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Convolutional Dictionary Learning: Acceleration
and Convergence

Il Yong Chun , Member, IEEE, and Jeffrey A. Fessler , Fellow, IEEE

Abstract— Convolutional dictionary learning (CDL or spar-
sifying CDL) has many applications in image processing and
computer vision. There has been growing interest in developing
efficient algorithms for CDL, mostly relying on the augmented
Lagrangian (AL) method or the variant alternating direction
method of multipliers (ADMM). When their parameters are
properly tuned, AL methods have shown fast convergence in
CDL. However, the parameter tuning process is not trivial due
to its data dependence and, in practice, the convergence of AL
methods depends on the AL parameters for nonconvex CDL
problems. To moderate these problems, this paper proposes a
new practically feasible and convergent Block Proximal Gradient
method using a Majorizer (BPG-M) for CDL. The BPG-M-based
CDL is investigated with different block updating schemes
and majorization matrix designs, and further accelerated by
incorporating some momentum coefficient formulas and restart-
ing techniques. All of the methods investigated incorporate
a boundary artifacts removal (or, more generally, sampling)
operator in the learning model. Numerical experiments show
that, without needing any parameter tuning process, the proposed
BPG-M approach converges more stably to desirable solutions of
lower objective values than the existing state-of-the-art ADMM
algorithm and its memory-efficient variant do. Compared with
the ADMM approaches, the BPG-M method using a multi-block
updating scheme is particularly useful in single-threaded CDL
algorithm handling large data sets, due to its lower memory
requirement and no polynomial computational complexity. Image
denoising experiments show that, for relatively strong additive
white Gaussian noise, the filters learned by BPG-M-based CDL
outperform those trained by the ADMM approach.

Index Terms— Convolutional dictionary learning, convolutional
sparse coding, block proximal gradient method, majorization
matrix design, convergence guarantee.

I. INTRODUCTION

ADAPTIVE sparse representations can model intricate
redundancies of complex structured images in a wide

range of applications. “Learning” sparse representations from
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large datasets, such as (sparsifying) dictionary learning, is a
growing trend. Patch-based dictionary learning is a well-
known technique for obtaining sparse representations of train-
ing signals [1]–[5]. The learned dictionaries from patch-based
techniques have been applied to various image processing
and computer vision problems, i.e., image inpainting, denois-
ing, deblurring, compression, classification, etc. (see [1]–[5]
and references therein). However, patch-based dictionary
learning has three fundamental limitations. Firstly, learned
basis elements often are shifted versions of each other (i.e.,
translation-variant dictionaries) and underlying structure of
the signal may be lost, because each patch—rather than an
entire image—is synthesized (or reconstructed) individually.
Secondly, sparse representation for a whole image is highly
redundant because neighboring and even overlapping patches
are sparsified independently. Thirdly, using many overlapping
patches across the training and test signals hinders using
“big data”—i.e., training data with the large number of sig-
nals or high-dimensional signals; for example, see [6, §3.2]
or Section VII-B—and discourages the learned dictionary from
being applied to large-scale inverse problems, respectively.

Convolutional dictionary learning (CDL or sparsifying
CDL), motivated by the perspective of modeling receptive
fields in human vision [7], [8] and convolutional neural
networks [9]–[11], can overcome the problems of patch-
based dictionary learning [6], [12]–[22]. In particular, signals
displaying translation invariance in any dimension (e.g., nat-
ural images and sounds) are better represented using a CDL
approach [13]. In addition, CDL is a basic element in train-
ining deconvolutional neural networks [23]; its sparse coding
step (e.g., see Section IV-B) is closely related to convolutional
neural networks [24]. Learned convolutional dictionaries have
been applied to various image processing and computer vision
problems, e.g., image inpainting, denoising, classification,
recognition, detection, etc. (see [6], [12]–[14], [18], [22]).

CDL in 2D (and beyond) has two major challenges. The first
concern lies in its optimization techniques: 1) computational
complexity, 2) and memory-inefficient algorithm (particularly

augmented Lagrangian (AL) method), and 3) convergence
guarantees. In terms of computational complexity, the most
recent advances include algorithmic development with AL
method (e.g., alternating direction method of multipliers,
ADMM [25], [26]) [6], [14]–[21] and fast proximal gradient
(FPG) method [27] (e.g., fast iterative shrinkage-thresholding
algorithm, FISTA [28]). Although AL methods have shown
fast convergence in [6], [14], and [18] (and faster than the
continuation-type approach in [12] and [14]), they require
tricky parameter tuning processes for acceleration and (stable)
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convergence, due to their dependence on training data (specifi-
cally, preprocessing of training data, types of training data, and
the number and size of training data and filters). In particular,
in the AL frameworks, the number of AL parameters to
be tuned increases as CDL models become more sophis-
ticated, e.g., a) for the CDL model including a boundary
truncation (or, more generally, sampling) operator [6], one
needs to tune four additional AL parameters; b) for the CDL
model using adaptive contrast enhancement (CDL-ACE), six
additional AL parameters should be tuned [22]! The FPG
method introduced in [27] is still not free from the parameter
selection problem. The method uses a backtracking scheme
because it is impractical to compute the Lipschitz constant
of the tremendous-sized system matrix of 2D CDL. Another
limitation of the AL approaches is that they require larger
amount of memory as CDL models become more sophis-
ticated (see examples above), because one often needs to
introduce more auxiliary variables. This drawback can be
particularly problematic for some applications, e.g., image
classification [29], because their performance improves as
the number of training images increases for learning filters
[29, Fig. 3]. In terms of theoretical aspects, there exists no
known convergence analysis (even for local convergence) not-
ing that CDL is a nonconvex problem. Without a convergence
theorem, it is possible that the iterates could diverge.

The second problem is boundary effects associated with
the convolution operators. Bristow et al. [14] experimentally
showed that neglecting boundary effects might be acceptable
in learning small-sized filters under periodic boundary con-
dition. However, this is not necessarily true as illustrated in
[6, §4.2] with examples using 11-by-11 filters: high-frequency
components still exist on image boundaries of synthesized
images (i.e.,

∑
k dk ⊛ zl,k in (1)). Neglecting them can be

unreasonable for learning larger filters or for general boundary
conditions. As pointed out in [13], if one does not properly
handle the boundary effects, the CDL model can be easily
influenced by the boundary effects even if one uses non-
periodic boundary conditions for convolutions (e.g., the reflec-
tive boundary condition [14, §2]). Specifically, the synthesis
errors (i.e., the ℓ2 data fitting term in (1) without the truncation
operator PB ) close to the boundaries might grow much larger
compared to those in the interior, because sparse code pixels
near the boundaries are convolved less than those in the
interior. To remove the boundary artifacts, the formulation in
[6] used a boundary truncation operator that was also used
in image deblurring problem in [30] and [31]. The truncation
operator is inherently considered in the local patch-based CDL
framework [21]. In the big data setup, it is important to
learn decent filters with less training data (but not necessarily
decreasing the number of training signals—see above). The
boundary truncation operator in [6], [30], and [31] can be
generalized to a sampling operator that reduces the amount
of each training signal [6, §4.3]. Considering the sampling
operator, the CDL model in [6] learns filters leading better
image synthesis accuracy than that without it, e.g., [14]; see
Fig. 1.

In this paper, we consider the CDL model in [6] that
avoids boundary artifacts or, more generally, incorporates

Fig. 1. Examples of learned filters and synthesized images from sparse
datasets with different CDL models (32 8 × 8-sized filters were learned from
two sparse 128 × 128-sized training images; sparse images were generated
by ≈ 60% random sampling—see, for example, [6, Fig. 5]; the experiments
are based on the dataset, initialization, parameters, and preprocessing method
used in [32, ver. 0.0.7, “demo_cbpdndlmd.m”]). In sparse data settings,
including a sampling operator in CDL (e.g., PB in (1)) allows to learn
filters leading better image synthesis performance (note that the results in (c)
correspond to those in [6, §4.3]). Note that the image synthesis accuracy in
training affects the performance in testing models, e.g., image denoising—see
Fig. 5.

sampling operators1 We propose a new practically feasible and
convergent block proximal gradient (BPG [33]) algorithmic
framework, called Block Proximal Gradient method using

1We do not consider the boundary handling CDL model in [19, §3.1],
because of its inconsistency in boundary conditions. Its constraint trick in
[19, eq. (13)] casts zero-boundary on sparse codes [19, eq. (14)]; however, its
CDL algorithm solves the model with the Parseval tricks [6], [14], [18] using
periodic boundary condition. See more potential issues in [19, §3.1].
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Majorizer (BPG-M), and accelerate it with two momentum
coefficient formulas and two restarting techniques. For the
CDL model [6], we introduce two block updating schemes
within the BPG-M framework: a) two-block scheme and
b) multi-block scheme. In particular, the proposed multi-
block BPG-M approach has several benefits over the ADMM
approach [6] and its memory-efficient variant (see below): 1)

guaranteed local convergence (or global convergence if some
conditions are satisfied) without difficult parameter tuning
processes, 2) lower memory usage, 3) no polynomial compu-

tational complexity (particularly, no quadratic complexity with

the number of training images), and 4) (empirically) reaching
lower objective values. Specifically, for small datasets, the
BPG-M approach converges more stably to a “desirable” solu-
tion of lower objective values with comparable computational
time2 for larger datasets (i.e., datasets with the larger number
of training images or larger sized training images), it sta-
bly converges to the desirable solution with better memory
flexibility and/or lower computational complexity. Section III
introduces the BPG-M, analyzes its convergence, and develops
acceleration methods. Section IV applies the proposed BPG-M
methods to two-block CDL. Section V proposes multi-block
CDL using BPG-M that is particularly useful for single-
thread computation. Sections IV–V include computationally
efficient majorization matrices and efficient proximal mapping
methods. Section VI summarizes CDL-ACE [22] and the
corresponding image denoising model using learned filters.
Section VII reports numerical experiments that show the
benefits—convergence stability, memory flexibility, no poly-
nomial (specifically, quadratic and cubic) complexity, and
reaching lower objective values—of the BPG-M framework
in CDL, and illustrate the effectiveness of a tight majorizer
design and the accelerating schemes on BPG-M convergence
rate in CDL. Furthermore, Section VII reports image denoising
experiments that show, for relatively strong additive white
Gaussian (AWGN) noise, i.e., SNR = 10 dB, the learned filters
by BPG-M-based CDL improve image denoising compared to
the filters trained by ADMM [6].

Throughout the paper, we compare the proposed BPG-M
methods mainly to Heide et al.’s ADMM framework in [6]
using their suggested ADMM parameters, and its memory-
efficient variant applying the linear solver in [18, §III-B]
to solve the sub-problem [6, (10)] (see Section VII-A.1 for
details). These ADMM frameworks can be viewed as a the-

oretically stable block coordinate descent (BCD, e.g., [33])
method using two blocks if sufficient inner (i.e., ADMM)
iterations are used to ensure descent for each block update,
whereas methods that use a single inner iteration for each
block update may not be guaranteed to descend—see, for
example, [19, Fig. 2, AVA-MD].

II. CDL MODEL AND EXISTING AL-BASED

OPTIMIZATION METHODS

The CDL problem corresponds to the following joint opti-
mization problem [6] (mathematical notations are provided in

2Throughout the paper, “desirable” solutions mean that 1); the learned filters
capture structures of training images; 2) the corresponding sparse codes are
sufficiently sparse; 3) the filters and sparse codes can properly synthesize
training images through convolutional operators.

Appendix):

min
{dk},{zl,k }

L∑

l=1

1

2

∥∥∥∥∥yl − PB

K∑

k=1

dk ⊛ zl,k

∥∥∥∥∥

2

2

+ α

K∑

k=1

‖zl,k‖1

s.t. ‖dk‖
2
2 ≤ 1, k = 1, . . . , K , (1)

where {dk ∈ CD : k = 1, . . . , K } is a set of synthesis
convolutional filters to be learned, {yl ∈ CN : l = 1, . . . , L}

is a set of training data, ⊛ denotes a circular convolution
operator, {zl,k ∈ C

N : l = 1, . . . , L, k = 1, . . . , K } is a
set of sparse codes, PB ∈ CN×Ñ is a projection matrix with
|B| = N and N < Ñ , and B is a list of distinct indices
from the set {1, . . . , Ñ } that correspond to truncating the
boundaries of the padded convolution

∑K
k=1 dk ⊛ zl,k . Here,

D is the filter size, K is the number of convolution operators,
N is the dimension of training data, Ñ is the dimension after
convolution with padding,3 and L is the number of training
images. Note that D is much smaller than Ñ in general.
Using PB to eliminate boundary artifacts is useful because
CDL can be sensitive to the convolution boundary conditions;
see Section I for details. In sparse data settings, one can
generalize B to {Bl : |Bl | = Sl < N, l = 1, . . . , L}, where Bl

contains the indices of (randomly) collected samples from yl

[6, §4.3], or the indices of the non-zero elements of the lth
sparse signal, for l = 1, . . . , L.

Using Parseval’s relation [6], [14], [16], [17], problem (1) is
equivalent to the following joint optimization problem (in the
frequency domain):

min
{dk},{z̃l }

L∑

l=1

1

2

∥∥∥yl − PB

[
�−1diag(�PT

S d1)�

· · · �−1diag(�PT
S dK )�

]
z̃l

∥∥∥
2

2
+ α‖z̃l‖1

s.t. ‖dk‖
2
2 ≤ 1, k = 1, . . . , K , (2)

where � denotes the Ñ -point 2D (unnormalized) discrete
Fourier transform (DFT), PT

S ∈ CÑ×D is zero-padding matrix,
S is a list of indices that correspond to a small support
of the filter with |S| = D (again, D ≪ Ñ ), where z̃l =

[z̃ H
l,1, . . . , z̃ H

l,K ]H ∈ CK Ñ , and {z̃l,k ∈ C
Ñ : l = 1, . . . , L,

k = 1, . . . , K } denotes sparse codes. In general, ˜(·) and ˆ(·)

denote a padded signal vector and a transformed vector in
frequency domain, respectively.

AL methods are powerful, particularly for non-smooth opti-
mization. An AL method was first applied to CDL with Parse-
val’s theorem in [14], but without handling boundary artifacts.
In [6], ADMM was first applied to solve (1). A similar spatial
domain ADMM framework was introduced in [18] and [19].
These AL methods alternate between updating the dictionary
{dk} (the filters) and updating the sparse codes {z̃l} (i.e., a two-
block update), using AL (or ADMM) methods for each inner
update. In [6], each filter and sparse code update consists
of multiple iterations before switching to the other, whereas
[14], [18] explored merging all the updates into a single set

3The convolved signal has size of Ñ = (Nh+Kh−1)×(Nw+Kh−1), where
the original signal has size N = Nh × Nw, the filter has size K = Kh × Kw,
and w and h denote the width and height, respectively.
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of iterations. This single-set-of-iterations scheme based on
AL method can be unstable because each filter and sparse
code update no longer ensures monotone descent of the cost
function. To improve its stability, one can apply the increas-
ing ADMM parameter scheme [14, eq. (23)], the adaptive
ADMM parameter selection scheme controlling primal and
dual residual norms [25, §3.4.1], [18, §III-D], or interleaving
schemes [14, Algorithm 1], [18, §V-B], [19]. However, it is
difficult to obtain theoretical convergence guarantees (even for
local convergence) for the AL algorithms using the single-set-
of-iterations scheme; in addition, the techniques for reducing
instability further complicate theoretical guarantees.

The following section introduces a practical BPG-M method
consisting of a single set of updates that guarantees conver-
gence for solving multi-convex problems like CDL.

III. CONVERGENT FAST BPG-M AND

ADAPTIVE RESTARTING

A. BPG-M – Setup

Consider the optimization problem

min
x∈X

F(x1, . . . , xB) := f (x1, . . . , xB) +

B∑

b=1

rb(xb) (3)

where variable x is decomposed into B blocks x1, . . . , xB ,
the set X of feasible points is assumed to be closed and
block multi-convex subset of Rn , f is assumed to be a
differentiable and block multi-convex function, and rb are
extended-value convex functions for b = 1, . . . , B . A set X
is called block multi-convex if its projection to each block of
variable is convex, i.e., for each b and any fixed B − 1 blocks
x1, . . . , xb−1, xb+1, . . . , xB , the set

Xb(x1, . . . , xb−1, xb+1, . . . , xB)

:=
{
xb ∈ R

nb : (x1, . . . , xb−1, xb, xb+1, . . . , xB) ∈ X
}

is convex. A function f is called block multi-convex if for
each b, f is a convex function of xb, when all the other
blocks are fixed. In other words, when all blocks are fixed
except one block, (3) over the free block is a convex problem.
Extended-value means rb(xb) = ∞ if xb /∈ dom(rb), for
b = 1, . . . , B . In particular, rb can be indicator functions
of convex sets. We use r1, . . . , rB to enforce individual con-
straints of x1, . . . , xB , when they are present. Importantly, rb

can include nonsmooth functions.
In this paper, we are particularly interested in adopting the

following quadratic majorizer (i.e., surrogate function) model
of the composite function ̺(u) = ̺1(u) + ̺2(u) at a given
point v to the block multi-convex problem (3):

˜̺ M (u, v) = ψM (u; v) + ̺2(u),

ψM (u; v) = ̺1(v) + 〈∇̺1(v), u − v〉 +
1

2
‖u − v‖2

M (4)

where ̺1(u) and ̺2(u) are two convex functions defined on the
convex set U , ̺1(u) is differentiable, the majorizer ψM (u; v)

satisfies the following two conditions

̺1(v) = ψM (v; v) and ̺1(u) ≤ ψM (u; v), ∀u ∈ U, ∀v,

and M = MT ≻ 0 is so-called majorization matrix. The
majorizer ρ̃M (u, v) has the following unique minimizer

u⋆ = argmin
u∈U

1

2

∥∥∥u −
(
v − M−1∇̺1(v)

)∥∥∥
2

M
+ ̺2(u).

Note that decreasing the majorizer ˜̺ M (u, v) ensures a
monotone decrease of the original cost function ̺(u). For
example, a majorizer for ̺1(u) = 1/2‖y − Au‖2

2 is given by

ψM (u; v) =
1

2

∥∥∥u −
(
v − M−1

A AT (Av − y)
)∥∥∥

2

MA

, (5)

where A ∈ Rm×n and MA ∈ Rn×n is any majorization matrix
for the Hessian AT A (i.e. MA 
 AT A). Other examples
include when ̺1 has Lipschitz-continuous gradient, or ̺1 is
twice continuously differentiable and can be approximated
with a majorization matrix M ≻ 0 for the Hermitian
∇2̺1(u) 
 0, ∀u ∈ U .

Based on majorizers of the form (4), the proposed method,
BPG-M, is given as follows. To solve (3), we minimize
F cyclically over each block x1, . . . , xB , while fixing the
remaining blocks at their previously updated values. Let x

(i+1)
b

be the value of xb after its i th update, and

f
(i)
b (xb) := f (x

(i+1)
1 , . . . , x

(i+1)
b−1 , xb, x

(i)
b+1, . . . , x

(i)
B ), (6)

for all b, i . At the bth step of the i th iteration, we consider
the updates

x
(i+1)
b

= argmin
xb∈X

(i)
b

〈∇ f
(i)
b (x́

(i)
b ), xb− x́

(i)
b 〉+

1

2

∥∥∥xb− x́
(i)
b

∥∥∥
2

M
(i)
b

+rb(xb)

= argmin
xb∈X

(i)
b

1

2

∥∥∥∥xb −

(
x́

(i)
b −

(
M

(i)
b

)−1
∇ f

(i)
b (x́

(i)
b )

)∥∥∥∥
2

M
(i)
b

+rb(xb)

= Proxrb

(
x́

(i)
b −

(
M

(i)
b

)−1
∇ f

(i)
b (x́

(i)
b ); M

(i)
b

)
,

where

x́
(i)
b = x

(i)
b + W

(i)
b

(
x

(i)
b − x

(i−1)
b

)
,

X
(i)
b = Xb(x

(i+1)
1 , . . . , x

(i+1)
b−1 , x

(i)
b+1, . . . , x

(i)
B ),

∇ f
(i)
b (x́

(i)
b ) is the block-partial gradient of f at x́

(i)
b , M

(i)
b ∈

Rnb×nb is a symmetric positive definite majorization matrix of
∇ f

(i)
b (xb), and the proximal operator is defined by

Proxr (y; M) := argmin
x

1

2
‖x − y‖2

M + r(x).

The Rnb×nb matrix W
(i)
b 
 0, upper bounded by (9) below,

is an extrapolation matrix that significantly accelerates con-
vergence, in a similar manner to the extrapolation weight
introduced in [33]. Algorithm 1 summarizes these updates.

B. BPG-M – Convergence Analysis

This section analyzes the convergence of Algorithm 1 under
the following assumptions.
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Algorithm 1 Block Proximal Gradient Method Using a
Majorizer {Mb : b = 1, . . . , B} (BPG-M)

Assumption 1) F in (3) is continuous in dom(F) and
infx∈dom(F) F(x) > −∞, and (3) has a Nash point
(see Definition 3.1).
Assumption 2) The majorization matrix M

(i)
b obeys β I �

M
(i)
b � Mb with β > 0 and a nonsingular matrix Mb ,

and

f
(i)
b (x

(i+1)
b ) ≤ f

(i)
b (x́

(i)
b ) + 〈∇ f

(i)
b (x́

(i)
b ), x

(i+1)
b − x́

(i)
b 〉

+
1

2

∥∥∥x
(i+1)
b − x́

(i)
b

∥∥∥
2

M
(i+1)
b

. (7)

Assumption 3) The majorization matrices M
(i)
b and

extrapolation matrices W
(i)
b are diagonalized by the same

basis, ∀i .

The CDL problem (1) or (2) straightforwardly satisfies the
continuity and the lower-boundedness of F in Assumption 1.
To show this, consider that 1) the sequence {d

(i+1)
k } is in the

bounded set D = {dk : ‖dk‖
2
2 ≤ 1, k = 1, . . . , K }; 2) the

positive regularization parameter α ensures that the sequence
{z

(i+1)
l,k } (or {z̃

(i+1)
l,k }) is bounded (otherwise the cost would

diverge). This applies to both the two-block and the multi-
block BPG-M frameworks; see Section IV and V, respectively.
Note that one must carefully design M

(i+1)
b to ensure that

Assumption 2 is satisfied; Sections IV-A.1 and IV-B.1 describe
our designs for CDL. Using a tighter majorization matrix
M

(i)
b (i.e., tighter bound in (7)) is expected to accelerate

the algorithm [34, Lemma 1]. Some examples that satisfy
Assumption 3 include diagonal and circulant matrices (that
are decomposed by canonical and Fourier basis, respectively).
Assumptions 1–2 guarantee sufficient decrease of the objective
function values.

We now recall the definition of a Nash point (or block
coordinate-wise minimizer):
Definition 3.1 (A Nash Point [33, (2.3)—(2.4)]). A Nash point

(or block coordinate-wise minimizer) x̄ is a point satisfying the

Nash equilibrium condition. The Nash equilibrium condition

of (3) is

F(x̄1, . . . , x̄b−1, x̄b, x̄b+1, . . . , x̄B)

≤ F(x̄1, . . . , x̄b−1, xb, x̄b+1, . . . , x̄B), ∀xb ∈ X̄b, b ∈ [B],

which is equivalent to the following condition:

〈∇xb f (x̄) + ḡb, xb − x̄b〉 ≥ 0,

for all xb ∈ X̄b and for some ḡb ∈ ∂rb(x̄b), (8)

where X̄b = Xb(x̄1, . . . , x̄b−1, x̄b+1, . . . , x̄B) and ∂r(xb) is the

limiting subdifferential (see [35, §1.9], [36, §8]) of r at xb.

In general, the Nash equilibrium condition (8) is weaker
than the first-order optimality condition. For problem (3),
a Nash point is not necessarily a critical point, but a critical
point must be a Nash point [33, Remark 2.2].4 This property
is particularly useful to show convergence of limit points to a
critical point, if one exists; see Remark 3.4.
Proposition 3.2 (Square Summability of ‖x (i+1) − x (i)‖2).
Under Assumptions 1–3, let {x (i+1)} be the sequence generated

by Algorithm 1 with

0 � W
(i)
b � δ

(
M

(i)
b

)−1/2 (
M

(i−1)
b

)1/2
(9)

for δ < 1 for all b = 1, . . . , B and i . Then

∞∑

i=1

∥∥∥x (i+1) − x (i)
∥∥∥

2

2
< ∞.

Proof: See Section S.II of the supplementary material.
Proposition 3.2 implies that

∥∥∥x (i+1) − x (i)
∥∥∥

2

2
→ 0. (10)

Theorem 3.3 (A Limit Point Is a Nash Point). If the assump-

tions in Proposition 3.2 hold, then any limit point of {x (i)} is

a Nash point, i.e., it satisfies (8).

Proof: See Section S.III of the supplementary material.
Remark 3.4. Theorem 3.3 implies that, if there exists a
stationary point for (3), then any limit point of {x (i)} is a
stationary point. One can further show global convergence
under some conditions: if {x (i)} is bounded and the stationary
points are isolated, then {x (i)} converges to a stationary point
[33, Corollary 2.4].5

We summarize some important properties of the proposed
BPG-M in CDL:
Summary 3.5. The proposed BPG-M approach exploits a
majorization matrix rather than using a Lipschitz constant;
therefore, it can be practically applied to CDL without any
parameter tuning process (except the regularization para-
meter). The BPG-M guarantees the local convergence in
(1) or (2), i.e., if there exists a critical point, any limit point of
the BPG-M sequence is a critical point (it also guarantees the
global convergence if some further conditions are satisfied; see
Remark 3.4 for details). Note that this is the first convergence
guarantee in CDL. The convergence rate of the BPG-M
method depends on the tightness of the majorization matrix
in (4); see, for example, Fig. 2. The next section describes
variants of BPG-M that further accelerate its convergence.

4Given a feasible set X , a point x̄ ∈ dom( f ) ∪ X is a critical point (or
stationary point) of f if f ′(x̄; d) ≥ 0 for any feasible direction d at x̄ , where
f ′(x̄; d) denotes directional derivate ( f ′(x; d) = dT ∇ f (x) for differentiable
f ). If x is an interior point of X , then the condition is equivalent to 0 ∈ ∂F(x̄).

5Due to the difficulty of checking the isolation condition, Xu & Yin [33]
introduced a better tool to show global convergence based on Kurdyka-
Łojasiewicz property.
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C. Restarting Fast BPG-M

This section proposes a technique to accelerate BPG-M.
By including 1) a momentum coefficient formula similar
to those used in FPG methods [28], [37], [38], and 2) an
adaptive momentum restarting scheme [39], [40], this section
focuses on computationally efficient majorization matrices,
e.g., diagonal or circulant majorization matrices.

Similar to [5], we apply some increasing momentum-
coefficient formulas w(i) to the extrapolation matrix updates
W

(i)
b in Algorithm 1:

w(i) =
θ (i−1) − 1

θ (i)
, θ (i) =

1 +
√

1 + 4(θ (i−1))2

2
, or (11)

w(i) =
θ (i−1) − 1

θ (i)
, θ (i) =

i + 2

2
. (12)

These choices guarantee fast convergence of FPG in [38]
and [28]. The momentum coefficient update rule in (11) was
applied to block coordinate updates in [33], [41]. For diagonal
majorization matrices M

(i)
b , M

(i−1)
b , the extrapolation matrix

update is given by

(
W

(i)
b

)
j, j

= δ · min

{
w(i),

((
M

(i)
b

)−1
M

(i−1)
b

)1/2

j, j

}
, (13)

where δ < 1 appeared in (9), for j = 1, . . . , n. (Alternatively,
(W

(i)
b ) j, j = min{w(i), δ((M

(i)
b )−1 M

(i−1)
b )

1/2
j, j }.) For circulant

majorization matrices M
(i)
b = �H

nb
diag(m̂

(i)
b )�nb , M

(i−1)
b =

�H
nb

diag(m̂
(i−1)
b )�nb , we have the extrapolation matrix updates

as follows:

W
(i)
b =

(
�H

nb

)1/2
Ŵ

(i)
b �

1/2
nb

(14)

where �nb is a unitary DFT matrix of size nb ×nb and Ŵ
(i)
b ∈

Rnb×nb is a diagonal matrix with entries

(
Ŵ

(i)
b

)
j, j

= δ · min

{
w(i),

((
m̂

(i)
b, j

)−1
m̂

(i−1)
b, j

)1/2
}

,

for j = 1, . . . , n. We refer to BPG-M combined with the
modified extrapolation matrix updates (13)–(14) using momen-
tum coefficient formulas (11)–(12) as Fast BPG-M (FBPG-M).
Note that convergence of FBPG-M is guaranteed because (9)
in Proposition 3.2 still holds.

To further accelerate FBPG-M, we apply the adaptive
momentum restarting scheme introduced in [39] and [40]. This
technique restarts the algorithm by resetting the momentum
back to zero and taking the current iteration as the new
starting point, when a restarting criterion is satisfied. The non-

monotonicity restarting scheme (referred to reO) can be used
to make whole objective non-increasing [5], [39], [40]. The
restarting criterion for this method is given by

F(x̄1, . . . , x̄b−1, x̄b, x̄b+1, . . . , x̄B)

≤ F(x̄1, . . . , x̄b−1, xb, x̄b+1, . . . , x̄B), ∀xb ∈ X̄b, b ∈ [B],

(15)

However, evaluating the objective in each iteration is com-
putationally expensive and can become an overhead as one
increases the number of filters and the size of training datasets.

Algorithm 2 Restarting Fast Block Proximal Gradient Using
a Diagonal Majorizer {Mb : b = 1, . . . , B} and Gradient-
Mapping Scheme (reG-FBPG-M)

Therefore, we introduce a gradient-mapping scheme (referred
to reG) that restarts the algorithm when the following criterion
is met:

cos
(


(

M
(i)
b

(
x́

(i)
b − x

(i+1)
b

)
, x

(i+1)
b − x

(i)
b

))
> ω, (16)

where the angle between two nonzero real vectors ϑ and ϑ ′ is


(ϑ, ϑ ′) :=
〈ϑ, ϑ ′〉

‖ϑ‖2‖ϑ
′‖2

,

and ω ∈ [−1, 0]. The gradient-mapping scheme restarts the
algorithm whenever the momentum, i.e., x

(i+1)
b −x

(i)
b , is likely

to lead the algorithm in a bad direction, as measured by the
gradient mapping (which is a generalization of the gradient,
i.e., M

(i)
b (x́

(i)
b − x

(i+1)
b )) at the x

(i+1)
b -update. The gradient-

mapping criterion (16) is a relaxed version of the gradient-
based restarting technique introduced in [39] and [40].
Compared to those in [39] and [40], the relaxed criterion
often provides a faster convergence at the early iterations in
practice [42].

To solve the multi-convex optimization problem (2),
we apply Algorithm 2, promoting stable and fast conver-
gence. We minimize (2) by the proposed BPG-M using
the two-block and multi-block schemes; see Section IV and
Section V, respectively—each section presents efficiently com-
putable separable majorizers and introduces efficient proximal
mapping methods.

IV. CONVERGENT CDL: FBPG-M WITH

TWO-BLOCK UPDATE

Based on the FBPG-M method in the previous section,
we first solve (2) by the two-block scheme, i.e., similar to
the AL methods, we alternatively update filters {dk : k =
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1, . . . , K } and sparse codes {z̃l : l = 1, . . . , L}. The two-block
scheme is particularly useful with parallel computing, because
proximal mapping problems are separable (see Sections IV-A.2
and IV-B.2) and some majorization matrices computations are
parallelizable.

A. Dictionary (Filter) Update

1) Separable Majorizer Design: Using the current estimates
of the {z̃l : l = 1, . . . , L}, the filter update problem for (2) is
given by

min
{dk}

1

2

L∑

l=1

∥∥∥yl − PB

[
�−1diag(�PT

S d1)�

· · · �−1diag(�PT
S dK )�

]
z̃l

∥∥∥
2

2

s.t. ‖dk‖
2
2 ≤ 1, k = 1, . . . , K ,

which can be rewritten as follows:

min
{dk}

1

2

∥∥∥∥∥∥∥

⎡
⎢⎣

y1
...

yL

⎤
⎥⎦− �

⎡
⎢⎣

d1
...

dK

⎤
⎥⎦

∥∥∥∥∥∥∥

2

2

(17)

s.t. ‖dk‖
2
2 ≤ 1, k = 1, . . . , K ,

where

� :=
(

IL ⊗ PB�−1
)

Ẑ
(

IK ⊗ �PT
S

)
, (18)

Ẑ :=

⎡
⎢⎣

diag(ẑ1,1) · · · diag(ẑ1,K )
...

. . .
...

diag(ẑL ,1) · · · diag(ẑL ,K )

⎤
⎥⎦ . (19)

and {ẑl,k = �z̃l,k : l = 1, . . . , L, k = 1, . . . , K }. We now
design block separable majorizer for the Hessian matrix
� H� ∈ RK D×K D of the cost function in (17). Using
�−H PT

B PB�−1 � Ñ−1 I and �H = Ñ�−1, � H� is
bounded by

� H� �
(

IK ⊗ PS�−1
)

Ẑ H Ẑ
(

IK ⊗ �PT
S

)

= (IK ⊗ PS) QH
� Q�

(
IK ⊗ PT

S

)
(20)

where Ẑ H Ẑ is given according to (19), QH
� Q� ∈ CÑ K×Ñ K

is a block matrix with submatrices {[QH
� Q� ]k,k′ ∈ C

Ñ×Ñ :

k, k ′ = 1, . . . , K }:

[QH
� Q� ]k,k′ := �−1

L∑

l=1

diag(ẑ∗
l,k ⊙ ẑl,k′ )�. (21)

Based on the bound (20), our first diagonal majorization
matrix for � H� is given as follows:
Lemma 4.1 (Block Diagonal Majorization Matrix M� with
Diagonals I). The following block diagonal matrix M� ∈

RK D×K D with diagonal blocks satisfies M� 
 � H�:

M� = diag
(
(IK ⊗ PS) |QH

� Q� |
(

IK ⊗ PT
S

)
1K D

)
,

where QH
� Q� is defined in (21) and |A| denotes the matrix

consisting of the absolute values of the elements of A.

Proof: See Section S.V-A of the supplementary material.

We compute |QH
� Q� | by taking the absolute values of

elements of the first row (or column) of each circulant subma-
trix [QH

� Q� ]k,k′ for k, k ′ = 1, . . . , K . Throughout the paper,
we apply this simple trick to efficiently compute the element-
wise absolute value of the circulant matrices (because circulant
matrices can be fully specified by a single vector). The compu-
tational complexity for the majorization matrix in Lemma 4.1
involves O(K 2 L Ñ) operations for Ẑ H Ẑ and approximately
O(K 2 Ñ log Ñ ) operations for QH

� Q� . The permutation trick
for a block matrix with diagonal blocks in [14] (see details
in [43, Remark 3]) allows parallel computation of Ẑ H Ẑ over
j = 1, . . . , Ñ , i.e., each thread requires O(K 2 L) operations.
Using Proposition 4.2 below, we can substantially reduce the
latter number of operations at the cost of looser bounds (i.e.,
slower convergence).
Proposition 4.2. The following block diagonal matrix MQ� ∈

RÑ K×Ñ K satisfies MQ� 
 QH
� Q� :

MQ� =

K⊕

k=1

�−1�k�, (22)

�k =

L∑

l=1

diag(
∣∣ẑl,k

∣∣2) +
∑

k′ �=k

∣∣∣∣∣

L∑

l=1

diag(ẑ∗
l,k ⊙ ẑl,k′ )

∣∣∣∣∣, (23)

for k = 1, . . . , K .

Proof: See Section S.IV-A of the supplementary material.
We now substitute (22) into (20). Unfortunately, the result-

ing K D × K D block-diagonal matrix below is inconvenient
for inverting:

� H� �

⎡
⎢⎣

PS�−1�1�PT
S

. . .

PS�−1�K �PT
S

⎤
⎥⎦ .

Using some bounds for the block diagonal matrix intertwined
with PS and PT

S above, the following two lemmas propose
two separable majorization matrices for � H� .
Lemma 4.3 (Block Diagonal Majorization Matrix M� with
Scaled Identities). The following block diagonal matrix M� ∈

RK D×K D with scaled identity blocks satisfies M� 
 � H�:

M� =

K⊕

k=1

[M� ]k,k ,

[M� ]k,k = max
j=1,...,Ñ

{
(�k) j, j

}
· IK , k ∈ [K ],

where diagonal matrices {�k} are as in (23).

Proof: See Section S.V-B of the supplementary material.
Lemma 4.4 (Block Diagonal Majorization Matrix M� with
Diagonals II). The following block diagonal matrix M� ∈

RK D×K D with diagonal blocks satisfies M� 
 � H�:

M� =

K⊕

k=1

[M� ]k,k ,

[M� ]k,k = diag
(
PS

∣∣∣�−1�k�
∣∣∣ PT

S 1K

)
, k ∈ [K ],

where diagonal matrices {�k} are as in (23).

Proof: See Section S.V-C of the supplementary material.
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Fig. 2. Cost minimization behavior for different majorizer designs (the fruit
dataset). As the majorizer changes from M-(i) to M-(iv), we expect to have
a tighter majorizer of the Hessian. (See Table I for details of majorization
matrix design.) As expected, tighter majorizers lead to faster convergence.

The majorization matrix designs in Lemma 4.3 and 4.4
reduce the number of operations O(K 2 Ñ log Ñ) to O(K Ñ )

and O(K Ñ log Ñ ), respectively. If parallel computing is
applied over k = 1, . . . , K , each thread requires O(Ñ )

and O(Ñ log N) operations for Lemma 4.3 and 4.4, respec-
tively. However, the majorization matrix in Lemma 4.1
is tighter than those in Lemma 4.3–4.4 because those in
Lemma 4.3–4.4 are designed based on another bound. Fig. 2
verifies that the tighter majorizer leads to faster convergence.
Table II summarizes these results.

2) Proximal Mapping: Because all of our majorization
matrices are block diagonal, using (5) the proximal mapping
problem (17) simplifies to separate problems for each filter:

d
(i+1)
k = argmin

dk

1

2

∥∥∥dk − ν
(i)
k

∥∥∥
2
[

M
(i)
�

]
k,k

s.t. ‖dk‖
2
2 ≤ 1, k = 1, . . . , K , (24)

where

ν(i) = d́(i) −
(

M
(i)
�

)−1 (
�(i)

)H (
�(i)d́(i) − y

)
,

we construct �(i) using (18) with updated sparse codes {z̃
(i)
l :

l = 1, . . . , L}, M
(i)
� is a designed block diagonal majorization

TABLE I

NAME CONVENTIONS FOR BPG-M ALGORITHMS AND

MAJORIZATION MATRIX DESIGNS

matrix for (�(i))H�(i), y is a concatenated vector with {yl},
and ν(i) is a concatenated vector with {ν

(i)
k ∈ RK : k =

1, . . . , K }. When {[M
(i)
� ]k,k} is a scaled identity matrix (i.e.,

Lemma 4.3), the optimal solution is simply the projection
of ν

(i)
k onto the ℓ2 unit ball. If {[M

(i)
� ]k,k} is a diagonal

matrix (Lemma 4.1 and 4.4), the proximal mapping requires
an iterative scheme. We apply accelerated Newton’s method
to efficiently obtain the optimal solution to (24); see details in
Section S.VI.

B. Sparse Code Update

1) Separable Majorizer Design: Given the current estimates
of the {λk = �PT

S dk : k = 1, . . . , K }, the sparse code update
problem for (2) becomes L separate optimization problems:

min
z̃l

1

2
‖yl − Ŵz̃l‖

2
2 + α‖z̃l‖1, (25)

for l = 1, . . . , L, where

Ŵ := PB

[
�−1diag(λ1)� · · · �−1diag(λK )�

]
. (26)

We now seek a block separable majorizer for the Hessian
matrix ŴH Ŵ ∈ CÑ K×Ñ K of the quadratic term in (25). Using
�−H PT

B PB�−1 � Ñ−1 I and �H = Ñ�−1, ŴH Ŵ is bounded
as follows:

ŴH Ŵ �
(

IK ⊗ �−1
)

�H� (IK ⊗ �) = QH
Ŵ QŴ (27)

where �H� is given according to

� :=
[
diag(λ1), · · · , diag(λK )

]
, (28)

and QH
Ŵ QŴ ∈ CÑ K×Ñ K is a block matrix with submatrices

{[QH
Ŵ QŴ]k,k′ ∈ C

Ñ×Ñ : k, k ′ = 1, . . . , K }:

[QH
Ŵ QŴ]k,k′ = �−1diag(λ∗

k ⊙ λk′ )�. (29)

The following lemma describes our first diagonal majoriza-
tion matrix for ŴH Ŵ.
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TABLE II

COMPARISON OF COMPUTATIONAL COMPLEXITY IN

COMPUTING DIFFERENT MAJORIZATION MATRICES

Lemma 4.5 (Block Diagonal Majorization Matrix MŴ with
Diagonals I). The following block diagonal matrix MŴ ∈

R
Ñ K×Ñ K with diagonal blocks satisfies MŴ 
 ŴH Ŵ:

MŴ = diag
(
|QH

Ŵ QŴ |1Ñ K

)
,

where QH
Ŵ QŴ is defined in (29).

Proof: See Section S.V-A of the supplementary material.
Computing the majorization matrix in Lemma 4.5

involves O(K 2 Ñ) operations for �H � and approximately
O(K 2 Ñ log Ñ) operations for QH

Ŵ QŴ . Again, applying the
permutation trick in [14] and [43, Remark 3] allows computing
�H� by parallelization over j = 1, . . . , Ñ , i.e., each thread
requires O(K 2) operations. Similar to the filter update case,
Proposition 4.6 below substantially reduces the computational
cost O(K 2 Ñ log Ñ ) at the cost of slower convergence.
Proposition 4.6. The following block diagonal matrix MQŴ ∈

RÑ K×Ñ K satisfies MQŴ 
 QH
Ŵ QŴ .

MQŴ =

K⊕

k=1

�−1�′
k�, (30)

�′
k = diag(|λk |

2) +
∑

k′ �=k

∣∣diag(λ∗
k ⊙ λk′ )

∣∣ , (31)

for k = 1, . . . , K .

Proof: See Section S.IV-B of the supplementary material.

Lemma 4.7 (Block Diagonal Majorization Matrix MŴ with
Diagonals II). The following block diagonal matrix MŴ ∈

R
Ñ K×Ñ K with diagonal blocks satisfies MŴ 
 ŴH Ŵ:

M� =

K⊕

k=1

[M� ]k,k ,

[M� ]k,k = diag
(
PS

∣∣∣�−1�k�
∣∣∣ PT

S 1K

)
, k ∈ [K ],

where diagonal matrices {�′
k} are as in (31).

Proof: See Section S.V-C of the supplementary
material.

The majorization matrix in Lemma 4.7 reduces the
cost O(K 2 Ñ log Ñ ) (of computing that in Lemma 4.5) to
O(K Ñ log Ñ ). Parallelization can further reduce computa-
tional complexity to O(Ñ log Ñ). However, similar to the
majorizer designs in the filter update, the majorization matrix
in Lemma 4.5 is expected to be tighter than those in
Lemma 4.7 because the majorization matrix in Lemma 4.4 is
designed based on another bound. Fig. 2 illustrates that tighter
majorizers lead to faster convergence. Table II summarizes
these results.

2) Proximal Mapping: Using (5), the corresponding
proximal mapping problem of (25) is given by:

z̃
(i+1)
l = argmin

z̃l

1

2

∥∥∥z̃l − ζ
(i)
l

∥∥∥
2

M
(i)
Ŵ

+ α‖z̃l‖1 (32)

where

ζ
(i)
l = ź

(i)
l −

(
M

(i)
Ŵ

)−1 (
Ŵ(i)
)H (

Ŵ(i) ź
(i)
l − yl

)
,

we construct Ŵ(i) using (26) with updated kernels {d
(i+1)
k :

k = 1, . . . , K }, M
(i)
Ŵ is a designed majorization matrix

for (Ŵ(i))H Ŵ(i), and ζ
(i)
l is a concatenated vector with

{ζ
(i)
l,k ∈ RÑ : k = 1, . . . , K }, for l = 1, . . . , L. Using

the circulant majorizer in Proposition 4.6 would require an
iterative method for proximal mapping. For computational
efficiency in proximal mapping, we focus on diagonal majoriz-
ers, i.e., Lemma 4.5 and 4.7. Exploiting the structure of diag-
onal majorization matrices, the solution to (32) is efficiently
computed by soft-shrinkage:

(
z̃
(i+1)
l,k

)
j
= softshrink

((
ζ

(i)
l,k

)
j
, α

([
M

(i)
Ŵ

]
k,k

)−1

j, j

)
,

for k = 1, . . . , K , j = 1, . . . , Ñ , where the soft-shrinkage
operator is defined by softshrink(a, b) := sign(a) max(|a| −

b, 0).
Note that one does not need to use Ŵ(i) in (26) (or (Ŵ(i))H )

directly. If the filter size D is smaller than log Ñ , it is more
efficient to use (circular) convolutions, by considering that the
computational complexities for dk⊛zl,k and �−1diag(λk)�z̃l,k

are O(Ñ D) and O(Ñ log Ñ), respectively. This scheme anal-
ogously applies to �(i) in (18) in the filter update.

V. ACCELERATED CONVERGENT CDL: FBPG-M
WITH MULTI-BLOCK UPDATE

This section establishes a multi-block BPG-M framework
for CDL that is particularly useful for single-thread compu-
tation mainly due to 1) more efficient majorization matrix
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computations and 2) (possibly) tighter majorizer designs than
those in the two-block methods. In single-thread computing,
it is desired to reduce the computational cost for majorizers,
by noting that without parallel computing, the computational
cost—but disregarding majorizer computation costs—in the
two-block scheme is O(K L(Ñ log Ñ + D/L + Ñ )) and iden-
tical to that of the multi-block approach. While guaranteeing
convergence, the multi-block BPG-M approach accelerates the
convergence rate of the two-block BPG-M methods in the
previous section, with a possible reason that the majorizers
of the multi-block scheme are tighter than those of the two-
block scheme.

We update 2 · K blocks sequentially; at the kth block,
we sequentially update the kth filter—dk—and the set of kth
sparse codes for each training image—{zl,k : l = 1, . . . , L}

(referred to the kth sparse code set). One could alternatively
randomly shuffle the K blocks at the beginning of each
cycle [44] to further accelerate convergence. The mathe-
matical decomposing trick used in this section (specifically,
(33) and (36)) generalizes a sum of outer products of two
vectors in [4] and [45].

A. kth Dictionary (Filter) Update

We decompose the {dk : k = 1, . . . , K }-update prob-
lem (17) into K dk-update problems as follows:

min
dk

1

2

∥∥∥∥∥∥∥

⎛
⎜⎝

⎡
⎢⎣

y1
...

yL

⎤
⎥⎦−

∑

k′ �=k

�k′dk′

⎞
⎟⎠− �kdk

∥∥∥∥∥∥∥

2

2

s.t. ‖dk‖
2
2 ≤ 1, (33)

where the kth submatrix of � = [�1 · · · �K ] (18) is defined
by

�k :=

⎡
⎢⎣

PB�−1diag(ẑ1,k)�PT
S

...

PB�−1diag(ẑL ,k)�PT
S

⎤
⎥⎦ , (34)

{ẑl,k = �z̃l,k : l = 1, . . . , L}, and we use the most recent
estimates of all other filters and coefficients in (33) and (34),
for k = 1, . . . , K .

1) Separable Majorizer Design: The following lemma
introduces a majorization matrix for � H

k �k :
Lemma 5.1 (Diagonal Majorization Matrix M�k ). The follow-

ing diagonal matrix M�k ∈ RD×D satisfies M�k 
 � H
k �k:

M�k = diag

(
PS

∣∣∣∣∣�
−1

L∑

l=1

diag(|ẑl,k |
2)�

∣∣∣∣∣ PT
S 1D

)
.

Proof: See Section S.V-D of the supplementary material.
The design in Lemma 5.1 is expected to be tighter than those

in Lemma 4.3 and 4.4, because we use fewer bounds in design-
ing it. Fig. 3 supports this expectation through convergence
rate; additionally, Fig. 3 illustrates that the majorization matrix
in Lemma 5.1 is expected to be tighter than that in Lemma 4.1.
Another benefit of the majorization matrix in Lemma 5.1
is lower computational complexity than those in the two-
block approaches (in single-thread computing). As shown

Fig. 3. Comparison of cost minimization between different CDL algorithms
(the small datasets; for ADMM [6], the number of whole iterations is the
product of the number of inner iterations and that of outer iterations; reG-
FBPG-M used the momentum-coefficient formula (11)). The multi-block
framework significantly improves the convergence rate over the two-block
schemes, with a possible reason that the majorizer in the multi-block update,
i.e., M-(v), is tighter than those in the two-block update, i.e., M-(i)–M-(iv).

in Table II-A, it allows up to 2K times faster the majorizer
computations in the multi-block scheme (particularly, that in
Lemma 4.1).

2) Proximal Mapping: Using (5), the corresponding proxi-
mal mapping problem of (33) is given by

d
(i+1)
k = argmin

dk

1

2

∥∥∥dk − ν
(i)
k

∥∥∥
M�k

, s.t. ‖dk‖
2
2 ≤ 1, (35)

where

ν
(i)
k = d́

(i)
k −

(
M

(i)
�k

)−1 (
�

(i)
k

)H (
�

(i)
k d́

(i)
k − y̌

)
,

y̌ =

⎡
⎢⎣

y1
...

yL

⎤
⎥⎦−

∑

k′ �=k

�k′ dk′ ,

we construct �
(i)
k using (34) with the updated kth sparse

code set {z̃
(i)
l,k : l = 1, . . . , L}, and M

(i)
�k

is a designed

diagonal majorization matrix for (�
(i)
k )H�

(i)
k . Similar to

Section IV-A.2, we apply the accelerated Newton’s method
in Section S.VI to efficiently solve (35).
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B. kth Sparse Code Set Update

We decompose the {z̃l,k : k = 1, . . . , K }-update
problem (25) into K z̃l,k -update problems as follows:

min
z̃l,k

1

2

∥∥∥∥∥∥

⎛
⎝yl −

∑

k′ �=k

Ŵk′ z̃l,k′

⎞
⎠− Ŵk z̃l,k

∥∥∥∥∥∥

2

2

+ α‖z̃l,k‖1, (36)

where the kth submatrix of Ŵ = [Ŵ1 · · ·ŴK ] (26) is defined by

Ŵk := PB�−1diag(λk)�, (37)

{λk = �PT
S dk}, we use the most recent estimates of all other

filters and coefficients in (36) and (34), for k = 1, . . . , K .
Using (36), we update the kth set of sparse codes {z̃l,k : l =

1, . . . , L}, which is easily parallelizable over l = 1, . . . , L.
Note, however, that this parallel computing scheme does not
provide computational benefits over that in the two-block
approach. Specifically, in each thread, the two-block scheme
requires O(K Ñ (log Ñ + 1)); and the multi-block requires K

times the cost O(Ñ (log Ñ + 1)), i.e., O(K Ñ (log Ñ + 1)).
1) Separable Majorizer Design: Applying Lemma S.3, our

diagonal majorization matrix for ŴH
k Ŵk is given in the follow-

ing lemma:
Lemma 5.2 (Diagonal Majorization Matrix MŴk ). The follow-

ing diagonal matrix MŴk ∈ RÑ×Ñ satisfies MŴk 
 ŴH
k Ŵk:

MŴk = diag
(
|ŴH

k ||Ŵk|1Ñ

)
.

The design in Lemma 5.2 is expected to be tighter than
those in Lemma 4.5 and 4.7, because only a single bound is
used in designing it. Fig. 3 supports our expectation through
convergence rate per iteration. In addition, the design in
Lemma 5.2 requires lower computation costs than those in
the two-block schemes (in a single processor computing).
Specifically, it reduces complexities of computing those in
multi-block scheme (particularly, that in Lemma 4.5) by up
to a factor of K (1/D + 1); see Table II-B.

2) Proximal Mapping: Using (5), the corresponding proxi-
mal mapping problem of (36) is given by:

z̃
(i+1)
l,k = argmin

z̃l,k

1

2

∥∥∥z̃l,k − ζ
(i)
l,k

∥∥∥
2

Ŵ
(i)
k

+ α
∥∥z̃l,k

∥∥
1 (38)

where

ζ
(i)
l,k = ź

(i)
l,k −

(
M

(i)
Ŵk

)−1 (
Ŵ

(i)
k

)H (
Ŵ

(i)
k ź

(i)
l,k − y̌l

)
,

y̌l = yl −
∑

k′ �=k

Ŵk′ z̃l,k′ ,

we construct Ŵ
(i)
k using (37) with the updated kth filter d

(i+1)
k ,

and M
(i)
Ŵk

is a designed diagonal majorization matrix for

(Ŵ
(i)
k )HŴ

(i)
k . Similar to Section IV-B.2, problem (38) is solved

by the soft-shrinkage operator.
To efficiently compute

∑
k′ �=k �k′dk′ in (33) and∑

k′ �=k Ŵk′ z̃l,k′ in (36) at the kth iteration, we update and store
{Ŵk z̃l,k : l = 1, . . . , L}—which is identical to �kdk—with
newly estimated d

(i+1)
k and {z̃

(i+1)
l,k : l = 1, . . . , L}, and

simply take sum in
∑

k′ �=k �k′ dk′ and
∑

k′ �=k Ŵk′ z̃l,k′ . Similar

to Ŵ(i) in (26) and �(i) in (18), one can perform Ŵ
(i)
k in (37)

(or (Ŵ
(i)
k )H ) and �

(i)
k in (34) in a spatial domain—see

Section IV-A.2.

VI. CDL-ACE: APPLICATION OF CDL
TO IMAGE DENOISING

Applying learned filters by CDL to some inverse problems is
not straightforward due to model mismatch between training
and testing stages. CDL conventionally learns features from
preprocessed training datasets (by, for example, the techniques
in Section VII-A); however, such nonlinear preprocessing
techniques are not readily incorporated when solving inverse
problems [46].

The most straightforward approach in resolving the model
mismatch is to learn filters from non-preprocessed training
data, as noted in [6, §5.2]. An alternative approach is to model
(linear) contrast enhancement methods in CDL—similar to
CDL-ACE in [22]—and apply them to solving inverse prob-
lems. The CDL-ACE model is given by [22]

min
{dk},{zl,k },{ρl }

L∑

l=1

1

2

∥∥∥∥∥yl −

(
PB

K∑

k=1

dk ⊛ zl,k

)
− ρl

∥∥∥∥∥

2

2

+α

K∑

k=1

∥∥zl,k

∥∥
1 +

γ

2
‖Cρl‖

2
2

s.t. ‖dk‖
2
2 ≤ 1, k = 1, . . . , K , (39)

where {ρl ∈ R
N : l = 1, . . . , L} is a set of low-frequency

component vectors and we design C ∈ RN ′×N for adaptive
contrast enhancement of {yl} (see below). Considering partic-
ular boundary conditions (e.g. periodic or reflective) for {ρl},
we rewrite (39) as follows [22]:

min
{dk},{zl,k }

L∑

l=1

1

2

∥∥∥∥∥ỹl − R

(
PB

K∑

k=1

dk ⊛ zl,k

)∥∥∥∥∥

2

2

+ α

K∑

k=1

∥∥zl,k

∥∥
1

s.t. ‖dk‖
2
2 ≤ 1, k = 1, . . . , K , (40)

where {ỹl := Ryl : l = 1, . . . , L} and

R :=
(
γ CT C

)1/2 (
γ CT C + I

)−1/2
. (41)

The matrix R in (41) can be viewed as a simple form of a
contrast enhancing transform (without divisive normalization
by local variances), e.g., RT Ry = y −(γ CT C + I )−1 y, where
(γ CT C + I )−1 is a low-pass filter. To solve (40), AL methods
would now require six additional AL parameters to tune and
consume more memory (than the ADMM approach in [6]
solving (1)); however, BPG-M methods are free from the
additional parameter tuning processes and memory issues.

To denoise a measured image b ∈ Rn corrupted by AWGN
(∼ N (0, σ 2)), we solve the following optimization problem
with the filters {d⋆

k : k = 1, . . . , K } learned via the CDL
models, i.e., (1) or, optimally, (40), [22]:

{
{a⋆

k}, ρ
⋆
}

= argmin
{ak },ρ

1

2

∥∥∥∥∥b −

(
PB

K∑

k=1

d⋆
k ⊛ ak

)
− ρ

∥∥∥∥∥

2

2

+ α′
K∑

k=1

‖ak‖1 + γ ′‖Cρ‖2
2, (42)
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and synthesize the denoised image by PB

∑K
k=1 d⋆

k ⊛ a⋆
k + ρ⋆,

where {ak ∈ Rn} is a set of sparse codes, ρ ∈ Rn is a
low-frequency component vectors, and C ∈ Rn′×n is a reg-
ularization transform modeled in the CDL model (39). Using
the reformulation techniques in (39)–(40), we rewrite (42) as
a convex problem and solve it through FPG method using
a diagonal majorizer (designed by a technique similar to
Lemma 4.7) and adaptive restarting [22].

VII. RESULTS AND DISCUSSION

A. Experimental Setup

Table I gives the naming conventions for the proposed
BPG-M algorithms and designed majorizers.

We tested all the introduced CDL algorithms for two
types of datasets: preprocessed and non-preprocessed. The
preprocessed datasets include the fruit and city datasets with
L = 10 and N = 100×100 [6], [12], and the CT dataset with
L = 10 and N = 512 × 512 from down-sampled 512 × 512
XCAT phantom slices [47]—referred to the CT-(i) dataset.
The preprocessing includes local contrast normalization [23,
Adaptive Deconvolutional Networks Toolbox], [48, §2], [12]
and intensity rescaling to [0, 1] [12], [14], [23], and [6]. The
non-preprocessed dataset [6, §5.2] consists of XCAT phantom
images of L = 80 and N = 128 × 128, created by dividing
down-sampled 512 × 512 XCAT phantom slices [47] into
16 sub-images [7], [14]; we refer this to the CT-(ii) dataset.
Both the preprocessed and non-preprocessed datasets contain
zero-mean training images (i.e., by subtracting the mean from
each training image [23, Adaptive Deconvolutional Networks
Toolbox], [48, §2]; note that subtracting the mean can be
omitted for the preprocessed datasets), as conventionally used
in many (convolutional) dictionary learning studies, e.g., [5],
[6], [12], [14], [23], [48]. For image denoising experiments,
we additionally trained filters by CDL-ACE (40) through
the BPG-M method, and the non-preprocessed city datasets
(however, note that we do not apply the mean subtraction step
because it is not modeled in (40). For all the CDL experiments,
we trained filters of D = 11 × 11 and K = 100 [6], [19].

The parameters for the algorithms were defined as fol-
lows. For CDL (1) using both the preprocessed and non-
preprocessed datasets, we set the regularization parameters as
α = 1 [6]. For CDL-ACE (40) using the non-preprocessed
dataset, we set α = 0.4. We used the same (normally
distributed) random initial filters and coefficients for each
training dataset to fairly compare different CDL algorithms.
We set the tolerance value, tol in (44), as 10−4. Specific details
regarding the algorithms are described below.

Comparing convergence rates in Fig. 3 and execution time
in Table III-C, we normalized the initial filters such that
{‖dk‖

2
2 ≤ 1 : k = 1, . . . , K } (we empirically observed that

the normalized initial filters improve convergence rates of the
multi-block algorithms, but marginally improve convergence
rates of the two-block algorithms—for both ADMMs and
BPG-M). The execution time in Table III was recorded by
(double precision) MATLAB implementations based on Intel
Core i5 with 3.30 GHz CPU and 32 GB RAM.

1) ADMM [6]: We first selected ADMM parameters as sug-
gested in the corresponding MATLAB code of [6]: the ADMM
parameters were selected by considering the maximum value
of {ym : m = 1, . . . , M}, similar to [31]. We used 10 inner
iterations (i.e., IterADMM in Table III-A) for each kernel and
sparse code update [6] and set the maximum number of outer
iterations to 100. We terminated the iterations if either of
the following stopping criteria are met before reaching the
maximum number of iterations [6]:

F(d(i+1), z̃(i)) ≥ F(d(i), z̃(i)) and

F(d(i+1), z̃(i+1)) ≥ F(d(i), z̃(i)), (43)

or∥∥d(i+1) − d(i)
∥∥

2∥∥d(i+1)
∥∥

2

< tol and

∥∥z̃(i+1) − z̃(i)
∥∥

2∥∥z̃(i+1)
∥∥

2

< tol, (44)

where d and z̃ are concatenated vectors from {dk} and
{z̃l,k}, respectively. These rules were applied at the outer
iteration loop [6]. For the experiments in Figs. 3 and S.2,
and Table III-C, we disregarded the objective-value-based
termination criterion (43). For a memory-efficient variant of
ADMM [6], we replaced the direct solver in [6, eq. (11)] with
the iterative method in [18, §III-B] to solve the linear system
[6, eq. (10)], and tested it with the same parameter sets above.

2) BPG-M Algorithms: We first selected the parameter δ in
(13) as 1 − ε, where ε is the (double) machine epsilon value,
similar to [5]. For the gradient-mapping restarting, we selected
the parameter ω in (16) as cos(95◦), similar to [42]. For the
accelerated Newton’s method, we set the initial point ϕ

(0)
k to

0, the tolerance level for |ϕ
(i ′+1)
k − ϕ

(i ′)
k | to 10−6, and the

maximum number of iterations to 10, for k = 1, . . . , K . The
maximum number of BPG-M iterations was set to Iter = 1000.
We terminated the iterations if the relative error stopping
criterion (44) was met before reaching the maximum number
of iterations.

3) Image Denoising with Learned Filters via CDL: For
image denoising applications, we corrupted a test image with
relatively strong AWGN, i.e., SNR = 10 dB. We denoised the
noisy image through the following methods (all the parameters
were selected as suggested in [22], giving the best peak signal-
to-noise ratio (PSNR) values): 1) adaptive Wiener filtering
with 3 × 3 window size; 2) total variation (TV) with MFISTA
using its regularization parameter 0.8σ and maximum number
of iterations 200 [49]; 3) image denoiser (42) with 100
(empirically) convergent filters trained by CDL model (1)
(i.e., Fig. S.2(b)) and preprocessed training data, α′ = 2.5σ ,
the first-order finite difference for C in (42) [46], and γ ′ =

10σ ; and 4) (42) with 100 learned filters by CDL-ACE (39),
α′ = α ·5.5σ , and γ ′ = γ ·5.5σ . For (42), the stopping criteria
is set similar to (44) (with tol = 10−3) before reaching the
maximum number of iterations 100.

B. BPG-M Versus ADMM [6] and Its Memory-Efficient

Variant for CDL (1)

The BPG-M methods guarantee convergence without diffi-
cult parameter tuning processes. Figs. 3 and S.1–S.2 show that
the BPG-M methods converge more stably than ADMM [6]
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TABLE III

COMPARISON OF COMPUTATIONAL COMPLEXITY, EXECUTION TIME,
AND MEMORY REQUIREMENT FROM DIFFERENT

SINGLE-THREADED CDL ALGORITHMS

and the memory-efficient variant of ADMM [6]. When the
ADMM parameters are poorly chosen, for example simply
using 1, the ADMM algorithm fails (see Table IV). The objec-
tive function termination criterion (43) can stabilize ADMM;
however, note that terminating the algorithm with (43) is
not a natural choice, because the monotonic decrease in
objective function values is not guaranteed [33]. For the small
datasets (i.e., the fruit and city datasets), the execution time

TABLE IV

COMPARISONS OF OBJECTIVE VALUES WITH DIFFERENT

CONVOLUTIONAL DICTIONARY LEARNING ALGORITHMS

of reG-FBPG-M using the multi-block scheme is compara-
ble to that of the ADMM approach [6] and its memory-
efficient variant; see Table III-B. Based on the numerical
experiments in [19], for small datasets particularly with the
small number of training images, the state-of-the-art ADMM
approach in [19, AVA-MD] using the single-set-of-iterations
scheme [18] (or [14]) can be faster than multi-block reG-
FBPG-M; however, it lacks theoretical convergence guarantees
and can result in non-monotone minimization behavior—see
Section II and [19, Fig. 2, AVA-MD].

The proposed BPG-M-based CDL using the multi-block
scheme is especially useful to large datasets having large
image size or many images (compared to ADMM [6] and its
memory-efficient variant applying linear solver [18, §III-B]):

• The computational complexity of BPG-M depends mainly
on the factor K · L · Ñ log Ñ ; whereas that of ADMM [6]
depends not only on the factor K · L · Ñ log Ñ , but
also on the approximated factors K · L2 · Ñ · Iter−1

ADMM
(for K > L) or K 3 · Ñ · Iter−1

ADMM (for K ≤ L). The
memory-efficient variant of ADMM [6] requires even
higher computational complexity than ADMM [6]: it
depends both on the factors K · L · Ñ log Ñ and K · L2 · Ñ .
See Table III-A–B.

• The multi-block reG-FBPG-M method requires much less
memory than ADMM [6] and its variant. In the filter
updates, it only depends on the parameter dimensions
of filters (i.e., K , D); however, ADMM requires the
amount of memory depending on the dimensions of
training images and the number of filters (i.e., Ñ , L, K ).
In the sparse code updates, the multi-block reG-FBPG-M
method requires about half the memory of ADMM. Addi-
tionally, there exists no K 2 factor dependence in multi-
block reG-FBPG-M. The memory-efficient variant of
ADMM [6] removes the K 2 factor dependence, but still
requires higher memory than multi-block reG-FBPG-M.
See Table III-C.

Table III-B shows that the ADMM approach in [6] and/or its
memory-efficient variant fail to run CDL for the larger datasets
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(i.e., CT-(i) and CT-(ii)), due to its high memory usage. By not
caching the inverted matrices [6, eq. (11)] computed at the
beginning of each block update, the memory-efficient variant
of ADMM [6] avoids the K 2 factor dependence in memory
requirement. However, its computational cost now depends on
the factor L2 multiplied with K and Ñ ; this product becomes a
serious computational bottleneck as L—the number of training
images—grows. See the CT-(ii) column in Table III-B. (Note
that single-set-of-iterations ADMM [19, AVA-MD] obeys the
same trends.) Heide et al.’s report that their ADMM can
handle the large dataset (of L = 10, N = 1000 × 1000) that
the patch-based method (i.e., K-SVD [4] using all patches)
cannot, due to its high memory usage [6, §3.2, using 132 GB
RAM machine]. Combining these results, the BPG-M-based
CDL algorithm (particularly using the multi-block scheme) is
a reasonable choice to learn dictionary from large datasets.
Especially, the multi-block BPG-M method is well-suited to
CDL with large datasets consisting of a large number of (rel-
atively small-dimensional) signals—for example, the datasets
are often generated by dividing (large) images into many sub-
images [6], [14], [18].

For the non-preproccsed dataset (i.e., CT-(ii)), the pro-
posed BPG-M algorithm (specifically, reG-FBPG-M using the
multi-block scheme) properly converges to desirable solutions,
i.e., the resultant filters and sparse codes (of sparsity 5.25%)
properly synthesize training images. However, the memory-
efficient variant of ADMM [6] does not converge to the
desirable solutions. Compare the results in Fig. S.1(d) to those
in Fig. S.2(c).

Figs. 2 and S.1–S.2 illustrate that all the proposed BPG-M
algorithms converge to desirable solutions and reach lower
objective function values than the ADMM approach in [6]
and its memory-efficient variant (see Table IV and com-
pare Fig. S.1(d) to Fig. S.2(c)). In particular, the tighter
majorizer enables the BPG-M algorithms to converge faster;
see Figs. 2–3. Interestingly, the restarting schemes (15)–(16)
provide significant convergence acceleration over the momen-
tum coefficient formula (11). The combination of reG (16) and
momentum coefficient formulas (11)–(12), i.e., reG-FBPG-M,
can be useful in accelerating the convergence rate of reG-
BPG-M, particularly when majorizers are insufficiently tight.
Fig. 4 supports these assertions. Most importantly, all the
numerical experiments regarding the BPG-M methods are in
good agreement with our theoretical results on the convergence
analysis, e.g., Theorem 3.3 and Remark 3.4. Finally, the results
in Table IV concur with the existing empirical results of
comparison between BPG and BCD in [33] and [5], noting
that ADMM in [6] is BCD-type method.

C. Application of Learned Filters by CDL

to Image Denoising

The filters learned via convergent BPG-M-based CDL (1)
show better image denoising performance than the (empir-
ically) convergent ones trained by ADMM-based CDL (1)
in [6]; it improves PSNR by approximately 1.6 dB. Con-
sidering that the BPG-M methods reach lower objective
values than ADMM of [6], this implies that the filters of
lower objective values can improve the CDL-based image

Fig. 4. Comparison of cost minimization between different accelerated
BPG-M CDL algorithms (the fruit dataset).

denoiser (42). The learned filters by CDL-ACE (40) further
improve image denoising compared to those trained by BPG-
M-based CDL (1), by resolving the model mismatch; it
improves PSNR by approximately 0.2 dB. Combining these,
the CDL-based image denoiser using the learned filters by
CDL-ACE (40) outperforms the TV denoising model. All
these assertions are supported by Fig. 5. Finally, the CDL-
ACE model (39) better captures structures of non-preprocessed
training images than the CDL model (1); see [22, Fig. 2].

VIII. CONCLUSION

Developing convergent and stable algorithms for non-
convex problems is important and challenging. In addition,
parameter tuning is a known challenge for AL methods. This
paper has considered both algorithm acceleration and the
above two important issues for CDL.

The proposed BPG-M methods have several benefits over
the ADMM approach in [6] and its memory-efficient variant.
First, the BPG-M algorithms guarantee local convergence (or
global convergence if some conditions are satisfied) without
additional parameter tuning (except regularization parameter).
The BPG-M methods converge stably and empirically to
a “desirable” solution regardless of the datasets. Second,
particularly with the multi-block framework, they are useful
for larger datasets due to their lower memory requirement
and no polynomial computational complexity (specifically,
no O(L2 K Ñ ), O(K 2 L), and O(K 3 Ñ ) complexity). Third,
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Fig. 5. Comparison of denoised images from different image denoising models (image is corrupted by AWGN with SNR = 10 dB; for ADMM [6], we used
(empirically) convergent learned filters; for BPG-M, we used the two-block reG-FBPG-M method using (12)). The image denoising model (42) using the
learned filters by BPG-M-based CDL—(e)—shows better image denoising performance compared to (b) Wiener filtering, (c) TV denoising, and (d) that using
the learned filters by ADMM-based CDL. The filters trained by CDL-ACE further improves (e)-image denoiser.

they empirically achieve lower objective values. Among the
proposed BPG-M algorithms, the reG-FBPG-M scheme—i.e.,
BPG-M using gradient-mapping-based restarting and momen-
tum coefficient formulas—is practically useful by due to its
fast convergence rate and no requirements in objective value
evaluation. The CDL-based image denoiser using learned
filters via BPG-M-based CDL-ACE [22] outperforms Wiener
filtering, TV denoising, and filters trained by the conventional
ADMM-based CDL [6]. The proposed BPG-M algorithmic
framework is a reasonable choice towards stable and fast
convergent algorithm development in CDL with big data
(i.e., training data with the large number of signals or high-
dimensional signals).

There are a number of avenues for future work. First,
in this paper, the global convergence guarantee in Remark 3.4
requires a stringent condition in practice. Future work will
explore the more general global convergence guarantee based
on the Kurdyka-Łojasiewicz property. Second, we expect to
further accelerate BPG-M by using the stochastic gradient
method while guaranteeing its convergence (the stochastic
ADMM [50] improves the convergence rate of ADMM on
convex problems, and is applied to convolutional sparse coding
for image super-resolution [51]). Applying the proposed CDL
algorithm to multiple-layer setup is an interesting topic for
future work [24]. On the application side, we expect that
incorporating normalization by local variances into CDL-ACE
will further improve solutions to inverse problems.

APPENDIX

NOTATION

We use ‖·‖p to denote the ℓp-norm and write 〈·, ·〉 for
the standard inner product on CN . The weighted ℓ2-norm
with a Hermitian positive definite matrix A is denoted by

‖·‖A =
∥∥A1/2(·)

∥∥
2. ‖·‖0 denotes the ℓ0-norm, i.e., the number

of nonzeros of a vector. (·)T , (·)H , and (·)∗ indicate the
transpose, complex conjugate transpose (Hermitian transpose),
and complex conjugate, respectively. diag(·) and sign(·) denote
the conversion of a vector into a diagonal matrix or diagonal
elements of a matrix into a vector and the sign function,
respectively. ⊗, ⊙, and

⊕
denote Kronecker product for two

matrices, element-wise multiplication in a vector or a matrix,
and the matrix direct sum of square matrices, respectively.
[C] denotes the set {1, 2, . . . , C}. For self-adjoint matrices
A, B ∈ CN×N , the notation B � A denotes that A − B is
a positive semi-definite matrix.
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Convolutional Dictionary Learning: Acceleration

and Convergence (Supplementary Material)
Il Yong Chun and Jeffrey A. Fessler

In this supplementary material for [1], we provide math-

ematical proofs or detailed descriptions to support several

arguments in the main manuscript. We use the prefix “S”

for the numbers in section, equation, figure, and table in the

supplementary material.

S.I. USEFUL LEMMAS AND THEIR PROOFS

Lemma S.1. Let ̺1(u) and ̺2(u) be two convex functions de-

fined on the convex set U , ̺1(u) be differentiable, and M ≻ 0.

Let ̺(u) = ̺1(u)+̺2(u) and u⋆ = argminu∈U 〈∇̺1(v), u−

v〉+ 1
2‖u− v‖

2
M + ̺2(u). If

̺1(u
⋆) ≤ ̺1(u) + 〈∇̺1(v), u

⋆ − v〉+
1

2
‖u⋆ − v‖

2
M , (S.1)

then we have

̺(u)− ̺(u⋆) ≤
1

2
‖u⋆ − v‖

2
M + (v − u)TM(u⋆ − v). (S.2)

Proof. The following proof is an extension of that given

in [2]. The first-order optimality condition for u⋆ =
argminu∈U 〈∇̺1(v), u − v〉 + 1

2‖u− v‖
2
M + ̺2(u) is given

by

〈∇̺1(v) +M(u⋆ − v) + g⋆, u− u⋆〉 ≥ 0, for any u ∈ U
(S.3)

and for some g ∈ ∂̺2(u
⋆). For any u ∈ U , we obtain

̺(u)− ̺(u⋆)

≥ ̺(u)−

(
̺1(v) + 〈∇̺1(v), u

⋆ − v〉+
1

2
‖u⋆ − v‖

2
L

)

− ̺2(u
⋆)

= ̺1(u)− ̺1(v)− 〈∇̺1(v), u− v〉+ 〈∇̺1(v), u− u⋆〉

+ ̺2(u)− ̺2(u
⋆)−

1

2
‖u⋆ − v‖

2
2

≥ ̺2(u)− ̺2(u
⋆)− 〈g⋆, u− u⋆〉 − (u⋆ − v)TM(u− u⋆)

−
1

2
(u⋆ − v)TM(u⋆ − v)

≥ −(u⋆ − v)TM(u− u⋆)−
1

2
(u⋆ − v)TM(u⋆ − v)

=
1

2
‖u⋆ − v‖

2
L + (v − u)TM(u⋆ − v)

where the first inequality comes from (S.1), the second in-

equality is obtained by convexity of ̺1 (i.e., 〈∇̺1(v), u−v〉 ≤
̺1(u) − ̺1(v)) and (S.3), and the last inequality is obtained
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by the convexity of ̺2 and the fact g⋆ ∈ ∂̺2(u
⋆) (i.e.,

〈g⋆, u−u⋆〉 ≤ ̺2(u)−̺2(u
⋆) ≤ 0). This completes the proof.

Lemma S.2. If the diagonal elements of a Hermitian matrix

A are nonnegative (e.g., if A is positive semidefinite), then

A � diag(|A|1), where |A| denotes the matrix consisting of

the absolute values of the elements of A.

Proof. Let E = diag(|A|1) − A. We seek to apply the prop-

erty that, if a Hermitian matrix is diagonally dominant with

nonnegative diagonal entries, then it is positive semidefinite.

We first show that E is diagonally dominant. For j = k, we

have

Ej,j =
∑

k

|Aj,k| −Aj,j =
∑

k 6=j

|Aj,k| (S.4)

due to the assumption of Aj,j ≥ 0 in Lemma S.2. For j 6= k,∑
k 6=j |Ej,k| =

∑
k 6=j |Aj,k| = Ej,j where the first equality

uses Ej,k = −Aj,k and the second equality uses (S.4). It is

straightforward to show that E is a Hermitian matrix (due

to Ej,k = −Aj,k) with nonnegative diagonal entries (due to

(S.4)). Combining these results completes the proof.

Lemma S.3. For a complex-valued matrix A, AHA �
diag(|AH ||A|1).

Proof. Let E = diag(|AH ||A|1) − AHA. The jth diagonal

element of diag(|AH ||A|1) is
∑

l |Al,j |
∑

k |Al,k|. We again

seek to apply the property that, if a Hermitian matrix is

diagonally dominant with nonnegative diagonal entries, then

it is positive semidefinite. For j = k, observe that

Ej,j =
∑

l

|Al,j |
∑

k

|Al,k| −
∑

l

|Al,j |
2

=
∑

l

|Al,j |


|Al,j |+

∑

k 6=j

|Al,k|


− |Al,j |

2

=
∑

l

|Al,j |
∑

k 6=j

|Al,k| (S.5)

≥ 0

establishing nonnegative diagonal elements. For j 6= k, it

follows from the triangle inequality that

∑

k 6=j

|Ej,k| =
∑

k 6=j

∣∣∣∣∣
∑

l

A∗
l,kAl,j

∣∣∣∣∣ ≤
∑

k 6=j

∑

l

|Al,k||Al,j |. (S.6)

Combining (S.5) and (S.6) gives Ej,j −
∑

k 6=j |Ej,k| ≥ 0, ∀j.

Combining these results completes the proof.
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S.II. PROOF OF PROPOSITION 3.2

The following proof extends that given in [2]. Let F
(i)
b :=

f
(i)
b + rb and ̺1 = f

(i)
b , ̺2 = rb, u = x

(i)
b , v = x́

(i+1)
b , u⋆ =

x
(i+1)
b , and M = M

(i)
b , by applying Lemma S.1 to (7). We

first obtain the following bounds for F
(i)
b (x

(i)
b )−F

(i)
b (x

(i+1)
b ):

F
(i)
b (x

(i)
b )− F

(i)
b (x

(i+1)
b )

≥
1

2

∥∥∥x́(i)
b − x

(i+1)
b

∥∥∥
2

M
(i)
b

+
(
x́
(i)
b − x

(i+1)
b

)T
M

(i)
b

(
x
(i)
b − x́

(i)
b

)

=
1

2

∥∥∥x(i)
b − x

(i+1)
b

∥∥∥
2

M
(i)
b

−
1

2

∥∥∥W (i)
b

(
x
(i−1)
b − x

(i)
b

)∥∥∥
2

M
(i)
b

≥
1

2

∥∥∥x(i)
b − x

(i+1)
b

∥∥∥
2

M
(i)
b

−
δ2

2

∥∥∥x(i−1)
b − x

(i)
b

∥∥∥
2

M
(i−1)
b

where the first inequality is obtained by using (S.2) in Lemma

S.1, the first equality uses the symmetry of M
(i)
b , and the

second inequality holds by
(
W

(i)
b

)T
M

(i)
b W

(i)
b � δ2M

(i−1)
b

due to Assumption 3 and (9). Summing the following inequal-

ity of F (x(i))− F (x(i+1))

F (x(i))−F (x(i+1))

=

B∑

b=1

F
(i)
b (x

(i)
b )−F

(i)
b (x

(i+1)
b )

≥

B∑

b=1

1

2

∥∥∥x(i)
b −x

(i+1)
b

∥∥∥
2

M
(i)
b

−
δ2

2

∥∥∥x(i−1)
b −x

(i)
b

∥∥∥
2

M
(i−1)
b

over i = 1, . . . , Iter, we have

F (x(0))−F (x(Iter+1))

≥
Iter∑

i=1

B∑

b=1

1

2

∥∥∥x(i)
b −x

(i+1)
b

∥∥∥
2

M
(i)
b

−
δ2

2

∥∥∥x(i−1)
b −x

(i)
b

∥∥∥
2

M
(i−1)
b

≥

Iter∑

i=1

B∑

b=1

1−δ2

2

∥∥∥x(i)
b −x

(i+1)
b

∥∥∥
2

M
(i)
b

≥
Iter∑

i=1

(
1−δ2

)
β

2

∥∥∥x(i)−x(i+1)
∥∥∥
2

2
.

Due to the lower boundedness of F in Assumption 1, taking

Iter → ∞ completes the proof.

S.III. PROOF OF THEOREM 3.3

Let x̄ be a limit point of {x(i)} and {x(ij)} be the

subsequence converging to x̄. Note that x̄ ∈ X (due to

the closedness of X ), and M
(ij)
b → M

(i)
b (taking another

subsequence if necessary) as j → ∞ since {M
(i)
b } is bounded,

for b ∈ [B]. Using (10), {x(ij+ι)} converges to x̄ for any

ι ≥ 0.

Now we observe that

x
(ij+1)
b = argmin

xb∈X
(ij)

b

〈∇f
(ij)
b (x́

(ij)
b ), xb − x́

(ij)
b 〉

+
1

2

∥∥∥xb − x́
(ij)
b

∥∥∥
2

M
(ij)

b

+ rb(xb). (S.7)

Note that the convex proximal minimization is continuous in

the sense that the output point x
(ij+1)
b continuously depends

on the input point x́
(ij)
b [3]. Using the fact that x

(ij+1)
b → x̄b

and x́
(ij)
b → x̄b as j → ∞, (S.7) becomes

x̄b = argmin
xb∈X̄b

〈∇xb
fb(x̄), xb − x̄b〉+

1

2
‖xb − x̄b‖

2
Mb

+ rb(xb).

(S.8)

Thus, x̄b satisfies the first-order optimality condition (see

(S.3)) of (S.8):

〈∇xb
fb(x̄) + ḡb, xb − x̄b〉 ≥ 0, for any xb ∈ X̄b

and for some ḡ ∈ ∂rb(x̄b), which is equivalent to the Nash

equilibrium condition (8). This completes the proof.

S.IV. PROOFS OF PROPOSITIONS 4.2 AND 4.6

A. Proof of Proposition 4.2

To show that MQΨ
� QH

ΨQΨ, we use Σ � ẐH Ẑ satisfying

(IK ⊗ Φ−1)Σ(IK ⊗ Φ) � (IK ⊗ Φ−1)ẐH Ẑ(IK ⊗ Φ)

where Σ ∈ C
ÑD×ÑK is a block diagonal matrix with diagonal

matrices {Σk : k = 1, . . . ,K}. We seek to apply the prop-

erty that, if a Hermitian matrix is diagonally dominant with

nonnegative diagonal entries, then it is positive semidefinite.

Noting that Σ−ẐH Ẑ � 0 is a Hermitian matrix, this property

can be applied to show Σ � ẐH Ẑ. Observe that the diagonal

elements of [Σ− ẐH Ẑ]k,k are nonnegative because

∑

k′ 6=k

∣∣∣∣∣

L∑

l=1

(ẑl,k)i · (ẑl,k′)
i

∣∣∣∣∣ ≥ 0, k ∈ [K].

It now suffices to show that

∣∣∣∣
(
[Σ− ẐH Ẑ]k,k

)
i,i

∣∣∣∣ ≥
∑

k′ 6=k

∣∣∣∣
(
[Σ− ẐH Ẑ]k,k′

)
i,i

∣∣∣∣ .

This is true because the left terms and the right terms are

identical, given by

∑

k′ 6=k

∣∣∣∣∣

L∑

l=1

(ẑl,k)i · (ẑl,k′)
i

∣∣∣∣∣

for all k = 1, . . . ,K and i = 1, . . . , Ñ . Combining these

results completes the proof.

B. Proofs of Proposition 4.6

Using the similar technique in Section S.IV-A, the majoriza-

tion matrix for ΛHΛ is given by a block diagonal matrix

with diagonal blocks {Σ′
k} given in (31). Substituting this

majorization matrix into (27) completes the proof.
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S.V. PROOFS OF LEMMAS 4.1&4.5, 4.3, 4.4&4.7, AND 5.1

A. Proofs of Lemmas 4.1 & 4.5

Note that QH
ΨQΨ is a Hermitian matrix with nonnegative

diagonal entries because its diagonal submatrices are given by

[QH
ΨQΨ]k,k = Φ−1

L∑

l=1

diag(|ẑl,k|
2)Φ, k ∈ [K],

which imply that [QH
ΨQ]k,k is a circulant matrix with (identi-

cal) positive diagonal entries, and

[QH
ΨQΨ]k,k′ = [QH

ΨQΨ]
H
k′,k, k 6= k′ ∈ [K]

where [QH
ΨQΨ]k,k′ is given as (21). Applying Lemma S.2 to

the Hermitian matrix QH
ΨQΨ completes the proof.

Repeating the similar procedure leads to a result in Lemma

4.5.

B. Proof of Lemma 4.3

Observe that for any x ∈ C
Ñ

xHΦ−1ΣkΦx = xHΦ̃HΣkΦ̃x =

Ñ∑

i=1

(Σk)i,i|yi|
2

≤ max
i=1,...,Ñ

{(Σk)i,i}

Ñ∑

i=1

|yi|
2

= max
i=1,...,Ñ

{(Σk)i,i} · x
HIÑx

where we use y = Φ̃x and ‖y‖22 = ‖x‖22 and Φ̃ denotes unitary

DFT. This completes the proof.

C. Proofs of Lemmas 4.4 & 4.7

The results directly follow by noting that {Φ−1ΣkΦ} and

{Φ−1Σ′
kΦ} are Hermitian (circulant) matrices with nonnega-

tive diagonal entries, and applying Lemma S.2.

D. Proof of Lemma 5.1

Using PT
BPB � I , we have

ΨH
k Ψk � Φ−1

L∑

l=1

diag(|ẑl,k|
2)Φ.

Observe that the Hermitian matrix Φ−1
∑L

l=1 diag(|ẑl,k|
2)Φ

is positive semidefinite. Applying Lemma S.2 completes the

proof.

S.VI. ACCELERATED NEWTON’S METHOD TO SOLVE (24)

The optimal solution to (24) can be obtained by the classical

approach for solving a quadratically constrained quadratic

program (see, for example, [4, Ex. 4.22]):1

d
(i+1)
k =

([
M

(i)
Ψ

]
k,k

+ ϕkIK

)−1 [
M

(i)
Ψ

]
k,k

ν
(i)
k (S.9)

1Note that (S.9) can be also applied to a circulant majorizer MΨ, e.g.,

[MΨ]k,k = Φ−1

K
EkΦK ,

where Ek = diag
(
∣

∣ΦKPSΦ
−1ΣkΦPT

S
Φ−1

K

∣

∣1K
)

and ΦK is a (unnor-
malized) DFT matrix of size K × K. Unfortunately, an efficient scheme to
compute the circulant majorizer is unknown, due to the difficulty in deriving
the symbolic expression for the matrix of | · | (i.e., the matrix inside | · | is
no longer circulant).

where the Lagrangian parameter is determined by ϕk =
max{0, ϕ⋆

k} and ϕ⋆
k is the largest solution of the nonlinear

equation f(ϕk) = 1, where

f(ϕk) =

∥∥∥∥∥

([
M

(i)
Ψ

]
k,k

+ ϕkIK

)−1 [
M

(i)
Ψ

]
k,k

ν
(i)
k

∥∥∥∥∥

2

2

,

(S.10)

which is the so-called secular equation, for k = 1, . . . ,K.

More specifically, the algorithm goes as follows. If ‖ν
(i)
k ‖2 ≤

1, then d
(i+1)
k = ν

(i)
k is the optimal solution. Otherwise, one

can obtain the optimal solution d
(i+1)
k through (S.9) with the

Lagrangian parameter ϕk = ϕ⋆
k, where ϕ⋆

k is optimized by

solving the secular equation f(ϕk) = 1 and f(ϕk) is given as

(S.10). To solve f(ϕk) = 1, we first rewrite (S.10) by

f(ϕk) =

K∑

j=1

([
M

(i)
Ψ

]
k,k

)2

j,j

(
ν
(i)
k

)2
j

(
ϕk +

([
M

(i)
Ψ

]
k,k

)

j,j

)2 . (S.11)

where {([M
(i)
Ψ ]k,k)j,j > 0 : j = 1, . . . ,K}. Noting that

f(0) > 1 and f(ϕk) monotonically decreases to zero as

ϕk → ∞, the nonlinear equation f(ϕk) = 1 has exactly

one nonnegative solution ϕ⋆
k. The optimal solution ϕ⋆

k can

be determined by using the classical Newton’s method. To

solve the secular equation f(ϕk) = 1 faster, we apply the

accelerated Newton’s method in [5]:

ϕ
(ι+1)
k = ϕ

(ι)
k − 2

f(ϕ
(ι)
k )

f ′(ϕ
(ι)
k )

(√
f(ϕ

(ι)
k )− 1

)
(S.12)

where f(ϕk) is given as (S.11),

f ′(ϕk) = −2

K∑

j=1

([
M

(i)
Ψ

]
k,k

)2

j,j

(
ν
(i)
k

)2
j

(
ϕk +

([
M

(i)
Ψ

]
k,k

)

j,j

)3 ,

and ϕ
(0)
k = 0. Note that (S.12) approaches the optimal solution

ϕ⋆
k faster than the classical Newton’s method.

REFERENCES

[1] I. Y. Chun and J. Fessler, “Convolutional dictionary learning: Acceler-
ation and convergence,” to appear in IEEE Trans. Image Process.

[2] Y. Xu and W. Yin, “A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp.
1758–1789, Sep. 2013.

[3] R. T. Rockafellar, “Monotone operators and the proximal point algo-
rithm,” SIAM J. Control Optim., vol. 14, no. 5, pp. 877–898, Aug. 1976.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY:
Cambridge University Press, 2004.

[5] C. H. Reinsch, “Smoothing by spline functions. II,” Numer. Math.,
vol. 16, no. 5, pp. 451–454, Feb. 1971.

[6] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in Proc. 2015 IEEE CVPR, Boston, MA, Jun. 2015, pp.
5135–5143.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. & Trends in Machine Learning, vol. 3, no. 1, pp.
1–122, Jan. 2011.



4

Learned filters Examples of synthesized images Convergence behavior

-0.442

0.467

0 200 400 600 800 1000

Number of iterations, (i)

10
5

10
6

10
7

lo
g
(

F

(

{
d
(i
+
1)

k
}
,
{
z̃
(i
+
1)
}
)
)

reG-FBPG-M, multi-block, M-(v)

· · · · · ·

(a) The fruit dataset (L = 10, N = 100×100)

-0.444

0.535

0 200 400 600 800 1000

Number of iterations, (i)

10
4

10
6

lo
g
(

F

(

{
d
(i
+
1)

k
}
,
{
z̃
(i
+
1)
}
)
)

reG-FBPG-M, multi-block, M-(v)

· · · · · ·

(b) The city dataset (L = 10, N = 100×100)

-0.692

0.493

0 200 400 600 800 1000

Number of iterations, (i)

10
6

10
8

lo
g
(

F

(

{
d
(i
+
1)

k
}
,
{
z̃
(i
+
1)
}
)
)

reG-FBPG-M, multi-block, M-(v)

· · · · · ·

(c) The CT-(i) dataset (L = 10, N = 512×512)

-0.597

0.589

0 200 400 600 800 1000

Number of iterations, (i)

10
8

10
10

lo
g
(

F

(

{
d
(i
+
1)

k
}
,
{
z̃
(i
+
1)
}
)
)

reG-FBPG-M, multi-block, M-(v)

· · · · · ·

(d) The CT-(ii) dataset (L = 80, N = 128×128)

Fig. S.1. Examples of CDL results by the proposed reG-FBPG-M algorithm (using the multi-block scheme and M-(v)) from different datasets. While
guaranteeing convergence, the BPG-M methods provide desirable solutions: 1) the learned (Gabor-like) filters capture structures of training images; 2) the
corresponding sparse codes have sparsity less than 1% (for (d), approximately 5%); 3) the resultant filters and sparse codes properly synthesize the training

images. The sparsity is measured by
∑L

l=1
(‖z̃l‖/ÑK) in percentages. The synthesized images mean {PB

∑K
k=1

d⋆
k
⊛ z⋆

l,k
: l = 1, . . . , L}.
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Fig. S.2. Examples of CDL results by the ADMM algorithm [6] from different datasets (the number of whole iterations is the product of the number of inner
iterations and that of outer iterations). Although using the suggested ADMM parameters in [6], ADMM and its memory-efficient variant (see Section VII-A1
in the main paper) show unstable convergence and the (empirically) convergent filters fail to capture structures of training images and do not have Gabor-like
shapes. In addition, the sparse codes at the termination point have the sparsity of 100%. Because the system matrices in each filter and sparse code update
keep changing with the dependency of updated filters of sparse codes, one may want to develop adaptive ADMM parameter control schemes, e.g., selection
schemes based on primal and dual residual norms [7, §3.4.1], [8, §III-D] or condition number [9], [10, §IV-C].
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