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Relaxed Linearized Algorithms for Faster
X-Ray CT Image Reconstruction
Hung Nien*, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Statistical image reconstruction (SIR) methods are
studied extensively for X-ray computed tomography (CT) due to
the potential of acquiring CT scans with reduced X-ray dose while
maintaining image quality. However, the longer reconstruction
time of SIR methods hinders their use in X-ray CT in practice.
To accelerate statistical methods, many optimization techniques
have been investigated. Over-relaxation is a common technique to
speed up convergence of iterative algorithms. For instance, using
a relaxation parameter that is close to two in alternating direction
method of multipliers (ADMM) has been shown to speed up con-
vergence significantly. This paper proposes a relaxed linearized
augmented Lagrangian (AL) method that shows theoretical faster
convergence rate with over-relaxation and applies the proposed
relaxed linearized AL method to X-ray CT image reconstruction
problems. Experimental results with both simulated and real
CT scan data show that the proposed relaxed algorithm (with
ordered-subsets [OS] acceleration) is about twice as fast as the
existing unrelaxed fast algorithms, with negligible computation
and memory overhead.
Index Terms—Statistical image reconstruction, computed to-

mography, ordered subsets, augmented Lagrangian, relaxation.

I. INTRODUCTION

S TATISTICAL image reconstruction (SIR) methods [1], [2]
have been studied extensively and used widely in medical

imaging. In SIRmethods, onemodels the physics of the imaging
system, the statistics of noisy measurements, and the prior in-
formation of the object to be imaged, and then finds the best
fitted estimate by minimizing a cost function using iterative al-
gorithms. By considering noise statistics when reconstructing
images, SIRmethods have better bias-variance performance and
noise robustness. However, the iterative nature of algorithms in
SIR methods also increases the reconstruction time, hindering
their ubiquitous use in X-ray CT in practice.
Penalized weighted least-squares (PWLS) cost functions with

a statistically weighted quadratic data-fidelity term are com-
monly used in SIR methods for X-ray CT [3]. Conventional SIR
methods include the preconditioned conjugate gradient (PCG)
method [4] and the separable quadratic surrogate (SQS) method
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with ordered-subsets (OS) acceleration [5]. These first-order
methods update the image based on the gradient of the cost
function at the current estimate. Due to the time-consuming for-
ward and back-projection operations in X-ray CT when com-
puting gradients, conventional first-order methods are typically
very slow. The efficiency of PCG relies on choosing an appro-
priate preconditioner of the highly shift-variant Hessian caused
by the huge dynamic range of the statistical weighting. In 2-D
CT, one can introduce an auxiliary variable that separates the
shift-variant and approximately shift-invariant components of
the weighted quadratic data-fidelity term using a variable split-
ting technique [6], leading to better conditioned inner least-
squares problems. However, this method has not worked well
in 3-D CT, probably due to the 3-D cone-beam geometry and
helical trajectory.
OS-SQS accelerates convergence using more frequent image

updates by incremental gradients, i.e., computing image gradi-
ents with only a subset of data. This method usually exhibits fast
convergence behavior in early iterations and becomes faster by
using more subsets. However, it is not convergent in general [7],
[8]. When more subsets are used, larger limit cycles can be ob-
served. Unlike methods that update all voxels simultaneously,
the iterative coordinate descent (ICD) method [9] updates one
voxel at a time. Experimental results show that ICD approxi-
mately minimizes the PWLS cost function in several passes of
the image volume if initialized appropriately; however, the se-
quential nature of ICD makes it difficult to parallelize and re-
strains the use of modern parallel computing architectures like
GPU for speed-up.
OS-mom [10] and OS-LALM [11] are two recently proposed

iterative algorithms that demonstrate promising fast conver-
gence speed when solving 3-D X-ray CT image reconstruction
problems. In short, OS-mom combines Nesterov’s momentum
techniques [12], [13] with the conventional OS-SQS algorithm,
greatly accelerating convergence in early iterations. OS-LALM,
on the other hand, is a linearized augmented Lagrangian (AL)
method [14] that does not require inverting an enormous
Hessian matrix involving the forward projection matrix when
updating images, unlike typical splitting-based algorithms
[6], but still enjoys the empirical fast convergence speed and
error tolerance of AL methods such as the alternating direction
method of multipliers (ADMM) [15]–[17]. Further acceleration
from an algorithmic perspective is possible but seems to be
more challenging. Kim et al. [18], [19] proposed two optimal
gradient methods (OGM’s) that use a new momentum term and
showed a -times speed-up for minimizing smooth convex
functions, comparing to existing fast gradient methods (FGM’s)
[12], [13], [20], [21].
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Over-relaxation is a common technique to speed up conver-
gence of iterative algorithms. For example, it is very effective
for accelerating ADMM [16], [17]. The same relaxation tech-
nique was also applied to linearized ADMM very recently [22],
but the speed-up was less significant than expected. Chambolle
et al. proposed a relaxed primal-dual algorithm (whose unre-
laxed variant happens to be a linearized ADMM [23, Section
4.3] and showed the first theoretical justification for speeding
up convergence with over-relaxation [24, Theorem 2]. How-
ever, their theorem also pointed out that when the smooth ex-
plicit term (majorization of the Lipschitz part in the cost func-
tion mentioned later) is not zero, one must use smaller primal
step size to ensure convergencewith over-relaxation, precluding
the use of larger relaxation parameter (close to two) for more
acceleration. This paper proposes a non-trivial relaxed variant
of linearized AL methods that improves the convergence rate
by using larger relaxation parameter values (close to two) but
does not require the step-size adjustment in [24]. We apply the
proposed relaxed linearized algorithm to X-ray CT image re-
construction problems, and experimental results show that our
proposed relaxation works much better than the simple relax-
ation [22] and significantly accelerates X-ray CT image recon-
struction, even with ordered-subsets (OS) acceleration.
This paper is organized as follows. Section II shows the

convergence rate of a linearized AL method (LALM) with
simple relaxation and proposes a novel relaxed LALM whose
convergence rate scales better with the relaxation parameter.
Section III applies the proposed relaxed LALM to X-ray CT
image reconstruction and uses a second-order recursive system
analysis to derive a continuation sequence that speeds up
the proposed algorithm. Section IV reports the experimental
results of X-ray CT image reconstruction using the proposed
algorithm. Finally, we draw conclusions in Section V. Online
supplementary material contains many additional results and
derivation details.

II. RELAXED LINEARIZED AL METHODS

We begin by discussing amore general constrainedminimiza-
tion problem for which X-ray CT image reconstruction is a spe-
cial case considered in Section III. Consider an equality-con-
strained minimization problem:

(1)

where and are closed and proper convex functions. In par-
ticular, is a loss function that measures the discrepancy be-
tween the linear model and noisy measurement , and is a
regularization term that introduces prior knowledge of to the
reconstruction. We assume that the regularizer is the
sum of two convex components and , where has inexpen-
sive proximal mapping (prox-operator) defined as

(2)

e.g., soft-shrinkage for the -norm and truncating zeros for
non-negativity constraints, and where is continuously differ-
entiable with -Lipschitz gradients [25, p. 48], i.e.,

(3)

for any and in the domain of . The Lipschitz condition
of implies the “(quadratic) majorization condition” of :

(4)

More generally, one can replace the Lipschitz constant by a
diagonal majorizing matrix based on the maximum curva-
ture [26] or Huber’s optimal curvature [27, p. 184] of while
still guaranteeing the majorization condition:

(5)

We show later that decomposing into the proximal part
and the Lipschitz part is useful when solving minimiza-

tion problems with composite regularization. For example,
Section III writes iterative X-ray CT image reconstruction as a
special case of (1), where is a weighted quadratic function,
and is an edge-preserving regularizer with a non-negativity
constraint on the reconstructed image.

A. Preliminaries
Solving the equality-constrained minimization problem (1) is

equivalent to finding a saddle-point of the Lagrangian:

(6)

where , and is the Lagrangemultiplier
of the equality constraint [28, p. 237]. In other words,
solves the minimax problem:

(7)

Moreover, since is a saddle-point of , the following
inequalities hold for any , and :

(8)

The non-negative duality gap function:

(9)

characterizes the accuracy of an approximate solution
to the saddle-point problem (7). Note that due to the
equality constraint. Besides solving the classic Lagrangian min-
imax problem (7), also solves a family of mini-max
problems:

(10)

where the augmented Lagrangian (AL) [25, p. 297] is

(11)

The augmented quadratic penalty term penalizes the feasibility
violation of the equality constraint, and the AL penalty param-
eter controls the curvature of but does not change
the solution, sometimes leading to better conditioned minimax
problems.
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One popular iterative algorithm for solving equality-con-
strained minimization problems based on the AL theory is
ADMM, which solves the AL minimax problem (10), and thus
the equality-constrained minimization problem (1), in an alter-
nating direction manner. More precisely, ADMM minimizes
AL (11) with respect to and alternatingly, followed by a
gradient ascent of with step size . One can also interpolate
or extrapolate variables in subproblems, leading to a relaxed
AL method [16, Theorem 8]:

(12)

where the relaxation variable of is:

(13)

and is the relaxation parameter. It is called over-
relaxation when and under-relaxation when .When
is unity, (12) reverts to the standard (alternating direction) AL

method [15]. Experimental results suggest that over-relaxation
with can accelerate convergence [17].
Although (12) is used widely in applications, two concerns

about the relaxed AL method (12) arise in practice. First, the
cost function of the -subproblem in (12) contains the aug-
mented quadratic penalty of AL that involves , deeply cou-
pling elements of and often leading to an expensive iterative
-update, especially when is large and unstructured, e.g., in

X-ray CT. This motivates alternative methods like LALM [11],
[14]. Second, even though LALM removes the -coupling due
to the augmented quadratic penalty, the regularization term
might not have inexpensive proximal mapping and still require
an iterative -upate (albeit without using ). This consideration
inspires the decomposition used in the algorithms
discussed next.

B. Linearized AL Methods With Simple Relaxation
In LALM1, one adds an iteration-dependent proximity term:

(14)

to the -update in (12) with , where is a positive semi-
definite matrix. Choosing , where ,
and denotes the maximum eigenvalue of , the non-
separable Hessian of the augmented quadratic penalty of AL is
cancelled, and the Hessian of

(15)

becomes a diagonal matrix , decoupling in the -up-
date except for the effect of . This technique is known as lin-
earization (more precisely, majorization) because it majorizes a

1Because (15) is quadratic, not linear, a more apt term would be “majorized”
rather than “linearized.” We stick with the term linearized for consistency with
the literature on LALM.

non-separable quadratic term by its linear component plus some
separable qradratic proximity term. In general, one can also use

(16)

where is a diagonal majorizing matrix of ,
e.g., [5], and still guarantee
the positive semi-definiteness of . This trick can be applied to
(12) when , too.
To remove the possible coupling due to the regularization

term , we replace the Lipschitz part of in the -up-
date of (12) with its separable quadratic surrogate (SQS):

(17)

shown in (4) and (5). Note that (4) is just a special case of
(5) when . Incorporating all techniques mentioned
above, the -update becomes simply a proximal mapping of ,
which by assumption is inexpensive. The resulting “LALMwith
simple relaxation” algorithm is:

(18)

When , (18) reverts to the L-GADMM algorithm
proposed in [22]. In [22], the authors analyzed the convergence
rate of L-GADMM (for solving an equivalent variational
inequality problem; however, there is no analysis on how
relaxation parameter affects the convergence rate) and
investigated solving problems in statistical learning using
L-GADMM. The speed-up resulting from over-relaxation was
less significant than expected (e.g., when solving an X-ray
CT image reconstruction problem discussed later). To explain
the small speed-up, the following theorem shows that the
duality gap (9) of the time-averaged approximate solution

generated by (18) vanishes at rate
, where is the number of iterations, and

(19)

denotes the time-average of some iterate for to .
Theorem 1: Let be the time-averages

of the iterates of LALM with simple relaxation in (18), where
and . We have

(20)

where the first two constants

(21)

(22)
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depend on how far the initial guess is from a minimizer, and the
last constant depends on the relaxation parameter

(23)

Proof. The proof is in the supplementary material.
Theorem 1 shows that (18) converges at rate , and the

constant multiplying consists of three terms: ,
and . The first term comes from the majorization of
, and it is large when has large curvature. The second term

comes from the linearization trick in (15). One can al-
ways decrease its value by decreasing . The third term
is the only -dependent component. The trend of when
varying depends on the norms of and , i.e.,
how one initializes the algorithm. Finally, the convergence rate
of (18) scales well with iff and .
When has large curvature or is a loose majorizing matrix
of (like in X-ray CT), the above inequalities do not hold,
leading to poor scalability of convergence rate with the relax-
ation parameter .

C. Linearized AL Methods With Proposed Relaxation

To better scale the convergence rate of relaxed LALM with
, we want to design an algorithm that replaces the -indepen-

dent components by -dependent ones in the constant multi-
plying in (20). This can be (partially) done by linearizing
(more precisely, majorizing) the non-separable AL penalty term
in (12) implicitly. Instead of explicitly adding a -weighted
proximity term, where is defined in (16), to the -update like
(18), we consider solving an equality-constrained minimization
problem equivalent to (1) with an additional redundant equality
constraint , i.e.,

(24)

using the relaxed AL method (12) as follows:

(25)

where the relaxation variable of is:

(26)

and is the Lagrange multiplier of the redundant equality con-
straint. One can easily verify that for if
we initialize as .
The additional equality constraint introduces an additional

inner-product term and a quadratic penalty term to the -up-
date. The latter can be used to cancel the non-separable Hessian
of the AL penalty term as in explicit linearization. By choosing
the same AL penalty parameter for the additional con-
straint, the Hessian matrix of the quadratic penalty term in the
-update of (25) is . In other words, by

choosing in (16), the quadratic penalty term in the -update
of (25) becomes separable, and the -update becomes an effi-
cient proximal mapping of , as seen in (30) below.
Next we analyze the convergence rate of the proposed

relaxed LALM method (25). With the additional redundant
equality constraint, the Lagrangian becomes

(27)

Setting gradients of with respect to , and
to be zero yields a necessary condition for a saddle-point

of . It follows that .
Therefore, setting is indeed a natural choice for
initializing . Moreover, since , the gap function of the
new problem (24) coincides with (9), and we can compare the
convergence rate of the simple and proposed relaxed algorithms
directly.
Theorem 2: Let be the time-

averages of the iterates of LALM with proposed relaxation in
(25), where and . When initializing and as

and , respectively, we have

(28)

where and were defined in (21) and (23), and

(29)

Proof: The proof is in the supplementary material.
Theorem 2 shows the convergence rate of (25). Due

to the different variable splitting scheme, the term introduced
by the implicit linearization trick in (25) (i.e., ) also
depends on the relaxation parameter , improving convergence
rate scalibility with in (25) over (18). This theorem provides
a theoretical explanation why (25) converges faster than (18) in
the experiments shown later2.
For practical implementation, the remaining concern is multi-

plications by in (25). There is no efficient way to compute
the square root of for any in general, especially when is
large and unstructured like in X-ray CT. To solve this problem,

2When has large curvature (thus, -dependent terms do not dominate the
constant multiplying ), we can use techniques as in [29], [30] to reduce the
-dependent constant. In X-ray CT, the data-fidelity term often dominates the

cost function, so .
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let . We rewrite (25) so that no explicit multi-
plication by is needed (the derivation is in the supplemen-
tary material), leading to the following “LALM with proposed
relaxation” algorithm:

(30)

where

(31)
and

(32)

When is a quadratic loss, i.e., , we
further simplify the proposed relaxed LALM by manipulations
like those in [11] (omitted here for brevity) as:

(33)

where is the quadratic data-fidelity term, and
[11]. For initialization, we suggest using

and (Theorem 2). The algo-
rithm (33) computes multiplications by and only once per
iteration and does not have to invert , unlike standard re-
laxed AL methods (12). This property is especially useful when

is large and unstructured. When , (33) reverts to the
unrelaxed LALM in [11].
Lastly, we contrast our proposed relaxed LALM (30) with

Chambolle’s relaxed primal-dual algorithm [24, Algorithm 2].
Both algorithms exhibit ergodic (i.e., with respect
to the time-averaged iterates) convergence rate and -times
speed-up when . Using (30) would require one more
multiplication by per iteration than in Chambolle’s relaxed
algorithm; however, the additional is not required with
quadratic loss in (33). When , unlike Chambolle’s
relaxed algorithm in which one has to adjust the primal step
size according to the value of (effectively, one scales by

) [24, Remark 6], the proposed relaxed LALM (30)
does not require such step-size adjustment, which is especially
useful when using that is close to two.

III. X-RAY CT IMAGE RECONSTRUCTION

Consider the X-ray CT image reconstruction problem [3]:

(34)

where is the forward projection matrix of a CT scan [31], is
the noisy sinogram, is the statistical diagonal weighting ma-
trix, denotes an edge-preserving regularizer, and denotes a
box-constraint on the image . We focus on the edge-preserving
regularizer defined as:

(35)

where , and denote the regularization parameter,
spatial offset, potential function, and finite difference matrix
in the th direction, respectively, and is a voxel-dependent
weight for improving resolution uniformity [32], [33]. In our
experiments, we used 13 directions to include all 26 neighbors
in 3-D CT.

A. Relaxed OS-LALM for Faster CT Reconstruction

To solve X-ray CT image reconstruction (34) using the pro-
posed relaxed LALM (33), we apply the following substitution:

(36)

and we set and , where if ,
and otherwise. The proximal mapping of
simply projects the input vector to the convex set , e.g., clip-
ping negative values of to zero for a non-negativity constraint.
Theorems developed in Section II considered the ergodic con-
vergence rate of the non-negative duality gap, which is not a
common convergence metric for X-ray CT image reconstruc-
tion. However, the ergodic convergence rate analysis suggests
how factors like , and affect convergence speed
(a LASSO regression example can be found in the supplemen-
tary material) andmotivates our “more practical” (over-)relaxed
OS-LALM summarized in Algorithm 1.
Algorithm 1 describes the proposed relaxed algorithm for

solving the X-ray CT image reconstruction problem (34), where
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denotes the data-fidelity term of the th subset, and is
an operator that projects the input vector onto the convex set ,
e.g., truncating zeros for . All vari-
ables are updated in-place, and we use the superscript to
denote the new values that replace the old values. We also use
the substitution in the proposed method, so Al-
gorithm 1 has comparable form with the unrelaxed OS-LALM
[11]; however, such substitution is not necessary.
As seen in Algorithm 1, the proposed relaxed OS-LALM has

the form of (33) but uses some modifications that violate as-
sumptions in our theorems but speed up “convergence” in prac-
tice. First, although Theorem 2 assumes a constant majorizing
matrix for the Lipschitz term (e.g., the maximum curva-
ture of ), we use the iteration-dependent Huber’s curvature of
[26] for faster convergence (the same in other algorithms for

comparison). Second, since the updates in (33) depend only on
the gradients of , we can further accelerate the gradient com-
putation by using partial projection data, i.e., ordered subsets.
Lastly, we incorporate continuation technique (i.e., decreasing
the AL penalty parameter every iteration) in the proposed al-
gorithm as described in the next subsection.
To select the number of subsets, we used the rule suggested

in [11, (55) and (57)]. However, since over-relaxation provides
two-times acceleration, we used 50% of the suggested number
of subsets (for the unrelaxed OS-LALM) yet achieved similar
convergence speed (faster in runtime since fewer regularizer
gradient evaluations are performed) and more stable reconstruc-
tion. For the implicit linearization, we use the diagonal ma-
jorizing matrix for [5], the same diag-
onal majorizing matrix for the quadratic loss function used
in OS algorithms.
Furthermore, Algorithm 2 depicts the OS version of the

simple relaxed algorithm (18) for solving (34) (derivation is
omitted here). The main difference between Algorithm 1 and
Algorithm 2 is the extra recursion of variable . When ,
both algorithms revert to the unrelaxed OS-LALM [11].

B. Further Speed-Up With Continuation

We also use a continuation technique [11] to speed up con-
vergence; that is, we decrease gradually with iteration. Note
that is the inverse of the voxel-dependent step size
of image updates; decreasing increases step sizes gradually
as iteration progress. Due to the extra relaxation parameter ,

the good decreasing continuation sequence differs from that in
[11]. We use the following -dependent continuation sequence
for the proposed relaxed LALM :

(37)

The supplementary material describes the rationale for this con-
tinuation sequence. When using OS, decreases every subiter-
ation, and the counter in (37) denotes the number of subitera-
tions, instead of the number of iterations.

IV. EXPERIMENTAL RESULTS

This section reports numerical results for 3-D X-ray CT
image reconstruction using one conventional algorithm
(OS-SQS) [5] and four contemporary algorithms:
• OS-FGM2: the OS variant of the standard fast gradient
method proposed in [10], [19],

• OS-LALM: the OS variant of the unrelaxed linearized AL
method proposed in [11],

• OS-OGM2: the OS variant of the optimal fast gradient
method proposed in [19], and

• Relaxed OS-LALM: the OS variants of the proposed re-
laxed linearized AL methods given in Algorithm 1 (pro-
posed) and Algorithm 2 (simple) above ( unless
otherwise specified).

A. XCAT Phantom

We simulated an axial CT scan using a 1024 1024 154
XCAT phantom [34] for 500 mm transaxial field-of-view
(FOV), where mm and
mm. An 888 64 984([detector columns] [detector rows]
[projection views]) noisy (with Poisson noise) sinogram is

numerically generated with GE LightSpeed fan-beam geometry
corresponding to a monoenergetic source at 70 keV with
incident photons per ray and no scatter. We reconstructed
a 512 512 90 image volume with a coarser grid, where

mm and mm. The statistical
weighting matrix is defined as a diagonal matrix with
diagonal entries , and an edge-preserving
regularizer is used with
( HU) and parameters set to achieve a reasonable
noise-resolution trade-off. We used 12 subsets for the relaxed
OS-LALM, while [11, (55)] suggests using about 24 subsets
for the unrelaxed OS-LALM.
Fig. 1 shows the cropped images (displayed from 800 to 1200

HU [modified so that air is 0]) from the central transaxial plane
of the initial FBP image , the reference reconstruction
(generated by running thousands of iterations of the convergent
FGM with adaptive restart [35]), and the reconstructed image

using the proposed algorithm (relaxed OS-LALM with
12 subsets) after 20 iterations. There is no visible difference
between the reference reconstruction and our reconstruction.
To analyze the proposed algorithm quantitatively, Fig. 2 shows
the RMS differences between the reference reconstruction
and the reconstructed image using different algorithms
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Fig. 1. XCAT: Cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image (left), the reference reconstruction
(center), and the reconstructed image using the proposed algorithm (relaxed OS-LALM with 12 subsets) after 20 iterations (right).

Fig. 2. XCAT: Convergence rate curves of different OS algorithms with (a) 12 subsets and (b) 24 subsets. The proposed relaxed OS-LALM with 12 subsets
exhibits similar convergence rate as the unrelaxed OS-LALM with 24 subsets.

as a function of iteration3 with 12 and 24 subsets. As seen in
Fig. 2, the proposed algorithm (cyan curves) is approximately
twice as fast as the unrelaxed OS-LALM (green curves) at least
in early iterations. Furthermore, comparing with OS-FGM2
and OS-OGM2, the proposed algorithm converges faster and
is more stable when using more subsets for acceleration.
Difference images using different algorithms and additional
experimental results are shown in the supplementary material.
To illustrate the improved speed-up of the proposed re-

laxation (Algorithm 1) over the simple one (Algorithm 2),
Fig. 3 shows convergence rate curves of different relaxed
algorithms (12 subsets and ) with (a) a fixed AL
penalty parameter and (b) the decreasing sequence

in (37). As seen in Fig. 3(a), the simple relaxation does not
provide much acceleration, especially after 10 iterations. In
contrast, the proposed relaxation accelerates convergence about
twice (i.e., -times), as predicted by Theorem 2. When the de-
creasing sequence of is used, as seen in Fig. 3(b), the simple
relaxation seems to provide somewhat more acceleration than

3All algorithms listed above require one forward/back-projection pair and
(the number of subsets) regularizer gradient evaluations (plus some negligible
overhead) per iteration, so comparing the convergence rate as a function of it-
eration is fair.

before; however, the proposed relaxation still outperforms the
simple one, illustrating approximately two-fold speed-up over
the unrelaxed counterpart.

B. Chest Scan
We reconstructed a 600 600 222 image volume, where

mm and mm, from a chest
region helical CT scan. The size of sinogram is 888 64
3611 and pitch 1.0 (about 3.7 rotations with rotation time

0.4 seconds). The tube current and tube voltage of the X-ray
source are 750 mA and 120 kVp, respectively. We started
from a smoothed FBP image and tuned the statistical
weights [36] and the -generalized Gaussian MRF regular-
ization parameters [33] to emulate the MBIR method [3],
[37]. We used 10 subsets for the relaxed OS-LALM, while
[11, (57)] suggests using about 20 subsets for the unrelaxed
OS-LALM. Fig. 4 shows the cropped images from the central
transaxial plane of the initial FBP image , the reference
reconstruction , and the reconstructed image using the
proposed algorithm (relaxed OS-LALM with 10 subsets) after
20 iterations. Fig. 5 shows the RMS differences between the
reference reconstruction and the reconstructed image
using different algorithms as a function of iteration with 10
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Fig. 3. XCAT: Convergence rate curves of different relaxed algorithms (12 subsets and ) with (a) a fixed AL penalty parameter and (b) the
decreasing sequence in (37).

Fig. 4. Chest: Cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image (left), the reference reconstruction
(center), and the reconstructed image using the proposed algorithm (relaxed OS-LALM with 10 subsets) after 20 iterations (right).

Fig. 5. Chest: Convergence rate curves of different OS algorithms with (a) 10 subsets and (b) 20 subsets. The proposed relaxed OS-LALMwith 10 subsets exhibits
similar convergence rate as the unrelaxed OS-LALM with 20 subsets. (a) 10 subsets, (b) 20 subsets.

and 20 subsets. The proposed relaxed OS-LALM shows about
two-times faster convergence rate, comparing to its unrelaxed
counterpart, with moderate number of subsets. The speed-up

diminishes as the iterate approaches the solution. Furthermore,
the faster relaxed OS-LALM seems likely to be more sen-
sitive to gradient approximation errors and exhibits ripples
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in convergence rate curves when using too many subsets for
acceleration. In contrast, the slower unrelaxed OS-LALM is
less sensitive to gradient error when using more subsets and
does not exhibit such ripples in convergence rate curves. Com-
pared with OS-FGM2 and OS-OGM2, the proposed relaxed
OS-LALM has smaller limit cycles and might be more stable
for practical use.

V. DISCUSSION AND CONCLUSIONS
In this paper, we proposed a non-trivial relaxed variant of

LALM and applied it to X-ray CT image reconstruction. Experi-
mental results with simulated and real CT scan data showed that
our proposed relaxed algorithm “converges” about twice as fast
as its unrelaxed counterpart, outperforming state-of-the-art fast
iterative algorithms using momentum [10], [19]. This speed-up
means that one needs fewer subsets to reach an RMS differ-
ence criteria like 1 HU in a given number of iterations. For in-
stance, we used 50% of the number of subsets suggested by [11]
(for the unrelaxed OS-LALM) in our experiment but found sim-
ilar convergence speed with over-relaxation. Moreover, using
fewer subsets can be beneficial for distributed computing [38],
reducing communication overhead required after every update.
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Relaxed Linearized Algorithms for Faster X-Ray
CT Image Reconstruction: Supplementary Material

Hung Nien, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

This supplementary material for [1] has three parts. The first part analyzes the convergence rate of the simple and proposed
relaxed linearized augmented Lagrangian (AL) methods (LALM’s) in [1] for solving an equality-constrained composite convex
optimization problem. We demonstrate the convergence rate bound and the effect of relaxation with a numerical example
(LASSO regression). The second part derives the continuation sequence we used in [1]. The third part shows additional
experimental results of applying the proposed relaxed LALM with ordered subsets (OS) for solving model-based X-ray
computed tomography (CT) image reconstruction problems. The additional experimental results are consistent with the results
we showed in [1], illustrating the efficiency and stability of the proposed relaxed OS-LALM over existing methods.

I. CONVERGENCE RATE ANALYSES OF THE SIMPLE AND PROPOSED LALM’S

We begin by considering a more general equality-constrained composite convex optimization problem (for which the equality-
constrained minimization problem considered in [1] is a special case):

(x̂, û) ∈ arg min
x,u

{
f(x,u) , g(u) + h(x)

}
s.t. Kx + Bu = b , (1)

where both g and h are closed and proper convex functions. We further decompose h , φ+ψ into two convex functions φ and
ψ, where φ is “simple” in the sense that it has an efficient proximal mapping, e.g., soft-shrinkage for the `1-norm, and ψ is
continuously differentiable with Dψ-Lipschitz gradients (defined in [1]). One example of h is the edge-preserving regularizer
with a non-negativity constraint (e.g., sum of a “corner-rounded” total-variation [TV] regularizer and the characteristic function
of the non-negativity set) used in statistical image reconstruction methods [1, 2].

As mentioned in [1], solving a composite convex optimization problem with equality constraints like (1) is equivalent to
finding a saddle-point of the Lagrangian:

L(x,u,µ) , f(x,u)− 〈µ,Kx + Bu− b〉 , (2)

where µ is the Lagrange multiplier of the equality constraint [3, p. 237]. In other words, (x̂, û, µ̂) solves the minimax problem:

(x̂, û, µ̂) ∈ arg min
x,u

max
µ
L(x,u,µ) . (3)

Moreover, since (x̂, û, µ̂) is a saddle-point of L, the following inequalities

L(x,u, µ̂) ≥ L(x̂, û, µ̂) ≥ L(x̂, û,µ) (4)

hold for any x, u, and µ, and the duality gap function:

G(x,u,µ; x̂, û, µ̂) , L(x,u, µ̂)− L(x̂, û,µ) =
[
f(x,u)− f(x̂, û)

]
− 〈µ̂,Kx + Bu− b〉 ≥ 0 (5)

characterizes the accuracy of an approximate solution (x,u,µ) to the saddle-point problem (3). Note that Kx̂ + Bû− b = 0
due to the equality constraint. We consider the following (generalized alternating direction method of multipliers [ADMM])
iteration:




x(k+1) ∈ arg min
x

{
φ(x) + 〈∇ψ

(
x(k)

)
,x〉+ 1

2

∥∥x− x(k)
∥∥2
Dψ
− 〈µ(k),Kx〉+ ρ

2

∥∥Kx + Bu(k) − b
∥∥2
2

+ 1
2

∥∥x− x(k)
∥∥2
P

}

u(k+1) ∈ arg min
u

{
g(u)− 〈µ(k),Bu〉+ ρ

2

∥∥αKx(k+1) + (1− α)
(
b−Bu(k)

)
+ Bu− b

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
αKx(k+1) + (1− α)

(
b−Bu(k)

)
+ Bu(k+1) − b

)
(6)

and show that the duality gap of the time-averaged solution wK = (xK ,uK ,µK) it generates converges to zero at rate
O(1/K), where K is the number of iterations,

cK , 1
K

∑K
k=1 c(k) (7)

denotes the time-average of some iterate c(k) for k = 1, . . . ,K, ρ > 0 is the corresponding AL penalty parameter, P � 0 is a
positive semi-definite weighting matrix, and 0 < α < 2 is the relaxation parameter.

This work is supported in part by National Institutes of Health (NIH) grants U01-EB-018753 and by equipment donations from Intel Corporation. Hung
Nien and Jeffrey A. Fessler are with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
(e-mail: {hungnien,fessler}@umich.edu). Date of current version: December 11, 2015.
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A. Preliminaries

The convergence rate analysis of the iteration (6) is inspired by previous work [4–9]. For simplicity, we use the following
notations:

w ,




x
u
µ


 , w ,




x
u
λ


 , λ(k+1) , µ(k) − ρ

(
Kx(k+1) + Bu(k) − b

)
, and F (w) ,




−K′λ
−B′λ

Kx + Bu− b


 . (8)

We also introduce three matrices:

H ,




Dψ + P 0 0
0 ρ

αB′B 1−α
α B′

0 1−α
α B 1

αρI


 , M ,




I 0 0
0 I 0
0 −ρB αI


 , and Q , HM =




Dψ + P 0 0
0 ρB′B (1− α) B′

0 −B 1
ρI


 . (9)

The following lemmas show the properties of vectors and matrices defined in (8) and (9) and an identity used in our derivation.

Lemma 1. The matrix H defined in (9) is positive semi-definite for any 0 < α < 2 and ρ > 0.

Proof. For any w, completing the square yields

w′Hw = x′ (Dψ + P) x + ρ
αu′B′Bu + 2(1−α)

α u′B′µ + 1
αρµ

′µ

= ‖x‖2Dψ+P + 1
α

(
‖√ρBu‖22 + 2 · sgn(1− α) |1− α| (√ρBu)

′ ( 1√
ρµ
)

+
∥∥ 1√

ρµ
∥∥2
2

)

= ‖x‖2Dψ+P + 1
α

(
|1− α|

∥∥√ρBu + sgn(1− α) 1√
ρµ
∥∥2
2

+ (1− |1− α|)
(
‖√ρBu‖22 +

∥∥ 1√
ρµ
∥∥2
2

))
. (10)

All terms in (10) are non-negative for any 0 < α < 2 and ρ > 0. Thus under such conditions, w′Hw ≥ 0 for any w, and H
is positive semi-definite.

Lemma 2. For any k ≥ 0, we have w(k) −w(k+1) = M
(
w(k) −w(k+1)

)
.

Proof. Since two stacked vectors (x and u) of w and w are the same, we need only show that µ(k) − µ(k+1) is equal to
α
(
µ(k) − λ(k+1)

)
− ρB

(
u(k) − u(k+1)

)
for any k ≥ 0. By the definition of λ(k+1) in (8), we have

µ(k) − λ(k+1) = ρ
(
Kx(k+1) + Bu(k) − b

)
. (11)

Then, by the definition of the µ-update in (6), we get

µ(k) − µ(k+1) = ρ
(
αKx(k+1) + (1− α)

(
b−Bu(k)

)
+ Bu(k+1) − b

)

= ρ
(
α
(
Kx(k+1) + Bu(k) − b

)
+ B

(
u(k+1) − u(k)

))

= α
(
ρ
(
Kx(k+1) + Bu(k) − b

))
− ρB

(
u(k) − u(k+1)

)

= α
(
µ(k) − λ(k+1)

)
− ρB

(
u(k) − u(k+1)

)
. (12)

Thus the lemma holds.

Lemma 3. For any positive semi-definite matrix M and vectors x1, x2, x3, and x4, we have

(x1 − x2)
′
M (x3 − x4) = 1

2 ‖x1 − x4‖2M − 1
2 ‖x1 − x3‖2M + 1

2 ‖x2 − x3‖2M − 1
2 ‖x2 − x4‖2M . (13)

Proof. The proof is omitted here. It can be verified by expanding out all the inner product and norms on both sides.

B. Main results

In the following theorem, we show that the duality gap defined in (5) of the time-averaged iterates wK = (xK ,uK ,µK) in
(6) converges at rate O(1/K), where K denotes the number of iterations.

Theorem 1. Let wK = (xK ,uK ,µK) be the time-averages of iterates in (6) where ρ > 0, 0 < α < 2, and P is positive
semi-definite. We have

G
(
wK ; ŵ

)
=
[
f
(
xK ,uK

)
− f(x̂, û)

]
− 〈µ̂,KxK + BuK − b〉

≤ 1

K

{
1
2

∥∥x(0) − x̂
∥∥2
Dψ

+ 1
2

∥∥x(0) − x̂
∥∥2
P

+ 1
2α

[√
ρ
∥∥B
(
u(0) − û

)∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2}
. (14)
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Proof. We first focus on the x-update in (6). By the convexity of ψ, we have

ψ
(
x(k+1)

)
≤ ψ

(
x(k)

)
+ 〈∇ψ

(
x(k)

)
,x(k+1) − x(k)〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

= ψ
(
x(k)

)
+ 〈∇ψ

(
x(k)

)
,x− x(k)〉+ 〈∇ψ

(
x(k)

)
,x(k+1) − x〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

≤ ψ(x) + 〈∇ψ
(
x(k)

)
,x(k+1) − x〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

(15)

for any x. Moving ψ(x) to the left-hand side leads to

ψ
(
x(k+1)

)
− ψ(x) ≤ 〈∇ψ

(
x(k)

)
,x(k+1) − x〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

. (16)

Moreover, by the optimality condition of the x-update in (6), we have

∂φ
(
x(k+1)

)
+∇ψ

(
x(k)

)
+ Dψ

(
x(k+1) − x(k)

)
−K′

(
µ(k) − ρ

(
Kx(k+1) + Bu(k) − b

))
+ P

(
x(k+1) − x(k)

)
3 0 , (17)

so
∂φ
(
x(k+1)

)
3 −∇ψ

(
x(k)

)
−Dψ

(
x(k+1) − x(k)

)
+ K′λ(k+1) −P

(
x(k+1) − x(k)

)
. (18)

By the definition of subgradient for the convex function φ, it follows that

φ(x) ≥ φ
(
x(k+1)

)
+ 〈∂φ

(
x(k+1)

)
,x− x(k+1)〉

= φ
(
x(k+1)

)
+ 〈x(k+1) − x,−K′λ(k+1)〉+ 〈∇ψ

(
x(k)

)
,x(k+1) − x〉+ 〈x(k+1) − x, (Dψ + P)

(
x(k+1) − x(k)

)
〉 (19)

for all x. Rearranging (19) leads to
[
φ
(
x(k+1)

)
− φ(x)

]
+ 〈x(k+1) − x,−K′λ(k+1)〉

≤ −〈∇ψ
(
x(k)

)
,x(k+1) − x〉+ 〈x(k+1) − x, (Dψ + P)

(
x(k) − x(k+1)

)
〉 . (20)

Summing (16) and (20), we get the first inequality:
[
h
(
x(k+1)

)
− h(x)

]
+ 〈x(k+1) − x,−K′λ(k+1)〉 ≤ 〈x(k+1) − x, (Dψ + P)

(
x(k) − x(k+1)

)
〉+ 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ

. (21)

Following the same procedure, by the optimality condition of the u-update in (6), we have

g(u) ≥ g
(
u(k+1)

)
+ 〈∂g

(
u(k+1)

)
,u− u(k+1)〉 = g

(
u(k+1)

)
+ 〈u(k+1) − u,−B′µ(k+1)〉 (22)

for any u. To substitute µ(k+1) in (22), subtracting and adding λ(k+1) on the left-hand side of (12) and rearranging it yield

µ(k+1) = λ(k+1) + (1− α)
(
µ(k) − λ(k+1)

)
+ ρB

(
u(k) − u(k+1)

)
. (23)

Substituting (23) into (22) and rearranging it, we get the second inequality:
[
g
(
u(k+1)

)
− g(u)

]
+ 〈u(k+1) − u,−B′λ(k+1)〉 ≤ 〈u(k+1) − u, ρB′B

(
u(k) − u(k+1)

)
+ (1− α) B′

(
µ(k) − λ(k+1)

)
〉 . (24)

The third step differes a bit from the previous ones because the µ-update in (6) is not a minimization problem. By (11), we
have

Kx(k+1) + Bu(k+1) − b = −B
(
u(k) − u(k+1)

)
+ 1

ρ

(
µ(k) − λ(k+1)

)
. (25)

This gives the third equality:

〈λ(k+1) − µ,Kx(k+1) + Bu(k+1) − b〉 = 〈λ(k+1) − µ,−B
(
u(k) − u(k+1)

)
+ 1

ρ

(
µ(k) − λ(k+1)

)
〉 (26)

for any µ. Summing (21), (24), and (26), we can write it compactly as
[
f
(
x(k+1),u(k+1)

)
−f(x,u)

]
+〈w(k+1)−w, F

(
w(k+1)

)
〉 ≤ 〈w(k+1)−w,Q

(
w(k)−w(k+1)

)
〉+ 1

2

∥∥x(k+1)−x(k)
∥∥2
Dψ

. (27)

By Lemma 2 (note that Q = HM) and Lemma 3, the first term on the right-hand side of (27) can be expressed as

〈w(k+1) −w,H
(
w(k) −w(k+1)

)
〉

= 1
2

∥∥w(k+1) −w(k+1)
∥∥2
H
− 1

2

∥∥w(k+1) −w(k)
∥∥2
H

+ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H
. (28)

Moreover, the first term on the right-hand side of (28) is

1
αρ

∥∥λ(k+1) − µ(k+1)
∥∥2
2

= 1
αρ

∥∥ρB
(
u(k+1) − u(k)

)
+ (1− α)

(
λ(k+1) − µ(k)

)∥∥2
2

(29)
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by (23), and the second term on the right-hand side of (28) is

1
2

∥∥x(k+1) − x(k)
∥∥2
Dψ+P

+ 1
αρ

∥∥ρB
(
u(k+1) − u(k)

)∥∥2
2

+ 2(1−α)
αρ 〈ρB

(
u(k+1) − u(k)

)
,λ(k+1) − µ(k)〉+ 1

αρ

∥∥λ(k+1) − µ(k)
∥∥2
2

= 1
2

∥∥x(k+1) − x(k)
∥∥2
Dψ+P

+ 1
αρ

∥∥ρB
(
u(k+1) − u(k)

)
+ (1− α)

(
λ(k+1) − µ(k)

)∥∥2
2

+ 2−α
ρ

∥∥λ(k+1) − µ(k)
∥∥2
2
. (30)

Substituting (29) and (30) into (28), we can upper bound the inequality (27) by
[
f
(
x(k+1),u(k+1)

)
− f(x,u)

]
+ 〈w(k+1) −w, F

(
w(k+1)

)
〉

≤ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H
− 1

2

∥∥x(k+1) − x(k)
∥∥2
Dψ+P

− 2−α
ρ

∥∥λ(k+1) − µ(k)
∥∥2
2

+ 1
2

∥∥x(k+1) − x(k)
∥∥2
Dψ

≤ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H
− 1

2

∥∥x(k+1) − x(k)
∥∥2
P
− 2−α

ρ

∥∥λ(k+1) − µ(k)
∥∥2
2

≤ 1
2

∥∥w(k) −w
∥∥2
H
− 1

2

∥∥w(k+1) −w
∥∥2
H

(31)

because P is positive semi-definite and 2− α > 0 for α ∈ (0, 2).
To show the convergence rate of (6), let (x,u,µ) = ŵ , (x̂, û, µ̂). The last term on the left-hand side of (31) can be

represented as

〈w(k+1) − ŵ, F
(
w(k+1)

)
〉

= 〈x(k+1) − x̂,−K′λ(k+1)〉+ 〈u(k+1) − û,−B′λ(k+1)〉+ 〈λ(k+1) − µ̂,Kx(k+1) + Bu(k+1) − b〉
= 〈λ(k+1),Kx̂−Kx(k+1) + Bû−Bu(k+1) + Kx(k+1) + Bu(k+1) − b〉 − 〈µ̂,Kx(k+1) + Bu(k+1) − b〉
= 〈λ(k+1),Kx̂ + Bû− b〉 − 〈µ̂,Kx(k+1) + Bu(k+1) − b〉
= −〈µ̂,Kx(k+1) + Bu(k+1) − b〉 . (32)

Note that Kx̂ + Bû− b = 0 due to the equality constraint. Using (32) yields

G
(
w(k+1); ŵ

)
=
[
f
(
x(k+1),u(k+1)

)
− f(x̂, û)

]
+ 〈w(k+1) − ŵ, F

(
w(k+1)

)
〉 ≤ 1

2

∥∥w(k) − ŵ
∥∥2
H
− 1

2

∥∥w(k+1) − ŵ
∥∥2
H
. (33)

Summing (33) from k = 0, . . . ,K − 1, dividing both sides by K, and applying Jensen’s inequality to the convex function f ,
we have

G
(
wK ; ŵ

)
=
[
f
(
xK ,uK

)
− f(x̂, û)

]
− 〈µ̂,KxK + BuK − b〉

≤ 1
K

(
1
2

∥∥w(0) − ŵ
∥∥2
H
− 1

2

∥∥w(K) − ŵ
∥∥2
H

)
≤ 1

K · 12
∥∥w(0) − ŵ

∥∥2
H

(34)

since H is positive semi-definite for any α ∈ (0, 2) and ρ > 0 (Lemma 1). To finish the analysis, the remaining task is to
upper bound 1

2

∥∥w(0) − ŵ
∥∥2
H

. Note that 1
2

∥∥w(0) − ŵ
∥∥2
H

can be expressed as

1
2

∥∥x(0) − x̂
∥∥2
Dψ

+ 1
2

∥∥x(0) − x̂
∥∥2
P

+ 1
2α

[
u(0) − û
µ(0) − µ̂

]′ [
ρB′B (1− α) B′

(1− α) B 1
ρI

] [
u(0) − û
µ(0) − µ̂

]
. (35)

The last term in (35) can be further expressed as and upper bounded by

1
2α

[
ρ
∥∥B
(
u(0) − û

)∥∥2
2

+ 2 (1− α) 〈B
(
u(0) − û

)
,µ(0) − µ̂〉+ 1

ρ

∥∥µ(0) − µ̂
∥∥2
2

]

≤ 1
2α

[
ρ
∥∥B
(
u(0) − û

)∥∥2
2

+ 2 |1− α|
∥∥B
(
u(0) − û

)∥∥
2

∥∥µ(0) − µ̂
∥∥
2

+ 1
ρ

∥∥µ(0) − µ̂
∥∥2
2

]

≤ 1
2α

[
ρ
∥∥B
(
u(0) − û

)∥∥2
2

+ 2
∥∥B
(
u(0) − û

)∥∥
2

∥∥µ(0) − µ̂
∥∥
2

+ 1
ρ

∥∥µ(0) − µ̂
∥∥2
2

]

= 1
2α

[√
ρ
∥∥B
(
u(0) − û

)∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2
(36)

due to the fact that 0 < α < 2. Combining (34), (35), and (36), we get our final convergence rate bound:

G
(
wK ; ŵ

)
=
[
f
(
xK ,uK

)
− f(x̂, û)

]
− 〈µ̂,KxK + BuK − b〉

≤ 1

K

{
1
2

∥∥x(0) − x̂
∥∥2
Dψ

+ 1
2

∥∥x(0) − x̂
∥∥2
P

+ 1
2α

[√
ρ
∥∥B
(
u(0) − û

)∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2}
. (37)

Theorem 1 can be used to show the convergence rates of other AL-based algorithms. The following theorems show the
convergence rates of the simple and the proposed relaxed LALM’s in [1]. From now on, suppose A is an m× n matrix, and
let G , DA −A′A, where DA is a diagonal majorizing matrix of A′A.
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Theorem 2 ([1, Theorem 1]). Let K = A, B = −Im, b = 0m, and P = ρG. The iteration (6) with ρ > 0 and 0 < α < 2
reduces to the simple relaxed LALM that achieves a convergence rate

G(wK ; ŵ) ≤ 1
K

(
ADψ

+Bρ,DA
+ Cα,ρ

)
, (38)

where the first two constants

ADψ
, 1

2

∥∥x(0) − x̂
∥∥2
Dψ

(39)

Bρ,DA
, ρ

2

∥∥x(0) − x̂
∥∥2
DA−A′A

(40)

depend on how far the initial guess is from a minimizer, and the last constant

Cα,ρ , 1
2α

[√
ρ
∥∥u(0) − û

∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2
(41)

depends on the relaxation parameter.

Proof. One just uses the substitutions K = A, B = −Im, b = 0m, and P = ρG in Theorem 1 to prove the theorem.

As seen in Theorem 2, the convergence rate of the simple relaxed LALM scales well with the relaxation parameter α iff
Cα,ρ � ADψ

and Cα,ρ � Bρ,DA
. When ψ has large curvature or DA is a loose majorizing matrix of A′A (like in X-ray

CT), the above inequalities do not hold, leading to worse scalability of convergence rate with the relaxation parameter α. This
motivated the proposed relaxed LALM [1] whose convergence rate analysis is shown below.

Theorem 3 ([1, Theorem 2]). Let K =
[
A′ G1/2

]′
, B = −Im+n, b = 0m+n, and P = 0. The iteration (6) with ρ > 0 and

0 < α < 2 reduces to the proposed relaxed LALM [1] that achieves a convergence rate

G′(wK ; ŵ) ≤ 1
K

(
ADψ

+Bα,ρ,DA
+ Cα,ρ

)
, (42)

where ADψ
and Cα,ρ were defined in (39) and (41), and

Bα,ρ,DA
, ρ

2α

∥∥v(0) − v̂
∥∥2
2

= ρ
2α

∥∥x(0) − x̂
∥∥2
DA−A′A

(43)

when initializing v and ν as v(0) = G1/2x(0) and ν(0) = 0n, respectively.

Proof. Applying the substitutions K =
[
A′ G1/2

]′
, B = −Im+n, b = 0m+n, and P = 0 to Theorem 1, except for the upper

bounding (36), yields
G′
(
wK ; ŵ

)
≤ 1

K

(
ADψ

+Dα,ρ

)
, (44)

where

Dα,ρ , 1
2α




u(0) − û
v(0) − v̂
µ(0) − µ̂
ν(0) − ν̂




′ 


ρIm 0 − (1− α) Im 0
0 ρIn 0 − (1− α) In

− (1− α) Im 0 1
ρIm 0

0 − (1− α) In 0 1
ρIn







u(0) − û
v(0) − v̂
µ(0) − µ̂
ν(0) − ν̂


 , (45)

and v and ν are the auxiliary variable and Lagrange multiplier of the additional redundant equality constraint v = G1/2x in
[1], respectively. Note that ν(k) = 0n for k = 0, 1, . . . if we initialize ν as ν(0) = 0n, and ν̂ = 0n [1]. We have ν(0)− ν̂ = 0n.
Hence, (45) is further upper bounded by

Dα,ρ = 1
2α




u(0) − û
v(0) − v̂
µ(0) − µ̂



′ 


ρIm 0 − (1− α) Im
0 ρIn 0

− (1− α) Im 0 1
ρIm






u(0) − û
v(0) − v̂
µ(0) − µ̂




= 1
2α

(
ρ
∥∥u(0) − û

∥∥2
2
− 2 (1− α) 〈u(0) − û,µ(0) − µ̂〉+ 1

ρ

∥∥µ(0) − µ̂
∥∥2
2

)
+ ρ

2α

∥∥v(0) − v̂
∥∥2
2

≤ 1
2α

[√
ρ
∥∥u(0) − û

∥∥
2

+ 1√
ρ

∥∥µ(0) − µ̂
∥∥
2

]2
+ ρ

2α

∥∥G1/2x(0) −G1/2x̂
∥∥2
2

= Cα,ρ + ρ
2α

∥∥x(0) − x̂
∥∥2
DA−A′A

. (46)

Let
Bα,ρ,DA

, ρ
2α

∥∥x(0) − x̂
∥∥2
DA−A′A

. (47)

Thus, the convergence rate of the proposed relaxed LALM [1] is upper bounded by

G′
(
wK ; ŵ

)
≤ 1

K

(
ADψ

+Bα,ρ,DA
+ Cα,ρ

)
. (48)
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C. Practical implementation of the proposed relaxed LALM

Although the proposed relaxed LALM shows better scalability of the convergence rate with the relaxation parameter α,
a straightforward implementation with substitutions in Theorem 3 is not recommended because there is no efficient way to
compute the square root of G for any A in general. For practical implementation, we must avoid using multiplication by G1/2

in both the x- and v-updates. To derive the practical implementation, we first substitue K =
[
A′ G1/2

]′
, B = −I, b = 0,

and P = 0 in (6). This leads to the following iterates (i.e., [1, Eqn. 25]):




x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x; x(k)

)
− 〈µ(k),Ax〉 − 〈ν(k),G1/2x〉+ ρ

2

∥∥Ax− u(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

}

u(k+1) ∈ arg min
u

{
g(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
r
(k+1)
u,α − u(k+1)

)

v(k+1) = r
(k+1)
v,α − ρ−1ν(k)

ν(k+1) = ν(k) − ρ
(
r
(k+1)
v,α − v(k+1)

)
,

(49)

where Qψ is a separable quadratic surrogate (SQS) of ψ at x(k) [1, Eqn. 17], ru,α is the relaxation variable of u, and rv,α is
the relaxation variable of v. Suppose ν(0) = 0. Then ν(k) = 0 for k = 0, 1, . . ., and (49) can be further simplified as





x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x; x(k)

)
− 〈µ(k),Ax〉+ ρ

2

∥∥Ax− u(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

}

u(k+1) ∈ arg min
u

{
g(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
r
(k+1)
u,α − u(k+1)

)

v(k+1) = αG1/2x(k+1) + (1− α) v(k) .

(50)

Let h , G1/2v + A′y. By the v-update in (50), we have

h(k+1) = G1/2v(k+1) + A′y

= G1/2
(
αG1/2x(k+1) + (1− α) v(k)

)
+ A′y

= α
(
Gx(k+1) + A′y

)
+ (1− α)

(
G1/2v(k) + A′y

)

= α
(
DAx(k+1) −A′

(
Ax(k+1) − y

))
+ (1− α) h(k) . (51)

To avoid multiplication by G1/2 in the x-update in (50), we rewrite the last three terms in the x-update cost function using
Taylor’s expansion around x(k). That is,

− 〈µ(k),Ax〉+ ρ
2

∥∥Ax− u(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

∝ ρ
2

∥∥Ax− u(k) − ρ−1µ(k)
∥∥2
2

+ ρ
2

∥∥G1/2x− v(k)
∥∥2
2

∝
(
x− x(k)

)′(
ρA′

(
Ax(k) − u(k) − ρ−1µ(k)

)
+ ρ
(
Gx(k) −G1/2v(k)

))
+ 1

2

∥∥x− x(k)
∥∥2
ρA′A+ρG

=
(
x− x(k)

)′(
ρ
(
A′A + G

)
x(k) − ρA′

(
u(k) + ρ−1µ(k)

)
− ρG1/2v(k)

)
+ 1

2

∥∥x− x(k)
∥∥2
ρ(A′A+G)

=
(
x− x(k)

)′(
ρDAx(k) − ρA′

(
u(k) − y + ρ−1µ(k)

)
− ρh(k)

)
+ 1

2

∥∥x− x(k)
∥∥2
ρDA

∝ 1
2

∥∥x− x(k) + (ρDA)
−1 (

ρDAx(k) − ρA′
(
u(k) − y + ρ−1µ(k)

)
− ρh(k)

)∥∥2
ρDA

= 1
2

∥∥x− (ρDA)
−1 (

ρA′
(
u(k) − y + ρ−1µ(k)

)
+ ρh(k)

)∥∥2
ρDA

. (52)

The practical relaxed LALM without multiplication by G1/2 becomes




x(k+1) ∈ arg min
x

{
φ(x) +Qψ

(
x; x(k)

)
+ 1

2

∥∥x− (ρDA)
−1 (

ρA′
(
u(k) − y + ρ−1µ(k)

)
+ ρh(k)

)∥∥2
ρDA

}

u(k+1) ∈ arg min
u

{
g(u) + 〈µ(k),u〉+ ρ

2

∥∥r(k+1)
u,α − u

∥∥2
2

}

µ(k+1) = µ(k) − ρ
(
r
(k+1)
u,α − u(k+1)

)

h(k+1) = α
(
DAx(k+1) −A′

(
Ax(k+1) − y

))
+ (1− α) h(k) .

(53)

D. Numerical example: LASSO regression

Here we describe a numerical example that demonstrates the convergence rate bound and the effect of relaxation. Consider
the following `1-regularized linear regression problem:

x̂ ∈ arg min
x

{
1
2 ‖y −Ax‖22 + λ ‖x‖1

}
, (54)
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Fig. 1: LASSO regression: Duality gap curves of relaxed LALM with different relaxation parameters and AL penalty parameters.
(a) Bound (42) vs. ergodic gap, and (b) ergodic gap vs. non-ergodic gap.

where A ∈ IRm×n, and n� m in general. This is a widely studied problem in the field of statistics (also known as LASSO
regression) and compressed sensing for seeking a sparse solution of a linear system with small measurement errors. To solve
this problem using the proposed relaxed LALM (53), we focused on the following equivalent equality-constrained minimization
problem:

(x̂, û) ∈ arg min
x,u

{
1
2 ‖y − u‖22 + λ ‖x‖1

}
s.t. u = Ax (55)

with φ = λ ‖·‖1, ψ = 0, DA = λmax(A′A) I, and g = 1
2 ‖· − y‖22. We set x(0) = A†y, u(0) = Ax(0), µ(0) = y − u(0), and

h(0) = DAx(0) −A′
(
Ax(0) − y

)
. Data for numerical instances were generated as follows. The entries of the system matrix

A ∈ IR100×400 were sampled from an iid standard normal distribution. The hidden sparse vector xs ∈ IR400 was a randomly
generated 20-sparse vector, and the noisy measurement y = Axs + n, where n ∈ IR100 was sampled from an iid N (0, 0.1).
The regularization parameter λ was set to be unity in our experiment.

Figure 1 shows the duality gap curves of relaxed LALM with different relaxation parameters (α = 1, 1.999) and AL penalty
parameters (ρ = 0.5, 0.1). As seen in Figure 1(a), the ergodic duality gap G′(wK ; ŵ) converges at rate O(1/k), and the
bound derived in Theorem 3 is a tighter upper bound for large number of iterations. Furthermore, as seen in Figure 1(b),
the non-ergodic duality gap G′

(
w(K); ŵ

)
converges much faster than the ergodic one, and we can achieve about two-times

speed-up by using α ≈ 2 empirically.

II. CONTINUATION WITH OVER-RELAXATION

This section describes the rationale for the continuation sequence in [1]. Consider solving a simple quadratic problem:

x̂ ∈ arg min
x

1
2 ‖Ax‖22 , (56)

using [1, Eqn. 33] with h = 0 and y = 0. If A′A is positive definite (for this analysis only), then (56) has a unique solution
x̂ = 0. Let VΛV′ be the eigenvalue decomposition of A′A, where Λ , diag{λi| 0 < λ1 ≤ · · · ≤ λn = LA}. Updates
generated by [1, Eqn. 33] (with DA = LAI) simplify as follows:





x(k+1) = 1
ρLA

(
(ρ− 1)g(k) + ρh(k)

)

g(k+1) = ρ
ρ+1

(
αA′Ax(k+1) + (1− α)g(k)

)
+ 1

ρ+1g(k)

h(k+1) = α
(
LAx(k+1) −A′Ax(k+1)

)
+ (1− α)h(k) .

(57)

Let x̄ , V′x, ḡ , V′g, and h̄ , V′h. The linear system (57) can be further diagonalized, and the ith components of x̄,
ḡ, and h̄ evolve as follows:

x̄
(k+1)
i = 1

ρLA

(
(ρ− 1)ḡ

(k)
i + ρh̄

(k)
i

)
(58)

and {
ḡ
(k+1)
i = ρ

ρ+1

(
αλix̄

(k+1)
i + (1− α)ḡ

(k)
i

)
+ 1

ρ+1 ḡ
(k)
i

h̄
(k+1)
i = α

(
LAx̄

(k+1)
i − λix̄(k+1)

i

)
+ (1− α)h̄

(k)
i .

(59)
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Plugging (58) into (59) leads to a second-order recursion (of ḡi and h̄i) with a transition matrix

Ti ,
[
αρλi
ρ+1

1
ρLA

(ρ− 1) + (1−α)ρ+1
ρ+1

αρλi
ρ+1

1
ρLA

ρ

α (LA − λi) 1
ρLA

(ρ− 1) α (LA − λi) 1
ρLA

ρ+ (1− α)

]
, (60)

and x̄(k+1)
i is just a linear combination of ḡ(k)i and h̄(k)i . The eigenvalues of the transition matrix Ti defined in (60) determine

the convergence rate of the second-order recursion, and we can analyze the second-order recursive system by studying its
characteristic polynomial:

r2i − ([Ti]11 + [Ti]22) ri + ([Ti]11[Ti]22 − [Ti]12[Ti]21) . (61)

The proposed α-dependent continuation sequence is based on the critical value ρc
1 and the damping frequency ω1 (as ρ ≈ 0)

of the eigencomponent corresponding to the smallest eigenvalue λ1 [2]. The critical value ρc
1 solves

([T1]11 + [T1]22)
2 − 4 ([T1]11[T1]22 − [T1]12[T1]21) = 0 , (62)

and the damping frequency ω1 satisfies [10, p. 581]

cosω1 =
[T1]11 + [T1]22√

4 ([T1]11[T1]22 − [T1]12[T1]21)
. (63)

We solve (62) and (63) using MATLAB’s symbolic toolbox. For (62), we found that

ρc
1 = 2

√
λ1

LA

(
1− λ1

LA

)
(64)

is independent of α. Hence, the optimal AL penalty parameter ρ? , ρc
1 depends only on the geometry of A′A and does not

change for different values of the relaxation parameter α. For (63), we found that

cosω1 ≈
1− α λ1

LA√
1− (2α− α2) λ1

LA

(65)

for ρ ≈ 0. When α = 1, cosω1 ≈
√

1− λ1/LA, and thus ω1 ≈
√
λ1/LA due to the small angle approximation:

cos
√
θ ≈ 1− θ/2 ≈

√
1− θ . (66)

When α ≈ 2, cosω1 ≈ 1 − 2λ1/LA, and ω1 ≈ 2
√
λ1/LA also due to (66). For general 0 < α < 2, we can approximate

cosω1 in (65) using a Taylor series as

cosω1 ≈
(

1− α λ1

LA

)(
1 + 1

2

(
2α− α2

)
λ1

LA
+ [higher-order terms]

)
= 1− α2

2
λ1

LA
+ [higher-order terms] . (67)

We ignore higher-order terms in (67) since λ1/LA is usually very small in practice. Hence, cosω1 ≈ 1 −
(
α
√
λ1/LA

)2
/2,

and ω1 ≈ α
√
λ1/LA due to the small angle approximation (66). This expression covers both the previous unrelaxed (α = 1)

and proposed relaxed (α ≈ 2) cases. Suppose we use the same restart condition as in [2]; that is, restarts occur about every
(1/2) (π/ω1) iterations. If we restart at the kth iteration, we have the approximation

√
λ1/LA ≈ π/(2αk), and the ideal AL

penalty parameter at the kth iteration is

2

√(
π

2αk

)2 (
1−

(
π

2αk

)2 )
= π

αk

√
1−

(
π

2αk

)2
. (68)

That is, the values of ρk(α) are scaled by the value of α.
To demonstrate the speed-up resulting from combining continuation with over-relaxation, Figure 2 shows the convergence

rate curves of the proposed relaxed OS-LALM (12 subsets) using different values of the over-relaxation parameter α when
reconstructing the simulated XCAT dataset. For comparison, the convergence rate curves that do not use continuation (fixed AL
penalty parameter ρ = 0.05) are also shown. As seen in Figure 2(b), the RMS difference of the green curve (relaxed OS-LALM
with α = 1.5) after 10 iterations is about the same as the RMS difference of the blue curve (unrelaxed OS-LALM) after 15
iterations, exhibiting an approximately 1.5-times speed-up. Using larger α (up to two) can further accelerate convergence;
however, the speed-up can be slightly slower than α-times due to the dominance of the constant B in [1, Theorem 2] and the
accumulation of gradient errors with ordered subsets. For instance, the RMS difference of the red curve (relaxed OS-LALM
with α = 1.999) after 5 iterations is a bit larger the RMS difference of the blue curve (unrelaxed OS-LALM) after 10 iterations.
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Fig. 2: XCAT: Convergence rate curves of relaxed OS-LALM (12 subsets) using different values of the over-relaxation parameter
α with (a) fixed AL penalty parameter ρ = 0.05 and (b) proposed decreasing ρk.

III. ADDITIONAL EXPERIMENTAL RESULTS

A. XCAT phantom

Additional experimental results of the simulated XCAT phantom dataset shown in [1] are reported here. Figure 3 shows the
difference images (in the central transaxial plane) of FBP (i.e., x(0)−x?) and OS algorithms with 12 subsets after 10 iterations
(i.e., x(10) − x?). As seen in Figure 3, low-frequency components converge faster than high/mid-frequency components like
streaks and edges with all algorithms. This is common for gradient-based algorithms when the Hessian matrix of the cost
function is more “low-pass/band-cut” like in X-ray CT. The difference image of the proposed relaxed OS-LALM shows less
edge structures and looks more uniform in flat regions. Figure 4 shows the difference images after 20 iterations. We can see
that the proposed relaxed OS-LALM shows very uniform difference images, while the subtle noise-like artifacts remain with
OS-OGM2.

To demonstrate the improvement of our “modified” relaxed LALM (i.e., with ordered subsets and continuation) for X-ray
CT image reconstruction problems, Figure 5 shows convergence rate curves of unrelaxed/relaxed OS-LALM using different
parameter settings with (a) one subset and (b) 12 subsets. All algorithms run 360 subiterations; however, those with OS should
be faster in runtime because they perform fewer forward/back-projections. As seen in Figure 5, convergence rate curves of OS
algorithms are scaled almost perfectly (in the horizontal axis) when using modest number of subsets (M = 12). However, the
scalability might be worse when using more subsets (more severe gradient error accumulation) or in other dataset. Moreover,
solid lines (relaxed algorithms) always show about two-times faster convergence rate than dashed lines (unrelaxed algorithms),
without and with continuation. Note that the solid blue line (relaxed LALM, ρ = 1/6) and the dashed green line (unrelaxed
LALM, ρ = 1/12) in both cases are overlapped after 60 subiterations, implying that halving the AL penalty parameter ρ and
setting relaxation parameter α to be close to two have similar effect on convergence speed in this CT problem (where the data
fidelity term dominates the cost function). Note that when the data-fidelity term dominates the cost function, the constant B
dominates the constant multiplying 1/K in [1, Theorem 2], leading to the better speed-up with α.

We also investigated the effect of majorization (for both the data-fidelity term and the regularizer term) on convergence
speed. Figure 6 shows the convergence rate curves of the proposed relaxed OS-LALM with different (a) data-fidelity term
majorizations and (b) regularization term majorizations. As seen in Figure 6(a), the proposed algorithm diverges when DL is
too small, violating the majorization condition. Larger DL slows down the algorithm. However, multiplying DL by κ-times
does not necessarily slow down the algorithm by κ-times since the weighting matrix of Bα,ρ,DL

is DL−A′WA. Besides, larger
DL helps reduce the gradient error accumulation in fast algorithms [11]. Figure 6(b) shows the convergence rate curves of the
proposed relaxed OS-LALM with regularizer majorization using the maximum curvature and Huber’s curvature, respectively.
We can see that the speed-up of using Huber’s curvature is very significant. Note that ρDL + DR determines the step sizes of
the image update of the proposed relaxed OS-LALM. Better majorization of R (i.e., smaller [DR]i for those voxels that are
still far from the optimum) leads to larger image update step sizes, especially when ρ is small.
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Fig. 3: XCAT: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(10) − x? using OS algorithms with 12 subsets after 10 iterations.
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Fig. 4: XCAT: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(20) − x? using OS algorithms with 12 subsets after 20 iterations.

B. Chest scan

Additional experimental results of the chest scan dataset shown in [1] are reported here. Figure 7 shows convergence rate
curves of different relaxed algorithms (10 subsets and α = 1.999) with (a) a fixed AL penalty parameter ρ = 0.05 and (b) the
decreasing sequence ρk proposed in [1]. Like the experimental results with the simulated CT scan shown in [1], the simple
relaxation does not provide much acceleration with a fixed AL penalty parameter, but it works somewhat better when using the
decreasing ρk. Figure 8 and Figure 9 show the difference images (in the central transaxial plane) of FBP and OS algorithms
with 10 subsets after 10 and 20 iterations, respectively. Difference images of the proposed relaxed OS-LALM show the fewest
structured artifacts among all algorithms for comparison.

C. Shoulder scan

We reconstructed a 512× 512× 109 image volume, where ∆x = ∆y = 1.3695 mm and ∆z = 0.625 mm, from a shoulder
region helical CT scan. The size of sinogram is 888×32×7146 (pitch = 0.5, about 7.3 rotations with rotation time 0.8 seconds).
The tube current and tube voltage of the X-ray source are 180 mA and 140 kVp, respectively. The initial FBP image x(0) has
lots of streak artifacts due to low signal-to-noise ratio (SNR), and we tuned the statistical weights and regularization parameters
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Fig. 5: XCAT: Convergence rate curves of unrelaxed/relaxed OS-LALM using different parameter settings with (a) one subset
and (b) 12 subsets. All algorithms run 360 subiterations.
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Fig. 6: XCAT: Convergence rate curves of the proposed relaxed OS-LALM with different (a) data-fidelity term majorizations
and (b) regularization term majorizations.

using [12, 13] to emulate [14, 15]. We used 20 subsets for the relaxed OS-LALM, while [2, Eqn. 57] suggests using about
40 subsets for the unrelaxed OS-LALM. Figure 10 shows the cropped images from the central transaxial plane of the initial
FBP image x(0), the reference reconstruction x?, and the reconstructed image x(20) using the proposed algorithm (relaxed
OS-LALM with 20 subsets) after 20 iterations. Figure 11 shows the RMS differences between the reference reconstruction x?

and the reconstructed image x(k) using different OS algorithms as a function of iteration with 20 and 40 subsets. As seen in
Figure 11, the proposed relaxed OS-LALM shows faster convergence rate with moderate number of subsets, but the speed-up
diminishes as the iterate approaches the solution. Figure 12 and Figure 13 show the difference images (in the central transaxial
plane) of FBP and OS algorithms with 20 subsets after 10 and 20 iterations, respectively. The proposed relaxed OS-LALM
removes more streak artifacts than other OS algorithms.
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Fig. 7: Chest: Convergence rate curves of different relaxed algorithms (10 subsets and α = 1.999) with (a) a fixed AL penalty
parameter ρ = 0.05 and (b) the decreasing sequence ρk proposed in [1].
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Fig. 8: Chest: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(10) − x? using OS algorithms with 10 subsets after 10 iterations.
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Fig. 9: Chest: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial FBP
image x(0) − x? and the reconstructed image x(20) − x? using OS algorithms with 10 subsets after 20 iterations.
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Fig. 10: Shoulder: Cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP image
x(0) (left), the reference reconstruction x? (center), and the reconstructed image x(20) using the proposed algorithm (relaxed
OS-LALM with 20 subsets) after 20 iterations (right).
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Fig. 11: Shoulder: Convergence rate curves of different OS algorithms with (a) 20 subsets and (b) 40 subsets. The proposed
relaxed OS-LALM with 20 subsets exhibits similar convergence rate as the unrelaxed OS-LALM with 40 subsets.
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Fig. 12: Shoulder: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial
FBP image x(0) − x? and the reconstructed image x(10) − x? using OS algorithms with 20 subsets after 10 iterations.
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Fig. 13: Shoulder: Cropped difference images (displayed from −50 to 50 HU) from the central transaxial plane of the initial
FBP image x(0) − x? and the reconstructed image x(20) − x? using OS algorithms with 20 subsets after 20 iterations.
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