x(n)

j −

∑nd
i=1

(
1 − yi

ȳ(n)
i

)
aij + β

∑K
k=1 ckj[Cx(n)]k

∑nd
i=1 c̆(n)

i aijai + β
∑K

k=1 |ckj|ck

]

+

, (45)

where ck denotes 
∑np

j=1 |ckj|.

2.3.2. Regularized NEG-ML
NEG-ML also use the quadratic majorizer of the modified likelihood function; therefore, the scheme for 
x-update of regularized NEG-ML is analogous to regularized SPS algorithm:

x(n+1)
j = x(n)

j −

∑nd
i=1 aij

ȳ(n)
i −yi

max(ψ ,̄y(n)
i )

+ β
∑K

k=1 ckj[Cx(n)]k
∑nd

i=1 aij
ai

max(ψ ,̄y(n)
i )

+ β
∑K

k=1 |ckj|ck

, (46)

Phys. Med. Biol. 63 (2018) 035042 (14pp)
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where ψ is a parameter indicating the likelihood function switching point between the Poisson distribution and 
the Gaussian distribution. We set the convergence-related step-size as 1 in our implementation.

2.3.3. Proposed algorithm with regularization
Including R(x) in the cost function requires only modifications to (24) and (29) and (30) for the x-update in 
section 2.2.1:

Ψ(x, v, u) = 1T(v + r̄)− yT log(v + r̄) + βR(x) + g(v + r̄) +
ρ

2
||Ax − v + u||22 −

ρ

2
||u||22 (47)

g(n) = ρAT(Ax(n) − v(n) + u(n)) + βCTCx(n) (48)

ζn =
||g(n)||2

ρ||Ag(n)||2 + β||Cg(n)||2
. (49)

3. Experimental method

This section describes the simulation setting and what evaluation metrics are used to assess the efficacy of each 
algorithm.

Table 1. Administered activity and randoms fractions for two patients treated at our clinic with Y-90 radioembolization.

Patient A Patient B

Y-90 Injection(GBq) 3.9 0.9

True prompts 675 498 96 890

Random prompts 3275 353 1692 504

Total prompts 3950 851 1789 394

Random fractiona (%) 83 95

a Random Fraction  =  (Random prompts / Total prompts)  ×  100.

Figure 2. True image and the corresponding projection: (a), (c) and (b), (d) are slices of true image and projection views at one 
angle simulating the conditions of patient A and B data respectively. Activity concentration ratio between healthy liver and hot spot 
(lesion) is 1:5 to simulate the typical uptake ratio.

Phys. Med. Biol. 63 (2018) 035042 (14pp)
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3.1. Simulation
3.1.1. True image
We simulated extremely low-count scans, typical for Y-90 PET following radioembolization, with the extended 
cardiac-torso (XCAT) (figure 2). We set the image size to 128  ×  128  ×  100 with a voxel size 4.0  ×  4.0  ×  4.0 
(mm3) and chose 100 slices ranging from lung to liver. The activity concentration ratio between healthy liver 
and a 42 ml lesion was 1:5 to simulate a typical uptake ratio. We also placed a 42 ml zero valued cold spot in the 
liver. In one case activity was assigned to the entire liver, while in the other case only to part of the liver as lobar 
or segmental treatment is common. Activity assigned to the lungs simulated a lung shunt of 5%. The rest of the 
phantom is ‘cold’.

3.1.2. Projection
Our experiment uses the framework of Michigan Image Reconstruction Toolbox (MIRT)3. We first set the 
projection size to 128  ×  100 with 168 projection angles and the detector width to 8 mm when specifying the 
system model. For realistic simulation, we replicate the true and random counts observed in the patient imaging 
following radioembolization. Table 1 shows the low count conditions that we simulated corresponding to a 
relatively high Y-90 administration (Patient A) and a relatively low administration (Patient B) for patients treated 
at our clinic with glass microspheres. We use smaller area of liver (figure 2(b)) in the Patient B case because lower 
Y-90 administration and consequent lower true counts are usually induced by treatment of smaller region in the 
liver. Simulated projections are shown in figures 2(c) and (d).

We also investigated increasing the number of projection angles by 10 times (while keeping total counts the 
same) to emulate fully 3D-PET (TOF) and test how each algorithm would work in the fully 3D-PET setting (Van 
Slambrouck et al 2015). Section 4.2 discusses the results for this case.

3.2. Evaluation metrics
We eroded each volume of interest (VOI) by 2 pixels to exclude resolution effects from the evaluation. We 
evaluated liver quantification by calculating activity recovery:

Activity recovery in liver (%) =
Estimated mean counts

True mean counts
× 100% (50)

=
1

MJLiver

∑M
m=1

∑
j∈Liver x̂m[ j]

1
JLiver

∑
j∈Liver xtrue[ j]

× 100%, (51)

where M is the number of realizations and JLiver is the number of voxels in the volume of liver. Estimated mean 
counts is calculated from the multiple realizations. We used 10 realizations in our experiment (M  =  10). x̂m[ j] 
indicates the jth voxel value at mth realization and xtrue[ j] denotes the jth voxel value of true counts.

Quantification in hot and cold spot (where true value of voxel is zero) are evaluated based on contrast  
recovery4:

Contrast recovery in hot spot (%) =
Ci/CBKG − 1

R − 1
× 100% (52)

=

1
MJHotspot

∑M
m=1

∑
j∈Hotspot x̂m[ j]

1
JLiver

∑
j∈Liver xtrue[ j] − 1

1
JHotspot

∑
j∈Hotspot xtrue[ j]

1
JLiver

∑
j∈Liver xtrue[ j] − 1

× 100% (53)

Contrast recovery in cold spot (%) = (1 − Ci

CBKG
)× 100% (54)

=

(
1 −

1
MJColdspot

∑M
m=1

∑
j∈Coldspot x̂m[ j]

1
JLiver

∑
j∈Liver xtrue[ j]

)
× 100%. (55)

Ci is the mean counts for object i and CBKG is mean background (eroded liver) counts. R is the true lesion-to-
normal liver activity concentration ratio. We also study the counts bias the in field of view (FOV):

FOV bias (%) =
(Total estimated counts − Total true counts)

Total true counts
× 100% (56)

3 http://web.eecs.umich.edu/∼fessler/code/index.html.
4 http://nema.org/Standards/Pages/Performance-Measurements-of-Positron-Emission-Tomographs.aspx.
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=
( 1

M

∑M
m=1

∑np

j=1 x̂m[ j]−
∑np

j=1 xtrue[ j])
∑np

j=1 xtrue[ j]
× 100%. (57)

Lastly, we calculate the image ensemble noise across realizations averaged over the liver to evaluate the vari-
ability across realizations:

Image ensemble noise (%) =

√
1

JLiver

∑
j∈Liver

(
1

M−1

∑M
m=1(x̂m[ j]− 1

M

∑M
m′=1 x̂m′ [ j])2

)

1
JLiver

∑
j∈Liver xtrue[ j]

× 100%,
 

(58)

Figure 3. Results from simulating Patient B conditions. Proposed algorithm (green) gives higher contrast and better activity 
recovery than other regularized algorithms but NEG-ML-Reg (magenta) has lower noise in liver and FOV bias.

Figure 4. Evaluation result on simulation of fully 3D-PET (number of projection angles is 1680). Proposed algorithm converges to 
similar point in figure 3, whereas NEG-ML-Reg changes its converged point.
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4. Results

We compare the proposed method with regularization (ADMM-Reg) to the standard EM (1 subset), regularized 
SPS (SPS-Reg), NEG-ML and regularized NEG-ML (NEG-ML-Reg) algorithms. We used uniform image for the 
initial x. For comparison, we also report evaluation results of our proposed method with the modified constraint 
Ax + r̄/2 ! 0. Changing the constraint requires a slight modification in (37):

v(n+1)
i = [v̂i +

r̄i

2
]+ − r̄i

2
. (59)

We exclude regularized EM in the comparison because regularized SPS and regularized EM converge to the same 
point.

In the plots shown in following subsections, β for regularization is 2−3 which is a value considering both the 
quantification in lesion and the benefit in noise. Van Slambrouck et al (2015) reported that ψ value near the mean 
counts in the sinogram increases the bias, therefore, ψ value should be large enough for bias-free reconstruction. 
We report the evaluation result of NEG-ML with ψ = 4 in the plots, however, section 4.3 enumerates all evalua-
tion results with varying ψ and β values.

4.1. Evaluation result on 3D PET emulation
This section reports the evaluation results when a simulation replicates patient B condition and uses 168 
projection angles. Figure 3 shows the results with plots showing how activity/contrast recovery versus iterations 
in VOIs evolve with iterations. Figure 3 also includes a plot of noise versus iterations.

NEG-ML without regularization achieves higher activity/contrast recovery in VOIs than regularized meth-
ods, however, it keeps increasing the noise with the iterations. This is undesirable because the algorithm needs 
to stop before convergence to have an acceptable noise level. Proposed algorithm gives higher activity/contrast 
recovery than other regularized algorithms, however, NEG-ML-Reg has lower noise in liver and FOV bias.

4.2. Result on fully 3D PET emulation
We also emulate the fully 3D (TOF) PET by increasing the number of projection angles (from 168 to 1680) 
for the same Patient B conditions of section 4.1. The results shown in figure 4 indicate that the converged 
evaluation results of NEG-ML-Reg (magenta) were changed compared to figure 3 (activity recovery in liver: 
91.2%  →  82.4%, contrast recovery in hot spot: 82.9%  →  54.3%) while other algorithms including our proposed 
method remain similar.

Figure 5. Reconstructed images using regularized SPS, NEG-ML-Reg with ψ = 4 and proposed algorithm. True image corresponds 
to figure 2(b). First row and second row are the results when the number of projection angle is 168 and 1680 respectively. Regularized 
SPS and proposed algorithm do not change much when the number of angles is increased. However, NEG-ML-Reg (ψ = 4) gets 
blurred.

Phys. Med. Biol. 63 (2018) 035042 (14pp)
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Figure 5 compares the images reconstructed using regularized algorithms when the number of projection 
angles changes (First row: 168, Second row: 1680). SPS-Reg and proposed algorithm (ADMM-Reg) generate 
almost identical images in two cases, however, the image from NEG-ML-Reg becomes blurry when the number 

of projection angles increases. The mean sinogram count decreased when we increased the number of projection 

angles so NEG-ML-Reg must make more approximations when calculating max(ψ, ȳ(n)
i ) in (46). Therefore, the 

impact of parameter ψ on reconstruction depends on the count level of sinogram, implying that a parameter ψ 
value optimized at a certain count level could generate an unexpected result whenever there is a change in the 
amount of administered activity, radionuclide or detector geometry.

Table 2. Comparison between regularized algorithms at the 400th iterations. We calculate the evaluation metrics using the results from 10 
realizations.

Condition β NPA Algorithm ARL CRH CRC FOVB IEN

Patient A 2−3 168 SPS-Reg 92.5 91.3 85.9 15.7 39.2

NEG-ML-Reg ψ = 4 94.8 91.2 94.6 − 0.9 38.8

ψ = 10−3 96.2 91.5 95.3 −11.5 41.2

ADMM-Reg Ax + r̄/2 ! 0 95.4 91.9 94.6 −7.1 39.9

Ax + r̄ ! 0 96.2 91.7 95.3 −14.1 41.5

1680 SPS-Reg 92.6 91.3 86.1 15.8 38.9

NEG-ML-Reg ψ = 4 90.7 80.0 84.1 0.0 12.1

ψ = 10−3 96.1 91.6 95.8 −11.4 40.9

ADMM-Reg Ax + r̄/2 ! 0 95.5 91.6 96.3 −7.0 41.5

Ax + r̄ ! 0 96.4 91.7 96.0 −15.3 41.6

2−6 168 SPS-Reg 92.8 95.4 85.4 16.8 62.7

NEG-ML-Reg ψ = 4 96.5 95.9 97.9 − 1.0 80.7

ψ = 10−3 97.6 96.4 98.6 −11.4 82.8

ADMM-Reg Ax + r̄/2 ! 0 96.0 95.8 97.2 −2.3 65.4

Ax + r̄ ! 0 97.5 96.1 98.5 −13.7 80.6

1680 SPS-Reg 92.9 95.6 85.7 16.9 62.3

NEG-ML-Reg ψ = 4 95.5 92.1 95.1 0.0 38.5

ψ = 10−3 97.7 96.5 99.1 −11.4 82.3

ADMM-Reg Ax + r̄/2 ! 0 96.5 96.5 100.6 −2.0 113.7

Ax + r̄ ! 0 98.3 96.6 100.1 −17.5 114.9

Patient B 2−3 168 SPS-Reg 86.4 85.5 81.5 71.2 38.4

NEG-ML-Reg ψ = 4 91.2 82.9 84.7 − 0.1 26.1

ψ = 10−3 94.2 87.0 90.5 −60.3 40.4

ADMM-Reg Ax + r̄/2 ! 0 93.1 86.9 91.3 −37.2 40.5

Ax + r̄ ! 0 94.3 87.1 90.7 −67.4 40.6

1680 SPS-Reg 86.4 85.7 80.9 70.8 38.0

NEG-ML-Reg ψ = 4 82.4 54.3 59.4 − 0.7 6.2

ψ = 10−3 94.2 87.2 89.2 −62.9 39.9

ADMM-Reg Ax + r̄/2 ! 0 93.0 87.1 90.0 −37.4 39.9

Ax + r̄ ! 0 94.4 87.3 89.3 −72.1 40.0

2−6 168 SPS-Reg 86.1 92.5 81.2 81.5 81.6

NEG-ML-Reg ψ = 4 96.1 92.6 93.7 − 0.1 79.7

ψ = 10−3 97.0 94.9 96.7 −64.6 108.9

ADMM-Reg Ax + r̄/2 ! 0 92.7 94.3 99.0 −10.1 117.6

Ax + r̄ ! 0 97.1 95.1 98.1 −88.4 122.8

1680 SPS-Reg 85.9 92.7 79.9 81.0 81.0

NEG-ML-Reg ψ = 4 90.6 81.3 82.2 − 0.6 22.5

ψ = 10−3 97.0 95.1 94.8 −67.9 107.8

ADMM-Reg Ax + r̄/2 ! 0 92.5 94.5 97.1 −9.2 119.4

Ax + r̄ ! 0 97.5 95.5 96.3 −99.9 122.3

NPA: Number of Projection Angles, ARL: Activity Recovery in Liver.
CRH: Contrast Recovery in Hot spot, CRC: Contrast Recovery in Cold spot.
FOVB: FOV Bias, IEN: Image Ensemble Noise.
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4.3. Effect of algorithm parameter
We compare regularized algorithms by evaluating the reconstructed images at the 400th iteration in Table 2. 
Table 2 summarizes how changing β value for regularization, projection angles, ψ value for NEG-ML-Reg, 
random coincidence fraction and total true coincidence counts affects the reconstruction outputs. We also report 
evaluation results of our proposed method with the constraint Ax + r̄ ! 0.

Better quantification result in Patient A case compared to Patient B case corresponds to the general knowl-
edge that higher true coincidence counts and lower random coincidence fractions help to estimate the image 
precisely. We can also observe that higher β value for regularization decreases the noise, however, it worsens the 
other VOI metrics.

The algorithms that allow negative values in image domain (NEG-ML-Reg, ADMM-Reg) generally give bet-
ter quantification result than the standard algorithm (SPS-Reg). A trend found in NEG-ML-Reg results is that 
lower ψ value leads to higher activity/contrast recovery. However, at the same time, FOV bias also increases. 
Moreover, increasing the number of projection angles always decreases the activity/contrast recovery of NEG-
ML-Reg while SPS-Reg and our method (ADMM-Reg) remain fairly stable. This finding agrees with the results 
shown in the previous subsections. The constraint Ax + r̄ ! 0 of our proposed method (ADMM-Reg) generally 
gives better quantification than Ax + r̄/2 ! 0 except FOV bias. Ax + r̄ ! 0 gives 1–5% improvement in VOI 
metrics except FOV bias compared to Ax + r̄/2 ! 0, however, Ax + r̄/2 ! 0 reduces FOV bias significantly in 
Patient B case.

5. Discussion

As shown in the previous section, a main advantage of proposed algorithm is that we retain the original Poisson 
log-likelihood so there is no parameter that must be manually optimized. Choosing a number of iterations 
in x-update for one ADMM iteration is an algorithm parameter. We chose 1 iterations in x-update for one 
ADMM iteration. We can assign any value to ρ and the algorithm adapts its value automatically as explained 
in section 2.2.3. However, NEG-ML-Reg has a data-fit term parameter ψ that affects the results significantly 
and the optimal ψ value is different for each imaging condition. The NEG-ML-Reg algorithm can potentially 
be modified to automatically adapt the parameter ψ (i.e. multiplying some constant to the mean sinogram 
value), but any modification will need theoretical and experimental grounds beyond the scope of this paper. 
Nonetheless, setting ψ to very small value (i.e. ψ = 10−3) makes NEG-ML-Reg robust to any count level as 
shown in the table 2. In this case, we observed that NEG-ML-Reg generates similar quantification in VOIs with 
proposed algorithm. However, NEG-ML-Reg with very small ψ gives high FOV bias and the algorithm does not 
have a room for modification to mitigate the FOV bias whereas our proposed method can reduce the FOV bias 
by slightly modifying the constraint (e.g. Ax + r̄ ! 0 → Ax + r̄/2 ! 0) without greatly impairing the other 
evaluation metrics.

Figure 6. (a) Cost function value versus iteration. Proposed method with the constraint Ax + r̄ ! 0 achieves the lowest cost 
function. (b) Measurement and estimated measurements. Standard method with conventional constraint (SPS-Reg) always predicts 
ȳi(x) above ̄r . Our proposed method finds x̂ within the larger set that satisfies the constraint (e.g. Ax + r̄/2 ! 0) rather than the 
conventional set (x ! 0).

Phys. Med. Biol. 63 (2018) 035042 (14pp)
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Figure 6(a) shows how cost function value (40) of each method decreases with iterations when we simulate the 
measurement with patient B condition and 168 projection angles. Because NEG-ML-Reg solves the minimization 
of modified cost function (14) problem, our proposed method (ADMM-Reg) and NEG-ML-Reg conv erge to the 
different cost function value. Our proposed method (ADMM-Reg) with the constraint Ax + r̄ ! 0 achieves 
the lowest cost function value. Figure 6(b) shows the measurement y (first row) and estimated measurements 
ȳ(x(n)) at 400th iteration. The SPS-Reg estimate is always above r̄  because of the nonnegativity of system 
matrix element aij and the nonnegative constraint in image domain. Because NEG-ML-Reg does not enforce 
any constraint, ȳ(x(400)) of NEG-ML-Reg has many negative valued predicted sinogram values. Lastly, we can 
check that estimates from our proposed method with constraint Ax + r̄/2 ! 0 lie above ̄r/2. This confirms that 
our proposed method finds x̂ within the larger set that satisfies Ax + r̄/2 ! 0 rather than the conventional set 
(x ! 0).

A drawback of the proposed algorithm is that it requires more computation cost compared to the standard 
method and NEG-ML(-Reg) because of the need to compute matrix multiplication in (30) as well as auxiliary 
and dual variable. With our computer (Intel Core i7, 32 GB memory), 400 iterations of NEG-ML-Reg required 
661 seconds for 168 projection views whereas proposed algorithm took 1116 seconds. Finding an acceleration 
method with a convergence guarantee is a future work topic.

6. Conclusion

This paper has presented a new PET reconstruction formulation with a relaxed nonnegativity constraint. The 
experimental results show that the proposed method reduces the bias in VOI when the true coincidence count-
rate is low and the random fraction is high. The key of the proposed algorithm is incorporating the new constraint 
and adopting ADMM as a solver. Lastly our proposed method is not limited to Y-90 PET but has application in 
other imaging situations with low true count rates and high random fractions such as ion beam therapy (Kurz 
et al 2015).
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