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Abstract—We propose a new method for the joint design of
k-space trajectory and RF pulse in 3D small-tip tailored excita-
tion. Designing time-varying RF and gradient waveforms for a
desired 3D target excitation pattern in MRI poses a non-linear,
non-convex, constrained optimization problem with relatively
large problem size that is difficult to solve directly. Existing joint
pulse design approaches are therefore typically restricted to
predefined trajectory types such as EPI or stack-of-spirals that in-
trinsically satisfy the gradient maximum and slew rate constraints
and reduce the problem size (dimensionality) dramatically, but
lead to suboptimal excitation accuracy for a given pulse duration.
Here we use a 2nd-order B-spline basis that can be fitted to an
arbitrary k-space trajectory, and allows the gradient constraints
to be implemented efficiently. We show that this allows the joint
optimization problem to be solved with quite general k-space
trajectories. Starting from an arbitrary initial trajectory, we first
approximate the trajectory using B-spline basis, and then optimize
the corresponding coefficients. We evaluate our method in simu-
lation using four different k-space initializations: stack-of-spirals,
SPINS, KT-points, and a new method based on KT-points. In all
cases, our approach leads to substantial improvement in excitation
accuracy for a given pulse duration. We also validated our method
for inner-volume excitation using phantom experiments. The
computation is fast enough for online applications.
Index Terms—MRI, tailored excitation, joint design, RF pulse

design, k-space trajectory design.

I. INTRODUCTION

S PATIALLY tailored RF excitation has a range of appli-
cations in MRI, including B1 shimming [1]–[6], reduced

FOV excitation [7]–[13], susceptibility artifact correction
[14]–[18], and fat suppression [19], [20]. The task of designing
time-varying RF and gradient waveforms for a desired target
excitation pattern poses a non-linear, non-convex, constrained
optimization problem with relatively large problem size that
is difficult to solve directly. In conventional small-tip tailored
excitation pulse design, the k-space (gradient) trajectory is
pre-defined, allowing the RF waveform to be obtained using
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linear least-squares optimization [21]. However, for a given
pulse duration, using a pre-determined k-space trajectory leads
to suboptimal excitation accuracy.
Several methods have been proposed for jointly designing

the k-space trajectory and RF pulse, achieving improved tai-
lored excitation accuracy compared to pre-defined gradient ap-
proaches. These methods can be classified into two categories:
sparse approximation and parametrization approaches. In the
sparse approximation approach, a complete dictionary based
on the small-tip-angle approximation [22] is defined, and the
joint pulse design task reduces to selecting a few k-space phase
encoding locations (i.e., columns in , typically less than 20)
by either thresholded Fourier transform or sparsity-promoting
or greedy algorithms. The output of those methods are discrete
k-space trajectories like fast-kz/spoke pulses (discrete in kx-ky
plane) [4], [23]–[26], or KT-points (discrete in 3D) [5]. Grissom
et al. [27] recently combined sparse approximation with local
optimization in fast-kz pulse design to improve the result and
incorporate B0 inhomogeneity information. However, complex
target excitation patterns require more than a few phase en-
coding locations, so sparse approximation approaches are used
only in particular applications such as B1 shimming, and they
would be difficult to use for other applications needing non-
smooth target excitation patterns (especially in 3D).
In parametrization approaches to RF pulse design, the k-space

trajectory is approximated by a linear combination of basis func-
tions, and the joint pulse design task is to optimize the basis
function coefficients as well as the RF waveform. Hardy ex-
pressed the k-space trajectory and RF pulse as Fourier series
and then optimized the coefficients using simulated annealing
[28] for 2D tailored excitation; that method is computationally
too expensive for real-time tailored RF pulse design. Levin ap-
proximated the spiral trajectory by concentric rings and then
optimized the radius of those rings [29]. Yip proposed a gen-
eral approach for selecting basis coefficients, and applied it to
optimize an EPI trajectory [30]. Shao optimized the extent of
the stack-of-spirals trajectory and the fast-kz trajectory [31].
Davids optimized the extent of a 3D cross trajectory in

for its different shells/segments [9]. By parametrization,
those methods reduced the problem dimension, and the compu-
tation complexity. However, these methods (except [9], [28])
did not explicitly consider the maximum gradient and slew rate
constraint in the optimization, instead avoiding this constrained
minimization problem by limiting solutions to a certain type of
trajectory (e.g., EPI, spiral, stack-of-spiral). Davids et al. [9] and
Hardy et al. [28] considered the constraint, but their methods re-
quire large computation time, making it impractical for online
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pulse design problems. Also, all the parametrization methods do
not choose the trajectory type based on the information of the
target excitation pattern.
In this work, we present a general approach for jointly op-

timizing the k-space trajectory and RF waveforms in 3D tai-
lored excitation. Our method starts with some initial k-space tra-
jectory (e.g., such as that obtained with one of the approaches
described above), parametrizes the trajectory using 2nd-order
B-spline functions, and optimizes the basis coefficients and RF
waveform using constrained optimization. The peak gradient
and slew rate are constrained directly during the optimization,
and the trajectory is not limited to a pre-defined type such as
concentric rings or EPI. We demonstrate our approach using
four different k-space initializations: stack-of-spirals(SoS) [32],
spiral nonselective (SPINS) [6], KT-points [5], and a new pro-
posed initialization which we refer to as “extended KT-points”
[33]. We illustrate our method in two different applications: 3D
reduced FOV excitation, and spin pre-phasing. In all cases, our
optimized k-space trajectories achieve improved excitation ac-
curacy compared to the initial trajectory. Both SPINS and our
proposed extended KT-points method provide good initializa-
tion.

II. THEORY

A. Problem Formulation

In joint design of a k-space trajectory and RF pulse, we want
to solve the following optimization problem [30]:

(1)

where are -length vectors containing 3D k-space
trajectory locations, and is an -length vector containing the
complex RF pulse values. is a regularizer to limit the RF
power, and we use a Tikhonov regularizer with in
our study. and are the first and second order difference
matrices, is the small-tip-angle approximation system matrix
with , where is
the spatial index from 1 to and is the time index from 1
to . is the duration of the RF pulse. is similar to an in-
verse DFT matrix, but with an additional term due to B0 inho-
mogeneity . The RF pulse sampling interval is and is
the desired excitation pattern. is a weighting matrix that re-
stricts the optimization to voxels within a region of interest. The
problem size varies in practice depending on the pulse length
and the resolution of the target excitation pattern, but is typi-
cally a tall matrix. is the transmit coil sensitivity matrix; often

it is simply chosen to be the identity matrix. The first and second
order derivative constraints correspond to the maximum gra-
dient and gradient slew rate limits of the MR
scanner. The equality constraints mean the excitation k-space
trajectory must end at zero, by definition [22].

B. k-Space Trajectory Parametrization

Problem (1) is a nonlinear, nonconvex, and constrained
problem that is difficult to solve. Following [30], we simplify
this problem by parametrizing the k-space trajectory using
basis functions:

(2)

where are matrices containing basis
vectors as columns, and are the basis coefficients. Now
the joint trajectory/RF design problem (1) becomes

(3)

Unlike previous joint pulse design approaches that are based
on predefined trajectory types (e.g., EPI or spiral) that intrinsi-
cally satisfy the gradient constraints, here we aim to solve the
constrained optimization problem (3). In our approach, we do
not predefine the trajectory type to form the basis, but instead
use a 2nd-order B-spline basis that can closely approximate an
arbitrary trajectory. In particular, for a given k-space trajectory
initialization, we first approximate the trajectory using B-spline
basis, and then optimize the corresponding coefficients. We
choose a 2nd-order B-spline basis because the gradient con-
straints can be implemented efficiently, as shown next.

C. Efficient Implementation of Constraints

To satisfy the maximum gradient and slew rate constraints
in (3), we would in general need to consider time points.
However, a 2nd-order B-spline basis function is a piecewise
second-order polynomial (illustrated in Fig. 1). Therefore,
extreme points of the gradient waveform (the first-order
derivative of k-space trajectory) occur only at the zero-crossing
point of the slew rate (the second-order derivative). The
slew rate is a linear combination of magnitude-scaled and
shifted rect functions, and its extremes occur at all time points
along the violating rect function segment, and thus it suffices
to consider just one time point for each rect function. The total
number of constraints that need to be considered is therefore
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Fig. 1. 2nd-order B-spline function basis, and its 1st, 2nd-order derivative. The gradient and slew rate are linear combinations of the 1st, 2nd-order derivative,
respectively. The simple properties of extrema of these functions greatly reduce the number of inequality constraints that need to be considered during optimization.

greatly reduced by using the 2nd-order B-splines. Higher order
B-splines do not have this property.
Define and as the matrices that pick the rows corre-

sponding to the candidate extreme points of gradient and slew
rate, respectively. Thenwe can rewrite the inequality constraints
for the gradient in the following form (only one term is shown
for simplicity):

(4)

Therefore, the total number of inequality constraints is reduced
from to , where is the number of
B-splines. The number 12 arises because there are 6 constraints
per time point in terms of absolute value, giving 12 when re-
formulating them as linear inequality constraints. For compact
notation, we combine all inequality constraints as follows:

(5)

where

(6)

(7)

(8)

The B-spine basis functions end with 0, so the k-space trajectory
always ends with 0, ensuring the final three equality constraints
in (3).

D. Gradient and Hessian
The optimization algorithms we investigated (see Section E)

involve calculating the gradient and Hessian of the cost function
(3) with respect to the coefficients ( ). Denoting the cost
function as , one can show that the gradient is [30]:

(9)

where is the basis function, is a diagonal matrix with the
RF pulse on the diagonal, is the small-tip-angle system ma-
trix, is a diagonal matrix containing the spatial coordi-
nates, is the diagonal coil sensitivity matrix, is a diagonal
weighting matrix, and denotes the excitation error.
Denote the Jacobian matrix as:

(10)

The gradient can then be written as:

(11)

and have the same form except is replaced with
and , respectively.
The Hessian with respect to is (see Appendix A):

(12)

The second term in (12) is usually much smaller than the first
term since is close to zero. We therefore ignore the second
term to reduce computation, and use the following approxima-
tion (with respect to ):

(13)

In addition, our problem is non-convex and the true Hessian
may not be positive semidefinite, therefore
may not be a descent direction. In contrast, is always a



HAO et al.: JOINT DESIGN OF EXCITATION K-SPACE TRAJECTORY AND RF PULSE FOR SMALL-TIP 3D TAILORED EXCITATION IN MRI 471

PSD matrix and using the approximated Hessian can guarantee
a descent direction.
The overall Hessian matrix for the basis

coefficients is then:

(14)

where is typically a tall matrix since the
number of spatial locations is much larger than the number
of basis function , so the Hessian matrix can be easily
stored , and efficiently calculated .

E. Optimization Algorithms

To minimize the cost function (3), we alternate between op-
timizing the RF waveform and k-space trajectory coefficients
, as shown in Algorithm 1. We use conjugate gradient (CG)
for the update of , implemented using [34]. For the update
of , we want the optimization algorithm to be monotonically
decreasing and feasible in each iteration. This ensures that the
optimization can be terminated at any point, which is useful in
practical “online” settings where patient-tailored pulses must
be designed quickly. We investigated four different algorithms
that are both monotone and feasible: (1) projected gradient
descent algorithm with backtrack line search [35], (2) pro-
jected Levenberg-Marquardt (LM) algorithm [36], (3) interior
point algorithm with backtrack line search, and (4) MATLAB
‘fmincon’ function using active-set solver. We implemented
the algorithms and compared their speed in MATLAB on an
Intel Xeon 3.3 GHz 4-core desktop with 8 GB memory.

Algorithm 1 Alternative minimization

1: Initialize: Calculate by B-spline curve fitting to
some initial . Obtain using CG. Set .

2: for to do
3: Approximately optimize .
4: Run 20 iterations CG to optimize .
5: end for

In the projected LM algorithm, the projection is a quadratic
programming problem that we solved using MATLAB function
“quadprog”. Instead of finding the exact minimizer over , we
ran the algorithms for only 2 iterations before updating again.
The interior point algorithm used in our work is shown in

Algorithm 2. In each iteration, we minimize the following cost
function that combines a scaled original cost function and a
log barrier function, using Newton's method

(15)

where is a barrier parameter that balances the contribution of
the true objective function with that of the barrier term, and

. The gradient and Hessian of
are:

(16)

(17)

where . We use approximated Hessian in-
stead of true Hessian in our implementation (line 5). is a pa-
rameter ensuring enough decrease of the cost function, and we
set it to 0.01 in our implementation (line 6). Strictly feasible
condition is enforced in our implementation (line 6).

Algorithm 2 Interior point algorithm

1: Initialize: from the last outer iteration,

2: for to do
3: for to do
4:
5: Compute from

6: if AND
is feasible then

7: Set
8: else
9:
10: end if
11: end for
12:
13: end for

F. Initialization

The above algorithms are local optimization algorithms that
require good initialization. To demonstrate that our method can
be applied to any initial k-space trajectory, we evaluated four
different initial 3D trajectories: (1) stack-of-spirals (SoS) [32],
(2) spiral nonselective (SPINS) [6], (3) KT-points [5], and (4)
a novel trajectory design initialization approach which we will
refer to as “extended KT-points” [33].
The KT-points method models the joint design problem as

the following sparse approximation problem:

(18)

is a complete iDFT matrix and is the RF weighting vector.
This minimization problem tries to select phase encoding
locations from all possible k-space locations in the dictionary
to best approximate , and the non-zero term in corresponds
to the RF pulse weighting at those phase encoding locations.
The B0 field inhomogeneity term in in (1) is ignored. The
reason is that the actual visiting time for each phase encoding
location is undetermined when constructing the dictionary. The
sparse approximation problem can be solved by either thresh-
olding the inverse discrete Fourier transform or using greedy
algorithms. We choose a modified OMP [24] method since it
can easily model the region of interest and transmit sensitivi-
ties in the system matrix. The KT-points method produces 3D
k-space phase encoding locations and RF weights at those loca-
tions. Those phase encoding locations are traversed using gra-
dient blips.
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This conventional KT-point method is inefficient in 3D ex-
citation since moving between phase encoding locations takes
a large portion of the pulse duration but no RF is transmitted
during this time. A natural extension is to use the k-space tra-
jectory from KT-points but transmit continuous RF during the
whole pulse duration. This is our third initialization method.
However, this simple extension may also be inefficient since

the visiting order and the gradient waveform is not optimized.
We therefore propose to order those phase encoding points be-
fore generating the gradient waveform. We treat this as a trav-
eling salesman problem, and use a genetic algorithm to solve
it [37]. We then generate the fastest gradient waveform to tra-
verse those (approximately) optimally ordered points using the
method in [38], [39]. This “extended KT-points” intialization is
summarized in Algorithm 3. Our extension is similar to [25],
but [25] does not optimize the visiting order of phase encoding
locations, and was demonstrated only for 2D tailored excitation.

Algorithm 3 Extended KT-points

1: Find phase encoding locations using method [24].
2: Find the optimal visiting order using traveling

salesman algorithm [37].
3: Generate the fastest gradient waveform using [38].

III. METHODS

A. Simulation Study

We applied our method to two pulse design problems: 3D
inner-volume excitation and spin prephasing. For inner-volume
excitation, we excited a 6 6 6 cm cube with 10 degree flip
angle using an RF pulse of approximate duration 4 ms trans-
mitted on a single transmit coil. We simulated the excitation re-
sults for a 64 64 8 matrix over a 24 24 16 cm FOV.
To reduce computation time, we downsampled the matrix to 32
32 8 for optimization. We used a measured B0 field map

from an Agar ball phantom in the simulation. We measured the
B0 fieldmap by acquiring spoiled gradient-echo (SPGR) images
with two different echo times (3 ms and 5.3 ms), and taking the
phase difference on a voxel-by-voxel basis. We assume uniform
coil transmit sensitivity.
For spin prephasing [14], we want to achieve the following

excitation pattern: , where is
the flip angle (uniform for all spins), is the B0 field map,
and is the free precession time. The goal is to achieve re-
focusing after the excitation1. Prephasing pulses may be
used to compensate for susceptibility signal loss, and are
needed in the “small-tip fast recovery” steady-state imaging se-
quence being developed by our group [14]–[16]. We designed
a prephasing pulse with 10 degree flip angle, 2.5 ms , and
measured B0 field map from a human brain. We simulate with
64 64 8 matrix size and 24 24 4 cm FOV.
We evaluated four different algorithms for parametric opti-

mization, and four initializations, but we did not compare all 16

1We use the convention in our paper. Since the free precession
is rotated clockwise with a positive B field, the accumulated phase is in the
negative direction:

combinations. Instead, we first compare the speed of optimiza-
tion algorithms for inner-volume excitation using the extended
KT-point initialization. After finding the fastest algorithm, we
compared the excitation accuracy using different initializations,
both before and after constrained optimization.
Fig. 2 shows the four different k-space trajectory initial-

izations used in the inner-volume excitation. The prephasing
problem uses the same SoS and SPINS initialization, but dif-
ferent KT-points and extended KT-points initialization since
they are excitation pattern dependent. The parameters for SoS
and SPINS trajectories were manually tuned to achieve good
initial excitation results. For SoS, we used 5 spiral stacks with
17 cm excitation FOV in z direction, and each spiral has 6
cycles with 24 cm excitation FOV in the x-y plane. For SPINS,
we set the maximum extent of k-space to 0.48 cycles/cm,
polar angular velocity to /ms, azimuthal angular velocity to
/ms, and speed and position of transition between slow and

radial phase to 10 and 0.5 [6]. The resulting SPINS trajectory
is accelerated using the fastest gradient waveform [39]. There
are small variations in the pulse length since it can not be
directly constrained when generating different initializations.
For fair comparison, we tuned the parameters to generate
initial trajectories around 4 ms, and then cut all of them to the
same length as the shortest one, resulting in approximately
3.8 ms and 3.9 ms pulse length for all initial trajectories for
inner-volume excitation and prephasing problem, respectively
(corresponding to 954 and 982 time points sampled at 4 s).
In all simulations, we created a region of interest (ROI) that

covers the whole object by thresholding the non-selective SPGR
images used in B0 field map acquisition, resulting in a total
number of 2243 spatial positions on the 32 32 8 grid for
inner-volume excitation. Therefore, the system matrix is a
2243 by 954 matrix in the inner-volume excitation case and it
is constructed explicitly. The prephasing problem has similar
problem size. When the problem size gets much larger, we may
have to implement the system matrix implicitly using NUFFT
[40].

B. Phantom Experiment Study

We evaluated our method for an inner-volume excitation
task on an Agar ball phantom using a GE MR750 3.0T clinical
scanner. We used the same target pattern as our inner-volume
excitation simulation (i.e., a 6 6 6 cm cube). We measured
the B0 field map by acquiring spoiled gradient-echo (SPGR)
images with two different echo times (3 ms and 5.3 ms), and
taking the phase difference on a voxel-by-voxel basis. This
B0 field map was used in the simulation study (Fig. 5). We
designed the RF pulse using the same parameter settings as we
did in the simulation. For readout, we used an SPGR sequence
with 500 ms TR and minimum available TE.

IV. RESULTS

A. Simulation Results

Fig. 3 shows the cost function value and normalized root
mean square error (NRMSE) of the excitation versus compu-
tation time for different algorithms in solving the parametrized
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Fig. 2. Different k-space trajectory initializations for the inner-volume excitation: stack-of-spirals (SoS); SPINS; KT-points; and “extended KT-points”. For
KT-points and extended KT-points initializations, the discrete KT-points are included in the plot as red circles. Note that the extended KT-points trajectory does
not pass through the discrete KT-points exactly, due to the small gradient/slew rate violation in the fastest gradient waveform algorithm [38], [39], as also reported
in [41]. KT-points and extended KT-points selectively traverse the k-space based on the target excitation pattern. The extended KT-points method manages to
traverse a larger k-space region than the simple KT-points initialization because of the improved visiting order and the use of a time-optimal gradient waveform.

Fig. 3. Convergence speed of different algorithms used to solve the parametrized constrained initial optimization problem (3): (Left) Cost function value versus
time. (Right) NRMSE versus time. There are two data points at time 0: the lower one is using the initialized k-space trajectory and the higher one is using the
k-space trajectory after B-spline fitting. The fitting at the beginning of optimization slightly increases the NRMSE and the cost function value. The interior point
and projected LM algorithms converge much faster than the other two, with the interior point algorithm slightly faster.

constrained optimization (3) in the inner-volume excitation case
using extended KT-points as the initialization. NRMSE is de-
fined as , where is the target ex-
citation angle, and the transmit sensitivity matrix is set to

identity matrix. The interior point and projected LM algorithms
are much faster than the simple projected GD and MATLAB
‘fmincon’. Compared to projected LM, the interior point al-
gorithm is slightly faster and its final k-space trajectory has
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Fig. 4. Example k-space trajectory, gradient waveform, slew rate and RF waveform for spin prephasing simulation. The extended KT-points k-space trajectory
before (dashed line) and after 20 iterations of alternating optimization with interior point algorithm (solid line) have similar shape. Their difference is plotted in
the bottom row of the figure with unit cycles/fov. Both gradient and slew rate are within our constraint, but the slew rates are closer to the limit.

lower slew rate (not shown). We use the ‘active-set’ solver for
the MATLAB ‘fmincon’ function. There is an ‘interior-point’
solver for the MATLAB ‘fmincon’ function, but it is not strictly
feasible in each iteration and its speed is slower than our pro-
jected LM and interior point implementations. The shapes are
similar between the NRMSE plot and the cost function value
plot. There is a small increase in the first iteration for projected
GD. This is because the first point in the plot corresponds to
the initial k-space trajectory, not the initial approximation using
B-spline basis, and applying the approximation can lead to a po-
tentially higher cost and/or NRMSE in the first iteration. Based
on these results we chose the interior point algorithm for all sub-
sequent simulations.
Fig. 4 shows the k-space trajectory before (dashed line) and

after (solid line) the interior point optimization using an ex-
tended KT-point initialization for prephasing excitation. The
gradient waveform, slew rate, and RF pulse are also shown in
the figure. The peak gradients are well below the 4 G/cm limit
we set, while the slew rates are close to the imposed limit of 15
G/cm/ms. The differences between the final k-space trajectory
and the initialization are also included in the figure.
Fig. 5 shows inner-volume excitation results. Four different

methods are used as initialization to the parametrized optimiza-
tion (3). Bloch simulation results before and after initialization
are shown in the left and right column, respectively. Without pa-
rametrized optimization, our extended KT-points method gen-
erates the least excitation error with the shortest pulse. With pa-
rametrized optimization, all methods are improved by 10–30%.
Using SPINS or extend KT-points as initialization generate the

best final results. The peak RF is below the limit of our GE
scanner (0.25 Gauss). The measured 10 sec average SAR (or
the integrated RF power) is below 0.3 W/Kg, much lower than
the 6.4 W/Kg limit for human brain.
Fig. 6 shows the excitation error of the prephasing problem

using the same 8 methods. Similar to the reduced FOV excita-
tion case, optimization greatly reduced the excitation error for
all initializations. Without interior point optimization, SPINS
generated the best result. Extended KT-points generated a good
result, but not as good as in the reduced FOV case, probably
because the energy in k-space is more uniformly distributed, so
the sparsity-based extended KT-points method is not as effec-
tive as it is in the reduced FOV case.

B. Phantom Experiment Results

Fig. 7 shows a phantom experimental result for inner-volume
excitation. The experiment demonstrated that our pulse is fea-
sible in practice, and the results agree with our conclusion that
the optimization improves excitation accuracy for a given ini-
tialization. The NRMSEs of the magnitude excitation patterns
are reported for each method (excitation phases are excluded in
the NRMSE calculations because the transmit and receive coil
phase were not measured).

V. DISCUSSION

We have shown that the proposed optimization improves
excitation accuracy for all initial k-space trajectories tested.
The improvement in excitation relative to that produced by the
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Fig. 5. Inner-volume excitation, simulation results. Target pattern (top left) and field map in Hz (top right) used in the simulation. Row 2 to 5: results for different
pulse design methods: left column contains the results of initialization pulse, right column contains the results after optimization using interior point algorithm. Four
initialization methods were investigated: from top to bottom: SoS, SPINS, KT-points, our extended KT-points. All pulses have 3.8 ms pulse length. Optimization
always improves the excitation results, reducing the NRMSE by 10 to 30% depending on the initialization method. Using extended KT-points as the initialization
gave the best results.

initial pulse depends on both the initial k-space trajectory and
the target excitation pattern. For example, for target patterns
with concentrated energy in excitation k-space, an initialization
based on sparse approximation may already be close to optimal.
In other cases, the optimization step may significantly improve
the excitation compared to the initialization. However the
simulation and experimental evidence presented here suggests
that the proposed optimization can be used to improve exci-
tation accuracy for any initialization that is (at least locally)
suboptimal.

For the examples shown here, the computation time for the
parametric optimization step is typically less than 1 minute.
Using KT-points or extended KT-points requires additional op-
timization to form the initial pulse, which takes less than 1
minute. The overall computation time for all methods tested in
this study is less than 2.5 minutes, fast enough for normal online
pulse design, particularly with a faster computer.
We conclude that both SPINS and extended KT-points pro-

vide good initializations. The extended KT-points initialization
performs extremely well in the inner-volume excitation case,
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Fig. 6. Prephasing excitation, simulated excitation error (magnitude of the complex-value difference between target pattern and Bloch simulated pattern). The B0
field map is acquired from a human brain scan, shown in Hz. The target excitation pattern has uniform 10 degree flip angle and B0 dependent phase .
The excitation error images for different initializations are ordered in the same way as Fig. 5, and the pulse lengths are 3.9 ms for all. We want small error (dark
blue) in the whole image. Without optimization, SPINS performs the best in this case. Interior point optimization substantially reduces the excitation error for all
initializations, and SPINS and extended KT-points produce final results with similar accuracy in this prephasing case.

probably because the inner-volume excitation pattern has a
sparser corresponding k-space weighting than the prephasing
target pattern. SPINS initialization has shorter computation

time (no sparse approximation step). However, it has the dis-
advantage that more parameters (e.g., k-space extent, rotation
speeds) need to be manually tuned in the design [6], while the
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Fig. 7. Inner-volume excitation, phantom experimental result. The target excitation pattern and B0 field map are the same as shown in Fig. 5. Two initialization
methods were tested in the experiment: SPINS (top row) and extended KT-points (bottom row). The left column contains the acquired image using the initialization
excitation pulse, and the right column contains the image using the optimized excitation pulse. The magnitude NMRSEs are labeled above the corresponding
images. The experimental result agrees well with simulation: the extended KT-points initialization produces a relatively good result, and the optimized pulses
improve the excitation results for both initializations.

extended KT-points method generates a trajectory automati-
cally without manual parameter tuning.
We used 2nd-order B-spline functions to represent the

k-space trajectory. B-splines are widely used to represent gen-
eral smooth curves because the low-order polynomials are fast
to evaluate and it has a finite support. Also, 2nd-order B-splines
provide the additional benefit that the number of constraints
can be reduced as shown before. In our study, we used the same
basis functions for and . We used 100 basis functions
to represent one component of a k-space trajectory (i.e., 100
for , 100 for , and 100 for ) of length around 3.8 ms
(corresponding to 954 time points for one component), and we
found that the resulting fits are quite good for all four k-space
initializations. We also simulated using different number of
basis functions ( to 200), and observed that the final
NRMSEs are quite similar for to 200 (not shown). The
computational time increased from 20 sec to 50 sec

. We obtained good results using this basis, but we
do not claim this is the optimal choice.
In Fig. 4, we note that neither the gradients nor the slew rates

reach their limits in some portion of the excitation pulse, in-
dicating that the overall pulse could be shortened without sacri-
ficing excitation accuracy, but at the cost of increased RF power.
We also found that the slew rates are usually closer to their limits
than the gradient amplitudes based on our experience, indicating
that the gradient constraints could potentially be eliminated to
accelerate the algorithm in most cases.
Our choice of the iteration number and regularization param-

eter are relatively heuristic. We choose the iteration number
such that the total computation time (including extended
KT-point initialization) is limited to 3 minutes for the different
excitation tasks we have tested. Increasing the iteration number
usually further improves the excitation result, but the im-

provements are usually very small based on our experience. A
smaller RF regularization parameter leads to smaller excitation
error calculated using the small-tip approximation model, but it
has to be large enough such that the resulting RF pulse satisfies
peak RF and SAR constraints, and the small-tip approximation.
We choose a number that satisfies those requirements in most
cases based on our experience. A better approach may be
adding RF inequality constraints instead of a regularization
term in the cost function.
Parallel transmission is a means of improving the tailored

excitation accuracy using multiple coils [42]–[44]. We demon-
strated our proposed method only for single coil excitation in
this paper, but it could be easily extended to parallel excita-
tion. The problem formulation in the parallel transmit case can
follow the equations in Yip's joint pulse design paper [30]. In
particular, we simply modify the cost function (1) to include the
coil sensitivities of all coils. For the optimization algorithms,
we can use the spatial domain method for parallel transmit RF
pulse design [44] to update the RF waveform, and use the inte-
rior point method in our paper to update k-space trajectory but
with a modified gradient and Hessian (see section 7.5 of [45] for
more detail).
Sometimes, constraints on total gradient and slew rate across

channels are also enforced. Our method can be extended to this
case by modifying (6) and (8) since the constraints on total gra-
dient and slew rate can be written as linear inequality constraints
as well.
For the inner-volume excitation, the maximum outer-volume

flip angle may be also important. With a 10 inner-volume
flip angle, the maximum outer-volume flip angles (before/after
optimization) in our simulation study were 3.5 /3.4 (SoS),
3.7 /2.6 (SPINS), 2.5 /2.7 (KT-points), 2.8 /2.2 (extended
KT-points) excluding the boundary voxels (most of the exci-
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tation error occurred at the boundary between inner volume
and outer volume, but those boundary voxels are usually not
important in practice since we can slightly increase the readout
FOV to cover those boundary voxels, so the outer-volume
mask was eroded by five pixels in the calculation). Our opti-
mization reduces the maximum outer-volume excitation for all
initializations except KT-points. This is not surprising since the
maximum outer-volume excitation is not the direct minimiza-
tion target in our simulation. In practice, a higher weighting
could be applied to the outer volume to further reduce the
outer-volume excitation, or a minimax pulse design method
could be used [26], [45].
In addition to the phantom experimental data we have shown

in this paper, we have previously evaluated our extended-KT
points initialization (which has very high slew rate) in phantom
and in vivo experiments in [13], [33]. We used the initializa-
tion instead of the fully optimized k-space trajectory and RF
waveform in that study because we had not fully developed
the constrained optimization part of our method at that point.
We also measured the output k-space trajectory of the extended
KT-point initialization and it agrees well with the nominal
k-space trajectory (see [33]), indicating that eddy currents may
not be a problem for our implementation on our GE MR750
3.0T human scanner. We believe all those experimental studies
demonstrate the feasibility of the proposed method. If a scanner
has higher gradient distortion, a gradient system characteriza-
tion and k-space trajectory estimation method like [46] may be
used to pre-compensate the designed gradient waveforms.
In the phantom simulation and experiment, we have a rela-

tively small B0 inhomogeneity. To evaluate a case with high B0
inhomogeneity, we also simulated an inner-volume excitation
with acquired brain B0 field map and cylinder target excitation
pattern. The results are included in the supplementary material,
and again demonstrate that our optimization can significantly
reduce the excitation error.

VI. CONCLUSION
We have proposed a new joint design method for 3D tai-

lored excitation that can improve excitation accuracy for arbi-
trary k-space trajectory initializations. We also proposed a new
k-space initialization method, extended KT-points, that appears
to be better or at least as good as several existing 3D trajectory
choices. The total computation time is short enough for online
applications. We anticipate that the proposed 3D selective exci-
tation pulses will find use in inner-volume imaging and related
applications.

APPENDIX

We derive the Hessian of the cost function (1) with respect to
here. Define the excitation error term

and the temporal vector:

(19)

then the th element of is

(20)

where

(21)

Then, the th elements of the Hessian matrix are:

(22)

For the second term, when ,

(23)

When ,

(24)

Then we substitute (21), (23), (24) into (22), and obtain the el-
ements of the Hessian matrix
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Joint design of excitation k-space trajectory and RF pulse for small-tip 3D

tailored excitation in MRI

Supplementary material

Hao Sun, Jeffrey A. Fessler, Douglas C. Noll, and Jon-Fredrik Nielsen∗

To further evaluate our proposed joint RF pulse and k-space trajectory design method, we added this sup-
plementary material showing an inner-volume excitation simulation with acquired brain B0 field map that has
greater B0 inhomogeneity than our phantom results in the paper. Also, we changed the excitation pattern from
a cube to a short cylinder with 9 cm diameter and 6 cm thickness, which may be useful for, e.g., stack-of-spirals
imaging applications.

Figure 1 shows the simulation result. The extended KT-points pulse itself does not generate the best result
among all initial trajectories, but it generates the best final results after optimization. We think the reason is that
the extended KT-points method can automatically find a proper maximum k-space extent, so it can generate a
final result with proper excitation resolution in all directions. As shown in the main text, optimization always
improves the excitation results, reducing the NRMSE by 30 to 40% depending on the initialization method.
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Figure 1: Simulated inner-volume excitation results using a cylinder target pattern (top left) and acquired human
brain field map (top right). Rows 2 to 5: result excitation patterns for different pulse design methods: the left
column contains the results of the initialization pulse, while the right column contains the results after optimization
using the proposed interior point algorithm. Four initialization methods were investigated: SoS, SPINS, KT-points,
extended KT-points. All pulses have 3.8 ms pulse length. The extended KT-points pulse generates the best final
result after optimization. Optimization always improves the excitation result, reducing the NRMSE by 30 to 40%
depending on the initialization method.


