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Abstract First-order methods with momentum, such as Nesterov’s fast gradient
method, are very useful for convex optimization problems, but can exhibit undesir-
able oscillations yielding slow convergence rates for some applications. An adaptive
restarting scheme can improve the convergence rate of the fast gradient method, when
the parameter of a strongly convex cost function is unknown or when the iterates of
the algorithm enter a locally strongly convex region. Recently, we introduced the opti-
mized gradient method, a first-order algorithm that has an inexpensive per-iteration
computational cost similar to that of the fast gradient method, yet has a worst-case
cost function rate that is twice faster than that of the fast gradient method and that
is optimal for large-dimensional smooth convex problems. Building upon the success
of accelerating the fast gradient method using adaptive restart, this paper investigates
similar heuristic acceleration of the optimized gradient method. We first derive a new
first-order method that resembles the optimized gradient method for strongly convex
quadratic problems with known function parameters, yielding a linear convergence
rate that is faster than that of the analogous version of the fast gradient method. We
then provide a heuristic analysis and numerical experiments that illustrate that adaptive
restart can accelerate the convergence of the optimized gradient method. Numerical
results also illustrate that adaptive restart is helpful for a proximal version of the
optimized gradient method for nonsmooth composite convex functions.
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1 Introduction

The computational expense of first-order methods depends onlymildly on the problem
dimension, so they are attractive for solving large-dimensional optimization prob-
lems [1]. In particular, Nesterov’s fast gradient method (FGM) [2–4] is used widely,
because it has a worst-case cost function rate that is optimal up to constant for large-
dimensional smooth convex problems [3]. In addition, for smooth and strongly convex
problemswhere the strong convexity parameter is known, a version of FGMhas a linear
convergence rate [3] that improves upon that of a standard gradient method. However,
without knowledge of the function parameters, conventional FGM does not guarantee
a linear convergence rate.

When the strong convexity parameter is unknown, a simple adaptive restarting
scheme [5] for FGM heuristically improves its convergence rate. (See also [6,7] for
theory and [1,8,9] for applications.) In addition, adaptive restart is useful evenwhen the
function is only locally strongly convex near theminimizer [5]. First-ordermethods are
known to be suitable when only moderate solution accuracy is required, and adaptive
restart can help first-order methods achieve medium to high accuracy.

Recently, we proposed the optimized gradientmethod (OGM) [10] (built upon [11])
that has efficient per-iteration computation similar to FGM yet that exactly achieves
the optimalworst-case rate for decreasing a large-dimensional smooth convex function
among all first-order methods [12]. (See [13–15] for further analysis and extensions
of OGM.) This paper examines a general class of accelerated first-order methods that
includes a gradient method (GM), FGM, and OGM for strongly convex quadratic
functions, and develops an OGM variant, named OGM-q. This method provides a
linear convergence rate that is faster than that of the analogous version of FGM. The
analysis reveals that, like FGM [5], OGMmay exhibit undesirable oscillating behavior
in some cases. Building on the quadratic analysis and the adaptive restart scheme of
FGM in [5], we propose an adaptive restart scheme that heuristically accelerates the
convergence rate of OGM when the function is strongly convex or even when it is
only locally strongly convex. This restart scheme circumvents the oscillating behavior.
Numerical results illustrate that the proposed OGM with restart performs better than
FGM with restart in [5].

Section 2 reviews first-order methods for convex problems such as GM, FGM,
and OGM. Section 3 analyzes a general class of accelerated first-order methods that
includes GM, FGM, and OGM for strongly convex quadratic problems, and proposes
a new OGM variant with a fast linear convergence rate. Section 4 suggests an adaptive
restart scheme for OGMusing the quadratic analysis in Sect. 3. Section 5 illustrates the
proposed adaptive version of OGM that we use for numerical experiments on various
convex problems in Sect. 6, including nonsmooth composite convex functions, and
Sect. 7 concludes.
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2 Problem and Methods

2.1 Smooth and Strongly Convex Problem

We first consider the smooth and strongly convex minimization problem:

min
x∈Rd

f (x) (1)

that satisfies the following smooth and strongly convex conditions:

– f : R
d → R is continuously differentiable and has Lipschitz continuous gradient

with Lipschitz constant L > 0, i.e.,

||∇ f (x) − ∇ f ( y)|| ≤ L||x − y||, ∀x, y ∈ R
d , (2)

– f is strongly convex with strong convexity parameter μ > 0, i.e.,

f (x) ≥ f ( y) + 〈∇ f ( y), x − y〉 + μ

2
||x − y||2, ∀x, y ∈ R

d . (3)

We let Fμ,L(Rd) denote the class of functions f that satisfy the above two con-
ditions hereafter, and let x∗ denote the unique minimizer of f . We let q := μ/L
denote the reciprocal of the condition number of a function f ∈ Fμ,L(Rd). We also
letF0,L(Rd) denote the class of smooth convex functions f that satisfy the above two
conditions with μ = 0, and let x∗ denote a minimizer of f .

Some algorithms discussed in this paper require knowledge of both μ and L , but
in many cases estimating μ is challenging compared to computing L .1 Therefore, this
paper focuses on the case where the parameter μ is unavailable, while L is available.
Evenwithout knowingμ, the adaptive restart approach in [5] and the proposed adaptive
restart approach in this paper both exhibit linear convergence rates in strongly convex
cases.

2.2 Review of Accelerated First-Order Methods

This paper focuses on accelerated first-order methods (AFM) of the form shown
in Algorithm 1 for solving (1). The fast gradient method (FGM) [2–4] (with γk = 0
in Algorithm 1) accelerates the gradient method (GM) (with βk = γk = 0) using
the momentum term βk( yk+1 − yk) with negligible additional computation. The opti-
mized gradient method (OGM) [10,14] uses an over-relaxation term γk( yk+1−xk) =
−γkα∇ f (xk) for further acceleration.

Tables 1 and 2 summarize the standard choices of coefficients (α, βk, γk) for GM,
FGM, OGM in [2–4,10,14] and their worst-case rates for smooth convex functions

1 For some applications even estimating L is expensive, and one must employ a backtracking scheme [3,4]
or similar approaches. We assume L is known throughout this paper. An estimate of μ could be found by a
backtracking scheme as described in [16, Sec. 5.3].
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Algorithm 1 Accelerated First-order Methods (AFM)
1: Input: f ∈ F0,L (Rd ) orFμ,L (Rd ), x0 = y0 ∈ R

d .
2: for k ≥ 0 do
3: yk+1 = xk − α∇ f (xk )
4: xk+1 = yk+1 + βk ( yk+1 − yk ) + γk ( yk+1 − xk )

Table 1 Accelerated first-order methods for smooth convex problems

Method α βk γk Worst-case rate

GM 1
L 0 0 f ( yk )− f (x∗)≤ L||x0−x∗||2

4k+2 [11]

FGM [2] 1
L

tk−1
tk+1

0 f ( yk )− f (x∗)≤ L||x0−x∗||2
2t2k−1

≤ 2L||x0−x∗||2
(k+1)2

[4]

f (xk )− f (x∗)≤ L||x0−x∗||2
2t2k

≤ 2L||x0−x∗||2
(k+2)2

[10]

OGM′ [14] 1
L

tk−1
tk+1

tk
tk+1

f ( yk )− f (x∗)≤ L||x0−x∗||2
4t2k−1

≤ L||x0−x∗||2
(k+1)2

[14]

OGM [10] 1
L

θk−1
θk+1

θk
θk+1

f (xN )− f (x∗)≤ L||x0−x∗||2
2θ2N

≤ L||x0−x∗||2
(N+1)2

[10]

Parameters

t0=1, tk= 1
2

(
1+

√
1+4t2k−1

)
, k=1,...,

θ0=1, θk=
⎧
⎨
⎩

1
2

(
1+

√
1+4θ2k−1

)
, k=1,...,N−1,

1
2

(
1+

√
1+8θ2k−1

)
, k=N .

The worst-case rate of OGM depends on the preselected total number of iterations N , unlike other rates

Table 2 Accelerated first-order methods (with γk = 0) for smooth and strongly convex problems

Method α βk Worst-case rate

GM 1
L 0 f ( yk )− f (x∗)≤

(
1− 2μ

1+q

)k L||x0−x∗||2
2 [3]

GM-q 2
μ+L 0 f ( yk )− f (x∗)≤

(
1−q
1+q

)2k L||x0−x∗||2
2 [3]

FGM-q [3] 1
L

1−√
q

1+√
q f ( yk )− f (x∗)≤(1−√

q)k
(1+q)L||x0−x∗||2

2 [3]

The worst-case rates also apply to μ
2 || yk − x∗||2 due to strong convexity (3)

F0,L(Rd) and smooth and strongly convex functionsFμ,L(Rd), respectively. (Other
choices can be found in [3,13,17].) For convenience hereafter, we use the names GM,
GM-q, FGM, FGM-q, OGM, and OGM′ to distinguish different choices of standard
AFM coefficients in Tables 1 and 2.

The worst-case OGM rate [10] in Table 1 is about twice faster than the FGM rate [4]
and is optimal for first-order methods for the function classF0,L(Rd) under the large-
scale condition d ≥ N +1 [12]. However, it is yet unknown which first-order methods
provide an optimalworst-case linear convergence rate for the function classFμ,L (Rd);
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this topic is left as an interesting future work.2 Toward this direction, Sect. 3 studies
AFM for strongly convex quadratic problems, leading to a newmethod named OGM-
q with a linear convergence rate that is faster than that of FGM-q. Section 4 uses this
quadratic analysis to analyze an adaptive restart scheme for OGM.

3 Analysis of AFM for Quadratic Functions

This section analyzes the behavior of AFM forminimizing a strongly convex quadratic
function. The quadratic analysis of AFM in this section is similar in spirit to the
analyses of a heavy-ball method [19, Sec. 3.2] and AFM with γk = 0 [20, Appx. A]
[5, Sec. 4].

In addition, Sect. 3.3 optimizes the coefficients ofAFMfor suchquadratic functions,
yielding a linear convergence rate that is faster than that of FGM-q. The resulting
method, named OGM-q, requires the knowledge of q, and Sect. 3.4 shows that using
OGM (and OGM′) in Table 1 instead (without the knowledge of q) will cause the
OGM iterates to oscillate when the momentum is larger than a critical value. This
analysis stems from the dynamical system analysis of AFMwith α = 1/L and γk = 0
in [5, Sec. 4].

3.1 Quadratic Analysis of AFM

This section considers minimizing a strongly convex quadratic function:

f (x) = 1

2
x
 Qx − p
x ∈ Fμ,L(Rd) (4)

where Q ∈ R
d×d is a symmetric positive definitematrix, and p ∈ R

d is a vector. Here,
∇ f (x) = Qx − p is the gradient, and x∗ = Q−1 p is the optimum. The smallest and
the largest eigenvalues of Q correspond to the parameters μ and L of the function,
respectively. For simplicity in the quadratic analysis, we consider the version of AFM
that has constant coefficients (α, β, γ ).

Defining the vectors ξ k := (x

k , x


k−1)

 ∈ R

2d and ξ∗ := (x
∗ , x
∗ )
 ∈ R
2d , and

extending the analysis for AFM with γ = 0 in [20, Appx. A], AFM has the following
equivalent form for k ≥ 1:

ξ k+1 − ξ∗ = T (α, β, γ ) (ξ k − ξ∗), (5)

where the system matrix T (α, β, γ ) of AFM is defined as

T (α, β, γ ) :=
[

(1 + β)(I − αQ) − γαQ −β(I − αQ)

I 0

]
∈ R

2d×2d (6)

2 Recently, [18] developed a new first-order method for known q that is not in AFM class but achieves a
linear worst-case rate (1− √

q)2 for the decrease of a strongly convex function that is faster than the linear
rate (1 − √

q) of FGM-q in Table 2.
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for an identity matrix I ∈ R
d×d . The sequence {ξ̃ k := ( y


k , y

k−1)


}k≥1 also satisfies
recursion (5), implying that (5) characterizes the behavior of both the primary sequence
{ yk} and the secondary sequence {xk} of AFM with constant coefficients.

The spectral radius ρ(T (·)) of matrix T (·) determines the convergence rate of the
algorithm. Specifically, for any ε > 0, there exists K ≥ 0 such that [ρ(T )]k ≤
||T k || ≤ (ρ(T ) + ε)k for all k ≥ K , establishing the following worst-case rate:

||ξ k+1 − ξ∗||2 ≤ (ρ(T (α, β, γ )) + ε)2k ||ξ1 − ξ∗||2. (7)

We next analyze ρ(T (α, β, γ )).
Considering the eigen decomposition of Q in T (·) as in [20, Appx. A], the spectral

radius of T (·) is:

ρ(T (α, β, γ )) = max
μ≤λ≤L

ρ(Tλ(α, β, γ )), (8)

where for any eigenvalue λ of matrix Q we define a matrix Tλ(α, β, γ ) ∈ R
2×2 by

substituting λ and 1 for Q and I in T (α, β, γ ), respectively. Similar to the analysis
of AFM with γ = 0 in [20, Appx. A], the spectral radius of Tλ(α, β, γ ) is:

ρ(Tλ(α, β, γ )) = max{|r1(α, β, γ, λ)|, |r2(α, β, γ, λ)|} (9)

=
{

1
2

(|(1 + β) (1 − αλ) − γαλ| + √
	(α, β, γ, λ)

)
, 	(α, β, γ, λ) ≥ 0,√

β(1 − αλ), otherwise,

where r1(α, β, γ, λ) and r2(α, β, γ, λ) denote the roots of the characteristic polyno-
mial of Tλ(·):

r2 − ((1 + β)(1 − αλ) − γαλ)r + β(1 − αλ), (10)

and 	(α, β, γ, λ) := ((1 + β) (1 − αλ) − γαλ)2 − 4β (1 − αλ) denotes the corre-
sponding discriminant. For fixed (α, β, γ ), the spectral radius ρ(Tλ(α, β, γ )) in (9)
is a continuous and quasi-convex3 function of λ; thus, its maximum over λ occurs at
one of its boundary points λ = μ or λ = L .

The next section reviews the optimization of AFM coefficients to provide the fastest
convergence rate, i.e., the smallest spectral radius ρ(T (·)) in (8), under certain con-
straints on (α, β, γ ).

3 It is straightforward to show that ρ(Tλ(α, β, γ )) in (9) is quasi-convex over λ, i.e.,
ρ(Tκλ1+(1−κ)λ2 (·)) ≤ max{ρ(Tλ1 (·)), ρ(Tλ2 (·))} for all λ1, λ2 ∈ R and κ ∈ [0, 1]. First, √β(1 − αλ)

is quasi-convex over λ (for 	(α, β, γ, λ) < 0). Second, the eigenvalue λ satisfying 	(α, β, γ, λ) ≥ 0
is in the region where the function 1

2
(|(1 + β) (1 − αλ) − γαλ| + √

	(α, β, γ, λ)
)
either monotonically

increases or decreases, which overall makes the continuous function ρ(Tλ(α, β, γ )) quasi-convex over λ.
This proof can be simply applied to other variables, i.e., ρ(Tλ(α, β, γ )) is quasi-convex over either α, β,
or γ .
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3.2 Review of Optimizing AFM Coefficients Under Certain Constraints on
(α, β, γ )

The AFM coefficients that provide the fastest convergence for minimizing a strongly
convex quadratic function would solve

arg min
α,β,γ

ρ(T (α, β, γ )) = arg min
α,β,γ

max{ρ(Tμ(α, β, γ )), ρ(T L(α, β, γ ))}. (11)

Note that a heavy-ball method [19] (that is not in AFM class) with similarly optimized

coefficients has a linear worst-case rate with ρ(·) = 1−√
q

1+√
q that is optimal (up to

constant) for strongly convex quadratic problems [3]. Thus, optimizing (11) would be
of little practical benefit for quadratic problems. Nevertheless, such optimization is
new to AFM for γ > 0 (with the additional constraint α = 1/L introduced below)
and is useful in our later analysis for the adaptive restart in Sect. 4. A heavy-ball
method with the coefficients optimized for strongly convex quadratic problems does
not converge for some strongly convex nonquadratic problems [20], and other choices
of coefficients do not yield worst-case rates that are comparable to those of some
accelerated choices of AFM [11,20], so we focus on AFM hereafter.

Coefficient optimization (11) for AFM was studied previously with various con-
straint. For example, optimizing (11) over α with the constraint β = γ = 0
yields GM-q. Similarly, FGM-q results from optimizing (11) over β for the con-
straint4 α = 1/L and γ = 0. In [20, Prop. 1], AFM with coefficients (α, β, γ ) =(

4
μ+3L ,

√
3+q−2

√
q√

3+q+2
√
q
, 0

)
, named FGM′-q in Table 3, was derived by optimizing (11)

over (α, β) with the constraint γ = 0.
Although a general unconstrained solution to (11) would be an interesting future

direction, here we focus on optimizing (11) over (β, γ ) with the constraint α = 1/L .
This choice simplifies problem (11) and is useful for analyzing an adaptive restart
scheme for OGM in Sect. 4.

3.3 Optimizing the Coefficients (β, γ ) of AFM When α = 1/L

When α = 1/L and λ = L , characteristic polynomial (10) becomes r2 + γ r = 0.
The roots are r = 0 and r = −γ , so ρ(T L(1/L , β, γ )) = |γ |. In addition, because
ρ(Tμ(1/L , β, γ )) is continuous and quasi-convex over β (see footnote 3), it can be
easily shown that the smaller value of β satisfying the following equation:

	(1/L , β, γ, μ) = ((1 + β)(1 − q) − γ q)2 − 4β(1 − q) (12)

= (1 − q)2β2 − 2(1 − q)(1 + q + qγ )β + (1 − q)(1 − q − 2qγ ) + q2γ 2 = 0

4 For FGM-q the value of ρ(T L (1/L , β, 0)) is 0, and the function ρ(Tμ(1/L , β, 0)) is continuous and

quasi-convex over β (see footnote 3). The minimum of ρ(Tμ(1/L , β, 0)) occurs at the point β = 1−√
q

1+√
q in

Table 2 satisfying 	(1/L , β, 0, μ) = 0, verifying the statement that FGM-q results from optimizing (11)
over β given α = 1/L and γ = 0.
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minimizes ρ(Tμ(1/L , β, γ )) for any given γ (satisfying γ ≥ − 1). The optimal β

for a given γ (when α = 1/L) is

β�(γ ) :=
(
1 − √

q(1 + γ )
)2

/(1 − q), (13)

which reduces to β = β�(0) = 1−√
q

1+√
q for FGM-q (with γ = 0). Substituting (13)

into (9) yields ρ(Tμ(1/L , β�(γ ), γ )) = |1 − √
q(1 + γ )|, leading to the following

simplification of (11) with α = 1/L and β = β�(γ ) from (13):

γ � := arg min
γ

max
{
|1 − √

q(1 + γ )|, |γ |
}

. (14)

The minimizer of (14) satisfies 1 − √
q(1 + γ ) = ±γ, and with simple algebra, we

get the following solutions to (11) with the constraint α = 1/L [and (14)]:

β� := β�(γ �) = (γ �)2

1 − q
= (2 + q − √

q2 + 8q)2

4(1 − q)
, γ � = 2 + q − √

q2 + 8q

2
,

(15)

for which the spectral radius is ρ� := ρ(T (1/L , β�, γ �)) = 1 − √
q(1 + γ �) =

γ �. We denote Algorithm 1 with coefficients α = 1/L and (β�,γ �) in (15) as
OGM-q.

Table 3 compares the spectral radius of the OGM-q to GM-q, FGM-q, and FGM′-
q [20, Prop. 1]. Simple algebra shows that the spectral radius of OGM-q is smaller than

those of FGM-q and FGM′-q, i.e., 2+q−
√

q2+8q
2 ≤ 1 − 2

√
q√

3+q
≤ 1 − √

q. Therefore,

OGM-q achieves a worst-case convergence rate of ||ξ k−ξ∗||2 that is faster than that of
FGM variants (but that is slower than a heavy-ball method [19]) for a strongly convex
quadratic function.

To further understand the behavior of AFM for each eigen mode, Fig. 1 plots
ρ(Tλ(1/L , β, γ )) over μ ≤ λ ≤ L for μ = 0.1 and L = 1 (q = 0.1) as an

Table 3 Optimally tuned coefficients (α, β, γ ) of GM-q, FGM-q, FGM′-q, and OGM-q, and their spectral
radius ρ(T (α, β, γ )) (8)

Method α β γ ρ (T (α ,β ,γ ))

GM-q 2
μ+L 0 0 1−q

1+q

FGM-q [3] 1
L

1−√q
1+√q 0 1−√q

FGM′-q [20] 4
μ+3L

√
3+q−2√q√
3+q+2√q 0 1− 2√q√

3+q

OGM-q 1
L

(2+q−
√

q2+8q)2
4(1−q)

2+q−
√

q2+8q
2

2+q−
√

q2+8q
2

These optimal coefficients result from solving (11) with the shaded coefficients fixed
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Fig. 1 Plots of |r1(1/L , β, γ, λ)| and |r2(1/L , β, γ, λ)| over μ ≤ λ ≤ L for various (left) γ values for
given β = β�(γ ), and (right) β values for given γ = γ �, for a strongly convex quadratic problem with
μ = 0.1 and L = 1 (q = 0.1), where (β�, γ �) = (0.4, 0.6). The maximum of |r1(1/L , β, γ, λ)| and
|r2(1/L , β, γ, λ)|, i.e., the upper curve in the plot, corresponds to the value of ρ(Tλ(1/L , β, γ )) in (9), and
the maximum value of ρ(Tλ(1/L , β, γ )) over λ corresponds to a spectral radius ρ(T (1/L , β, γ )) in (8)

example, where (β�, γ �) = (0.4, 0.6). The left plot of Fig. 1 first compares the
ρ(Tλ(1/L , β, γ )) values of OGM-q to those of other choices of γ = 0, 0.4, 0.8
with β = β�(γ ) in (13). The OGM-q (see upper red curve in Fig. 1) has the
largest value (ρ� = γ � = 0.6) of ρ(Tλ(1/L , β, γ )) at both the smallest and
the largest eigenvalues (μ and L , respectively), unlike other choices of γ (with
β�(γ )) where either ρ(Tμ(1/L , β, γ )) or ρ(T L(1/L , β, γ )) is the largest. The
other choices thus have a spectral radius ρ(T (1/L , β, γ )) larger than that of the
OGM-q.

The right plot of Fig. 1 illustrates ρ(Tλ(1/L , β, γ )) values for different choices of
β = 0, 0.2, 0.4, 0.6 for given γ = γ �, showing that suboptimalβ valuewill slowdown
convergence, compared to the optimal β� = 0.4. AFM with (α, β, γ ) = (1/L , 0, γ �)

in Fig. 1 is equivalent to AFM with
( 1
L (1 + γ �), 0, 0

)
, and this implies that AFM

with β = γ = 0 (e.g., GM) may have some modes for mid-valued λ values that will
converge faster than the accelerated methods, whereas its overall convergence rate
(i.e., the spectral radius value) is worse. Apparently no one method can have superior
convergence rates for all modes.

Similarly, althoughOGM-q has the smallest possible spectral radiusρ(T (·)) among
known AFM, the upper blue and red curves in the left plot of Fig. 1, correspond-
ing to FGM-q and OGM-q, respectively, illustrate that OGM-q will have modes
for large eigenvalues that converge slower than with FGM-q. This behavior may be
undesirable when such modes of large eigenvalues dominate the overall convergence
behavior.

The next section reveals that the convergence of the primary sequence { yk} of
AFM with α = 1/L is not governed by such modes of large eigenvalues unlike its
secondary sequence {xk}. In addition, Fig. 1 reveals change points across λ meaning
that there are different regimes; the next section elaborates on this behavior, build-
ing upon the dynamical system analysis of AFM with α = 1/L and γ = 0 in
[5, Sec. 4].
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3.4 Convergence Properties of AFM When α = 1/L

[5, Sec. 4] analyzed a constant-step AFM with α = 1/L and γ = 0 as a linear
dynamical system for minimizing strongly convex quadratic function (4) and showed
that there are three regimes of behavior for the system: low-momentum, optimal-
momentum, and high-momentum regimes. This section similarly analyzes AFM with
α = 1/L and γ > 0 to better understand its convergence behavior when solving
strongly convex quadratic problem (4), complementing the previous section’s spectral
radius analysis of AFM.

We use the eigen decomposition of Q = V�V
 with � := diag{λi }, where the
eigenvalues {λi } are in an ascending order, i.e., μ = λ1 ≤ λ2 ≤ · · · ≤ λd = L . And
for simplicity, we let p = 0 without loss of generality, leading to x∗ = 0. By defining
wk := (wk,1, . . . , wk,d)


 = V
 yk ∈ R
d and vk := (vk,1, . . . , vk,d)


 = V
xk ∈
R
d as the mode coefficients of the primary and secondary sequences, respectively,

and using (5), we have the following d independently evolving identical recurrence
relations for the evolution of w·,i and v·,i of the constant-step AFM with α = 1/L ,
respectively:

wk+2,i = ((1 + β) (1 − λi/L) − γ λi/L) wk+1,i − β (1 − λi/L) wk,i , (16)

vk+2,i = ((1 + β) (1 − λi/L) − γ λi/L) vk+1,i − β (1 − λi/L) vk,i ,

for i = 1, . . . , d, although the initial conditions differ as follows:

w1,i = (1 − λi/L)w0,i , v1,i = ((1 + β + γ )(1 − λi/L) − (β + γ ))v0,i (17)

withw0,i = v0,i . The convergence behavior of the i thmode of the dynamical systemof
bothw·,i and v·,i in (16) is determined by characteristic polynomial (10) with α = 1/L
and λ = λi . Unlike the previous sections that studied only the worst-case convergence
performance using the largest absolute value of the roots of polynomial (10), we next
discuss the convergence behavior of AFM more comprehensively using (10) with
α = 1/L and λ = λi for the two cases 1) λi = L and 2) λi < L .

1. λi = L: Characteristic polynomial (10) of themode ofλi = L reduces to r2+γ r =
0 with two roots 0 and − γ regardless of the choice of β. Thus we have monotone
convergence for this (dth) mode of the dynamical system [21, Sec. 17.1]:

wk,d = 0k + cd(−γ )k, vk,d = 0k + ĉd(−γ )k, (18)

where cd and ĉd are constants depending on initial conditions (17). Substituting
w1,d = 0 and v1,d = −(β + γ )v0,d (17) into (16) yields

cd = 0, ĉd = v0,d (1 + β/γ ) , (19)

illustrating that the primary sequence {wk,d} reaches its optimum after one itera-
tion, whereas the secondary sequence {vk,d} has slow monotone convergence of
the distance to the optimum, while exhibiting undesirable oscillation due to the
term (− γ )k , corresponding to overshooting over the optimum.
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2. λi < L: In (15) we found the optimal overall β� for AFMwhen α = 1/L . One can
alternatively explore what the best value of β would be for any given mode of the
system for comparison. Polynomial (10) has repeated roots for the following β,
corresponding to the smaller zero of the discriminant 	(1/L , β, γ, λi ) for given
γ and λi :

β�
i (γ ) :=

(
1 − √

(1 + γ )λi/L
)2

/(1 − λi/L). (20)

This choice satisfies β� = β�(γ �) = β�
1(γ

�) (15), because λ1 is the smallest
eigenvalue. Next we examine the convergence behavior of AFM with α = 1/L
and γ > 0 in the following three regimes, similar to AFM with α = 1/L and
γ = 0 in [5, Sec. 4.3]:5

– β < β�
i (γ ): low momentum, over-damped,

– β = β�
i (γ ): optimal momentum, critically damped,

– β > β�
i (γ ): high momentum, under-damped.

If β ≤ β�
i (γ ), polynomial (10) has two real roots, r1,i and r2,i , where we omit

(1/L , β, γ, λi ) in r·,i = r·(1/L , β, γ, λi ) for simplicity. Then, the system evolves
as [21, Sec. 17.1]:

wk,i = c1,i r
k
1,i + c2,i r

k
2,i , vk,i = ĉ1,i r

k
1,i + ĉ2,i r

k
2,i , (21)

where constants c1,i , c2,i , ĉ1,i , and ĉ2,i depend on initial conditions (17). In particular,
when β = β�

i (γ ) (20), we have the repeated root:

r�
i (γ ) := 1 − √

(1 + γ )λi/L, (22)

corresponding to critical damping, yielding the fastest monotone convergence among
(21) for any β s.t. β ≤ β�

i (γ ). This property is due to the quasi-convexity of
ρ(Tλi (1/L , β, γ )) over β. If β < β�

i (γ ), the system is over-damped, which cor-
responds to the low-momentum regime, where the system is dominated by the larger
root that is greater than r�

i (γ ) (22), and thus has slow monotone convergence. How-
ever, depending on initial conditions (17), the system may only be dominated by the
smaller root, as noticed for the case λi = L in (18) and (19). Also note that the mode
of λi = L is always in the low-momentum regime regardless of the value of β.

If β > β�
i (γ ), the system is under-damped, which corresponds to the high-

momentum regime. This means that the system evolves as [21, Sec. 17.1]:

wk,i = ci
(√

β(1 − λi/L)
)k

cos(kψi (β, γ ) − δi ), (23)

5 For simplicity in the momentum analysis, we considered values β within [0 1], containing the standard
βk values in Tables 1 and 2. This restriction excludes the effect of the β that corresponds to the larger zero
of the discriminant 	(1/L , β, γ, λi ) for given γ and λi and that is larger than 1. Any β greater than 1 has
ρ(Tλi (1/L , β, γ )) values (in (9) with α = 1/L) that are larger than those for β ∈ [β�

i (γ ) 1] due to the
quasi-convexity of ρ(Tλi (1/L , β, γ )) over β.
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vk,i = ĉi
(√

β(1 − λi/L)
)k

cos(kψi (β, γ ) − δ̂i ),

where the frequency of the oscillation is given by

ψi (β, γ ) := cos−1
(
((1 + β)(1 − λi/L) − γ λi/L)/

(
2
√

β(1 − λi/L)
))

, (24)

and ci , δi , ĉi , and δ̂i denote constants that depend on initial conditions (17); in particular
for β ≈ 1, we have δi ≈ 0 and δ̂i ≈ 0 so we will ignore them.

Based on the abovemomentum analysis, we categorize the behavior of the i th mode
of AFM for each λi in Fig. 1. Regimes with two curves and one curve (over λ) in
Fig. 1 correspond to the low- and high-momentum regimes, respectively. In particular,
for β = β�(γ ) in the left plot of Fig. 1, most λi values (satisfying β > β�

i (γ ))
experience high momentum [and the optimal momentum for λi satisfying β�(γ ) =
β�
i (γ ), e.g., λi = μ], whereas modes where λi ≈ L experience low momentum. The

fast convergence of the primary sequence {wk,d} in (18) and (19) generalizes to the
case λi ≈ L , corresponding to the lower curves in Fig. 1. In addition, for β = 0, 0.2
that are smaller than β�(γ ) in the right plot of Fig. 1, both λ ≈ μ and λ ≈ L experience
low momentum so increasing β improves the convergence rate.

Based on the quadratic analysis in this section, we would like to use appropriately
large β and γ coefficients, namely (β�, γ �), to have fast monotone convergence (for
the dominating modes). However, such values require knowing the function parameter
q = μ/L that is usually unavailable in practice. Using OGM (and OGM′) in Table 1
without knowing q will likely lead to oscillation due to the high momentum (or under-
damping) for strongly convex functions. The next section describes restarting schemes
inspired by [5] that we suggest to use with OGM to avoid such oscillation and thus
heuristically accelerate the rate of OGM for a strongly convex quadratic function and
even for a convex function that is locally strongly convex.

4 Restarting Schemes

Restarting an algorithm (i.e., starting the algorithm again by using the current iterate
as the new starting point) after a certain number of iterations or when some restarting
condition is satisfied has been found useful, e.g., for the conjugate gradient method
[22,23], called “fixed restart” and “adaptive restart,” respectively. The fixed restart
approach was also studied for accelerated gradient schemes such as FGM in [16,24].
Recently adaptive restart of FGMwas shown to provide dramatic practical acceleration
without requiring knowledge of function parameters [5–7]. Building upon those ideas,
this section reviews and applies restarting approaches for OGM. A quadratic analysis
in [5] justified using a restarting condition for FGM; this section extends that analysis
to OGM by studying an observable quantity of oscillation that serves as an indicator
for restarting the momentum of OGM.
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4.1 Fixed Restart

Restarting an algorithm every certain number of iterations can yield a linear rate
for decreasing a function in Fμ,L(Rd) [16, Sec. 5.1] [24, Sec. 11.4]. Suppose one
restarts OGM every k (inner) iterations by initializing the ( j + 1)th outer iteration
using x j+1,0 = x j,k , where x j,i denotes an iterate at the j th outer iteration and i th
inner iteration. Combining theOGM rate in Table 1 and strong convexity inequality (3)
yields the following rate for each outer iteration of OGM with fixed restart:

f (x j,k) − f (x∗) ≤ L||x j,0 − x∗||2
k2

≤ 2L

μk2
( f (x j,0) − f (x∗)). (25)

This rate is faster than the 4L/μk2 rate of one outer iteration of FGM with fixed
restart (using the FGM rate in Table 1). For a given N = jk total number of steps,
a simple calculation shows that the optimal restarting interval k minimizing the rate(
2L/(μk2)

) j
after N steps [owing from (25)] is kfixed := e

√
2/q that does not depend

on N , where e is Euler’s number.
There are two drawbacks of the fixed restart approach [5, Sec. 3.1]. First, computing

the optimal interval kfixed requires knowledge of q that is usually unavailable in prac-
tice.6 Second, using a global parameter q may be too conservative when the iterates
enter locally strongly convex region. (As noted in footnote 1, a backtracking scheme
for estimatingμ in [16, Sec. 5.3] could be used here to somewhat circumvent the above
two drawbacks as in [26, Sec. 3], which can be viewed as an adaptive approach that
is different from the ones in Sect. 4.2.) Therefore, adaptive restarting in [5] is more
useful in practice, which we review next and then apply to OGM.

4.2 Adaptive Restart

To circumvent the drawbacks of fixed restart, [5] proposes the following two adaptive
restart schemes for FGM:

– Function scheme for restarting (FR): Restart whenever

f ( yk+1) > f ( yk), (26)

– Gradient scheme for restarting (GR): Restart whenever

〈−∇ f (xk), yk+1 − yk
〉
< 0. (27)

6 The choice of the restarting interval k can be relaxed, and any k that is greater than
√
2/q guarantees a

linear rate in (25) for OGM with fixed restart (and similarly for the analogous version of FGM). However,
such choice of k still requires knowledge of q. This drawback has been recently relieved for FGMwith fixed
restart in [25, Thm.1] [26, Thm. 1], exhibiting a linear rate with any restarting interval k. Note that [25,26]
use a local quadratic growth condition, i.e., f (x) ≥ f (x∗) + μ

2 ||x − x∗||2 for all x with μ > 0. This
condition is implied by strong convexity condition (3), and one can notice that the second inequality of (25)
is also implied by the local quadratic growth condition, without requiring stronger condition (3).
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These schemes heuristically improve convergence rates of FGM, and both performed
similarly well [5]. Although the function scheme guarantees monotonic decreasing
function values, the gradient scheme has two advantages over the function scheme [5];
the gradient scheme involves only arithmetic operations with already computed quan-
tities, and it is numerically more stable.

These two schemes encourage an algorithm to restart whenever the iterates take a
“bad” direction, i.e., when the function value increases or the negative gradient and
the momentum have an obtuse angle, respectively. However, a convergence proof that
justifies their empirical acceleration is yet unknown, so [5] analyzes such restarting
schemes for strongly convex quadratic functions. An alternative scheme in [7, Sec. 5]
that restarts whenever the magnitude of the momentum decreases, i.e., || yk+1− yk || <

|| yk − yk−1||, has a theoretical convergence analysis for a continuous version of
the method for the function class Fμ,L(Rd). In addition, another function restart
condition in [25, Prop. 4] has some theoretical justification. However, empirically
both function and gradient schemes (26) and (27) performed better in [7,25]. Thus,
this paper focuses on adapting practical restart schemes (26) and (27) to OGM and
extending the analysis in [5] to OGM. First we introduce a new additional adaptive
scheme designed specifically for AFM with α = 1/L and γ > 0 (e.g., OGM).

4.3 Adaptive Decrease of γ for AFM with α = 1/L and γ > 0

Section 3.4 describes that the secondary sequence {xk} of AFM with α = 1/L and
γ > 0 (e.g., OGM) might experience overshoot and thus slow convergence, unlike
its primary sequence { yk}, when the iterates enter a region where the mode of the
largest eigenvalue dominates. (Section 6.1.2 illustrates such an example.) From (18),
the overshoot of xk has magnitude proportional to |γ |, yet a suitably large γ , such as
γ � (14), is essential for overall acceleration.

To avoid (or reduce) such overshooting, we suggest the following adaptive scheme:

– Gradient scheme for decreasing γ (GDγ ): Decrease γ whenever

〈∇ f (xk), ∇ f (xk−1)〉 < 0. (28)

Because the primary sequence { yk} of AFM with α = 1/L is unlikely to overshoot,
one could choose to simply use the primary sequence { yk} as algorithm output instead
of the secondary sequence {xk}. However, if one needs to use the secondary sequence
of AFM with α = 1/L and γ > 0 (e.g., Sect. 5.2), adaptive scheme (28) can help.

4.4 Observable AFM Quantities When α = 1/L

This section revisits Sect. 3.4 that suggested that observing the evolution of the mode
coefficients {wk,i } and {vk,i } can help identify the momentum regime. However, in
practice that evolution is unobservable because the optimum x∗ is unknown, whereas
Sect. 3.4 assumes x∗ = 0. Instead we can observe the evolution of the function values,
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which are related to the mode coefficients as follows:

f ( yk) = 1

2

d∑
i=1

λiw
2
k,i , f (xk) = 1

2

d∑
i=1

λiv
2
k,i , (29)

and also the inner products of the gradient and momentum, i.e.,

〈−∇ f (xk), yk+1 − yk〉 = −
d∑

i=1

λivk,i (wk+1,i − wk,i ), (30)

〈∇ f (xk), ∇ f (xk−1)〉 =
d∑

i=1

λ2i vk,ivk−1,i . (31)

These quantities appear in the conditions for adaptive schemes (26), (27), and (28).
Onewould like to increaseβ and γ asmuch as possible for acceleration up toβ� and

γ � (15). However, without knowing q (and β�,γ �), using large β and γ could end up
placing themajority of themodes in the high-momentum regime, eventually leading to
slow convergence with oscillation as described in Sect. 3.4. To avoid such oscillation,
we hope to detect it using (29) and (30) and restart the algorithm. We also hope to
detect overshoot (18) of the modes of the large eigenvalues (in the low-momentum
regime) using (31) so that we can then decrease γ and avoid such overshoot.

The rest of this section focuses on the case where β > β1(γ ) for given γ , when
the most of the modes are in the high-momentum regime. Because the maximum of
ρ(Tλ(1/L , β, γ )) occurs at the points λ = μ or λ = L , we expect that (29), (30),
and (31) will be quickly dominated by the mode of the smallest or the largest eigenval-
ues. Specifically, plugging wk,i and vk,i in (18), (19), and (23) to (29), (30), and (31)
for only the (dominating) mode of the smallest and the largest eigenvalues (λ1 = μ

and λd = L , respectively) leads to the following approximations:

f ( yk) ≈ 1

2
μc21 βk (1 − μ/L)k cos2(kψ1), (32)

f (xk) ≈ 1

2
μĉ21 βk (1 − μ/L)k cos2(kψ1) + 1

2
Lĉ2dγ

2k

〈−∇ f (xk), yk+1 − yk〉 ≈ − μc1ĉ1 βk (1 − μ/L)k cos(kψ1)

×
(√

β(1 − μ/L) cos((k + 1)ψ1) − cos(kψ1)
)

,

〈∇ f (xk), ∇ f (xk−1)〉 ≈ μ2ĉ21 βk− 1
2 (1 − μ/L)k−

1
2 cos(kψ1) cos((k − 1)ψ1)

− L2ĉ2d γ 2k−1,

where ψ1 = ψ1(β, γ ) in (24). Furthermore, it is likely that these expressions will
be dominated by the mode of either the smallest or largest eigenvalues, so we next
analyze each case separately.
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4.4.1 Case 1: The Mode of the Smallest Eigenvalue Dominates

When the mode of the smallest eigenvalue dominates, we further approximate (32) as

f ( yk) ≈ 1

2
μc21 βk (1 − μ/L)k cos2(kψ1),

f (xk) ≈ 1

2
μĉ21 βk (1 − μ/L)k cos2(kψ1),

〈−∇ f (xk), yk+1 − yk〉 (33)

≈ −μc1ĉ1 βk (1 − μ/L)k cos(kψ1) (cos((k + 1)ψ1) − cos(kψ1))

= 2μc1ĉ1 βk (1 − μ/L)k cos(kψ1) sin((k + 1/2)ψ1) sin(ψ1/2)

≈ 2μc1ĉ1 sin(ψ1/2) βk (1 − μ/L)k sin(2kψ1),

using simple trigonometric identities and the approximations
√

β(1 − μ/L) ≈ 1 and
sin(kψ1) ≈ sin((k + 1/2)ψ1) for small μ (leading to small ψ1 in (24)). Values (33)
exhibit oscillations at a frequency proportional toψ1(β, γ ) in (24). This oscillation can
be detected by conditions (26) and (27) and is useful in detecting the high-momentum
regime where a restart can help improve the convergence rate.

4.4.2 Case 2: The Mode of the Largest Eigenvalue Dominates

Unlike the primary sequence { yk} of AFMwith α = 1/L (e.g., OGM), convergence of
its secondary sequence {xk} may be dominated by the mode of the largest eigenvalue
in (18) and (19). By further approximating (32) for the case when the mode of the
largest eigenvalue dominates, the function value f (xk) ≈ 1

2 Lĉ
2
d γ 2k decreases slowly

but monotonically, whereas f ( yk) ≈ f (x∗) = 0 and 〈−∇ f (xk), yk+1 − yk〉 ≈
0. Therefore, neither restart condition (26) nor (27) can detect such nonoscillatory
observable values, even though the secondary mode {wk,d} of the largest eigenvalue
is oscillating (corresponding to overshooting over the optimum). However, the inner
product of two sequential gradients:

〈∇ f (xk), ∇ f (xk−1)〉 ≈ −L2ĉ2d γ 2k−1 (34)

can detect the overshoot of the secondary sequence {xk}, suggesting that the algorithm
should adapt by decreasing γ when condition (28) holds. Decreasing γ too much may
slow down the overall convergence rate when the mode of the smallest eigenvalue is
not negligible. Thus, we use (28) only when using the secondary sequence {xk} as
algorithm output (e.g., Sect. 5.2).
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5 Proposed Adaptive Schemes for OGM

5.1 Adaptive Scheme of OGM for Smooth and Strongly Convex Problems

Algorithm 2 illustrates a new adaptive version of OGM′ (rather than OGM)7 that is
used in our numerical experiments in Sect. 6. When a restart condition is satisfied
in Algorithm 2, we reset tk = 1 to discard the previous momentum that has a bad
direction. When the decreasing γ condition is satisfied in Algorithm 2, we decrease
σ to suppress undesirable overshoot of the secondary sequence {xk}. Although the
analysis in Sect. 3 considered only strongly convex quadratic functions, the numerical
experiments in Sect. 6 illustrate that the adaptive scheme is also useful more generally
for smooth convex functions in F0,L(Rd), as described in [5, Sec. 4.6].

Algorithm 2 OGM′ with restarting momentum and decreasing γ

1: Input: f ∈ Fμ,L (Rd ) orF0,L (Rd ), x−1 = x0 = y0 ∈ R
d , t0 = σ = 1, σ̄ ∈ [0, 1].

2: for k ≥ 0 do
3: yk+1 = xk − 1

L ∇ f (xk )
4: if f ( yk+1) > f ( yk ) (or

〈−∇ f (xk ), yk+1 − yk
〉
< 0) then � Restart condition

5: tk = 1, σ ← 1
6: else if

〈∇ f (xk ), ∇ f (xk−1)
〉
< 0 then � Decreasing γ condition

7: σ ← σ̄ σ

8: tk+1 = 1
2

(
1 +

√
1 + 4t2k

)

9: xk+1 = yk+1 + tk−1
tk+1

( yk+1 − yk ) + σ
tk

tk+1
( yk+1 − xk )

5.2 Adaptive Scheme of a Proximal Version of OGM for Nonsmooth Composite
Convex Problems

Modern applications often involve nonsmooth composite convex problems:

min
x∈Rd

{F(x) := f (x) + φ(x)}, (35)

where f ∈ F0,L(Rd) is a smooth convex function (typically not strongly convex)
and φ ∈ F0,∞(Rd) is a convex function that is possibly nonsmooth and “proximal-
friendly” [27], such as the �1 regularizer φ(x) = ||x||1. Our numerical experiments in

7 OGM requires choosing the number of iterations N in advance for computing θN in Table 1, which seems
incompatible with adaptive restarting schemes. In contrast, the parameters tk in Table 1 and Algorithm 2
are independent of N . The fact that θN is larger than tN at the last (N th) iteration helps to dampen (by
reducing the values of β and γ ) the final update to guarantee a faster (optimal) worst-case rate for the last
secondary iterate xN . This property was studied in [14]. We could perform one last update using θN after
a restart condition is satisfied, but this step appears unnecessary because restarting already has the effect of
dampening (reducing β and γ ). Thus, Algorithm 2 uses OGM′ instead that uses tk and that has a worst-case
rate that is similar to that of OGM.
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Sect. 6 show that a new adaptive version of a proximal variant of OGM can be useful
for solving such problems.

To solve (35), [4] developed a fast proximal gradient method, popularized under
the name fast iterative shrinkage-thresholding algorithm (FISTA). FISTA has the same
rate as FGM in Table 1 for solving (35), by simply replacing the line 3 of Algorithm 1
with FGM coefficients by yk+1 = proxαφ(xk − α∇ f (xk)), where the proximity

operator is defined as proxh(z) := argmin x ∈ Rd{ 12 ||z − x||2 + h(x)}. Variants of
FISTA with adaptive restart are studied in [5, Sec. 5.2].

Inspired by the fact that OGM has a worst-case rate faster than FGM, [15] studied a
proximal variant8 of OGM (POGM). It is natural to pursue acceleration of POGM9 by
using variations of any (or all) of three adaptive schemes (26), (27), (28), as illustrated
in Algorithm 3. Regarding a function restart condition for POGM, we use F(xk+1) >

F(xk), instead of F( yk+1) > F( yk), because F( yk) can be unbounded (e.g., yk can be
unfeasible for constrained problems). For gradient conditions of POGM, we consider
the composite gradient mapping G(xk) ∈ ∇ f (xk) + ∂φ(xk+1) in Algorithm 3 that
differs from the standard composite gradient mapping in [16].We then use the gradient
conditions

〈−G(xk), yk+1 − yk
〉
< 0, 〈G(xk), G(xk−1)〉 < 0 (36)

for restarting POGM or decreasing γ of POGM, respectively. Here POGM must out-
put the secondary sequence {xk} because the function value F( yk) of the primary
sequence may be unbounded. This situation was the motivation for (28) [and the sec-
ond inequality of (36)] and Sect. 4.3. When φ(x) = 0, Algorithm 3 reduces to an
algorithm that is similar to Algorithm 2, where only the location of the restart and
decreasing γ conditions differs.

6 Numerical Results

This section shows the results of applying OGM′ and POGM′ with adaptive schemes
in Algorithms 2 and 3 to various numerical examples including both strongly con-
vex quadratic problems and nonstrongly convex problems.10 (For simplicity, we omit
the prime symbol of OGM′ and POGM′ with adaptive restart hereafter.) The results
illustrate that OGM (or POGM) with adaptive schemes converges faster than FGM

8 Applying the proximity operator to the primary sequence { yk } of OGM, similar to the extension of
FGM to FISTA, leads to a poor worst-case rate [15]. Therefore, [15] applied the proximity operator to the
secondary sequence of OGM and showed numerically that this version has a worst-case rate about twice
faster than that of FISTA.
9 Like OGM, POGM in [15, Sec. 4.3] requires choosing the number of iterations N in advance for
computing θN , and this is incompatible with adaptive restarting schemes. Therefore, analogous to using
OGM′ instead of OGM for an adaptive scheme in Algorithm 2 (see footnote 7), Algorithm 3 uses a proximal
version of OGM′ (rather than the POGM in [15]) with restart. An extension of OGM′ (without restart) to a
proximal version with a fast worst-case rate is unknown yet
10 Software for the algorithms and for producing the figures in Sect. 6 is available at https://gitlab.eecs.
umich.edu/michigan-fast-optimization/ogm-adaptive-restart.
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Algorithm 3 POGM′ with restarting momentum and decreasing γ

1: Input: f ∈ F0,L (Rd ), φ ∈ F0,∞(Rd ), x−1 = x0 = y0 = u0 = z0 ∈ R
d ,

2: t0 = ζ0 = σ = 1, σ̄ ∈ [0, 1].
3: for k ≥ 0 do
4: uk+1 = xk − 1

L ∇ f (xk )

5: tk+1 = 1
2

(
1 +

√
1 + 4t2k

)

6: zk+1 = uk+1 + tk−1
tk+1

(uk+1 − uk ) + σ
tk

tk+1
(uk+1 − xk ) − tk−1

tk+1
1

Lζk
(xk − zk )

7: ζk+1 = 1
L

(
1 + tk−1

tk+1
+ σ

tk
tk+1

)

8: xk+1 = proxζk+1φ
(zk+1)

9: G(xk ) = ∇ f (xk ) − 1
ζk+1

(xk+1 − zk+1)

10: yk+1 = xk − 1
L G(xk )

11: if F(xk+1) > F(xk ) (or
〈−G(xk ), yk+1 − yk

〉
< 0) then � Restart condition

12: tk+1 = 1, σ ← 1
13: else if

〈
G(xk ), G(xk−1)

〉
< 0 then � Decreasing γ condition

14: σ ← σ̄ σ

(or FISTA) with adaptive restart. The plots show the decrease of F( yk) of the pri-
mary sequence for FGM (FISTA) and OGM unless specified. For POGM, we use the
secondary sequence {xk} as an output and plot F(xk), since F( yk) can be unbounded.

6.1 Strongly Convex Quadratic Examples

This section considers two types of strongly convex quadratic examples, where the
mode of either the smallest eigenvalue or the largest eigenvalue dominates, providing
examples of the analysis in Sects. 4.4.1 and 4.4.2, respectively.

6.1.1 Case 1: The Mode of the Smallest Eigenvalue Dominates

Figure 2 compares GM, FGM, and OGM, with or without the knowledge of q, for
minimizing strongly convex quadratic function (4) in d = 500 dimensions with q =
10−4, where we generated A (for Q = A
A) and p randomly. As expected, knowing
q accelerates convergence.

Figure 2 also illustrates that adaptive restart helps FGM andOGM to nearly achieve
the fast linear convergence rate of their nonadaptive versions that know q. As expected,
OGM variants converge faster than FGM variants for all cases. In Fig. 2, “FR” and
“GR” stand for function restart (26) and gradient restart (27), respectively, and both
behave nearly the same.

6.1.2 Case 2: The Mode of the Largest Eigenvalue Dominates

Consider the strongly convex quadratic functionwith Q =
[
q 0
0 1

]
,q = 0.01, p = 0

and x∗ = 0. When starting the algorithm from the initial point x0 = (0.2, 1), the
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Fig. 2 Minimizing a strongly convex quadratic function— Case 1: The mode of the smallest eigenvalue
dominates. (FGM-FR and FGM-GR are almost indistinguishable, as are OGM-FR and OGM-GR.)

secondary sequence {xk} of OGM-GR11 (or equivalently OGM-GR-GDγ (σ̄ = 1.0))
is dominated by the mode of largest eigenvalue in Fig. 3, illustrating the analysis
of Sect. 4.4.2. Figure 3 illustrates that the primary sequence of OGM-GR converges
faster than that of FGM-GR, whereas the secondary sequence of OGM-GR initially
converges even slower than GM. To deal with such slow convergence coming from the
overshooting behavior of themode of the largest eigenvalue of the secondary sequence
of OGM,we employ the decreasing γ scheme in (28). Figure 3 shows that using σ̄ < 1
in Algorithm 2 leads to overall faster convergence of the secondary sequence {xk} than
the standard OGM-GRwhere σ̄ = 1. We leave optimizing the choice of σ̄ or studying
other strategies for decreasing γ as future work.

6.2 Nonstrongly Convex Examples

This section applies adaptive OGM (or POGM) to two nonstrongly convex numerical
examples in [5,7].12 The numerical results show that adaptive OGM (or POGM)
converges faster than FGM (or FISTA) with adaptive restart.

11 Figure 3 only compares the results of the gradient restart (GR) scheme for simplicity, where the function
restart (FR) behaves similarly.
12 Additional numerical result can be found in [28].
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Fig. 3 Minimizing a strongly convex quadratic function—Case 2: The mode of the largest eigenvalue
dominates for the secondary sequence {xk } of OGM. Using GDγ (28) with σ̄ < 1 accelerates convergence
of the secondary sequence of OGM-GR, where both the primary and secondary sequences behave similarly
after first few iterations, unlike σ̄ = 1

6.2.1 Log-Sum-Exp

The following function from [5] is smooth but nonstrongly convex:

f (x) = η log

(
m∑
i=1

exp

(
1

η
(a


i x − bi )

))
.

It approaches maxi=1,...,m(a

i x−bi ) as η → 0. Here, η controls the function smooth-

ness L = 1
η
λmax(A
A) where A = [a1 · · · am]
 ∈ R

m×d . The region around the
optimum is approximately quadratic since the function is smooth, and thus the adaptive
restart can be useful without knowing the local condition number.

For (m, d) = (100, 20), we randomly generated ai ∈ R
d and bi ∈ R for i =

1, . . . ,m, and investigated η = 1, 10. Figure 4 shows that OGM with adaptive restart
converges faster than FGM with the adaptive restart. The benefit of adaptive restart is
dramatic here; apparently FGM and OGM enter a locally strongly convex region after
about 100–200 iterations, where adaptive restart then provides a fast linear rate.

6.2.2 Sparse Linear Regression

Consider the following cost function used for sparse linear regression:

f (x) = 1

2
||Ax − b||22, φ(x) = τ ||x||1,
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Fig. 4 Minimizing a smooth but nonstrongly convex Log-Sum-Exp function

Fig. 5 Solving a sparse linear regression problem. (ISTA is a proximal variant of GM.)

for A ∈ R
m×d , where L = λmax(A
A) and the parameter τ balances between

the measurement error and signal sparsity. The proximity operator becomes a soft-
thresholding operator, e.g., proxζk+1φ

(x) = sgn(x) �max
{|x| − ζk+1τ, 0

}
, where �

is an element-wise multiplication. The minimization seeks a sparse solution x∗, and
often the cost function is strongly convex with respect to the nonzero elements of x∗.
Thus we expect to benefit from adaptive restarting.

For each choice of (m, d, s, τ ) in Fig. 5, we generated an s-sparse true vector xtrue
by taking the s largest entries of a randomly generated vector. We then simulated
b = Axtrue +ε, where the entries of matrix A and vector ε were sampled from a zero-
mean normal distributionwith variances 1 and 0.1, respectively. Figure 5 illustrates that
POGMwith adaptive schemes provides acceleration over FISTAwith adaptive restart.
While Sect. 3.4 discusses the undesirable overshooting behavior that a secondary
sequence of OGM (or POGM) may encounter, these examples rarely encountered
such behavior. Therefore, the choice of σ̄ in the adaptive POGM was not significant
in this experiment, unlike Sect. 6.1.2.
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7 Conclusions

We introduced adaptive restarting schemes for the optimized gradient method (OGM)
to heuristically provide a fast linear convergence rate, when the function is strongly
convex or even when the function is not globally strongly convex. The method resets
the momentum, when it makes a bad direction. We provided a heuristic dynamical
system analysis to justify the practical acceleration of the adaptive scheme of OGM,
by extending the existing analysis of the fast gradient method (FGM). On the way,
we described a new accelerated gradient method named OGM-q for strongly convex
quadratic problems. Numerical results illustrate that the proposed adaptive approach
practically accelerates the convergence rate of OGM and, in particular, performs faster
than FGMwith adaptive restart. An interesting open problem is to determine theworst-
case rates for OGM (and FGM) with adaptive restart.
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