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Abstract— Sparsity-based approaches have been popu-
lar in many applications in image processing and imaging.
Compressed sensing exploits the sparsity of images in a
transform domain or dictionary to improve image recovery
from undersampledmeasurements. In the context of inverse
problems in dynamic imaging, recent research has demon-
strated the promise of sparsity and low-rank techniques.
For example, the patches of the underlying data are mod-
eled as sparse in an adaptive dictionary domain, and the
resulting image and dictionary estimation from undersam-
pled measurements is called dictionary-blind compressed
sensing, or the dynamic image sequence is modeled as a
sum of low-rank and sparse (in some transform domain)
components (L+S model) that are estimated from limited
measurements. In this work, we investigate a data-adaptive
extension of the L+S model, dubbed LASSI, where the
temporal image sequence is decomposed into a low-rank
component and a component whose spatiotemporal (3D)
patches are sparse in some adaptive dictionary domain.
We investigate various formulations and efficient methods
for jointly estimating the underlying dynamic signal com-
ponents and the spatiotemporal dictionary from limited
measurements. We also obtain efficient sparsity penalized
dictionary-blind compressed sensing methods as special
cases of our LASSI approaches. Our numerical experiments
demonstrate the promising performance of LASSI schemes
for dynamic magnetic resonance image reconstruction from
limited k-t space data compared to recent methods such as
k-t SLR and L+S, and compared to the proposed dictionary-
blind compressed sensing method.

Index Terms— Dictionary learning, dynamic imaging,
inverse problems, machine learning, magnetic resonanace
imaging, nonconvex optimization, sparse representations,
structured models.

I. INTRODUCTION

SPARSITY-BASED techniques are popular in many appli-
cations in image processing and imaging. Sparsity in

either a fixed or data-adaptive dictionary or transform is
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fundamental to the success of popular techniques such as com-
pressed sensing that aim to reconstruct images from limited
sensor measurements. In this work, we focus on low-rank and
adaptive dictionary-sparse models for dynamic imaging data
and exploit such models to perform image reconstruction from
limited (compressive) measurements. In the following, we
briefly review compressed sensing (CS), CS-based magnetic
resonance imaging (MRI), and dynamic data modeling, before
outlining the contributions of this work.

A. Background

CS [1]–[4] is a popular technique that enables recovery
of signals or images from far fewer measurements (or at a
lower rate) than the number of unknowns or than required
by Nyquist sampling conditions. CS assumes that the under-
lying signal is sparse in some transform domain or dic-
tionary and that the measurement acquisition procedure is
incoherent in an appropriate sense with the dictionary. CS has
been shown to be very useful for MRI [5], [6]. MRI is a
relatively slow modality because the data, which are sam-
ples in the Fourier space (or k-space) of the object, are
acquired sequentially in time. In spite of advances in scanner
hardware and pulse sequences, the rate at which MR data
are acquired is limited by MR physics and physiological
constraints [5].

CS has been applied to a variety of MR techniques such as
static MRI [5], [7], [8], dynamic MRI (dMRI) [6], [9]–[11],
parallel imaging (pMRI) [12]–[15], and perfusion imaging and
diffusion tensor imaging (DTI) [16]. For static MR imaging,
CS-based MRI (CSMRI) involves undersampling the k-space
data (e.g., collecting fewer phase encodes) using random
sampling techniques to accelerate data acquisition. However,
in dynamic MRI the data is inherently undersampled because
the object is changing as the data is being collected, so in
a sense all dynamic MRI scans (of k-t space) involve some
form of CS because one must reconstruct the dynamic images
from under-sampled data. The traditional approach to this
problem in MRI is to use “data sharing” where data is pooled
in time to make sets of k-space data (e.g., in the form of a
Casorati matrix [17]) that appear to have sufficient samples,
but these methods do not fully model the temporal changes
in the object. CS-based dMRI can achieve improved temporal
(or spatial) resolution by using more explicit signal models
rather than only implicit k-space data sharing, albeit at the
price of increased computation.

CSMRI reconstructions with fixed, non-adaptive signal
models (e.g., wavelets or total variation sparsity) typically
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suffer from artifacts at high undersampling factors [18]. Thus,
there has been growing interest in image reconstruction meth-
ods where the dictionary is adapted to provide highly sparse
representations of data. Recent research has shown benefits
for such data-driven adaptation of dictionaries [19]–[22] in
many applications [18], [23]–[25]. For example, the DLMRI
method [18] jointly estimates the image and a synthesis
dictionary for the image patches from undersampled k-space
measurements. The model there is that the unknown (vector-
ized) image patches can be well approximated by a sparse
linear combination of the columns or atoms of a learned
(a priori unknown) dictionary D. This idea of joint dictio-
nary learning and signal reconstruction from undersampled
measurements [18], known as (dictionary) blind compressed
sensing (BCS) [26], has been the focus of several recent
works (including for dMRI reconstruction) [18], [27]–[36].
The BCS problem is harder than conventional (non-adaptive)
compressed sensing. However, the dictionaries learned in BCS
typically reflect the underlying image properties better than
pre-determined models, thus improving image reconstructions.

While CS methods use sparse signal models, various alter-
native models have been explored for dynamic data in recent
years. Several works have demonstrated the efficacy of low-
rank models (e.g., by constraining the Casorati data matrix
to have low-rank) for dynamic MRI reconstruction [17],
[37]–[39]. A recent work [40] also considered a low-rank
property for local space-time image patches. For data such
as videos (or collections of related images [41]), there has
been growing interest in decomposing the data into the sum
of a low-rank (L) and a sparse (S) component [42]–[44].
In this L+S (or equivalently Robust Principal Component
Analysis (RPCA) [42]) model, the L component may capture
the background of the video, while the S component cap-
tures the sparse (dynamic) foreground. The L+S model has
been recently shown to be promising for CS-based dynamic
MRI [45], [46]. The S component of the L+S decomposition
could either be sparse by itself or sparse in some known
dictionary or transform domain. Some works alternatively
consider modeling the dynamic image sequence as both low-
rank and sparse (L & S) [47], [48], with a recent work [49]
learning dictionaries for the S part of L & S. In practice, which
model provides better image reconstructions may depend on
the specific properties of the underlying data.

When employing the L+S model, the CS reconstruction
problem can be formulated as follows:

(P0) min
xL , xS

1

2
‖A(xL + xS) − d‖2

2 + λL ‖R1(xL)‖∗

+ λS ‖T xS‖1 .

In (P0), the underlying unknown dynamic object is x =
xL+xS ∈ CNx Ny Nt , where xL and xS are vectorized versions of
space-time (3D) tensors corresponding to Nt temporal frames,
each an image1 of size Nx × Ny . The operator A is the sens-
ing or encoding operator and d denotes the (undersampled)
measurements. For parallel imaging with Nc receiver coils,

1We focus on 2D + time for simplicity but the concepts generalize readily
to 3D + time.

applying the operator A involves frame-by-frame multiplica-
tion by coil sensitivities followed by applying an undersam-
pled Fourier encoding (i.e., the SENSE method) [50]. The
operation R1(xL) reshapes xL into an Nx Ny × Nt matrix, and
‖·‖∗ denotes the nuclear norm that sums the singular values
of a matrix. The nuclear norm serves as a convex surrogate
for matrix rank in (P0). Traditionally, the operator T in (P0)
is a known sparsifying transform for xS , and λL and λS are
non-negative weights.

B. Contributions

This work investigates in detail the extension of the
L+S model for dynamic data to a Low-rank + Adaptive
Sparse SIgnal (LASSI) model. In particular, we decompose
the underlying temporal image sequence into a low-rank
component and a component whose overlapping spatiotem-
poral (3D) patches are assumed sparse in some adaptive
dictionary domain.2 We propose a framework to jointly esti-
mate the underlying signal components and the spatiotemporal
dictionary from limited measurements. We compare using
�0 and �1 penalties for sparsity in our formulations, and
also investigate adapting structured dictionaries, where the
atoms of the dictionary, after being reshaped into space-time
matrices are low-rank. The proposed iterative LASSI recon-
struction algorithms involve efficient block coordinate descent-
type updates of the dictionary and sparse coefficients of
patches, and an efficient proximal gradient-based update of
the signal components. We also obtain novel sparsity penalized
dictionary-blind compressed sensing methods as special cases
of our LASSI approaches.

Our experiments demonstrate the promising performance of
the proposed data-driven schemes for dMRI reconstruction
from limited k-t space data. In particular, we show that the
LASSI methods give much improved reconstructions com-
pared to the recent L+S method and methods involving joint
L & S modeling [47]. We also show improvements with LASSI
compared to the proposed spatiotemporal dictionary-BCS
methods (that are special cases of LASSI). Moreover, learning
structured dictionaries and using the �0 sparsity “norm” in
LASSI are shown to be advantageous in practice. Finally, in
our experiments, we compare the use of conventional singular
value thresholding (SVT) for updating the low-rank signal
component in the LASSI algorithms to alternative approaches
including the recent OptShrink method [52]–[54].

A short version of this work investigating a specific
LASSI method appears elsewhere [55]. Unlike [55], here,
we study several dynamic signal models and reconstruction
approaches in detail, and illustrate the convergence and learn-
ing behavior of the proposed methods, and demonstrate their
effectiveness for several datasets and undersampling factors.

2The LASSI method differs from the scheme in [51] that is not (overlapping)
patch-based and involves only a 2D (spatial) dictionary. The model in [51]
is that R1(xS) = DZ with sparse Z and the atoms of D have size Nx Ny
(typically very large). Since often Nt < Nx Ny , one can easily construct
trivial (degenerate) sparsifying dictionaries (e.g., D = R1(xS)) in this
case. On the other hand, in our framework, the dictionaries are for small
spatiotemporal patches, and there are many such overlapping patches for a
dynamic image sequence to enable the learning of rich models that capture
local spatiotemporal properties.
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C. Organization
The rest of this paper is organized as follows. Section II

describes our models and problem formulations for dynamic
image reconstruction. Section III presents efficient algorithms
for the proposed problems and discusses the algorithms’
properties. Section IV presents experimental results demon-
strating the convergence behavior and performance of the
proposed schemes for the dynamic MRI application. Section V
concludes with proposals for future work.

II. MODELS AND PROBLEM FORMULATIONS

A. LASSI Formulations
We model the dynamic image data as x = xL + xS , where

xL is low-rank when reshaped into a (space-time) matrix,
and we assume that the spatiotemporal (3D) patches in the
vectorized tensor xS are sparse in some adaptive dictionary
domain. We replace the regularizer ζ(xs) = ‖T xS‖1 with
weight λS in (P0) with the following patch-based dictionary
learning regularizer

ζ(xs) = min
D,Z

M∑

j=1

∥∥Pj xS − Dz j
∥∥2

2 + λ2
Z ‖Z‖0

s.t. ‖Z‖∞ ≤ a, rank (R2(di )) ≤ r, ‖di‖2 = 1 ∀i
(1)

to arrive at the following problem for joint image sequence
reconstruction and dictionary estimation:

(P1) min
D,Z ,xL ,xS

1

2
‖A(xL + xS) − d‖2

2 + λL ‖R1(xL)‖∗

+ λS

{∑M
j=1

∥∥Pj xS − Dz j
∥∥2

2 + λ2
Z ‖Z‖0

}

s.t. ‖Z‖∞ ≤ a, rank (R2(di )) ≤ r, ‖di‖2 = 1 ∀ i.

Here, Pj is a patch extraction matrix that extracts an
mx × my × mt spatiotemporal patch from xS as a vector.
A total of M (spatially and temporally) overlapping 3D patches
are assumed. Matrix D ∈ Cm×K with m = mxmymt is the
synthesis dictionary to be learned and z j ∈ CK is the unknown
sparse code for the j th patch, with Pj xS ≈ Dz j .

We use Z ∈ CK×M to denote the matrix that has the sparse
codes z j as its columns, ‖Z‖0 (based on the �0 “norm”)
counts the number of nonzeros in the matrix Z , and λZ ≥ 0.
Problem (P1) penalizes the number of nonzeros in the (entire)
coefficient matrix Z , allowing variable sparsity levels across
patches. This is a general and flexible model for image patches
(e.g., patches from different regions in the dynamic image
sequence may contain different amounts of information and
therefore all patches may not be well represented at the
same sparsity) and leads to promising performance in our
experiments. The constraint ‖Z‖∞ � max j ‖z j ‖∞ ≤ a with
a > 0 is used in (P1) because the objective (specifically
the regularizer (1)) is non-coercive with respect to Z [56].3

The �∞ constraint prevents pathologies that could theoretically

3Such a non-coercive function remains finite even in cases when ‖Z‖ → ∞.
For example, consider a dictionary D that has a column di that repeats.
Then, in this case, the patch coefficient vector z j in (P1) could have
entries α and −α respectively, corresponding to the two repeated atoms
in D, and the objective would be invariant to arbitrarily large scaling of |α|
(i.e., non-coercive).

arise (e.g., unbounded algorithm iterates) due to the non-
coercive objective. In practice, we set a very large, and the
constraint is typically inactive.

The atoms or columns of D, denoted by di , are constrained
to have unit norm in (P1) to avoid scaling ambiguity between
D and Z [56], [57]. We also model the reshaped dictionary
atoms R2(di ) as having rank at most r > 0, where the
operator R2(·) reshapes di into a mxmy × mt space-time
matrix. Imposing low-rank (small r ) structure on reshaped
dictionary atoms is motivated by our empirical observation
that the dictionaries learned on image patches (without such
a constraint) tend to have reshaped atoms with only a few
dominant singular values. Results included in the supplement4

show that dictionaries learned on dynamic image patches with
low-rank atom constraints tend to represent such data as well
as learned dictionaries with full-rank atoms. Importantly, such
structured dictionary learning may be less prone to over-fitting
in scenarios involving limited or corrupted data. We illustrate
this for the dynamic MRI application in Section IV.

When z j is highly sparse (with ‖z j‖0 � min(mt , mx my))
and R2(di ) has low rank (say rank-1), the model Pj xS ≈ Dz j

corresponds to approximating the space-time patch matrix as
a sum of a few reshaped low-rank (rank-1) atoms. This special
(extreme) case would correspond to approximating the patch
itself as low-rank. However, in general the decomposition Dz j

could involve numerous (> min(mt , mx my)) active atoms,
corresponding to a rich, not necessarily low-rank, patch model.
Experimental results in Section IV illustrate the benefits of
such rich models.

Problem (P1) jointly learns a decomposition x = xL + xS

and a dictionary D along with the sparse coefficients Z (of spa-
tiotemporal patches) from the measurements d . Unlike (P0),
the fully-adaptive Problem (P1) is nonconvex. An alternative
to (P1) involves replacing the �0 “norm” with the convex
�1 norm (with ‖Z‖1 = ∑M

j=1 ‖z j‖1) as follows:

(P2) min
D,Z ,xL,xS

1

2
‖A(xL + xS) − d‖2

2 + λL ‖R1(xL)‖∗
+ λS

{∑M
j=1

∥∥Pj xS − Dz j
∥∥2

2 + λZ ‖Z‖1

}

s.t. ‖Z‖∞ ≤ a, rank (R2(di )) ≤ r, ‖di‖2 = 1 ∀ i.

Problem (P2) is also nonconvex due to the product Dz j (and
the nonconvex constraints), so the question of choosing (P2)
or (P1) is one of image quality, not convexity.

Finally, the convex nuclear norm penalty ‖R1(xL)‖∗ in
(P1) or (P2) could be alternatively replaced with a nonconvex
penalty for the rank of R1(xL), or the function ‖·‖p

p for p < 1
(based on the Schatten p-norm) that is applied to the vector
of singular values of R1(xL) [47]. While we focus mainly
on the popular nuclear norm penalty in our investigations, we
also briefly study some of the alternatives in Section III and
Section IV-D.

B. Special Case of LASSI Formulations: Dictionary-Blind
Image Reconstruction

When λL → ∞ in (P1) or (P2), the optimal low-
rank component of the dynamic image sequence becomes

4Supplementary material is available in the supplementary files/multimedia
tab.
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inactive (zero). The problems then become pure spatiotem-
poral dictionary-blind image reconstruction problems (with
xL = 0 and x = xS) involving �0 or �1 overall sparsity [56]
penalties. For example, Problem (P1) reduces to the following
form:

min
D,Z ,x

1

2
‖Ax −d‖2

2 + λS

{∑M
j=1

∥∥Pj x − Dz j
∥∥2

2 + λ2
Z ‖Z‖0

}

s.t. ‖Z‖∞ ≤ a, rank (R2(di )) ≤ r, ‖di‖2 = 1 ∀ i. (2)

We refer to formulation (2) with its low-rank atom
constraints as the DINO-KAT (DIctioNary with lOw-
ranK AToms) blind image reconstruction problem. A similar
formulation is obtained from (P2) but with an �1 penalty. These
formulations differ from the ones proposed for dynamic image
reconstruction in prior works such as [28], [35], [31]. In [35],
dynamic image reconstruction is performed by learning
a common real-valued dictionary for the spatio-temporal
patches of the real and imaginary parts of the dynamic image
sequence. The algorithm therein involves dictionary learning
using K-SVD [21], where sparse coding is performed using
the approximate and expensive orthogonal matching pursuit
method [58]. In contrast, the algorithms in this work
(cf. Section III) for the overall sparsity penalized
DINO-KAT blind image reconstruction problems involve
simple and efficient updating of the complex-valued spatio-
temporal dictionary (for complex-valued 3D patches)
and sparse coefficients (by simple thresholding) in the
formulations. The advantages of employing sparsity penalized
dictionary learning over conventional approaches like
K-SVD are discussed in more detail elsewhere [56]. In [31],
a spatio-temporal dictionary is learned for the complex-
valued 3D patches of the dynamic image sequence (a total
variation penalty is also used), but the method again involves
dictionary learning using K-SVD. In the blind compressed
sensing method of [28], the time-profiles of individual
image pixels were modeled as sparse in a learned dictionary.
The 1D voxel time-profiles are a special case of general
overlapping 3D (spatio-temporal) patches. Spatio-temporal
dictionaries as used here may help capture redundancies in
both spatial and temporal dimensions in the data. Finally,
unlike the prior works, the DINO-KAT schemes in this work
involve structured dictionary learning with low-rank reshaped
atoms.

III. ALGORITHMS AND PROPERTIES

A. Algorithms

We propose efficient block coordinate descent-type algo-
rithms for (P1) and (P2), where, in one step, we update
(D, Z) keeping (xL, xS) fixed (Dictionary Learning Step),
and then we update (xL, xS) keeping (D, Z) fixed (Image
Reconstruction Step). We repeat these alternating steps in
an iterative manner. The algorithm for the DINO-KAT blind
image reconstruction problem (2) (or its �1 version) is sim-
ilar, except that xL = 0 during the update steps. There-
fore, we focus on the algorithms for (P1) and (P2) in the
following.

1) Dictionary Learning Step: Here, we optimize (P1) or
(P2) with respect to (D, Z). We first describe the update
procedure for (P1). Denoting by P the matrix that has the
patches Pj xS for 1 ≤ j ≤ M as its columns, and with
C � Z H , the optimization problem with respect to (D, Z)
in the case of (P1) can be rewritten as follows:

(P3) min
D,C

∥∥∥P − DC H
∥∥∥

2

F
+ λ2

Z ‖C‖0

s.t. ‖C‖∞ ≤ a, rank (R2(di )) ≤ r, ‖di‖2 = 1 ∀ i.

Here, we express the matrix DC H as a Sum of OUter
Products (SOUP)

∑K
i=1 di cH

i . We then employ an iterative
block coordinate descent method for (P3), where the columns
ci of C and atoms di of D are updated sequentially by cycling
over all i values [56]. Specifically, for each 1 ≤ i ≤ K , we
solve (P3) first with respect to ci (sparse coding) and then
with respect to di (dictionary atom update).

For the minimization with respect to ci , we have the fol-
lowing subproblem, where Ei � P −∑

k �=i dkcH
k is computed

using the most recent estimates of the other variables:

min
ci ∈CM

∥∥Ei − di cH
i

∥∥2
F + λ2

Z ‖ci‖0 s.t. ‖ci‖∞ ≤ a. (3)

The minimizer ĉi of (3) is given by [56]

ĉi = min
(∣∣HλZ

(
E H

i di
)∣∣ , a1M

) 
 e j � E H
i di , (4)

where the hard-thresholding operator HλZ (·) zeros out vector
entries with magnitude less than λZ and leaves the other entries
(with magnitude ≥ λZ ) unaffected. Here, |·| computes the
magnitude of vector entries, 1M denotes a vector of ones of
length M , “
” denotes element-wise multiplication, min(·, ·)
denotes element-wise minimum, and we choose a such that
a > λZ . For a vector c ∈ CM , e j � c ∈ CM is computed
element-wise, with “ � ” denoting the phase.

Optimizing (P3) with respect to the atom di while holding
all other variables fixed yields the following subproblem:

min
di∈Cm

∥∥Ei − di cH
i

∥∥2
F s.t. rank (R2(di )) ≤ r, ‖di‖2 = 1. (5)

Let Ur�r V H
r denote an optimal rank-r approximation to

R2(Ei ci ) ∈ Cmx my×mt that is obtained using the r leading
singular vectors and singular values of the full singular value
decomposition (SVD) R2(Ei ci ) � U�V H . Then a global
minimizer of (5), upon reshaping, is

R2(d̂i) =
⎧
⎨

⎩

Ur�r V H
r

‖�r‖F
, if ci �= 0

W, if ci = 0
(6)

where W is any normalized matrix with rank at most r , of
appropriate dimensions (e.g., we use the reshaped first column
of the m × m identity matrix). The proof for (6) is included
in the supplementary material.

If r = min(mxmy, mt ), then no SVD is needed and the
solution is [56]

d̂i =
⎧
⎨

⎩

Ei ci

‖Ei ci‖2
, if ci �= 0

w, if ci = 0
(7)
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where w is any vector on the m-dimensional unit sphere (e.g.,
we use the first column of the m × m identity).

In the case of (P2), when minimizing with respect to (D, Z),
we again set C = Z H , which yields an �1 penalized dictionary
learning problem (a simple variant of (P3)). The dictionary
and sparse coefficients are then updated using a similar block
coordinate descent method as for (P3). In particular, the
coefficients ci are updated using soft thresholding:

ĉi = max

(∣∣E H
i di

∣∣ − λZ

2
1M , 0

)

 e j � E H

i di . (8)

2) Image Reconstruction Step: Minimizing (P1) or (P2)
with respect to xL and xS yields the following subproblem:

(P4) min
xL ,xS

1

2
‖A(xL + xS) − d‖2

2 + λL ‖R1(xL)‖∗

+ λS

M∑

j=1

∥∥Pj xS − Dz j
∥∥2

2 .

Problem (P4) is convex but nonsmooth, and its objec-
tive has the form f (xL, xS) + g1(xL) + g2(xS), with
f (xL, xS) � 0.5‖A(xL + xS) − d‖2

2, g1(xL) � λL‖R1(xL)‖∗,
and g2(xS) � λS

∑M
j=1 ‖Pj xS − Dz j ‖2

2. We employ the prox-
imal gradient method [45] for (P4), whose iterates, denoted by
superscript k, take the following form:

xk
L = proxtk g1

(xk−1
L − tk∇xL f (xk−1

L , xk−1
S )), (9)

xk
S = proxtk g2

(xk−1
S − tk∇xS f (xk−1

L , xk−1
S )), (10)

where the proximity function is defined as

proxtk g(y) = arg min
z

1

2
‖y − z‖2

2 + tk g(z), (11)

and the gradients of f are given by

∇xL f (xL , xS) = ∇xS f (xL , xS) = AH A(xL + xS) − AH d.

The update in (9) corresponds to the singular value thresh-
olding (SVT) operation [59]. Indeed, defining x̃ k−1

L � xk−1
L −

tk∇xL f (xk−1
L , xk−1

S ), it follows from (9) and (11) [59] that

R1(xk
L) = SVTtkλL (R1(x̃ k−1

L )). (12)

Here, the SVT operator for a given threshold τ > 0 is

SVTτ (Y ) =
∑

i

(σi − τ )+uiv
H
i , (13)

where U�V H is the SVD of Y with σi denoting the i th largest
singular value and ui and vi denoting the i th columns of U
and V , and (·)+ = max(·, 0) sets negative values to zero.

Let x̃ k−1
S � xk−1

S − tk∇xS f (xk−1
L , xk−1

S ). Then (10) and (11)
imply that xk

S satisfies the following Normal equation:

(
I + 2tkλS

∑M
j=1 PT

j Pj

)
xk

S = x̃ k−1
S + 2tkλS

M∑

j=1

PT
j Dz j .

(14)
Solving (14) for xk

S is straightforward because the matrix
pre-multiplying xk

S is diagonal, and thus its inverse can be
computed cheaply. The term 2tkλS

∑M
j=1 PT

j Dz j in (14) can
also be computed cheaply using patch-based operations.

The proximal gradient method for (P4) converges [60] for
a constant step-size tk = t < 2/�, where � is the Lipschitz
constant of ∇ f (xL , xS). For (P4), � = 2‖A‖2

2. In practice,
� can be precomputed using standard techniques such as
the power iteration method. In our dMRI experiments in
Section IV, we normalize the encoding operator A so that
‖A‖2 = 1 for fully-sampled measurements (cf. [45], [61]) to
ensure that ‖A‖2

2 ≤ 1 in undersampled (k-t space) scenarios.
When the nuclear norm penalty in (P4) is replaced with a

rank penalty, i.e., g1(xL) � λL rank(R1(xL)), the proximity
function is a modified form of the SVT operation in (12)
(or (13)), where the singular values smaller than

√
2tkλL are

set to zero and the other singular values are left unaffected (i.e.,
hard-thresholding the singular values). Alternatively, when the
nuclear norm penalty is replaced with ‖·‖p

p (for p < 1) applied
to the vector of singular values of R1(xL) [47], the proximity
function can still be computed cheaply when p = 1/2 or
p = 2/3, for which the soft thresholding of singular values
in (13) is replaced with the solution of an appropriate polyno-
mial equation (see [62]). For general p, the xL update could
be performed using strategies such as in [47].

The nuclear norm-based low-rank regularizer ‖R1(xL)‖	

is popular because it is the tightest convex relaxation of
the (nonconvex) matrix rank penalty. However, this does not
guarantee that the nuclear norm (or its alternatives) is the
optimal (in any sense) low-rank regularizer in practice. Indeed,
the argument R1(x̃ k−1

L ) of the SVT operator in (12) can
be interpreted as an estimate of the underlying (true) low-
rank matrix R1(xL) plus a residual (noise) matrix. In [52],
the low-rank denoising problem was studied from a random-
matrix-theoretic perspective and an algorithm– OptShrink–
was derived that asymptotically achieves minimum squared
error among all estimators that shrink the singular values of
their argument. We leverage this result for dMRI by proposing
the following modification of (12):

R1(xk
L) = OptShrinkrL

(R1(x̃ k−1
L )). (15)

Here, OptShrinkrL
(.) is the data-driven OptShrink estimator

from Algorithm 1 of [52] (see the supplementary material for
more details and discussion of OptShrink). In this variation,
the regularization parameter λL is replaced by a parameter
rL ∈ N that directly specifies the rank of R1(xk

L), and
the (optimal) shrinkage for each of the leading rL singular
values is implicitly estimated based on the distribution of the
remaining singular values. Intuitively, we expect this variation
of the aforementioned (SVT-based) proximal gradient scheme
to yield better estimates of the underlying low-rank component
of the reconstruction because, at each iteration k (in (9)), the
OptShrink-based update (15) should produce an estimate of
the underlying low-rank matrix R1(xL) with smaller squared
error than the corresponding SVT-based update (12). Simi-
lar OptShrink-based schemes have shown promise in prac-
tice [53], [54]. In particular, in [53] it is shown that replac-
ing the SVT-based low-rank updates in the algorithm [45]
for (P0) with OptShrink updates can improve dMRI recon-
struction quality. In practice, small rL values perform well
due to the high spatio-temporal correlation of the background
in dMRI.
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Fig. 1. The LASSI reconstruction algorithms for Problems (P1) and (P2),
respectively. Superscript t denotes the iterates in the algorithm. We do
not compute the matrices Ei � P − �k=/ i dk cHk explicitly in the
dictionary learning iterations. Rather, we efficiently compute products
of Ei or EH

i
with vectors [56]. Parameter a is set very large in practice

(e.g., a ∝ ‖A†d‖2).

Fig. 1 shows the LASSI reconstruction algorithms for
Problems (P1) and (P2), respectively. As discussed, we can
obtain variants of these proposed LASSI algorithms by replac-
ing the SVT-based xL update (12) in the image reconstruction
step with an OptShrink-based update (15), or with the update
arising from the rank penalty or from the Schatten p-norm
(p < 1) penalty. The proposed LASSI algorithms start with
an initial (x0

L, x0
S, D0, Z0). For example, D0 can be set to

an analytical dictionary, Z0 = 0, and x0
L and x0

S could be
(for example) set based on some iterations of the recent
L+S method [45]. In the case of Problem (2), the proposed
algorithm is an efficient SOUP-based image reconstruction
algorithm. We refer to it as the DINO-KAT image reconstruc-
tion algorithm in this case.

B. Convergence and Computational Cost

The proposed LASSI algorithms for (P1) and (P2) alternate
between updating (D, Z) and (xL, xS). Since we update the
dictionary atoms and sparse coefficients using an exact block
coordinate descent approach, the objectives in our formula-
tions only decrease in this step. When the (xL, xS) update
is performed using proximal gradients (which is guaranteed
to converge to the global minimizer of (P4)), by appropriate
choice of the constant-step size [63], the objective functions
can be ensured to be monotone (non-increasing) in this step.
Thus, the costs in our algorithms are monotone decreasing, and
because they are lower-bounded (by 0), they must converge.
Whether the iterates in the LASSI algorithms converge to
the critical points [64] in (P1) or (P2) [56] is an interesting
question that we leave for future work.

In practice, the computational cost per outer iteration of
the proposed algorithms is dominated by the cost of the
dictionary learning step, which scales (assuming K ∝ m and
M � K , m) as O(m2 M J ), where J is the number of times
the matrix D is updated in the dictionary learning step. The
SOUP dictionary learning cost is itself dominated by various
matrix-vector products, whereas the costs of the truncated
hard-thresholding (4) and low-rank approximation (6) steps
are negligible. On the other hand, when dictionary learning is
performed using methods like K-SVD [21] (e.g., in [18], [30]),
the associated cost (assuming per-patch sparsity ∝ m) may
scale worse5 as O(m3 M J ). Section IV illustrates that our
algorithms converge quickly in practice.

IV. NUMERICAL EXPERIMENTS

A. Framework
The proposed LASSI framework can be used for inverse

problems involving dynamic data, such as in dMRI, inter-
ventional imaging, video processing, etc. Here, we illustrate
the convergence behavior and performance of our methods for
dMRI reconstruction from limited k-t space data. Section IV-B
focuses on empirical convergence and learning behavior of
the methods. Section IV-C compares the image reconstruction
quality obtained with LASSI to that obtained with recent tech-
niques. Section IV-D investigates and compares the various
LASSI models and methods in detail. We compare using the
�0 “norm” (i.e., (P1)) to the �1 norm (i.e., (P2)), structured
(with low-rank atoms) dictionary learning to the learning of
unstructured (with full-rank atoms) dictionaries, and singular
value thresholding-based xL update to OptShrink-based or
other alternative xL updates in LASSI. We also investigate
the effects of the sparsity level (i.e., number of nonzeros) of
the learned Z and the overcompleteness of D in LASSI, and
demonstrate the advantages of adapting the patch-based LASSI
dictionary compared to using fixed dictionary models in the
LASSI algorithms. The LASSI methods are also shown to
perform well for various initializations of xL and xS .

We work with several dMRI datasets from prior
works [45], [47]: 1) the Cartesian cardiac perfusion
data [45], [61], 2) a 2D cross section of the physiologically
improved nonuniform cardiac torso (PINCAT) [65] phantom
data (see [47], [66]), and 3) the in vivo myocardial per-
fusion MRI data in [47], [66]. The cardiac perfusion data
were acquired with a modified TurboFLASH sequence on a
3T scanner using a 12-element coil array. The fully sampled
data with an image matrix size of 128 × 128 (128 phase
encode lines) and 40 temporal frames was acquired with
FOV = 320 × 320 mm2, slice thickness = 8 mm, spatial
resolution = 3.2 mm2, and temporal resolution of 307 ms [45].
The coil sensitivity maps are provided in [61]. The (single coil)
PINCAT data (as in [66]) had image matrix size of 128 × 128
and 50 temporal frames. The single coil in vivo myocardial
perfusion data was acquired on a 3T scanner using a sat-
uration recovery FLASH sequence with Cartesian sampling
(TR/TE = 2.5/1 ms, saturation recovery time = 100 ms),

5In [56], we have shown that efficient SOUP learning-based image recon-
struction methods outperform methods based on K-SVD in practice.
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and had a image matrix size of 90 × 190 (phase encodes ×
frequency encodes) and 70 temporal frames [47].

Fully sampled data (PINCAT and in vivo data were nor-
malized to unit peak image intensity, and the cardiac per-
fusion data [45] had a peak image intensity of 1.27) were
retrospectively undersampled in our experiments. We used
Cartesian and pseudo-radial undersampling patterns. In the
case of Cartesian sampling, we used a different variable-
density random Cartesian undersampling pattern for each
time frame. The pseudo-radial (sampling radially at uni-
formly spaced angles for each time frame and with a small
random rotation of the radial lines between frames) sam-
pling patterns were obtained by subsampling on a Cartesian
grid for each time frame. We simulate several undersam-
pling (acceleration) factors of k-t space in our experiments.
We measure the quality of the dMRI reconstructions using the
normalized root mean square error (NRMSE) metric defined as
‖xrecon − xref‖2/‖xref‖2, where xref is a reference reconstruc-
tion from fully sampled data, and xrecon is the reconstruction
from undersampled data.

We compare the quality of reconstructions obtained with the
proposed LASSI methods to those obtained with the recent
L+S method [45] and the k-t SLR method involving joint
L & S modeling [47]. For the L+S and k-t SLR methods,
we used the publicly available MATLAB implementa-
tions [61], [66]. We chose the parameters for both meth-
ods (e.g., λL and λS for L+S in (P0) or λ1, λ2, etc. for
k-t SLR [47], [66]) by sweeping over a range of values
and choosing the settings that achieved good NRMSE in our
experiments. We optimized parameters separately for each
dataset to achieve the lowest NRMSE at some intermedi-
ate undersampling factors, and observed that these settings
also worked well at other undersampling factors. The L+S
method was simulated for 250 iterations and k-t SLR was also
simulated for sufficient iterations to ensure convergence. The
operator T (in (P0)) for L+S was set to a temporal Fourier
transform, and a total variation sparsifying penalty (together
with a nuclear norm penalty for enforcing low-rankness) was
used in k-t SLR. The dynamic image sequence in both methods
was initialized with a baseline reconstruction (for the L+S
method, L was initialized with this baseline and S with zero)
that was obtained by first performing zeroth order interpolation
at the non-sampled k-t space locations (by filling in with the
nearest non-zero entry along time) and then backpropagating
the filled k-t space to image space (i.e., pre-multiplying by the
AH corresponding to fully sampled data).

For the LASSI method, we extracted spatiotemporal patches
of size 8 × 8 × 5 from xS in (P1) with spatial and temporal
patch overlap strides of 2 pixels.6 The dictionary atoms were
reshaped into 64 × 5 space-time matrices, and we set the rank
parameter r = 1, except for the invivo dataset [47], [66], where
we set r = 5. We ran LASSI for 50 outer iterations with
1 and 5 inner iterations in the (D, Z) and (xL, xS) updates,
respectively. Since Problem (P1) is nonconvex, the proposed

6While we used a stride of 2 pixels, a spatial and temporal patch overlap
stride of 1 pixel would further enhance the reconstruction performance of
LASSI in our experiments, but at the cost of substantially more computation.

algorithm needs to be initialized appropriately. We set the
initial Z = 0, and the initial xL and xS were typically set
based on the outputs of either the L+S or k-t SLR methods.
When learning a square dictionary, we initialized D with a
320 × 320 DCT, and, in the overcomplete (K > m) case,
we concatenated the square DCT initialization with normal-
ized and vectorized patches that were selected from ran-
dom locations of the initial reconstruction. We empirically
show in Section IV-D that the proposed LASSI algorithms
typically improve image reconstruction quality compared
to that achieved by their initializations. We selected the
weights λL , λS , and λZ for the LASSI methods separately
for each dataset by sweeping over a range (3D grid) of values
and picking the settings that achieved the lowest NRMSE at
intermediate undersampling factors (as for L+S and k-t SLR)
in our experiments. These tuned parameters also worked well
at other undersampling factors (e.g., see Fig. 5(h)), and are
included in the supplement for completeness.

We also evaluate the proposed variant of LASSI involving
only spatiotemporal dictionary learning (i.e., dictionary blind
compressed sensing). We refer to this method as DINO-KAT
dMRI, with r = 1. We use an �0 sparsity penalty for
DINO-KAT dMRI (i.e., we solve Problem (2)) in our experi-
ments, and the other parameters are set or optimized (cf. the
supplement) similarly as described above for LASSI.

The LASSI and DINO-KAT dMRI implementations were
coded in Matlab R2016a. Our current Matlab implementations
are not optimized for efficiency. Hence, here we perform our
comparisons to recent methods based on reconstruction qual-
ity (NRMSE) rather than runtimes, since the latter are highly
implementation dependant. A link to software to reproduce
our results is provided at http://web.eecs.umich.edu/fessler/.

B. LASSI Convergence and Learning Behavior
Here, we consider the fully sampled cardiac perfusion data

in [45], [61] and perform eight fold Cartesian undersampling
of k-t space. We study the behavior of the proposed LASSI
algorithms for reconstructing the dMRI data from (multi-
coil) undersampled measurements. We consider four different
LASSI algorithms in our study here: the algorithms for (P1)
(with �0 “norm”) and (P2) (with �1 norm) with SVT-based
xL update; and the variants of these two algorithms where the
SVT update step is replaced with an OptShrink (OPT)-type
update. The other variants of the SVT update including
hard thresholding of singular values or updating based on
the Schatten p-norm are studied later in Section IV-D.
We learned 320×320 dictionaries (with atoms reshaped by the
operator R2(·) into 64×5 space-time matrices) for the patches
of xS with r = 1, and xL and xS were initialized using the
corresponding components of the L+S method with λL = 1.2
and λS = 0.01 in (P0) [45]. Here, we jointly tuned λL , λS ,
and λZ for each LASSI variation, to achieve the best NRMSE.

Fig. 2 shows the behavior of the proposed LASSI recon-
struction methods. The objective function values (Fig. 2(a))
in (P1) and (P2) decreased monotonically and quickly for the
algorithms with SVT-based xL update. The OptShrink-based
xL update does not correspond to minimizing a formal
cost function, so the OPT-based algorithms are omitted in
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Fig. 2. Behavior of the LASSI algorithms with Cartesian sampling and 8x undersampling. The algorithms are labeled according to the method
used for xL update, i.e., SVT or OptShrink (OPT), and according to the type of sparsity penalty employed for the patch coefficients (�0 or
�1 corresponding to (P1) or (P2)). (a) Objectives (shown only for the algorithms for (P1) and (P2) with SVT-based updates, since OPT-based
updates do not correspond to minimizing a formal cost function); (b) NRMSE; (c) Sparsity fraction of Z (i.e., ‖Z‖0/mM) expressed as a percentage;
(d) normalized changes between successive dMRI reconstructions ‖xt

L
+ xt
S
− xt−1
L

− xt−1
S
‖2/‖xref‖2; (e) real and (f) imaginary parts of the

atoms of the learned dictionaries in LASSI (using �0 sparsity penalty and OptShrink-based xL update) shown as patches – only the 8× 8 patches
corresponding to the first time-point (column) of the rank-1 reshaped (64 × 5) atoms are shown; and frames 7 and 13 of the (g) conventional L+S
reconstruction [45] and (h) the proposed LASSI (with �0 penalty and OptShrink-based xL update) reconstruction shown along with the corresponding
reference frames. The low-rank (L) and (transform or dictionary) sparse (S) components of each reconstructed frame are also individually shown.
Only image magnitudes are displayed in (g) and (h).

Fig. 2(a). All four LASSI methods improved the NRMSE
over iterations compared to the initialization. The NRMSE
converged (Fig. 2(b)) in all four cases, with the �0 “norm”-
based methods outperforming the �1 penalty methods.
Moreover, when employing the �0 sparsity penalty, the OPT-
based method (rL = 1) outperformed the SVT-based one for
the dataset. The sparsity fraction (‖Z‖0/mM) for the learned
coefficients matrix (Fig. 2(c)) converged to small values
(about 10-20%) in all cases indicating that highly sparse
representations are obtained in the LASSI models. Lastly,
the difference between successive dMRI reconstructions
(Fig. 2(d)) quickly decreased to small values, suggesting
iterate convergence.

Figs. 2(g) and (h) show the reconstructions7 and xL and
xS components of two representative frames produced by
the L+S [45] (with parameters optimized to achieve best
NRMSE) and LASSI (OPT update and �0 sparsity) methods,
respectively. The LASSI reconstructions are sharper and a
better approximation of the reference frames (fully sampled
reconstructions) shown. In particular, the xL component of
the LASSI reconstruction is clearly low-rank, and the xS

7Gamma correction was used to better display the images in this work.

component captures the changes in contrast and other dynamic
features in the data. On the other hand, the xL component of
the conventional L+S reconstruction varies more over time
(i.e., it has higher rank), and the xS component contains
relatively little information. The richer (xL, xS) decomposition
produced by LASSI suggests that both the low-rank and
adaptive dictionary-sparse components of the model are well-
suited for dMRI.

Figs. 2(e) and (f) show the real and imaginary parts of the
atoms of the learned D in LASSI with OptShrink-based xL

updating and �0 sparsity. Only the first columns (time-point) of
the (rank-1) reshaped 64×5 atoms are shown as 8×8 patches.
The learned atoms contain rich geometric and frequency-like
structures that were jointly learned with the dynamic signal
components from limited k-t space measurements.

C. Dynamic MRI Results and Comparisons
Here, we consider the fully sampled cardiac perfusion

data [45], [61], PINCAT data [47], [66], and in vivo myocardial
perfusion data [47], [66], and simulate k-t space undersam-
pling at various acceleration factors. Cartesian sampling was
used for the first dataset, and pseudo-radial sampling was
employed for the other two. The performance of LASSI and
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Fig. 3. NRMSE values computed between each reconstructed and
reference frame for LASSI, L+S, and k-t SLR for (a) the cardiac per-
fusion data [45], [61] at 8x undersampling, and (b) the PINCAT data at
9x undersampling.

TABLE I
NRMSE VALUES EXPRESSED AS PERCENTAGES FOR THE L+S [45],

k-t SLR [47], AND THE PROPOSED DINO-KAT dMRI AND LASSI
METHODS AT SEVERAL UNDERSAMPLING (ACCELERATION)
FACTORS FOR THE CARDIAC PERFUSION DATA [45], [61]

WITH CARTESIAN SAMPLING. THE NRMSE GAIN (IN

DECIBELS (dB)) ACHIEVED BY LASSI OVER THE

OTHER METHODS IS ALSO SHOWN. THE BEST

NRMSE FOR EACH UNDERSAMPLING

FACTOR IS IN BOLD

DINO-KAT dMRI is compared to that of L+S [45] and
k-t SLR [47]. The LASSI and DINO-KAT dMRI algo-
rithms were simulated with an �0 sparsity penalty and
a 320 × 320 dictionary. OptShrink-based xL updates were
employed in LASSI for the cardiac perfusion data, and
SVT-based updates were used in the other cases. For the
cardiac perfusion data, the initial xL and xS in LASSI were
from the L+S framework [45] (and the initial x in DINO-KAT
dMRI was an L+S dMRI reconstruction). For the PINCAT
and in vivo myocardial perfusion data, the initial xS in LASSI
(or x in DINO-KAT dMRI) was the (better) k-t SLR recon-
struction and the initial xL was zero. All other settings are as
discussed in Section IV-A.

Tables I, II and III list the reconstruction NRMSE values for
LASSI, DINO-KAT dMRI, L+S [45] and k-t SLR [47] for the
cardiac perfusion, PINCAT, and in vivo datasets, respectively.
The LASSI method provides the best NRMSE values, and the
proposed DINO-KAT dMRI method also outperforms the prior
L+S and k-t SLR methods. The NRMSE gains achieved by
LASSI over the other methods are indicated in the tables for
each dataset and undersampling factor. The LASSI framework
provides an average improvement of 1.9 dB, 1.5 dB, and
0.5 dB respectively, over the L+S, k-t SLR, and (proposed)
DINO-KAT dMRI methods. This suggests the suitability of the
richer LASSI model for dynamic image sequences compared
to the jointly low-rank and sparse (k-t SLR), low-rank plus
non-adaptive sparse (L+S), and purely adaptive dictionary-
sparse (DINO-KAT dMRI) signal models.

TABLE II
NRMSE VALUES EXPRESSED AS PERCENTAGES FOR THE L+S [45],

k-t SLR [47], AND THE PROPOSED DINO-KAT dMRI AND LASSI
METHODS AT SEVERAL UNDERSAMPLING (ACCELERATION)

FACTORS FOR THE PINCAT DATA [47], [66] WITH

PSEUDO-RADIAL SAMPLING. THE BEST NRMSE
VALUES FOR EACH UNDERSAMPLING FACTOR

ARE MARKED IN BOLD

Fig. 4. LASSI reconstructions and the error maps (clipped for viewing)
for LASSI, L+S, and k-t SLR for frames of the cardiac perfusion
data [45], [61] (first row), PINCAT data [47], [66] (second row), and in vivo
myocardial perfusion data [47], [66] (third row), shown along with the
reference reconstruction frames. Undersampling factors (top to bottom):
8x, 9x, and 8x. The frame numbers and method names are indicated on
the images.

It is often of interest to compute the reconstruction NRMSE
over a region of interest (ROI) containing the heart. Addi-
tional tables included in the supplement show the reconstruc-
tion NRMSE values computed over such ROIs for LASSI,
DINO-KAT dMRI, L+S, and k-t SLR for the cardiac perfu-
sion, PINCAT, and in vivo datasets. The proposed LASSI and
DINO-KAT dMRI methods provide much lower NRMSE in
the heart ROIs compared to the other methods.
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Fig. 3 shows the NRMSE values computed between each
reconstructed and reference frame for the LASSI, L+S, and
k-t SLR outputs for two datasets. The proposed LASSI
scheme clearly outperforms the previous L+S and k-t SLR
methods across frames (time). Fig. 4 shows the LASSI
reconstructions of some representative frames (the supple-
ment shows more such reconstructions) for each dataset in
Tables I-III. The reconstructed frames are visually similar to
the reference frames (fully sampled reconstructions) shown.
Fig. 4 also shows the reconstruction error maps (i.e., the
magnitude of the difference between the magnitudes of the
reconstructed and reference frames) for LASSI, L+S, and
k-t SLR for the representative frames of each dataset. The
error maps for LASSI show fewer artifacts and smaller
distortions than the other methods. Results included in the
supplement show that LASSI recovers temporal (x − t) pro-
files in the dynamic data with greater fidelity than other
methods.

D. A Study of Various LASSI Models and Methods

Here, we investigate the various LASSI models and methods
in detail. We work with the cardiac perfusion data [45]
and simulate the reconstruction performance of LASSI for
Cartesian sampling at various undersampling factors. Unless
otherwise stated, we simulate LASSI here with the �0 spar-
sity penalty, the SVT-based xL update, r = 1, an initial
320 × 320 (1D) DCT D, and xS initialized with the
dMRI reconstruction from the L+S method [45] and xL

initialized to zero. In the following, we first compare
SVT-based updating of xL to alternatives in the algorithms
and the use of �0 versus �1 sparsity penalties. The weights λL ,
λS , and λZ were tuned for each LASSI variation. Second, we
study the behavior of LASSI for different initializations of the
underlying signal components or dictionary. Third, we study
the effect of the number of atoms of D on LASSI performance.
Fourth, we study the effect of the sparsity level of the learned
Z on the reconstruction quality in LASSI. Lastly, we study
the effect of the atom rank parameter r in LASSI.

1) SVT vs. Alternatives and �0 vs. �1 Patch
Sparsity: Figs. 5(a) and (b) show the behavior of the LASSI
algorithms using �0 and �1 sparsity penalties, respectively.
In each case, the results obtained with xL updates based
on SVT, OptShrink (OPT), or based on the Schatten p-norm
(p = 0.5), and rank penalty are shown. The OptShrink-
based singular value shrinkage (with rL = 1) and Schatten
p-norm-based shrinkage typically outperform the conventional
SVT (based on nuclear norm penalty) as well as the hard
thresholding of singular values (for rank penalty) for the
cardiac perfusion data. The OptShrink and Schatten p-norm-
based xL updates also perform quite similarly at lower
undersampling factors, but OptShrink outperforms the latter
approach at higher undersampling factors. Moreover, the
�0 “norm”-based methods outperformed the corresponding
�1 norm methods in many cases (with SVT or alternative
approaches). These results demonstrate the benefits of
appropriate nonconvex regularizers in practice.

2) Effect of Initializations: Here, we explore the behav-
ior of LASSI for different initializations of the dictionary

TABLE III
NRMSE VALUES EXPRESSED AS PERCENTAGES FOR THE L+S [45],

k-t SLR [47], AND THE PROPOSED DINO-KAT dMRI AND LASSI
METHODS AT SEVERAL UNDERSAMPLING (ACCELERATION)

FACTORS FOR THE MYOCARDIAL PERFUSION MRI DATA

IN [47], [66], USING PSEUDO-RADIAL SAMPLING.
THE BEST NRMSE VALUES FOR EACH

UNDERSAMPLING FACTOR ARE

MARKED IN BOLD

and the dynamic signal components. First, we consider the
LASSI algorithm initialized by the L+S and k-t SLR meth-
ods as well as with the baseline reconstruction (obtained
by performing zeroth order interpolation at the nonsampled
k-t space locations and then backpropagating to image space)
mentioned in Section IV-A (all other parameters fixed). The
reconstructions from the prior methods are used to initialize
xS in LASSI with x0

L = 0.8 Figs. 5(c) and (d) show that
LASSI significantly improves the dMRI reconstruction quality
compared to the initializations at all undersampling factors
tested. The baseline reconstructions had high NRMSE values
(not shown in Fig. 5) of about 0.5. Importantly, the reconstruc-
tion NRMSE for LASSI with the simple baseline initialization
(Fig. 5(d)) is comparable to the NRMSE obtained with the
more sophisticated k-t SLR initialization. In general, better
initializations (for xL , xS) in LASSI may lead to a better final
NRMSE in practice.

Next, we consider initializing the LASSI method with the
following types of dictionaries (all other parameters fixed):
a random i.i.d. Gaussian matrix with normalized columns,
the 320 × 320 1D DCT, and the separable 3D DCT of
size 320 × 320. Fig. 5(g) shows that LASSI performs well
for each choice of initialization. We also simulated the
LASSI algorithm by keeping the dictionary D fixed (but still
updating Z ) to each of the aforementioned initializations.
Importantly, the NRMSE values achieved by the adaptive-
dictionary LASSI variations are substantially better than the
values achieved by the fixed-dictionary schemes.

3) Effect of Overcompleteness of D: Fig. 5(e) shows the
performance (NRMSE) of LASSI for various choices of the
number of atoms (K ) in D at several acceleration factors. The
weights in (P1) were tuned for each K . As K is increased, the
NRMSE initially shows significant improvements (decrease)
of more than 1 dB. This is because LASSI learns richer models
that provide sparser representations of patches and, hence,
better reconstructions. However, for very large K values, the
NRMSE saturates or begins to degrade, since it is harder to
learn very rich models using limited imaging measurements
(without overfitting artifacts).

8We have also observed that LASSI improves the reconstruction quality
over other alternative initializations such as initializing xL and xS using
corresponding outputs of the L+S framework.
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Fig. 5. Study of LASSI models, methods, and initializations at various undersampling (acceleration) factors for the cardiac perfusion data in [45], [61]
with Cartesian sampling: (a) NRMSE for LASSI with �0 “norm” for sparsity and with xL updates based on SVT (p = 1), OptShrink (OPT), or based
on the Schatten p-norm (p = 0.5) or rank penalty (p = 0); (b) NRMSE for LASSI with �1 sparsity and with xL updates based on SVT (p = 1),
OptShrink (OPT), or based on the Schatten p-norm (p = 0.5) or rank penalty (p = 0); (c) NRMSE for LASSI when initialized with the output of the
L+S method [45] (used to initialize xS with x0

L
= 0) together with the NRMSE for the L+S method; (d) NRMSE for LASSI when initialized with the

output of the k-t SLR method [47] or with the baseline reconstruction (performing zeroth order interpolation at the nonsampled k-t space locations
and then backpropagating to image space) mentioned in Section IV-A (these are used to initialize xS with x0L = 0), together with the NRMSE values
for k-t SLR; (e) NRMSE versus dictionary size at different acceleration factors; (f) NRMSE improvement (in dB) achieved with r = 1 compared to
the r = 5 case in LASSI; (g) NRMSE for LASSI with different dictionary initializations (a random dictionary, a 320× 320 1D DCT and a separable
3D DCT of the same size) together with the NRMSEs achieved in LASSI when the dictionary is fixed to its initial value; and (h) NRMSE versus the
fraction of nonzero coefficients (expressed as percentage) in the learned Z at different acceleration factors.

4) Effect of the Sparsity Level in LASSI: While
Section IV-D.1 compared the various ways of updating the
low-rank signal component in LASSI, here we study the effect
of the sparsity level of the learned Z on LASSI performance.
In particular, we simulate LASSI for various values of the
parameter λZ that controls sparsity (all other parameters fixed).
Fig. 5(h) shows the NRMSE of LASSI at various sparsity
levels of the learned Z and at several acceleration factors.
The weight λZ decreases from left to right in the plot and
the same set of λZ values were selected (for the simulation)
at the various acceleration factors. Clearly, the best NRMSE
values occur around 10-20% sparsity (when 32-64 dictionary
atoms are used on the average to represent the reshaped
64 × 5 space-time patches of xS), and the NRMSE degrades
when the number of nonzeros in Z is either too high (non-
sparse) or too low (when the dictionary model reduces to a
low-rank approximation of space-time patches in xS). This
illustrates the effectiveness of the rich sparsity-driven model-
ing in LASSI.9

5) Effect of Rank of Reshaped Atoms: Here, we
simulate LASSI with (reshaped) atom ranks r = 1
(low-rank) and r = 5 (full-rank). Fig. 5(f) shows that LASSI

9Fig. 5(h) shows that the same λZ value is optimal at various accelerations.
An intuitive explanation for this is that as the undersampling factor increases,
the weighting of the (first) data-fidelity term in (P1) or (P2) decreases (fewer
k-t space samples, or rows of the sensing matrix are selected). Thus, even
with fixed λZ , the relative weighting of the sparsity penalty would increase,
creating a stronger sparsity regularization at higher undersampling factors.

with r = 1 provides somewhat improved NRMSE values over
the r = 5 case at several undersampling factors, with larger
improvements at higher accelerations. This result suggests that
structured (fewer degrees of freedom) dictionary adaptation
may be useful in scenarios involving very limited measure-
ments. In practice, the effectiveness of the low-rank model for
reshaped dictionary atoms also depends on the properties of
the underlying data.

V. CONCLUSIONS

In this work, we investigated a novel framework for recon-
structing spatiotemporal data from limited measurements. The
proposed LASSI framework jointly learns a low-rank and
dictionary-sparse decomposition of the underlying dynamic
image sequence together with a spatiotemporal dictionary. The
proposed algorithms involve simple updates. Our experimental
results showed the superior performance of LASSI methods
for dynamic MR image reconstruction from limited k-t
space data compared to recent works such as L+S and
k-t SLR. The LASSI framework also outperformed the
proposed efficient dictionary-blind compressed sensing
framework (a special case of LASSI) called DINO-KAT
dMRI. We also studied and compared various LASSI
methods and formulations such as with �0 or �1 sparsity
penalties, or with low-rank or full-rank reshaped dictionary
atoms, or involving singular value thresholding-based
optimization versus some alternatives including OptShrink-
based optimization. The usefulness of LASSI-based schemes
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in other inverse problems and image processing applications
merits further study. The LASSI schemes involve parameters
(like in most regularization-based methods) that need to be set
(or tuned) in practice. We leave the study of automating the
parameter selection process to future work. The investigation
of dynamic image priors that naturally lead to OptShrink-type
low-rank updates in the LASSI algorithms is also of interest,
but is beyond the scope of this work, and will be presented
elsewhere.
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This supplement presents a proof of the low-rank atom
update formula (in the LASSI algorithms), a review of the
OptShrink low-rank estimator, and additional experimental
results to accompany our manuscript [1].

VI. PROOF OF ATOM UPDATE FORMULA

Here, we provide the proof of the low-rank atom update for-
mula in Section III of our manuscript [1]. The corresponding
optimization problem is as follows:

min
di∈Cm

∥∥Ei − dicHi
∥∥2

F
(16)

s.t. rank (R2(di)) ≤ r, ‖di‖2 = 1

where Ei , P − ∑k 6=i dkc
H
k is computed using the most

recent estimates of the variables, P denotes the matrix that
has the patches PjxS for 1 ≤ j ≤ M as its columns, and di
and ci are the ith columns of D and C = ZH , respectively.
The following Proposition 1 provides the solution to Problem
(16). It relies on the full singular value decomposition (SVD)
of an appropriate matrix. We assume R2(di) ∈ Cmxmy×mt ,
and let σi denote the ith entry on the main diagonal of the
matrix Σ.

Proposition 1: Given Ei ∈ Cm×M and ci ∈ CM ,
let UrΣrV

H
r denote an optimal rank-r approximation to

R2 (Eici) ∈ Cmxmy×mt that is obtained using the r lead-
ing singular vectors and singular values of the full SVD
R2 (Eici) , UΣV H . Then, a global minimizer in Problem
(16), upon reshaping, is

R2(d̂i) =

{
UrΣrV

H
r

‖Σr‖F
, if ci 6= 0

W, if ci = 0
(17)

where W is the reshaped first column of the m×m identity
matrix. The solution is unique if and only if ci 6= 0, and
σr > σr+1 or σr = 0.

Proof: First, because ‖di‖2 = 1, the following result holds:
∥∥Ei − dicHi

∥∥2

F
= ‖Ei‖2F + ‖ci‖22 − 2 Re

{
dHi Eici

}
. (18)
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Upon substituting (18) into (16), Problem (16) simplifies to

max
di∈Cm

Re
{

tr
(
R2(di)

HR2

(
Eici

))}
(19)

s.t. rank (R2(di)) ≤ r, ‖di‖2 = 1.

Next, let R2(di) = GΓBH , and R2

(
Eici

)
= UΣV H be full

SVDs, with γk and σk the entries on the main diagonals of Γ
and Σ, respectively. The problem then becomes

max
Γ

max
G,B

Re
{

tr
(
BΓTGHUΣV H

)}
(20)

s.t. rank(Γ) ≤ r, ‖Γ‖F = 1, GHG = BHB = I.

For the inner maximization above, we use
Re
{

tr
(
BΓTGHUΣV H

)}
≤ tr

(
ΓTΣ

)
[2], with the upper

bound attained with G = U and B = V . The remaining
problem with respect to Γ is then

max
{γk}

r∑

k=1

γkσk s.t.
r∑

k=1

γ2
k = 1, γj = 0∀ j > r. (21)

Using the Cauchy Schwarz inequality, γ̂k = σk/
√∑r

k=1 σ
2
k

for 1 ≤ k ≤ r, and γ̂k = 0 for k > r is clearly optimal.
The derived solution for the optimal R2(d̂i) then simply cor-
responds to a normalized version of the rank-r approximation
to R2 (Eici). Clearly, the solution to (19) is unique if and only
if Eici 6= 0, and σr > σr+1 or σr = σr+1 = 0. Any d ∈ Cm
satisfying the constraints in (19) is a (non-unique) minimizer
when Eici = 0. In particular R2(d̂i) = W works.

Lastly, to complete the Proposition’s proof, we show that
Eici = 0 in our algorithm if and only if ci = 0. Since ci here
was obtained as a minimizer in the preceding sparse coding
step, we have the following result ∀ c ∈ CM with ‖c‖∞ ≤ a
and d̃i denoting the ith atom in the preceding sparse coding
step:
∥∥Ei − d̃icHi

∥∥2

F
+ λ2

Z ‖ci‖0 ≤
∥∥Ei − d̃icH

∥∥2

F
+ λ2

Z ‖c‖0 .
(22)

If Eici = 0, the left hand side above is ‖Ei‖2F + ‖ci‖22
+λ2

Z ‖ci‖0, which is clearly minimal (only) when ci = 0.
Thus, when Eici = 0, we must have ci = 0. �

VII. OPTSHRINK BACKGROUND

Here, we provide some additional detail about the OptShrink
algorithm that we employ in Section III of our manuscript [1].
We begin by motivating the need for OptShrink by discussing
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the suboptimality of singular value thresholding (SVT) for
low-rank matrix denoising, and then we explicitly state the
algorithm.

In Section III of [1], we argued that the LASSI low-rank
update

R1(xkL) = SVTtkλL
(R1(x̃k−1

L )) (23)

can be interpreted as a low-rank denoising step, where the
matrix R1(x̃k−1

L ) is a noisy version of the underlying low-
rank matrix R1(xL) that we are interested in recovering, and
the SVT is the chosen low-rank estimator.

A natural question to ask is what is the quality of the low-
rank estimates produced by the SVT operator. To address this
question, suppose that we are given a matrix X̃ ∈ Rm×n of
the form

X̃ =
r∑

i=1

θiuiv
H
i

︸ ︷︷ ︸
=:L

+X, (24)

where L is an unknown rank-r matrix with singular values
θi and singular vectors ui and vi, and X is an additive noise
matrix. For example, in (23), we identity L = R1(xL) and
X = R1(x̃k−1

L − xL).
Now, consider the oracle low-rank denoising problem

w? = arg min
[w1,...,wr]T∈Rr

∥∥∥
r∑

i=1

θiuiv
H
i −

r∑

i=1

wiũiṽ
H
i

∥∥∥
F
, (25)

where ũi and ṽi are the singular vectors of X̃ , and we
denote its singular values by σ̃i. Problem (25) seeks the best
approximation of the latent low-rank signal matrix L by an
optimally weighted combination of estimates of its left and
right singular vectors. The truncated SVD (of rank r) and SVT
are both feasible approaches for (25). Indeed, the truncated
SVD corresponds to choosing weights wi = σ̃i1{i ≤ r} and
SVT with parameter τ ≥ σ̃r+1 corresponds to wi = (σ̃i−τ)+.
However, (25) can be solved in closed-form (see [3]), yielding
the expression

w?i =

r∑

j=1

θj
(
ũHi uj

) (
ṽHi vj

)
, i = 1, . . . , r. (26)

Of course, (26) cannot be computed in practice because it
depends on the latent low-rank singular vectors ui and vi
that we would like to estimate, but it gives insight into the
properties of the optimal weights w?. Indeed, when ũi and
ṽi are good estimates of ui and vi, respectively, we expect
ũHi ui and ṽHi vi to be close to 1. Consequently, from (26), we
expect w?i ≈ θi. Conversely, when ũi and ṽi are poor estimates
of ui and vi, respectively, we expect ũHi ui and vHi ṽi to be
closer to 0 and w?i < θi. In other words, (26) shows that the
optimal singular value shrinkage is inversely proportional to
the accuracy of the estimated principal subspaces. As a special
case, if θi → ∞, then clearly ũHi ui → 1 and vHi ṽi → 1,
so the optimal weights w?i must have the property that the
absolute shrinkage vanishes as θi → ∞. Consequently, the
SVT operator, which applies a constant shrinkage to each
singular value of its input, will necessarily produce suboptimal
low-rank estimates in general. See [3] for more details.

The following theorem [3] formalizes the above argument
under a probabilistic model for the additive noise matrix X .

Theorem 1: Suppose that Xij are i.i.d. random variables
with zero-mean, variance σ2, and bounded higher order mo-
ments, and suppose that θ1 > θ2 > . . . > θr > σ. Then, as
m,n→∞ such that m/n→ c ∈ (0,∞), we have that

w?i + 2
Dµ

X̃
(σ̃i)

D′µ
X̃

(σ̃i)

a.s.−→ 0 for i = 1, . . . , r, (27)

where

µX̃(t) =
1

q − r

q∑

i=r+1

δ (t− σ̃i) , (28)

with q = min(m,n) and the D-transform is defined as

Dµ
X̃

(z) :=

[∫
z

z2 − t2 dµX̃(t)

]
×

[
c

∫
z

z2 − t2 dµX̃(t) +
1− c
z

]
,

(29)

and D′µ
X̃

(z) is the derivative of Dµ
X̃

(z) with respect to z.
Theorem 1 establishes that the optimal weights w?i converge

in the large matrix limit to a certain non-random integral
transformation of the limiting noise distribution µX̃ .

In practice, Theorem 1 also suggests the following data-
driven OptShrink estimator, defined for a given matrix Y ∈
Cm×n and rank r as

OptShrinkr(Y ) =
r∑

i=1

(
−2

DµY
(σi)

D′µY
(σi)

)
uiv

H
i , (30)

where Y = UΣV H is the SVD of Y with singular values σi,
and

µY (t) =
1

q − r

q∑

i=r+1

δ (t− σi) , (31)

is the empirical mass function of the noise-only singular values
of Y , and q = min(m,n). By Theorem 1, OptShrinkr(X̃)
asymptotically solves the oracle low-rank denoising problem
(25).

OptShrink has a single parameter r ∈ N that directly
specifies the rank of its output matrix. Rather than applying a
constant shrinkage to each singular value of the input matrix
as in SVT, the OptShrink estimator partitions the singular
values of its input matrix into signals {σ1, . . . , σr} and noise
{σr+1, . . . , σq} and uses the empirical mass function of the
noise singular values to estimate the optimal (nonlinear, in
general) shrinkage (27) to apply to each signal singular value.
See [3], [4] for additional detail.

The computational cost of OptShrink is the cost of comput-
ing a full SVD1 plus the O(r(m+ n)) computations required
to compute the D-transform terms in (30), which reduce to
summations for the choice of µY in (31).

VIII. ADDITIONAL RESULTS AND DISCUSSION OF
NUMERICAL EXPERIMENTS

Here, we provide additional experimental results and details
to accompany Section IV of our manuscript [1].

1In practice, one need only compute the singular values σ1, . . . , σq and
the leading r singular vectors of Y .
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Fig. 6. The normalized sparse representation error (NSRE)∥∥Y −DCH
∥∥
F
/ ‖Y ‖F for the 320 × 320 dictionaries learned on

the 8 × 8 × 5 overlapping spatio-temporal patches of the fully sampled
cardiac perfusion data [5]. The results are shown for various choices of the
`0 sparsity penalty parameter λZ corresponding to different fractions of
nonzero coefficients in the learned C and for various choices of the atom
rank parameter r.

A. Dictionary Learning for Representing Dynamic Image
Patches

Here, we present results on the effectiveness of learned
(SOUP) dictionaries for representing dynamic image data. In
particular, we compare dictionary learning with low-rank atom
constraints to learning without such constraints. We extract
the 8 × 8 × 5 overlapping spatio-temporal patches of the
fully sampled cardiac perfusion data [5], with a spatial and
temporal patch overlap stride of 2 pixels. The vectorized 3D
patches are then stacked as columns of the training matrix P ,
and we solve Problem (P3) in Section III.A-1 of [1] to learn
the approximation DCH for P . In particular, we employ the
iterative block coordinate descent method for (P3) that was
discussed in Section III.A-1. Dictionaries of size 320 × 320
(with atoms reshaped into 64 × 5 matrices) were learned for
various values of the `0 sparsity penalty parameter λZ and for
r = 1, 2, 3, 4, and 5. The block coordinate descent learning
method ran for 50 iterations and was initialized with C = 0
and a 320× 320 DCT.

The quality of the learned data approximations was mea-
sured using the normalized sparse representation error (NSRE)
given as

∥∥Y −DCH
∥∥
F
/ ‖Y ‖F . Fig. 6 shows the NSRE for

various choices of λZ corresponding to different fractions of
nonzero coefficients in the learned C and for various choices
of the reshaped atom rank r. The learned dictionaries achieved
small NSRE values together with sparse coefficients C. Impor-
tantly, the learned dictionaries with low-rank (r < 5) reshaped
atoms represented the spatio-temporal patches about as well
as the learned dictionaries with full-rank (r = 5) atoms. Thus,
the low-rank model on reshaped dictionary atoms, although
a constrained model, effectively captures the properties of
dynamic image patches.

B. LASSI and DINO-KAT dMRI Algorithm Parameters

This section lists the weights λL, λS , and λZ used for the
LASSI and DINO-KAT dMRI algorithms in Section IV of our
manuscript [1].

First, we discuss the weights in LASSI. Recall that for
the cardiac perfusion data [5], [6] (where the fully sampled
dynamic data had a peak image intensity of 1.27) in Section
IV.B, we performed eight fold Cartesian undersampling of k-
t space, and considered four different LASSI variations for
dMRI reconstruction: the algorithms for Problem (P1) (with
`0 “norm”) and Problem (P2) (with `1 norm) with SVT-based
xL update; and the variants of these two algorithms where the
SVT update step is replaced with an OptShrink (OPT)-type
update. Denote these methods as Algorithms 1, 2, 3, and 4,
respectively. The λL, λS , and λZ values are 0.5, 0.01, and 0.03
for Algorithm 1, and 0.4, 0.02, and 0.01 for Algorithm 2. The
λS and λZ settings were 0.01 and 0.025 for Algorithm 3, and
0.005 and 0.04 for Algorithm 4, and rL = 1. The same values
as in Section IV.B were used (and found to work well) for
the corresponding algorithms in Table I of Section IV.C and
in the experiments of Section IV.D, except in Section IV.D-2,
where a higher λZ = 0.06 was used for the LASSI scheme
with the simple baseline initialization.

In Section IV.D-1, the weight λL for the LASSI algorithms
based on the rank penalty or Schatten p-norm-based xL update
was 4.5 and 1.5 respectively, when involving the `0 “norm”
for sparsity, and 12.5 and 2.5 respectively, when involving `1
sparsity, and λS and λZ for these algorithms were identical
to the settings for the corresponding SVT-based methods. In
Section IV.C, λL, λS , and λZ were chosen to be 3, 0.075,
and 0.06 for the PINCAT data, and 0.05, 0.0025, and 0.01 for
the in vivo myocardial perfusion data (with the fully sampled
dynamic data normalized to unit peak image intensity).

For DINO-KAT dMRI, λS and λZ were chosen to be 0.0075
and 0.025 for the cardiac perfusion data, 0.079 and 0.04 for the
PINCAT data, and 0.0005 and 0.01 for the in vivo myocardial
perfusion data, respectively.

C. Dynamic MRI Reconstruction Results

Fig. 7 shows reconstruction results for the PINCAT data [7],
[8] with pseudo-radial sampling and nine fold undersampling.
The time series (x − t) plots, which correspond to the line
marked in green on a reference PINCAT frame (Fig. 7),
are shown for the reference, LASSI, DINO-KAT dMRI, L+S
[5], and k-t SLR [7] reconstructions. The NRMSE values
computed between the reconstructed and reference x−t slices
are also shown. The reconstruction for LASSI has lower
NRMSE and clearly shows fewer artifacts and distortions (with
respect to the reference) compared to the L+S and k-t SLR
results. The LASSI result is also better than the DINO-KAT
dMRI reconstruction that shows more smoothing (blur) effects
(particularly in the top and bottom portions of the x− t map).

Fig. 8 shows time series (x − t) plots for the LASSI
reconstructions of the PINCAT data at several undersampling
factors. At an undersampling factor of 27x, the LASSI result
shows temporal smoothing. Nevertheless, LASSI still recon-
structs many features well, despite the high undersampling.
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Reference Reference LASSI DINO−KAT L+S k−t SLR

Fig. 7. A frame of the reference PINCAT [7], [8] reconstruction is shown (left) with a spatial line cross section marked in green. The temporal (x − t)
profiles of that line are shown for the reference, LASSI, DINO-KAT dMRI, L+S [5], and k-t SLR [7] reconstructions for pseudo-radial sampling and nine
fold undersampling. The NRMSE values computed between the reconstructed and reference x − t profiles are 0.107, 0.116 , 0.153, and 0.131 respectively,
for LASSI, DINO-KAT dMRI, L+S, and k-t SLR.

Reference Reference LASSI 5x LASSI 9x LASSI 27x

Fig. 8. A frame of the reference PINCAT [7], [8] reconstruction is shown (left) with a spatial line cross section marked in green. The temporal (x − t)
profiles of that line are shown for the reference, and the LASSI reconstructions at 5x, 9x, and 27x undersampling and pseudo-radial sampling.

Reference LASSI 4x LASSI 12x LASSI 20x LASSI 4x error LASSI 12x error LASSI 20x error
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Fig. 9. LASSI reconstructions and error maps (clipped for viewing) for frames of the cardiac perfusion data [5], [6] at 4x, 12x, and 20x undersampling
(Cartesian sampling), shown along with the reference reconstruction frames. The images are labeled with the frame numbers and undersampling factors.

Fig. 9 shows the LASSI reconstructions and reconstruction
error maps for some representative frames of the cardiac per-
fusion data [5], [6], at several undersampling factors. Notably,
even at high undersampling factors, LASSI still accurately
reconstructs many image features.

D. Dynamic MRI Results over Heart ROIs

Tables I-III in Section IV.C of [1] showed the NRMSE
values of dynamic MRI reconstructions obtained by various
methods for three datasets. Here, we report the NRMSE of
the dynamic MRI reconstructions in Section IV.C, computed
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(a) (b) (c)
Fig. 10. Regions of interest containing the heart shown using green bounding
boxes for a frame of (a) the cardiac perfusion data [5], (b) PINCAT data [7],
[8], and (c) in vivo myocardial perfusion MRI data [7], [8], respectively.

Undersampling 4x 8x 12x 16x 20x 24x

NRMSE (k-t SLR) % 10.4 14.2 17.2 19.5 22.4 24.2
NRMSE (L+S) % 10.7 14.0 16.3 18.8 22.2 24.1

NRMSE (DINO-KAT) % 9.8 12.5 14.2 16.4 19.1 21.2
NRMSE (LASSI) % 9.7 12.7 14.4 16.7 18.3 20.1

Gain over k-t SLR (dB) 0.6 0.9 1.5 1.4 1.8 1.6
Gain over L+S (dB) 0.8 0.9 1.1 1.1 1.6 1.6

Gain over DINO-KAT (dB) 0.1 -0.1 -0.1 -0.1 0.4 0.5

TABLE IV
NRMSE VALUES FOR AN ROI (FIG. 10(A)) IN THE CARDIAC PERFUSION
DATA [5] EXPRESSED AS PERCENTAGES FOR THE L+S [5], K-T SLR [7],

AND THE PROPOSED DINO-KAT DMRI AND LASSI METHODS AT
SEVERAL UNDERSAMPLING (ACCELERATION) FACTORS AND CARTESIAN

SAMPLING. THE NRMSE GAIN (IN DECIBELS (DB)) ACHIEVED BY LASSI
OVER THE OTHER METHODS IS SHOWN. THE BEST NRMSE VALUE AT

EACH UNDERSAMPLING FACTOR IS INDICATED IN BOLD.

over specific regions of interest (ROIs) containing the heart.
Fig. 10 shows the ROIs (as a rectangular box in a frame) for
the cardiac perfusion data [5], [6], PINCAT data [7], [8], and
in vivo myocardial perfusion MRI data [7], [8]. Tables IV,
V, and VI list the NRMSE values computed over these ROIs
for the LASSI, DINO-KAT dMRI, L+S [5], and k-t SLR [7]
reconstructions at several undersampling factors. The various
methods tend to provide even better reconstruction quality (i.e.,
NRMSE) within the specific ROIs than over the entire images
(cf. Tables I-III of [1]). Tables IV-VI also indicate the NRMSE
gains achieved by LASSI over the other methods for each
dataset and undersampling factor. The proposed LASSI and
DINO-KAT dMRI methods provide much lower NRMSE in
the heart ROIs compared to the previous L+S and k-t SLR
methods. The LASSI scheme also outperforms DINO-KAT
dMRI in most cases, and provides an average improvement
within the ROIs of 2.0 dB, 1.1 dB, and 0.3 dB respectively,
over the L+S, k-t SLR, and the proposed DINO-KAT dMRI
methods.
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