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Abstract—The development of computed tomography (CT)
image reconstruction methods that significantly reduce patient
radiation exposure while maintaining high image quality is an
important area of research in low-dose CT (LDCT) imaging.
We propose a new penalized weighted least squares (PWLS)
reconstruction method that exploits regularization based on an
efficient Union of Learned TRAnsforms (PWLS-ULTRA). The
union of square transforms is pre-learned from numerous image
patches extracted from a dataset of CT images or volumes. The
proposed PWLS-based cost function is optimized by alternating
between a CT image reconstruction step, and a sparse coding and
clustering step. The CT image reconstruction step is accelerated
by a relaxed linearized augmented Lagrangian method with
ordered-subsets that reduces the number of forward and back
projections. Simulations with 2D and 3D axial CT scans of the
XCAT phantom and 3D helical chest and abdomen scans show
that for both normal-dose and low-dose levels, the proposed
method significantly improves the quality of reconstructed images
compared to PWLS reconstruction with a nonadaptive edge-
preserving regularizer (PWLS-EP). PWLS with regularization
based on a union of learned transforms leads to better image
reconstructions than using a single learned square transform.
We also incorporate patch-based weights in PWLS-ULTRA
that enhance image quality and help improve image resolution
uniformity. The proposed approach achieves comparable or
better image quality compared to learned overcomplete synthesis
dictionaries, but importantly, is much faster (computationally
more efficient).

Index Terms—Low-dose CT, statistical image reconstruction,
sparse representations, sparsifying transform learning, dictionary
learning, machine learning.

I. INTRODUCTION

There is a growing interest in techniques for computed

tomography (CT) image reconstruction that significantly re-

duce patient radiation exposure while maintaining high image
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quality. Dictionary learning based techniques have been pro-

posed for low-dose CT (LDCT) imaging, but often involve

expensive computation. This paper proposes a new penalized

weighted least aquares (PWLS) reconstruction approach that

exploits regularization based on an efficient Union of Learned

TRAnsforms (PWLS-ULTRA). In the following, we briefly

review recent methods for LDCT image reconstruction and

summarize the contributions of this work.

A. Background

Various methods have been proposed for image recon-

struction in LDCT imaging. When radiation dose is reduced,

analytical filtered back-projection (FBP) image reconstruction

methods (e.g., the Feldkamp-Davis-Kress or FDK method [1])

typically provide unacceptable image quality. For example,

streak artifacts increase severely as radiation dose is reduced

[2]. Model-based image reconstruction (MBIR) methods, aka

statistical image reconstruction (SIR) methods, can provide

high-quality reconstructions from low-dose scans [3], [4].

These methods iteratively find the image based on the system

(physical) model, the measurement statistical model, and (as-

sumed) prior information about the unknown object. A typical

MBIR method for CT uses a penalized weighted-least squares

(PWLS) cost function with a statistically weighted quadratic

data-fidelity term and a penalty term (regularizer) modeling

prior knowledge of the underlying unknown object [5]–[7].

Many current LDCT reconstruction methods use simple

prior information. Adopting better image priors in MBIR

could substantially improve image reconstruction quality for

LDCT scans. The prior image constrained compressed sensing

(PICCS) method was first proposed to enable accurate recon-

struction of CT images from highly undersampled projection

data sets [8]–[10]. Since a normal-dose CT image scanned

previously may be available in some clinical applications, dose

reduction using prior image constrained compressed sensing

(DR-PICCS) was proposed to reduce image noise [11]. Ma

et al. [12] proposed the previous normal-dose scan induced

nonlocal means (ndiNLM) method to utilize the normal-

dose image to enable low dose CT image reconstruction.

The ndiNLM method expects that the normal-dose and the

current low-dose scans are spatially aligned, and determines

optimal local weights from the normal-dose image to im-

prove the NLM weighted average [12], [13]. The PICCS and

ndiNLM class of methods incorporate prior information from
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corresponding normal-dose CT images, assumed available. We

propose a method that differs from these approaches in that it

does not require prior normal-dose images of the same patient

or object, and can rather learn general CT image features or

filters from diverse image sets and datasets.

Extracting prior information from big datasets of CT images

has great potential to enable MBIR methods to produce

significantly improved reconstructions from LDCT measure-

ments. Images are often sparse in certain transform domains

(such as wavelets, discrete cosine transform, and discrete

gradient) or dictionaries. The synthesis dictionary model ap-

proximates a signal by a linear combination of a few columns

or atoms of a pre-specified dictionary [14]. The choice of

the synthesis dictionary is critical for the success of sparse

representation modeling and other applications [15]. The data-

driven adaptation of dictionaries, or dictionary learning [16]–

[20] yields dictionaries with better sparsifying capability for

specific classes of signals than analytic dictionaries based on

mathematical models. Such learned dictionaries have been

widely exploited in various applications in recent years, in-

cluding super-resolution imaging, image or video denoising,

classification, and medical image reconstruction [21]–[27].

Some recent works also studied parametrized models such

as adaptive tight frames [28], multivariate Gaussian mixture

distributions [29], and shape dictionaries [30].

Recently, Xu et al. [31] applied dictionary learning to 2D

LDCT image reconstruction by proposing a PWLS approach

with an overcomplete synthesis dictionary-based regularizer.

Their method uses either a global dictionary trained from 2D

image patches extracted from a normal-dose FBP image, or an

adaptive dictionary jointly estimated with the low-dose image.

The trained global dictionary worked better than the adaptively

estimated dictionary for highly limited (e.g., with very few

views, or ultra-low dose) data. Several works proposed 3D

CT reconstruction by learning either a 3D dictionary from 3D

image patches, or learning three 2D dictionaries (dubbed 2.5D)

from image patches extracted from slices along the x-y, y-z,

and x-z directions, respectively [32], [33].

Dictionary learning methods typically alternate between

estimating the sparse coefficients of training signals or image

patches (sparse coding step) and updating the dictionary (dic-

tionary update step). The sparse coding step in both synthesis

dictionary learning [18], [21] and analysis dictionary learning

[34] is NP-Hard (Non-deterministic Polynomial-time hard) in

general, and algorithms such as K-SVD [18], [21] involve

relatively expensive computations for sparse coding. A recent

generalized analysis dictionary learning approach called spar-

sifying transform learning [35], [36] more efficiently learns

a transform model for signals. The transform model assumes

that a signal x ∈ R
n is approximately sparsifiable using a

transform Ω ∈ R
m×n, i.e., Ωx = z + e where z ∈ R

m

is sparse in some sense, and e ∈ R
m denotes the modeling

error in the transform domain. Transform learning methods

typically alternate between sparse approximation of training

signals in the transform domain (sparse coding step) and

updating the transform operator (transform update step). In

contrast to dictionary learning methods, the sparse coding step

in transform learning involves simple thresholding [35], [36].

Transform learning methods have been recently demonstrated

to work well in applications [37]–[40]. Pfister and Bresler

[41]–[43] showed the promise of PWLS reconstruction with

adaptive square transform-based regularization, wherein they

jointly estimated the square transform (ST) and the image.

Pre-training a (global) transform from a large dataset would

save computations during CT image reconstruction, and may

also be well-suited for highly limited data (evidenced earlier

for dictionary learning in [31]).

Wen et al. recently extended the single ST learning method

to learning a union of square transforms model, also referred

to as an overcomplete transform with block cosparsity (OC-

TOBOS) [44]. This transform learning approach jointly adapts

a collection (or union) of K square transforms and clusters the

signals or image patches into K groups. Each (learned) group

of signals is well-matched to a corresponding transform in the

collection. Such a learned union of transforms outperforms the

ST model in applications such as image denoising [44].

B. Contributions

Incorporating the efficient square transform (ST) model, we

propose a new PWLS approach for LDCT reconstruction that

exploits regularization based on a pre-learned square transform

(PWLS-ST). We also extend this approach to a more general

PWLS scheme involving a Union of Learned TRAnsforms

(PWLS-ULTRA). The transform models are pre-learned from

numerous patches extracted from a dataset of CT images

or volumes. We also incorporate patch-based weights in the

proposed regularizer to help improve image resolution or noise

uniformity. We propose an efficient iterative algorithm for

the PWLS costs that alternates between a sparse coding and

clustering step (which reduces to a sparse coding step for

PWLS-ST) that uses closed-form solutions, and an iterative

image update step. There are several iterative algorithms

that could be used for the image update step such as the

preconditioned conjugate gradient (PCG) method [45], the

separable quadratic surrogate method with ordered-subsets

based acceleration (OS-SQS) [46], iterative coordinate descent

(ICD) [47], splitting-based algorithms [48], and the optimal

gradient method (OGM) [49]. We chose the relaxed linearized

augmented Lagrangian method with ordered-subsets (relaxed

OS-LALM) [50] for the image update step.

The proposed PWLS-ULTRA approach clusters the voxels

into different groups. These groups often capture features such

as bones, specific soft tissues, edges, etc. Experiments with

2D and 3D axial CT scans of the XCAT phantom and 3D

helical chest and abdomen scans show that for both normal-

dose and low-dose levels, the proposed methods significantly

improve the quality of reconstructed images compared to

conventional reconstruction methods such as filtered back-

projection or PWLS reconstruction with a nonadaptive edge-

preserving regularizer (PWLS-EP). The union of learned trans-

forms provides better image reconstruction quality than using a

single learned square transform. The proposed PWLS-ULTRA

achieves comparable or better image quality compared to

learned overcomplete synthesis dictionaries, but importantly,

is much faster (computationally more efficient).
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We presented a brief study of PWLS-ST for low-dose

fan-beam (2D) CT image reconstruction in [51]. This paper

investigates the more general PWLS-ULTRA framework, and

presents experimental results illustrating the properties of the

PWLS-ST and PWLS-ULTRA algorithms and demonstrating

their performance for low-dose fan-beam, cone-beam (3D) and

helical (3D) CT.

C. Organization

Section II describes the formulations for pre-learning a

square transform or a union of transforms, and the formula-

tions for PWLS reconstruction with regularization based on

learned sparsifying transforms. Section III derives efficient

optimization algorithms for the proposed problems. Section IV

presents experimental results illustrating properties of the

proposed algorithms and demonstrating their promising perfor-

mance for LDCT reconstruction compared to numerous recent

methods. Section V presents our conclusions and mentions

areas of future work.

II. PROBLEM FORMULATIONS FOR TRANSFORM

LEARNING AND IMAGE RECONSTRUCTION

A. PWLS-ST Formulation for LDCT Reconstruction

Given N ′ vectorized image patches (2D or 3D) extracted

from a dataset of CT images or volumes, we learn a square

transform Ω ∈ R
l×l by solving the following (training)

optimization problem:

min
Ω,Z

‖ΩX− Z‖2F + λQ(Ω) +

N ′

∑

i=1

η2‖Zi‖0 (P0)

where l is the number of pixels in each patch, λ = λ0‖X‖2F
(λ0 > 0 is a constant) and η > 0 are scalar parameters,

and {Zi}
N ′

i=1 denote the sparse codes of the training signals

(vectorized patches) {Xi}
N ′

i=1. Matrices X ∈ R
l×N ′

and

Z ∈ R
l×N ′

have the training signals and sparse codes respec-

tively, as their columns. The ℓ0 “norm” counts the number

of non-zeros in a vector. The term ‖ΩX− Z‖2F is called the

sparsification error and measures the deviation of the signals

in the transform domain from their sparse approximations.

Regularizer Q(Ω) , ‖Ω‖2F − log | detΩ| prevents trivial

solutions and controls the condition number of Ω [36].

After a transform Ω is learned, we reconstruct an (vector-

ized) image or volume x ∈ R
Np from noisy sinogram data

y ∈ R
Nd by solving the following optimization problem [51]:

min
x�0

1

2
‖y −Ax‖2W + βR(x) (P1)

where W = diag{wi} ∈ R
Nd×Nd is a diagonal weighting

matrix with elements being the estimated inverse variance of

yi [6], A ∈ R
Nd×Np is the system matrix of a CT scan, the

parameter β > 0 controls the noise and resolution trade-off,

and the regularizer R(x) based on Ω is defined as

R(x) , min
{zj}

Ñ
∑

j=1

τj

{

‖ΩPjx− zj‖
2
2 + γ2‖zj‖0

}

(1)

(a) η = 50 (b) η = 100

Fig. 1. Behavior of PWLS-ST: Pre-learned sparsifying transform Ω with (a)
η = 50 and (b) η = 100. The rows of the 512× 512 matrix Ω are reshaped
into 8 × 8 × 8 (3D) patches and the first 8 × 8 slices of 256 of these 3D
patches are displayed for simplicity.

where Ñ is the number of image patches, the operator Pj ∈
R

l×Np extracts the jth patch of l voxels of x as Pjx, and

vector zj ∈ R
l denotes the transform-sparse representation of

Pjx. The regularizer includes a sparsification error term and

a ℓ0 “norm”-based sparsity penalty with weight γ2 (γ > 0).

We also include patch-based weights {τj} in (1) to en-

courage uniform spatial resolution or uniform noise in the

reconstructed image [52] as follows:

τj , ‖Pjκ‖1/l (2)

with κ (of same size as x) whose elements κj are defined

in terms of the entries of A (denoted aij) and W as κj ,
√

∑Nd

i=1 aijwi/
∑Nd

i=1 aij [53, eq(39)]. While (2) uses the ℓ1
norm, corresponding to the mean value of Pjκ, to define τj ,

we have observed that other alternative norms also work well

in practice for LDCT reconstruction.

Fig. 1 shows example transforms (rows of Ω are reshaped

as 8 × 8 × 8 patches and the first 8 × 8 slices of 256 such

3D patches are shown) learned from 8× 8× 8 patches of an

XCAT phantom [54] volume. The transform learned with η =
100 in (P0) has more oriented features whereas the transform

learned with η = 50 shows more gradient (or finite-difference)

type features (pointed by the green arrows). This behavior

suggests that a single ST may not be rich enough to capture the

diverse features, edges, and other properties of CT volumes.

Therefore, next we consider the extension of the ST approach

to a rich union of learned transforms scheme.

B. Learning a Union of Sparsifying Transforms

To learn a union of sparsifying transforms {Ωk}
K

k=1 from

N ′ (vectorized) patches, we solve

min
{Ωk,Zi,Ck}

K
∑

k=1

∑

i∈Ck

{

‖ΩkXi − Zi‖
2
2 + η2‖Zi‖0

}

+

K
∑

k=1

λkQ(Ωk) s.t. {Ck} ∈ G.

(P2)

This formulation groups the training signals {Xi} into K
classes according to the transform they best match, and Ck

denotes the set of indices of signals matched to the kth

class. Set G denotes all possible partitionings of {1, 2, .., N ′}
into K disjoint subsets. We use K regularizers Q(Ωk) ,
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‖Ωk‖
2
F − log | detΩk|, 1 ≤ k ≤ K, to control the prop-

erties of the transforms. We set these regularizer weights as

λk = λ0‖XCk
‖2F [44], where λ0 > 0 is a constant and XCk

is a matrix whose columns are the training signals in the

kth cluster. This choice of {λk} together with η = η0‖X‖F
for η0 > 0 allows the terms in (P2) to scale appropriately

with the data. Problem (P2) learns a collection of transforms

and a clustering for the image patches, together with the

patches’ sparse coefficients {Zi}. The next section uses these

transforms for image reconstruction.

C. LDCT Reconstruction with ULTRA Regularization

We propose a PWLS-ULTRA framework, where we solve

(P1) but with the regularizer R(x) defined based on a union

of sparsifying transforms as

R(x) , min
{zj ,Ck}

K
∑

k=1

{

∑

j∈Ck

τj
{

‖ΩkPjx− zj‖
2
2 + γ2‖zj‖0

}

}

s.t. {Ck} ∈ G.
(3)

This regularizer measures the sparsification error of each patch

using its best-matched transform. Using (3), (P1) estimates the

image x, the sparse coefficients of image patches {zj}, and

the cluster assignments {Ck} from LDCT sinogram data y.

III. ALGORITHMS AND PROPERTIES

The square transform learning and the PWLS-ST formu-

lations are special cases (corresponding to K = 1) of the

ULTRA-based formulations. Therefore, this section describes

algorithms for solving (P1) with regularizer (3) and (P2).

A. Algorithm for Training a Union of Transforms

We adopt an alternating minimization algorithm for (P2)

that alternates between a transform update step (solving for

{Ωk}) and a sparse coding and clustering step (solving for

{Zi, Ck}). These steps are described next.

1) Transform Update Step: With {Zi, Ck} fixed, we solve

the following optimization problem for {Ωk} [44]:

min
{Ωk}

K
∑

k=1

∑

i∈Ck

‖ΩkXi − Zi‖
2
2 +

K
∑

k=1

λkQ(Ωk). (4)

Since the objective is in summation form, the above prob-

lem separates into K independent single transform learning

problems that we solve in parallel. The kth such optimization

problem is as follows:

min
Ωk

∑

i∈Ck

‖ΩkXi − Zi‖
2
2 + λkQ(Ωk). (5)

We update the transform Ωk following prior work [36], [44].

Let QΣRT denote the full singular value decomposition of

L−1XCk
ZT

Ck
, with LLT , XCk

XT
Ck

+λkI (i.e., L is a matrix

square root). Then, the minimizer of (5) is

Ω̂k = 0.5R
(

Σ+ (Σ2 + 2λkI)
1

2

)

QTL−1. (6)

2) Sparse Coding and Clustering Step: With {Ωk} fixed,

we solve the following sub-problem for {Zi, Ck}:

min
{Zi,Ck}

K
∑

k=1

∑

i∈Ck

{

‖ΩkXi−Zi‖
2
2+η2‖Zi‖0+λ0‖Xi‖

2
2Q(Ωk)

}

(7)

For given cluster memberships, the optimal sparse codes are

Zi = Hη(ΩkXi), ∀i ∈ Ck, where the hard-thresholding

operator Hη(·) zeros out vector entries with magnitude less

than η. Using this result, it follows that the optimal cluster

membership for each Xi in (7) is k̂i = argmin
1≤k≤K

{

‖ΩkXi −

Hη(ΩkXi)‖
2
2+η2‖Hη(ΩkXi)‖0+λ0‖Xi‖

2
2Q(Ωk)

}

, and the

corresponding optimal sparse code is Ẑi = Hη(Ωk̂i
Xi).

B. PWLS-ULTRA Image Reconstruction Algorithm

We propose an alternating algorithm for the PWLS-ULTRA

formulation (i.e., (P1) with regularizer (3)) that alternates

between updating x (image update step), and {zj , Ck} (sparse

coding and clustering step).

1) Image Update Step: With {zj , Ck} fixed, (P1) for

PWLS-ULTRA reduces to the following weighted least

squares problem:

min
x�0

1

2
‖y −Ax‖2W + R2(x) (8)

where R2(x) , β
∑K

k=1

∑

j∈Ck
τj‖ΩkPjx− zj‖

2
2.

We solve (8) using the recent relaxed OS-LALM [50],

whose iterations are shown in Algorithm 1. Here, for each

iteration n, we further iterate over 1 ≤ m ≤ M corresponding

to M ordered subsets. The matrices Am, Wm, and the vector

ym in Algorithm 1 are sub-matrices of A, W, and sub-vector

of y, respectively, for the mth subset. Matrix DA � ATWA

is a diagonal majorizing matrix of ATWA; specifically we

use [46]

DA , diag{ATWA1} � ATWA. (9)

The gradient ∇R2(x) = 2β
∑K

k=1

∑

j∈Ck
τjP

T
j Ω

T
k (ΩkPjx−

zj), the (over-)relaxation parameter α ∈ [1, 2), and the

parameter ρ > 0 decreases gradually with iteration [50],

ρr(α) =

{

1, r = 0

π
α(r+1)

√

1−
(

π
2α(r+1)

)2
, otherwise,

(10)

where r indexes the total number of n and m iterations. Lastly,

DR in Algorithm 1 is a diagonal majorizing matrix of the

Hessian of the regularizer R2(x), specifically:

DR , 2β

{

max
k

λmax(Ω
T
kΩk)

} K
∑

k=1

∑

j∈Ck

τjP
T
j Pj

� 2β

K
∑

k=1

∑

j∈Ck

τjP
T
j Ω

T
kΩkPj = ∇2R2(x).

(11)

Since this DR is independent of x, {zj}, and {Ck}, we

precompute it using patch-based operations [25] (cf. the sup-

plement1 for details) prior to iterating.

1Supplementary material is available in the supplementary files/multimedia
tab.
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Algorithm 1 PWLS-ULTRA Algorithm

Input: initial image x̃(0), pre-learned {Ωk}, threshold γ,

α = 1.999, DA in (9), DR in (11), number of outer

iterations T , number of inner iterations N , and number of

subsets M .

Output: reconstructed image x̃(T ), cluster indices {C̃
(T )
k }.

for t = 0, 1, 2, · · · , T − 1 do

1) Image Update: {z̃
(t)
j } and {C̃

(t)
k } fixed,

Initialization: ρ = 1, x(0) = x̃(t), g(0) = ζ(0) =
MAT

MWM (AMx(0) − yM ) and h(0) = DAx(0) − ζ(0).

for n = 0, 1, 2, · · · , N − 1 do

for m = 0, 1, 2, · · · ,M − 1 do r = nM +m






































s(r+1) = ρ(DAx(r) − h(r)) + (1− ρ)g(r)

x(r+1) = [x(r) − (ρDA +DR)
−1(s(r+1) +∇R2(x

(r)))]+

ζ(r+1) , MAT
mWm(Amx(r+1) − ym)

g(r+1) =
ρ

ρ+ 1
(αζ(r+1) + (1− α)g(r)) +

1

ρ+ 1
g(r)

h(r+1) = α(DAx(r+1) − ζ(r+1)) + (1− α)h(r)

decreasing ρ using (10).

end for

end for

x̃(t+1) = x(NM).

2) Sparse Coding and Clustering: with x̃(t+1) fixed,

for each 1 ≤ j ≤ N , obtain k̂j using (13). Then z̃
(t+1)
j =

Hγ(Ωk̂j
Pj x̃

(t+1)), and update C̃
(t+1)

k̂j

.

end for

2) Sparse Coding and Clustering Step: With x fixed, we

solve the following sub-problem to determine the optimal

sparse codes and cluster assignments for each patch:

min
{zj},{Ck}∈G

K
∑

k=1

{

∑

j∈Ck

τj
{

‖ΩkPjx− zj‖
2
2 + γ2‖zj‖0

}

}

.

(12)

For each patch Pjx, with (optimized) zj = Hγ(ΩkPjx),
the optimal cluster assignment is computed as follows:

k̂j = argmin
1≤k≤K

‖ΩkPjx−Hγ(ΩkPjx)‖
2
2+γ2‖Hγ(ΩkPjx)‖0

(13)

Minimizing over k above finds the best-matched transform.

Then, the optimal sparse codes are ẑj = Hγ(Ωk̂j
Pjx).

3) Overall Algorithm: The proposed method for the PWLS-

ULTRA problem is shown in Algorithm 1. The algorithm for

the PWLS-ST formulation is obtained by setting K = 1 and

skipping the clustering procedure in the sparse coding and

clustering step. Algorithm 1 uses an initial image estimate and

the union of pre-learned transforms {Ωk}. It then alternates

between the image update, and sparse coding and clustering

steps until a convergence criterion (such as ‖x̃(t+1)−x̃(t)‖2 <
ǫ for some small ǫ > 0) is satisfied, or alternatively until some

maximum inner/outer iteration counts are reached.

4) Computational Cost: Each outer iteration of the pro-

posed Algorithm 1 involves the image update and the sparse

coding and clustering steps. The cost of the sparse coding

and clustering step scales as O(l2N) and is dominated by

matrix-vector products. Importantly, unlike prior dictionary

learning-based works [31], where the computations for the

sparse coding step (involving orthogonal matching pursuit

(OMP) [55]) can scale worse as O(l3N) (assuming synthesis

sparsity levels of patches ∝ l), the exact sparse coding and

clustering in PWLS-ULTRA is cheaper, especially for large

patch sizes. Similar to prior works [31], the computations

in the image update step are dominated by the forward and

back projection operations. Section IV compares the proposed

method to synthesis dictionary learning-based approaches, and

shows that our transform approach runs much faster.

IV. EXPERIMENTAL RESULTS

This section presents experimental results illustrating

properties of the proposed algorithms and demonstrat-

ing their promising performance for LDCT reconstruction

compared to numerous recent methods. We include ad-

ditional experimental results in the supplement. A link

to software to reproduce our results is provided at

http://web.eecs.umich.edu/ fessler/irt/reproduce/.

A. Framework and Data

We evaluate the proposed PWLS-ULTRA and PWLS-ST

(i.e., with K = 1) methods for 2D fan-beam and 3D axial

cone-beam CT reconstruction of the XCAT phantom [54]. We

also apply the proposed methods to helical CT clinical data

of the chest and abdomen.

Section IV-B discusses the role and intuition of each pa-

rameter in the proposed methods. Section IV-C illustrates the

properties of the transform learning and image reconstruction

methods. Sections IV-D and IV-E show results for 2D fan-

beam and 3D axial cone-beam CT, respectively, for the XCAT

phantom data. We used the “Poisson + Gaussian” model, i.e.,

k̃ Poisson{I0 exp(−[Ax]i)} + Normal{0, σ2} to simulate CT

measurements of the XCAT phantom, where I0 is the incident

X-ray intensity incorporating X-ray source illumination and

the detector gain, the parameter k̃ = 1 models the conversion

gain from X-ray photons to electrons, and σ2 = 52 is the

variance of electronic noise [56]. We compare the image

reconstruction quality obtained with PWLS-ST and PWLS-

ULTRA with those of:

• FBP: conventional FBP method with a Hanning window.

• PWLS-EP: PWLS reconstruction with the edge-

preserving regularizer R(x) =
∑Np

j=1

∑

k∈Nj
κjκkϕ(xj−

xk), where Nj is the size of the neighborhood, κj and

κk are the parameters encouraging uniform noise [53],

and ϕ(t) , δ2(|t/δ| − log(1+ |t/δ|)). We optimized this

PWLS cost function using the relaxed OS-LALM [50].

• PWLS-DL: PWLS reconstruction with a learned over-

complete synthesis dictionary based regularization, whose

image update step is optimized by relaxed OS-LALM

instead of the SQS-OS used in [31].

Section IV-F reports the reconstructions from helical CT

clinical data of the chest and abdomen (low-dose). Finally,

Section IV-G compares the performance of PWLS-ULTRA

to an oracle scheme that uses cluster memberships estimated

directly from the reference or ground truth images.
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To compare various methods quantitatively for the case of

the XCAT phantom, we calculated the Root Mean Square

Error (RMSE) and Structural Similarity Index Measurement

(SSIM) [57] of the reconstructions in a region of inter-

est (ROI). RMSE in Hounsfield units 2 (HU) is defined

as RMSE =

√

∑Np,ROI

i=1 (x̂i − x∗
i )

2/Np,ROI, where x∗ is the

ground truth image and Np,ROI is the number of pixels (voxels)

in the ROI. Unless otherwise noted, we tuned the parameters

of various methods for each experiment to achieve good

RMSE and SSIM. For the clinical chest and low-dose abdomen

data, the reconstructions were evaluated visually using voxel

profiles. We display all reconstructions in this section using a

display window [800, 1200] HU, unless otherwise noted.

In the 2D fan-beam CT experiments, we pre-learned square

transforms and union of square transforms from 8×8 overlap-

ping image patches extracted from five 512×512 XCAT phan-

tom slices, with a patch stride 1×1. We ran 1000 iterations of

the alternating minimization transform learning algorithm in

Section III-A (or in [36] when K = 1) to ensure convergence,

and used λ0 = 31. The transforms were initialized with the

2D DCT, and k-means clustering (of patches) was used to

initialize the clusters for learning a union of transforms. We

simulated a 2D fan-beam CT scan using an 840× 840 XCAT

phantom slice (air cropped) that differs from the training slices,

and ∆x = ∆y = 0.4883 mm. Noisy sinograms of size

888 × 984 were numerically simulated with GE LightSpeed

fan-beam geometry corresponding to a monoenergetic source

with 1 × 104 and 5 × 103 incident photons per ray and no

scatter, respectively. We reconstructed a 420×420 image with

a coarser grid, where ∆x = ∆y = 0.9766 mm. The ROI

here was a circular (around center) region containing all the

phantom tissues.

In the 3D cone-beam CT reconstruction experiments, we

pre-learned STs and union of square transforms from 8×8×8
patches (N ′ ≈ 1×106) extracted from a 420×420×54 XCAT

phantom (air cropped) with a patch stride 2 × 2 × 2. We set

λ0 large enough, e.g., λ0 = 31, to ensure well-conditioned

learned transforms. We ran the alternating minimization trans-

form learning algorithms for 1000 iterations. The transforms

were initialized with the 3D DCT, and a random initialization

was used for the clusters (because k-means produced some

empty clusters for large K) for learning a union of square

transforms. We simulated an axial cone-beam CT scan using

an 840× 840× 96 XCAT phantom with ∆x = ∆y = 0.4883
mm and ∆z = 0.625 mm. We generated sinograms of size

888 × 64 × 984 using GE LightSpeed cone-beam geometry

corresponding to a monoenergetic source with 1 × 104 and

5× 103 incident photons per ray and no scatter, respectively.

We reconstructed a 420 × 420 × 96 volume with a coarser

grid, where ∆x = ∆y = 0.9766 mm and ∆z = 0.625 mm.

For PWLS-ST and PWLS-ULTRA reconstructions, the patch

size was 8× 8× 8 with a patch stride 2× 2× 2 (Ñ ≈ 2× 106

patches). The ROI for the 3D case consisted of the central

64 of 96 axial slices and a circular (around center) region in

each slice (cylinder in 3D). The diameter of the circle was 420
pixels, which is the width of each slice.

2Modified Hounsfield units, where air is 0 HU and water is 1000 HU.

For the clinical chest data, we reconstructed a 420× 420×
222 image volume (air cropped) with patch size 8×8×8 and

patch stride 3× 3× 3 (Ñ ≈ 1.5× 106 patches), where ∆x =
∆y = 1.1667 mm and ∆z = 0.625 mm, from a helical CT

scan. The size of the sinogram was 888×64×3611 and pitch

was 1.0 (about 3.7 rotations with rotation time 0.4 seconds).

The tube current and tube voltage of the X-ray source were

750 mA and 120 kVp, respectively. To further evaluate the

proposed method, we reconstructed 512×512×200 abdomen

region volumes with patch size 8 × 8 × 8, patch stride 3 ×
3 × 3, ∆x = ∆y = 1 mm and ∆z = 0.625 mm, from low-

dose helical CT patient scans. The size of the sinogram was

888×64×2952 and pitch was 1.375 (3 rotations with rotation

time 0.8 seconds). The tube voltage was 120 kVp, and the tube

currents were 150 mA and 35 mA (scanned twice for the same

patient).

B. Parameter Selection

The {τj} parameters are designed using the κ information

as per (2), so no additional tuning is needed. Since the

transforms are pre-learned once from a given dataset and

used to reconstruct new data, the parameters λ and η are

tuned during training. As mentioned in prior work [36], the

parameter λ controls the condition number and larger values

of λ encourage well-conditioned transforms that work well for

image reconstruction. The η parameter can be set to achieve

low sparsity (e.g., 5 − 10%) and a good trade-off with spar-

sification error (the transform-domain residual in the training

objective) for training data. In our experiments, we learned

transforms for a couple different η values (training sparsities)

and compared their effectiveness in some test reconstructions

before picking the best learned model.

During reconstruction, mainly the parameters β and γ
(Section IV-C discusses about K) need to be tuned. These

parameters are tuned to achieve a good trade-off between

image resolution and noise. For example, large values of

γ would achieve very low sparsities and reduce the noise

but potentially oversmooth the image. For a given learned

transform, we tuned β and γ together to achieve good RMSE

and SSIM of the reconstruction. Since the PWLS-ST and

PWLS-ULTRA formulations are quite similar, except for the

richer model and implicit clustering in the latter case, one

could tune β and γ for ST first, and use these optimized

values for ULTRA. In our experiments, we tuned parameters

separately for ST and ULTRA, and found the tuned values to

be typically similar.

Likewise, standard methods like the PWLS-EP method have

an overall regularization parameter β and an edge-preserving

parameter δ, so the number of parameters that one must tune

during reconstruction (after training is done) is similar for EP

and ULTRA. Similarly as for PWLS-ULTRA, the parameters

(maximum patch-wise sparsity level and error threshold for

sparse coding) for the prior PWLS-DL were selected carefully

(by sweeping over values in a grid) to achieve good RMSE

and SSIM in each case, for fair comparison.

C. Behavior of the Learning and PWLS-ULTRA Algorithms

We evaluate the behavior of the PWLS-ULTRA method

(with τj = 1∀j) for 3D cone-beam CT data with I0 = 1×104.
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Fig. 2. RMSE and SSIM for PWLS-ULTRA for various choices of number
of clusters K (left), and the central slices along three directions for the
underlying volume in the cone-beam CT reconstruction experiments (right).

Fig. 2 shows the central slices along three directions for the

underlying (true) XCAT phantom volume. We reconstruct the

volume from low-dose CT measurements. Fig. 2 shows the

RMSE and SSIM of PWLS-ULTRA for various choices of

K, the number of clusters (patch size 8 × 8 × 8 and patch

stride 2 × 2 × 2). Rich models (large K) produce better

reconstructions compared to using a single ST (K = 1).

For the piece-wise constant phantom, K = 5 clusters works

well enough, with only a small additional RMSE or SSIM

improvement observed for larger K. Larger values of K led

to sharper image edges.

Fig. 3 presents an example of the pixel-level clustering

in the central axial slice achieved with the PWLS-ULTRA

method for K = 5. Since PWLS-ULTRA clusters patches, we

cluster individual pixels using a majority vote among the 3D

patches that overlap the pixel. Class 1 contains most of the

soft tissues; class 2 comprises most of the bones and blood

vessels; classes 3 and 4 have some high-contrast edges oriented

along specific directions; and class 5 mainly includes low-

contrast edges. Since the clustering step (during both training

and reconstruction) is unsupervised, i.e., different anatomical

structures were not labeled manually, there are also a few

edges with high pixel intensities included in class 2. The

trained (3D) transforms (with η = 50) for each cluster are

also displayed in a similar manner as in Fig. 1. The transforms

show features (e.g., with specific orientations) that clearly

reflect the properties of the patches/tissues in each class.

D. 2D LDCT Reconstruction Results and Comparisons

1) Reconstruction Quality: We evaluate the performance

of various algorithms for image reconstruction from low-dose

fan-beam CT data. Initialized with FBP reconstructions, we

ran the PWLS-EP algorithm for 50 iterations using relaxed

OS-LALM with 24 subsets, and set δ = 10 (HU) and

the regularization parameter β = 216.0 and β = 216.5 for

I0 = 1 × 104 and I0 = 5 × 103, respectively. For PWLS-

DL, PWLS-ST, and PWLS-ULTRA, we initialized with the

PWLS-EP reconstruction, and ran 200 outer iterations with 2
iterations of the image update step with 4 ordered subsets,

i.e., N = 2, M = 4. For PWLS-DL, we pre-learned a

64×256 overcomplete dictionary from 8×8 patches extracted

from five XCAT phantom slices (same slices as used for

transform learning) with a patch stride 1×1, using a maximum

patch-wise sparsity level of 20 and an error threshold or

tolerance for sparse coding of 10−1. During reconstruction

with PWLS-DL, we used a maximum sparsity level of 25,

TABLE I
RMSE (HU) AND SSIM OF 2D (FAN-BEAM) IMAGE RECONSTRUCTIONS

WITH FBP, PWLS-EP, PWLS-DL, PWLS-ST, PWLS-ULTRA
(K = 15), AND PWLS-ULTRA (K = 15) WITH PATCH-BASED WEIGHTS

(τj ), FOR TWO INCIDENT PHOTON INTENSITIES.

Intensity FBP EP DL ST ULTRA ULTRA-{τj}

1× 10
4 73.7 39.4 33.6 36.5 34.4 33.1

0.547 0.892 0.966 0.966 0.967 0.969

5× 10
3 89.0 49.7 39.1 43.9 39.8 38.9

0.472 0.884 0.958 0.955 0.953 0.956

TABLE II
RMSE (HU) IN THREE ROIS OF 2D (FAN-BEAM) IMAGE

RECONSTRUCTIONS WITH FBP, PWLS-EP, PWLS-DL, PWLS-ST,
PWLS-ULTRA (K = 15), AND PWLS-ULTRA (K = 15) WITH

PATCH-BASED WEIGHTS (τj ), FOR TWO INCIDENT PHOTON INTENSITIES.

Intensity Methods ROI-1 ROI-2 ROI-3

1× 10
4

FBP 21.8 15.6 39.6

EP 6.6 10.9 14.7

DL 3.7 9.9 16.6

ST 3.9 10.8 14.1

ULTRA 4.2 9.6 13.8

ULTRA-{τj} 4.2 9.3 12.6

5× 10
3

FBP 51.7 36.4 39.0

EP 7.1 14.9 28.5

DL 7.0 14.5 20.7

ST 6.3 14.3 21.4

ULTRA 5.8 13.7 17.5

ULTRA-{τj} 5.9 13.7 18.1

an error tolerance of 55, and a regularization parameter of

7.0× 104 and 6.0× 104 for I0 = 1× 104 and I0 = 5× 103,

respectively. For PWLS-ST and PWLS-ULTRA (K = 15), we

chose (β, γ, η) for the two incident photon intensities as fol-

lows:
(

2.0× 105, 20, 75
)

and
(

1.3× 105, 20, 75
)

for PWLS-

ST (τj = 1);
(

2.0× 105, 20, 125
)

and
(

1.0× 105, 25, 125
)

for PWLS-ULTRA (τj = 1), and
(

1.3× 104, 22, 125
)

and
(

1.0× 104, 25, 125
)

for PWLS-ULTRA with the weights τj .

Table I lists the RMSE and SSIM values for reconstructions

with FBP, PWLS-EP, PWLS-DL, PWLS-ST (τj = 1), PWLS-

ULTRA (K = 15, τj = 1), and PWLS-ULTRA (K = 15)

with the weights τj . The adaptive PWLS methods outperform

the conventional FBP and the non-adaptive PWLS-EP. Both

PWLS-DL that uses an overcomplete dictionary and PWLS-

ULTRA using a union of learned transforms lead to better

reconstruction quality than PWLS-ST. Importantly, PWLS-

ULTRA achieves comparable or better image quality than

PWLS-DL. Table II lists the RMSE values in various ROIs

(corresponding to specific tissues) for reconstructions with

the six methods. The three zoom-ins from left to right in

Fig. 4 correspond to ROI-1 to ROI-3 in Table II, respectively.

ULTRA achieve lower RMSE in most of these ROIs compared

to DL. Fig. 4 compares the reconstructions for PWLS-DL and

PWLS-ULTRA with the weights τj at I0 = 1 × 104. The

ULTRA reconstruction shows fewer artifacts and better clarity

of bone and soft tissue edges in the selected ROIs.
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Class 1 Class 2 Class 3 Class 4 Class 5

Fig. 3. Pixel-level clustering results (top row) for the central axial slice of the PWLS-ULTRA (K = 5) reconstruction at I0 = 1× 10
4. The pixels in each

class are displayed using the intensities in the reconstruction. The corresponding transforms (the first 8× 8 slice of 8× 8× 8 atoms) are in the bottom row.

Fig. 4. Comparison of 2D reconstructions for PWLS-DL (left) and PWLS-
ULTRA (K = 15, right) at I0 = 1× 10

4.

2) Runtimes: To compare the runtimes of various data-

driven methods, we ran PWLS-DL, PWLS-ST, and PWLS-

ULTRA (K = 15) (all initialized with the FBP reconstruction)

for 200 outer iterations with 2 iterations of the image update

step and 4 ordered subsets. For PWLS-ULTRA, we performed

the clustering step once every outer iteration. While the total

runtime for the 200 iterations (using a machine with two

2.80 GHz 10-core Intel Xeon E5-2680 processors) was 95
minutes for PWLS-DL, it was only 20 minutes for PWLS-ST

and 27 minutes for PWLS-ULTRA. We observed that PWLS-

DL and the proposed methods had similar convergence rates,

but the latter were much faster per iteration, thus leading to

much lower net runtimes. The runtime of PWLS-DL was quite

equally dominated by the sparse coding (with OMP [55]) and

image update steps, whereas for the transform-based methods,

the sparse coding and clustering involving simple closed-

form solutions and thresholding operations required negligible

runtime. The advantage in runtime was achieved despite using

an unoptimized Matlab implementation of PWLS-ST and

PWLS-ULTRA, and using an efficient MEX/C implementation

for sparse coding with OMP [55] in PWLS-DL. PWLS-DL

is far slower for 3D reconstructions with large 3D patches.

Hence, we focus our comparisons between the transform

learning and dictionary learning-based schemes for 2D LDCT

reconstruction.

E. Low-dose Cone-beam CT Results and Comparisons

We evaluate the performance of various algorithms for

reconstructing CT volumes from simulated low-dose cone-

beam data. Initialized with FDK reconstructions, we ran the

PWLS-EP algorithm with edge-preserving parameter δ = 10
(HU) and regularization parameter β = 214.5 for 50 iterations

with 24 subsets for both I0 = 1 × 104 and I0 = 5 × 103.

We evaluate PWLS-ST and PWLS-ULTRA without the patch-

based weights. We also evaluate PWLS-ULTRA with such

weights. Initialized with the PWLS-EP reconstruction, we ran

2 iterations of the image update step for the proposed methods

with 4 subsets. We performed the clustering step once every

20 outer iterations, which worked well and saved computation.

We chose (β, γ, η) for I0 = 1× 104 and I0 = 5× 103 as fol-

lows:
(

2.0× 105, 18, 50
)

and
(

1.5× 105, 20, 50
)

for PWLS-

ST (τj = 1);
(

2.5× 105, 18, 75
)

and
(

1.5× 105, 20, 75
)

for PWLS-ULTRA (τj = 1); and
(

1.5× 104, 18, 75
)

and
(

1.2× 104, 20, 75
)

for PWLS-ULTRA with the weights τj .

Table III lists the RMSE and SSIM values of the recon-

structions with FDK, PWLS-EP, PWLS-ST (τj = 1), PWLS-

ULTRA (K = 15, τj = 1), and PWLS-ULTRA (K = 15)

with patch-based weights τj . Both PWLS-ST and PWLS-

ULTRA significantly improve the RMSE and SSIM compared

to FDK and the non-adaptive PWLS-EP. Importantly, PWLS-

ULTRA with a richer union of learned transforms leads to

better reconstructions than PWLS-ST with a single learned ST.

Incorporating the patch-based weights in PWLS-ULTRA leads

to further improvement in reconstruction quality compared to

PWLS-ULTRA with uniform weights τj = 1 for all patches. In

particular, the patch-based weights lead to improved resolution

for soft tissues in 3D LDCT reconstructions.

Fig. 5 shows the reconstructions and the corresponding

error (magnitudes) images (shown for the central axial, sagit-

tal, and coronal planes) for FDK, PWLS-EP, and PWLS-

ULTRA (K = 15) with the patch-based weights. Compared

to FDK and PWLS-EP, PWLS-ULTRA significantly improves

image quality by reducing noise and preserving structural

details (see zoom-ins). Fig. 6 shows the RMSE for each
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TABLE III
RMSE (HU) AND SSIM OF 3D (CONE-BEAM) RECONSTRUCTIONS WITH

FDK, PWLS-EP, PWLS-ST, PWLS-ULTRA (K = 15), AND

PWLS-ULTRA (K = 15) WITH PATCH-BASED WEIGHTS (τj ), FOR TWO

INCIDENT PHOTON INTENSITIES.

Intensity FDK EP ST ULTRA ULTRA-{τj}

1× 10
4 67.8 34.6 32.1 30.7 29.2

0.536 0.940 0.976 0.978 0.981

5× 10
3 89.0 41.1 37.3 35.7 34.2

0.463 0.921 0.967 0.970 0.974

FDK

0

100

FDK Error

PWLS-EP

0

100

PWLS-EP Error

PWLS-ULTRA

0

100

PWLS-ULTRA Error

Fig. 5. Comparison of the reconstructions and corresponding error images
(shown for the central axial, sagittal, and coronal planes) for FDK, PWLS-EP,
and PWLS-ULTRA (K = 15) with patch-based weights at I0 = 1 × 10

4.
The unit of the display window of the error images is HU.
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Fig. 6. RMSE of each axial slice in the PWLS-EP and PWLS-ULTRA
reconstructions for I0 = 1× 10

4 (left) and I0 = 5× 10
3 (right).

axial slice in the PWLS-EP and PWLS-ULTRA (with the

weights τj) reconstructions. PWLS-ULTRA clearly provides

large improvements in RMSE for many slices, with greater

improvements near the central slice.

F. Results for Clinical Data: Chest and Abdomen Scans

We reconstructed the chest volume from helical CT data.

For PWLS-EP, we used the same parameter settings as used

for this data in prior work [50]. Initializing with the PWLS-

EP reconstruction, we ran the PWLS-ULTRA (K = 5) method

with the weights τj for 78 outer iterations with 3 iterations of

the image update step and 4 subsets. We performed clustering

once every 10 outer iterations. We chose β = 2 × 105 and

γ = 25 for PWLS-ULTRA to obtain good visual quality of the

reconstruction. We used the transforms learned from the XCAT

phantom volume with η = 100 to obtain reconstructions with

PWLS-ULTRA for the clinical chest CT data. The supplement

shows that transforms learned from the XCAT phantom pro-

vide similar visual reconstructions as transforms learned from

the PWLS-EP reconstruction of the chest data. This suggests

that the transform learning algorithm may extract quite general

and effective image features without requiring a very closely

matched training dataset, which is a key distinction from the

PICCS and ndiNLM-type methods [8]–[13].

Fig. 7 shows the reconstructions (shown for the central

axial plane in the 3D volume) for FDK (provided by GE

Healthcare), PWLS-EP (corresponds to Fig. 8(a)), and PWLS-

ULTRA with K = 5 (corresponds to Fig. 9(a)). The PWLS-

ULTRA reconstruction has lower artifacts and noise. More-

over, the image features and edges are better reconstructed by

PWLS-ULTRA than by PWLS-EP or FDK.

Fig. 8 shows the reconstructions (shown for the central axial,

sagittal, and coronal planes in the 3D volume) for PWLS-

EP with different regularization strengths β, denoted as a

multiplicative factor of the parameter value in Fig. 7. Fig. 9

shows the reconstructions for PWLS-ULTRA (with patch-

based weights) with different parameter combinations. For the

sagittal and coronal planes, we show the central 135 out of 222
axial slices. Larger regularization strengths β would achieve

more noise reduction but simultaneously lower spatial reso-

lution in PWLS-EP and PWLS-ULTRA, e.g., compare Fig. 8

and Figs. 9(a) and (d). Larger values of γ would achieve lower

sparsities and more noise reduction but potentially oversmooth

the image, e.g., compare Figs. 9(c) and (d). Small values of γ
may introduce additional spurious noise in the PWLS-ULTRA

reconstruction (compare Figs. 9(a) and (b)). Fig. 11 shows

profiles of chest reconstructions (plotted from the central axial

slice) for the PWLS-EP and PWLS-ULTRA methods. The

profile locations are shown in green lines in Fig. 7. Both

PWLS-EP with regularization strength 2X and PWLS-ULTRA

(with patch-based weights) in Fig. 9(a) have lower noise than

the PWLS-EP with regularization strength 1X. Though the

spatial resolution of PWLS-EP with regularization strength 2X

is close to PWLS-ULTRA in the selected soft-tissue regions,

PWLS-ULTRA reconstructs bone and spine areas with higher

resolution, and preserves small features better (compare the

zoomed-in areas in Fig. 8 and Fig. 9).

We reconstructed the abdomen volume from low-dose heli-

cal CT data. With an initialization of zeros, we ran the PWLS-

EP algorithm with β = 218.0 and β = 219.0 for 20 iterations

with 12 subsets for the 150 mA and 35 mA scans, respectively.
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FDK PWLS-EP PWLS-ULTRA

Fig. 7. Chest reconstructions (shown for central axial plane) from helical CT data, with the FDK, PWLS-EP, and PWLS-ULTRA (K = 5) methods.

(a) 1X (b) 2X (c) 0.5X (d) 0.25X

Fig. 8. Chest reconstructions (shown for the central axial, sagittal, and coronal planes in the 3D volume) for PWLS-EP with different regularization strengths.
1X denotes the chosen regularization parameter in [50] that provides a good trade-off between image resolution and noise reduction. The 2X, 0.5X, and
0.25X denote scaling of the parameter β over the 1X case.

(a) β = 2× 10
5, γ = 25 (b) β = 2× 10

5, γ = 20 (c) β = 3× 10
5, γ = 20 (d) β = 3× 10

5, γ = 25

Fig. 9. Chest reconstructions (shown for the central axial, sagittal, and coronal planes in the 3D volume) for PWLS-ULTRA (K = 5) with different parameter
combinations. Larger regularization strength β would achieve more noise reduction but simultaneously lower spatial resolution, e.g., compare (a) and (d);
larger values of γ would achieve lower sparsities and more noise reduction but potentially oversmooth the image, e.g., compare (c) and (d).

(a) 150 mA, PWLS-EP (b) 150 mA, PWLS-ULTRA-{τj} (c) 35 mA, PWLS-EP (d) 35 mA, PWLS-ULTRA-{τj}

Fig. 10. Abdomen reconstructions (shown for the central axial, sagittal, and coronal planes, and air cropped) from low-dose (120kVp, 150mA and 35mA
with rotation time 0.8 seconds) helical CT data (the same patient) for the PWLS-EP and PWLS-ULTRA with patch-based weights (K = 5).
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Fig. 11. Vertical (left) and horizontal (right) profiles of chest reconstructions
(plotted from the central axial slice) for the PWLS-EP and PWLS-ULTRA
methods. The profile locations are shown in green lines in Fig. 7.

For PWLS-ULTRA, we chose β = 1 × 105, γ = 25 for the

150 mA scan, β = 1.5×105, γ = 30 for the 35 mA scan, and

ran it for 50 outer iterations. The other parameter settings and

the transform were the same as those used for the chest scan.

Fig. 10 shows the reconstructions (shown for the central ax-

ial, sagittal, and coronal planes in the 3D volume) for PWLS-

EP and PWLS-ULTRA with patch-based weights (K = 5)

from low-dose abdomen scans. For the sagittal and coronal

planes, we show the central 160 out of 200 axial slices. The

supplement provides PWLS-EP reconstructions with different

regularization strengths. The PWLS-ULTRA reconstructions

in Fig. 10 have reduced noise as well as higher resolution,

better structural details and shaper image edges than the

PWLS-EP results. These results are further example of the

potential performance of the proposed PWLS-ULTRA method

in clinical settings.

G. Comparison to Oracle Clustering Scheme

We consider the 3D cone-beam CT data in Section IV-E

with I0 = 1×104, and compare the PWLS-ULTRA (K = 15)

method without patch-based weights to an oracle PWLS-

ULTRA scheme without patch-based weights, where the clus-

ter memberships are pre-determined (and fixed during recon-

struction) by performing the sparse coding and clustering step

(with the learned transforms) on the patches of the reference

or ground truth volume. The oracle scheme thus uses the

best possible estimate of the cluster memberships. Otherwise,

we used the same parameters for the two cases. Fig. 12

compares the reconstructions for the two cases. The proposed

PWLS-ULTRA underperforms the oracle scheme by only 1.7
HU. The more precise clustering leads to sharper edges for

the latter method. This also suggests that there is room for

potentially improving the proposed clustering-based PWLS-

ULTRA scheme, which could be pursued in future works.

Fig. 12. Reconstruction with PWLS-ULTRA (K = 15) without weights
τj (left) at I0 = 1 × 10

4 compared to the reconstruction with the oracle
scheme without weights τj (right), where the cluster memberships were pre-
determined from the ground truth. RMSE and SSIM values of 30.7 and 0.978
(left), and 29.0 and 0.982 (right) respectively, for the volumes, indicates that
more precise clustering can provide better reconstructions and sharper edges
(see zoom-ins).

V. CONCLUSIONS

We presented the PWLS-ST and PWLS-ULTRA methods

for low-dose CT imaging, combining conventional penalized

weighted least squares reconstruction with regularization based

on pre-learned sparsifying transforms. Experimental results

with 2D and 3D axial CT scans of the XCAT phantom

and 3D helical chest and abdomen scans show that for

both normal-dose and low-dose levels, the proposed meth-

ods provide high quality image reconstructions compared to

conventional techniques such as FBP or PWLS reconstruction

with a nonadaptive edge-preserving regularizer. The ULTRA

scheme with a richer union of transforms model provides

better reconstruction of various features such as bones, specific

soft tissues, and edges, compared to the proposed PWLS-ST.

Finally, the proposed approach achieves comparable or better

image quality compared to learned overcomplete synthesis

dictionaries, but importantly, is much faster (computationally

more efficient). We leave the investigation of convergence

guarantees and automating the parameter selection for the pro-

posed PWLS algorithms to future work. The field of transform

learning is rapidly growing, and we hope to investigate new

transform learning-based LDCT reconstruction methods, such

as involving rotationally invariant transforms [39], or online

transform learning [58], [59], etc., in future work.
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VII. COMPUTING DR IN ALGORITHM 1

Recall the following definition of DR in (11):

DR , 2β

{

max
k

λmax(Ω
T
kΩk)

} K
∑

k=1

∑

j∈Ck

τjP
T
j Pj . (14)

When {τj} are all identical (or by replacing them with

maxj τj above for a looser majorizer),
∑K

k=1

∑

j∈Ck
P

T
j Pj =

∑Ñ

j=1
P

T
j Pj ∈ R

Np×Np is a diagonal matrix with the diag-

onal entries corresponding to image voxel locations and their

values being the total number of image patches overlapping

each voxel. Moreover, if the patches are periodically posi-

tioned with a stride of 1 voxel along each dimension and

wrap around at image boundaries, then
∑Ñ

j=1
P

T
j Pj = lI.

In this case, DR = 2β{maxk λmax(Ω
T
kΩk)}{maxj τj}lI.

More generally, when τj values differ, we compute
∑K

k=1

∑

j∈Ck
τjP

T
j Pj voxel-wise by summing the τj values

of the patches overlapping the voxel.

VIII. ADDITIONAL EXPERIMENTAL RESULTS

Section IV.E and Table III of [1] compared the perfor-

mance of various methods for low-dose cone-beam (3D) CT

reconstruction, for the XCAT phantom volume. Fig. 13 shows

the reconstructions and the corresponding error (magnitudes)

images (shown for the central axial, sagittal, and coronal

planes) at I0 = 5× 103 for FDK, PWLS-EP, PWLS-ST (with

τj = 1 ∀ j), and PWLS-ULTRA (K = 15) with patch-based

weights τj . PWLS-ULTRA provides better reconstructions and

reconstruction errors compared to the conventional FDK and

the non-adaptive PWLS-EP. PWLS-ULTRA also outperforms

the proposed PWLS-ST scheme, and provides sharper recon-

structions of image edges (see zoom-ins).
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Fig. 13. Comparison of the reconstructions and corresponding error images
(shown for the central axial, sagittal, and coronal planes) for FDK, PWLS-
EP, PWLS-ST (τj = 1, ∀ j), and PWLS-ULTRA (K = 15) with patch-

based weights τj at I0 = 5× 103. The display window of reconstructions is
[800, 1200] HU. The unit of the display window of the error images is HU.
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(a)

(b)

(c) (d)

Fig. 14. The union of transforms learned (with η = 100, K = 5) from (a) patches of the XCAT phantom and (b) from patches of the PWLS-EP reconstruction
of the helical chest CT data are shown in the first and second rows, respectively. Only the first 8×8 slice of 256 (among 512) 8×8×8 atoms are displayed.
The corresponding PWLS-ULTRA-{τj} reconstructions (shown for the central axial, sagittal, and coronal planes) obtained with the transforms (a) and (b)
are shown in (c) and (d), respectively. For the sagittal and coronal planes, we show the central 135 out of 222 axial slices.

Recall that in Section IV.F, we used the transforms learned

from the patches of the XCAT phantom volume to perform

reconstruction of the chest volume from helical CT data.

Alternatively, one could learn the transforms from the patches

of the PWLS-EP reconstruction of the helical CT data. Fig. 14

shows the union of transforms (K = 5) learned from 8×8×8
patches of the XCAT phantom and the PWLS-EP chest recon-

struction, with η = 100. These two union of transforms display

some similar types of features, and provide similar visual

reconstructions in PWLS-ULTRA (with patch-based weights

τj) in Fig. 14. Thus, the transform learning algorithm extracts

quite general and effective sparsifying features for images,

without requiring a very closely matched training dataset.

Fig. 15 provides abdomen reconstructions (shown for the

central axial, sagittal, and coronal planes) from low-dose

(120kVp, 150mA and 35mA) helical CT data for PWLS-EP

with different regularization strengths. We have labeled the

reconstruction with good trade-off between image resolution

and noise in bold for both doses. These images were used to

initialize the PWLS-ULTRA reconstructions in Section IV.F.
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(a) 150 mA, β = 217 (b) 150 mA, β = 2
18 (c) 150 mA, β = 219

(d) 35 mA, β = 218 (e) 35 mA, β = 218.5 (f) 35 mA, β = 2
19

Fig. 15. Abdomen reconstructions (shown for the central axial, sagittal, and coronal planes) from low-dose (120kVp, 150mA and 35mA) helical CT data for
PWLS-EP with different regularization strengths.
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