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Fast Variance Prediction for lteratively
Reconstructed CT Images With Locally
Quadratic Regularization

Stephen M. Schmitt, Student Member, IEEE, Mitchell M. Goodsitt, and Jeffrey A. Fessler*, Fellow, IEEE

Abstract—Predicting noise properties of iteratively
reconstructed CT images is useful for analyzing recon-
struction methods; for example, local noise power spec-
trum (NPS) predictions may be used to quantify the
detectability of an image feature, to design regularization
methods, or to determine dynamic tube current adjust-
ment during a CT scan. This paper presents a method
for fast prediction of reconstructed image variance and
local NPS for statistical reconstruction methods using
quadratic or locally quadratic regularization. Previous meth-
ods either require impractical computation times to gen-
erate an approximate map of the variance of each recon-
structed voxel, or are restricted to specific CT geometries.
Our method can produce a variance map of the entire image,
for locally shift-invariant CT geometries with sufficiently fine
angular sampling, using a computation time comparable
to a single back-projection. The method requires only the
projection data to be used in the reconstruction, not a
reconstruction itself, and is reasonably accurate except
near image edges where edge-preserving regularization
behaves highly nonlinearly. We evaluate the accuracy of our
method using reconstructions of both simulated CT data
and real CT scans of a thorax phantom.

Index Terms—Bayes methods, computed tomography,
optimization methods, reconstruction algorithms.

|. INTRODUCTION

TERATIVE reconstruction (IR) methods for computed

tomography (CT) are receiving increased attention for
their improved resolution and noise properties compared to
FBP [1]-[3]. However, the statistical properties of IR images
are difficult to compute compared to FBP. Closed-form but
computationally intractable matrix expressions exist [4] for
the mean and covariance matrix of the reconstructed images,
so faster prediction methods are desirable. Image variance
information is useful for image analysis and regularization
design [5]. In addition, adjusting X-ray tube current during
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a scan has the potential to reduce dose [6], [7], and with
sufficiently fast variance prediction, it could be feasible to
compute the proper tube current adjustment during a scan to
meet a certain variance target.

One way to determine the noise level in reconstructed
images would be by finding the empirical variance from an
ensemble of reconstructions. This method is extremely com-
putationally intensive, requiring numerous reconstructions, and
would require unacceptable X-ray dose for in vivo human data.
The empirical approach determines the mean and variance
of all voxels simultaneously, providing complete variance
maps. Prior work on variance prediction has exploited the
approximate shift-invariance of projection and back-projection
operations to develop DFT-based approximations for the vari-
ance map of images reconstructed from scans having locally
shift-invariant system geometries with sufficiently fine angular
sampling. When it is possible to assume global shift-invariance
of projection and back-projection (e.g., [8], [9], for PET), the
DFT of projection and back-projection can be calculated once
and applied to find the variance map of an entire volume.
When one can assume only /ocal shift invariance rather than
global shift invariance, then DFT-based methods are useful for
theoretical analysis but require projection and back-projection
for each voxel of interest to calculate the DFT [10] and are
impractical in general for producing a variance map for an
entire large volume. For systems having sufficient symmetries
(e.g., cylindrical 3D PET [10]), one can precompute and store
a collection of DFT arrays; such computation and storage
appears prohibitive for axial CT and inapplicable to short-
scan and helical CT. There are methods specific for 2D fan-
beam [11], 3D step-and-shoot [12], 3D axial CT [13], and 3D
helical CT [14] that further approximate the DFT such that the
computational load of predicting variance maps for an entire
volume is greatly reduced.

The main contribution of this paper is a method for pre-
dicting the variance of iteratively reconstructed CT images
with locally shift-invariant scan geometries. The proposed
method is significantly faster than previous methods and does
not require any estimate or reconstruction of the image, only
the scan geometry and the weighting data to be used in the
reconstruction. We also extend our previous methods [14]
to deal with general weightings in the data-fit term and to
accommodate space-variant regularizers such as the uniform-
resolution regularizer described in [15]. Previous methods
for specific geometries [11], [13], [14] are special cases of
the formulation derived here. Section II specifies the general
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form of the CT reconstruction problem to which our meth-
ods apply and provides an overview of the first steps in
many existing variance prediction methods. The general vari-
ance prediction methods described require the local fre-
quency response (LFR) of the projection, weighting, and
back-projection operator. Section III shows how we apply an
approximation to the LFR, derived in the Appendix,! to vari-
ance prediction; Section III-B provides a further simplification
specific to 3DCT geometries where all of the rays have a
reasonably small cone-angle, such as in axial or helical scans.
Section IV validates the variance predictions by comparing
with the empirical variance of images reconstructed from
repeated phantom scans, in both a simulation study and a real-
world study.

II. BACKGROUND
A. Problem Domain

This paper develops methods for predicting the variance
(i.e., var(x;)) of statistical image reconstructions that take the
general form

x = argmin, L(Y; X) + a R(X). (1)

Here, L is a data-fit term, commonly the negative log-
likelihood of the Ngyps vectorized observations Y given an
image vector x composed of Nyox voxel attenuations. The
observation vector Y can represent either estimates of photon
counts or of line integrals. The function R(X) is a regulariza-
tion penalty. We make the following assumptions:

1) The covariance of Y is diagonal, and can be estimated
from the data and knowledge of the instrumentation.

2) Given an image X, the elements of Y are statisti-
cally independent, and the likelihood of a particular
observation Y; is modeled in terms of the projection
[Ax]; £ Zjv;"f ajjxj, such that

Nobs

L(Y;x) = > Li(Y;; [Ax]);

i=1

2

the Nobs X Nyox System matrix A has elements a;;
representing the projection of voxel j onto observation i.
This form can account for both weighted least-squares
data-fit terms, in which Y; represents a line integral
estimate and the log-likelihood is given by
1

Li (Y [AX]) = Swi(¥; — [AX)?, 3)
and for a Poisson likelihood, in which Y; represents a
photon count, and the log-likelihood is given by [16]:

Li(Yi; [AX]) = Vi = Y;InY;, Y; 2 bie ™W¥ipp (4

It is important to note that any mismatch between L in
(2) and a hypothetical “true” likelihood L that perfectly
matches the true physics of a CT system does not
affect our prediction methods. Even if L is a poor
approximation of L, and the resulting reconstruction
X is a poor image, our methods can still predict the
variance of X, so long as L is correctly characterized.

ISupplementary material in the supplementary files / multimedia tab.

In particular, our method accurately predicts the variance
even in the usual case where there is model mismatch
between the system matrix A and the actual scanner
physics. An accurate characterization of the A used in a
particular reconstruction algorithm is much more impor-
tant to predicting the variance of that reconstruction
than whether A accurately characterizes the physics. (Of
course, the usefulness of the reconstructed image X will
depend on the accuracy of A.)
3) The regularizer takes the general form

Nc
R®) =D "ra > w(Caxl).
d=1 k

In the common case of a regularizer that penalizes first
differences between neighboring voxels, d indexes the
directions over which we take the differences, C; is a
first differencing matrix between voxels in that direction,
and ry is the relative strength of the regularizer in that
direction. We assume the regularizer penalty y is twice-
differentiable at 0, and scaled such that " (0) = 1.
These assumptions account for many common choices of data-
fit terms and regularization penalties. Under these conditions
on the reconstruction, we adapt [4] to the following form for
the approximate covariance of the resulting reconstruction:

cov(®) ~ (ATWA + aVZR(X)) 'ATWA.

&)

(ATWA +aVZR(E) ™, ©)
where the diagonal matrices W and W are defined as:
o2
[Wli = S Litiiy) (7
Y y=[AX];

2
) . )
y=[AX];

In (6)—<(8), X denotes the reconstruction using noise-free
data Y. (Our final formula will not use X.)

For a Gaussian log-likelihood in (3) with weight w; for
observation 7, the weighting matrix W in (7) is simply these
weights as a diagonal matrix: [W];; = w;. The matrix W
has diagonal elements [W]ii = wl.zvar(Yl-); if the weights are
chosen so that w; ~ 1/var(Y;), then WA W.

For the Poisson log-likelihood given in (4), [W];; = Y;/ Yiz
and [W]ii = var(Yi)/?iz; both are approzdmately 1/Y; [17].

For both of these statistical models, Y; and var(Y;) are of
course unknown. However, our methods are not extremely
sensitive to the particular values of W and W, so estimates of
these values are acceptable [4]. Typically those estimates do
not require having X or X. We define the matrix P as:

Nc

) Z rdCECd.

d=1
We use P as an approximation for the Hessian of the regu-
larizer, V2R (X), in approximating (6). The actual Hessian, for
regularizers of the form (5), is given by:

Nc

VIR(X) = D raCl¥(%)Cq,
d=1

R 02
[W];; 2var(Y;) ( MLi(YH y)

€))

(10)
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where W, (x) is a diagonal matrix of second derivatives of the
penalty function, evaluated for an image x:

(W) 2 w([CaXlk). (11)

For variance prediction, we use the approximation W, (X) ~ I,
such that V2R(X) ~ P. This approximation (for locally
quadratic regularizers like the Huber function) is based on
the idea that the majority of neighboring-voxel differences
in the reconstruction X from noise-free projection data will
be small, since the regularizer penalizes large neighboring-
voxel differences. We hope that for these small differences, the
second derivative of their penalties will be near 1. The utility
of this assumption to our purposes of fast variance prediction
is enormous. First, variance prediction using VZR(X) would
require foreknowledge of the noiseless reconstruction X. For
non-phantom applications, X is unavailable. Second, even
using a noisy reconstruction X requires the time to compute X,
which is much greater than the computation time of our
fast methods. Using X would diminish the practical utility of
our methods. Any edge present breaks both the assumption
that VZR(X) is shift-invariant, and our ability to use pre-
computation to accelerate our algorithm. Eqn. (9) is exactly
the Hessian of R for quadratic regularization.

B. Methods

In general, the matrix ATWA is not spatially shift-invariant.
If it were shift-invariant, except for the truncation to the
masked space spanned by the image vector x, then ATWA
could be diagonalized with an n-dimensional DSFT (discrete
space Fourier transform):

ATWA :]—'*D{HW}]-',

where H" (V) would be the n-dimensional DSFT of the
impulse response of ATWA, and D is a “diagonalization”
operator:

(D{H}X) (V) = HO)X (),

and F is the DSFT with the spatial extent limited by the image
support. It is defined as:

FOE) =D exp(— JznaTﬁk) (12)
k

[F* X1k =/[ 1 l]nX(B)exp(]znﬁTﬁk) s,  (13)

—2:2

where ¥ has units of cycles per sample. Each voxel x; in an
image x is centered at a spatial position denoted X;, and we
assume that these voxel centers are aligned on a grid such that
X;=Vnj+o, (14)
where 1 ;j is a voxel index with integer coordinates, V is a voxel
spacing matrix (e.g., V = diag(Ay, Ay, A;) for the common
choice of rectangular-cuboid voxels), and o is a spatial offset.
The local impulse response (LIR) of ATWA for the

voxel j is defined by

hY £ ATWAe;, (15)

where e; is defined as the unit vector with a single 1 at
position j. This LIR can be written exactly as the impulse e;
operated on by a frequency-domain filter H ]W(ﬁ):

hY = 7D {HjW} Fe;, (16)

where

HY :D{exp(]znﬁTﬁj)}fh}”. 17
The diagonal term “centers” the transform at the jth voxel
using the shift property of the DSFT. We will refer to H /.W
as a local frequency response (LFR). In the region near
voxel j, ATWA is typically approximately spatially shift-
invariant, leading us to an approximation

(ATWAL, ~ el 7D [0} ] Fe, (18)

for voxel k near voxel j, which is suggested by (15) and (16).
Except at the edges of the reconstructed image, P can also be

represented in terms of its frequency response R(V):
P=F"D{R} F. (19)

With both of these matrices diagonalized, (6) approximately
simplifies, locally to a voxel j, to
cov(X) ~ F*D{S;} F, (20)
where R
H]‘.’V(ﬁ)
(H}' () + aR(7))>

8;() = @1
is the local noise power spectrum (NPS) of the noise in the
reconstruction. Representing the covariance using the NPS
in (20) makes the approximation that FF* is an identity
operation. In practice it is not exactly an identity because of
the finite spatial support of the image considered by the finite
sum in (12), but we follow previous work that makes similar
approximations [18]. Note here the distinction between HjW

and HJW; HJW comes from the same derivation as (15)—(18),

but with W substituted for W.

If ATWA were shift-invariant, so that (18) were exact and
not a local approximation, (21) would be the global NPS of
the noise. Extracting the variance of one voxel can be done
by left- and right-multiplying the covariance matrix by unit
vectors:

var(X;) = echov(ﬁ)ej;

plugging in the approximation (20) to this expression simpli-
fies it to an integral of the local NPS:

var()Ej) ~ / n Sj(ﬁ) dv (22)
44
Prior work used (22) for variance prediction; [9] and [19] find
an empirical LFR from the Fourier transform of h}y, found by
projecting, weighting, and back-projecting e;. This empirical
LFR H jW is then numerically integrated in (22). Other work
derives a closed form for H! based on the specific CT
geometry and projection method used for A and simplifies (22)
for these specific realizations of Hl.W; [11] has an approximate
closed form for 2D fan-beam CT, and [12] has one for a
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restricted subset of 3DCT geometries. The Appendix derives
an approximate closed form for H jW for locally shift-invariant
CT geometries that we use for variance prediction.

I1l. VARIANCE PREDICTION
A. Application to General n-Dimensional CT

Our variance prediction method uses the integral (22) with
the NPS expression (21). The local frequency response H ].W is
approximated using (61), found in the supplementary material,
which is a factorization of H jW into the two terms J and E]W

HY () ~ J(T))EJW(H;H). (23)

In the supplement we derive this approximate factoriza-
tion by separating a continuous-operator approximation of
ATWA into a weighting-like term (that becomes E]W) and a
continuous-operator analog of the unweighted operator ATA.
We then apply a first-order Taylor expansion that makes the
projection look, local to a voxel of interest and a source
position, like a single parallel-beam view with an extra magni-
fication factor. The LFR of this single parallel-beam view can
be represented as a slice through the J term; which slice that
we take at a particular voxel and source position becomes part
of EY. The simplest version of J, for the usual rectangular-
cuboid voxels, is given by (65) in the supplement as:

sinc?(vy)sinc?(v2)sinc? (v3)
|11

This ratio contains the expected 1/||V|| term in the frequency
response of projection followed by back-projection with no
weighting. The E 1W term contains the angle-dependent weight-
ing and is given by (63) in the supplement as

EW(L) = Z Ujo det(Rj,a)det(V).
J AT w3
(V]| aij(H%H) (L@T AV TL)

do " j.o (1l
Here, iij, in (48) denotes the element of the statistical
weights W corresponding to the ray from the source at
position ¢ through the jth voxel along ray direction éj,,,;
det(R; ;) in (40) is related to the magnification at the jth
voxel of the cone-beam geometry; V in (14) denotes the voxel
spacing; and B j(m‘jﬂ) in (50) is the set of source positions o

where 0; , is perpendicular to V=T,

The separation (23) assumes that ATWA can be approxi-
mated by a continuous operator, and therefore that the detector
elements are closely and regularly spaced. We assume that the
geometry can be approximated local to a voxel by a Taylor
expansion, i.e., that the function that, for any fixed source
position, maps a spatial position to its corresponding detector
position, is smooth. This is reasonable for standard X-ray CT
geometries built from curved or flat detectors, but might not
hold for some baggage CT systems that have unusual sets of
detector segments with gaps. Such gaps could preclude local
shift invariance.

The utility of this factorization is that the first term, J, does
not depend on the voxel location j or weighting W; the second
term, EJW does, but does not depend on the magnitude ||V

of the location in frequency space and so has one fewer
dimension than the argument of H ].W. Representing v in spher-

ical Coordinates,qsuch that p £ ||v]| is the spatial frequency
magnitude and ® £ v/||v|| is the frequency direction, (22)
becomes (see supplementary materials for details):

omes HY (0, 0) .
var()?j)%/ / W . = 2Q"*‘ dpd®
nJo (H; (e, 0)+aR(e, 9))

%/ /Qmax J(U)EJW(C:))
nJo

(J()E} (©) + aR(e. ©))?

EV(®)
0" 'dp d@)
P

—1
=a =
/sn EY(0)
EV(©) I,
=a*1/ t——G(a'E]' (), ©)de,
s E}(©)

0" 'dpd®

Omax ailE]‘/V(é)J(D')
/o (@1} (8)J () +R(e, 6))?

(24)

where n = 3 for 3D images and n = 2 for 2D images.
Here, the integral over S" is taken over the surface of the
n-dimensional sphere and ) represents a particular point on
the surface, so (24) is an (n — 1)-dimensional integral. The
object-independent function G(y, (:)) is defined as

S A Qmax(é)
GGy, ®) 2 /O

where pmax (C:)) is the maximum extent of p in [—1/2, 1/2]":
1
21010

y J (0, ©)
(7 J (e, ®) + R(g, ©))?

0" 'do, (25)

Omax (é) =

In general, G cannot be computed in a closed form, but it is
well-behaved and only depends on, other than its arguments
y and @, the regularizer, which determines R(V), and the
scale-invariant form of the voxel, which determines J (V). The
J term will be the same for all cuboids that can tile space,
for example, but not the same as the J term for an image
reconstructed using blob-based voxels [20].

For a particular voxel shape and regularizer, we precompute
a single table of values of G and use that table to predict
variance maps via (24) for multiple voxels, any regularization
parameter o, any weighting W, any voxel spacing or scan
geometry.

B. Application to 3D Axial and Helical Cone-Beam CT

Section VII-F of the Appendix in the supplemental materials
derives the following further approximation to the two-term
factorization (23) seen in the previous section that is specific
to 3DCT geometries with small cone angles:

H ) ~ Je (D) E 'y (D), (26)

shown in (71) (in the supplementary materials). In this small
cone-angle factorization, the first term Jey (V) = J(V) sec ©
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in (70) is again independent of voxel location j and weight-
ing W. The second term Ej cy1 in (72) is:

Z U; 7||€j’g”2|csc((l)—a)|
J,0 D3 B

oeBB; (D) 2,j.0

D> A3A,
DSO

w
Ej,cyl

(@) ~
where Dgq and Dg, denote the distances between the source
and the detector and to the isocenter respectively, ¢ j,0 N (66)
denotes the ray segment from the source at o to voxel
position )?j, and D j, in (67) denotes the length of the
projection of that segment into the xy-plane. Unlike the E; in
the previous section, here it is a function of only one variable,
the azimuthal angle ® of v in 3D cylindrical coordinates.

These terms are derived from the factorization used in (23),
applying a further approximation that takes advantage of the
fact that, for a small cone angle, this spherically separable
approximation is nearly cylindrically separable except close
to the missing cone in frequency space around the v3 axis.
Appendix Section VII-F shows that for the purposes of vari-
ance prediction, accuracy near this missing cone is less
important.

Using the LFR approximation (26), we rearrange the vari-
ance prediction integral (22) by changing from Cartesian
coordinates to cylindrical coordinates (p, ®, v3), to be

var(x;) ~ a_l/
0
(27)

where we define another object-independent function Geyi:
Pmax (P) % y J ](ﬁ)
Geyi(y, @) £ / = 5 pdvzdp.
0 -1
(28)

ch](‘_j) + R(‘_j))

In this case, pmax = 1/(Zmax{| cos @[, | sin ®|}). Again, Geyi
has no closed form but is a well-behaved function of only two
parameters that we precompute and tabulate. We compute this
table only once for a given differencing matrix C and voxel
shape; a particular image, weighting, system geometry, or reg-
ularization parameter o does not change the table Gy1. Using
the table, variance prediction via (27) simply requires looking
up values of G¢y1 and numerically integrating them in 1D. This
integration can be evaluated using a coarse discretization of ©
with reasonably accurate predicted variance, especially given
that the integrand is periodic and integrated over one period,
a case in which numerical integration converges quickly [21].
While the method of derivation is changed, this is the form
for fast variance prediction given in [14], which also reduces
to the form given in [13] for quadratic regularization and an
axial geometry.

For 3DCT geometries where (26) is an inaccurate approxi-
mation, such as those where a voxel under consideration has
rays passing through it in directions that cover much of S3,
one must revert to (24) for fast variance prediction.

2 EW ((I))
7@%’1 chl((l_l EY
Ej,cyl((D)

W A(®), ©)dO,

C. Spatially Varying Regularization

In this section we consider the effect on reconstruction
variance of using a spatially varying regularizer such as that
defined in [15], [22] designed to produce a reconstruction

with uniform spatial resolution. Each voxel has an associated
factor ICJZ- representing the ’certainty’ of the voxel that mul-
tiplies the effect of a. This factor modulates the smoothing
effect of the regularizer in otherwise less certain regions to
promote uniform resolution at the cost of less uniform voxel
variance. To adapt our variance prediction method to this
situation, we simply define a per-voxel effective regularization
parameter oeff £ (XKJZ- and evaluate (27) with this ae.

The effect of using 2 in the regularizer is intuitive: assum-
ing that the change in the value of Gy in (27) is small when
aeff is varied compared to the change in the a~! multiplying
the integral, the approximate variance decreases inversely with
increasing certainty ;cjz [8].

D. Object Support Masking

Outside the support of the object there is significant approx-
imation error because, being based on (6), our prediction
method ignores the non-negativity constraint that is often
used in solving the reconstruction problem (1). The empirical
variance outside the object approaches zero, whereas the
predicted variance is positive. We use a method similar to [23]
to identify regions that are outside the support of the object
and set the predicted variance in these regions to zero. Other
compensation methods could be incorporated [10].

IV. RESULTS

To evaluate our fast variance prediction approach (27), we
compared it to an empirical variance map in two cases. In one
case, we computed the empirical variance of reconstructions
from multiple realizations of simulations of noisy projection
data of an XCAT phantom. In the other case, we repeatedly
scanned a physical phantom and computed the empirical
variance from the reconstructions of these scans. In both cases
we used the weighted least-squares data-fit term (3).

A. Simulation Data

For the simulation study, we reconstructed a 512 x512x 320
voxel section of the XCAT phantom [24] with voxel size
Ay x A; = 0.9764 x 0.625mm that covers an anatom-
ical section between the neck and mid-lungs. We simu-
lated a GE third-generation helical system geometry with
a 888 x 64 quarter-offset detector having detector ele-
ment size 1.0239 x 1.0964mm; the detector went through
three turns with a pitch of 1, taking 2952 views. Each recon-
struction used 80 iterations of an ordered-subset method [25]
using 64 subsets. In the regularizer, C was a matrix that takes
3 first differences for each voxel, one each for the adjacent
voxel in each axis. These differences were penalized by a
Huber potential function:

x2/2, x| <0
y(x) = >
x| —%/2, |x| >4,

where the value of 6 was 10 Hounsfield units. We looked at
two separate cases for regularization: one with the spatially
varying regularization described in section III-C, and one
without. The regularization parameter a was set empirically

(29)
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Fig. 1. Three slices of standard deviation maps for simulated reconstructions using spatially varying regularization; the red line in (c) and (d)

indicates the profile used in (e). Scales in modified Hounsfield units (air is zero, water is 1000). In panels (a)-(d), the upper left is axial, the lower left
is coronal, and the upper right is sagittal. Subsequent figures use the same convention.

1200

Védt
4/4

R¢=S72

1100

1000

900

15
10
5
0

(a) Empirical

(b) Predicted

800

(d) Absolute Error

10
A o] o1
f 7 5
L Y= ke =
. 6 = e 1
———y » \
4 ol| = = = empirical |‘ 4
P predicted \
¥ K\ 2 ——— DFT-based .
i : 0 n . . i .
| I 1 \ § -60 -40 -20 0 20 40 60
* 1 ] 0

z position (mm)
(e) Coronal Profile

Fig. 2. Three slices of standard deviation maps for simulated reconstructions using uniform regularization; the red line in (c) and (d) indicates the

profile used in (e). Scales in modified Hounsfield units.

to 2% in the non-spatially-varying case, and to 2!# in the
spatially varying case. The weighting W was normalized so
that unattenuated rays had a weight of 1. Noise was applied to
each of the simulated projections by realizing Poisson random
variables with mean equal to the expected number of photons
with a photon count incident on the phantom of 10> photons
per view. The empirical standard deviation maps were pro-
duced using 89 realizations of the reconstruction in the case
of non-spatially-varying regularization and 111 realizations in
the case of spatially varying regularization. Figures 1(a) (with

spatially varying regularization) and 2(a) (uniform regulariza-
tion) show axial, sagittal, and coronal slices of the 3D map
of the empirical standard deviation from our reconstructions.
Since the empirical standard deviation maps were noisy and
the ground truth standard deviation is spatially slowly varying,
we smoothed the empirical variance maps with a gaussian
kernel with a FWHM of 3 voxels each in each direction.
(Figure 7, in the supplementary material, shows a profile of the
unsmoothed standard deviation.) Figures 1(b) and 2(b) show
the corresponding slices through the 3D predicted standard
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TABLE |
COMPUTATION TIME OF VARIANCE PREDICTION METHODS
(CPU SECONDS); BOTH CASES USED THE SPATIALLY
VARYING REGULARIZATION IN SECT. IlI-C.

Empirical DFT-based Proposed
Simulation | 1.64-107 7.23-108 1.21-10°
(111 realizations)
Real data | 3.63-10° 1.07-10%  6.73- 102
(10 scans)

deviation map from (27). Since standard deviation varies
slowly, we computed it once per 4 x 4 x 4 block and
used nearest-neighbor interpolation to fill in the rest. More
sophisticated interpolation could be used, but the interpolation
error is minimal compared to the intrinsic approximation error
of our method. Figure 1(c) and Figure 2(c) show the ground
truth XCAT phantom we used. Figure 1(d) and Figure 2(d)
show the absolute magnitude of the error of our approximated
standard deviation compared to the empirical results. The
gray scale in these figures is transformed to better show the
dynamic range of the error. Figure 1 (e) and Figure 2(e) show
the empirical and predicted standard deviation along a one-
dimensional trans-axial profile through the image, behind the
center of the spine in the phantom, along with the standard
deviation as computed directly from (22) using (17) as the
LFR (labeled *DFT-based’). Along this profile, dotted red lines
indicate where there is an edge within one voxel. Sections near
the ends of the axial FOV were omitted in all images; the
empirical variance becomes extreme due to a suboptimal OS
algorithm implementation that is somewhat unstable in regions
where the helical sampling is poor. The OS algorithm in [26]
would reduce this instability and reduce the empirical variance
in the (clinically unimportant) end slices.

The computation time of our method for the entire volume
using 4 x 4 x 4 downsampling was 1207 CPU-seconds using
one core of an Intel Core 17-860 with 16 GB of memory.
The empirical reconstructions took an average of 1.71 CPU-
days each using one core of an Intel X5650 processor also
with 16GB of memory. Table I compares the computation time
required to find the empirical variance (using 111 realizations)
with the computation time required to predict the variance for
the entire volume using the DFT-based method and our meth-
ods. We used the DFT-based method only to produce the one-
dimensional profiles shown in Figure 1(e) and Figure 2 (e);
since the computation time is large, we extrapolate to find the
computation time for the entire volume for Table I.

B. Real CT Scans of a Thorax Phantom

For our real-world dataset, we scanned a phantom 10 times
with a GE Discovery CT750 HD scanner and reconstructed
each of the 10 sinograms separately and produced an empirical
variance map of the reconstruction. The phantom was a custom
modified CIRS (Norfolk, VA) Model 003 lung nodule simu-
lator phantom for quantitative CT [27], [28]. The geometry
of the system is the same as the simulated geometry used
in the previous section, with the exception of performing an
axial scan using a 16-row detector and 984 views. Since we

could not ensure that each scan began at the same starting
angle, using multiple realizations of the same helical scan
to produce an empirical variance map was not possible with
our physical CT scanner. For reconstruct