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I. ABSTRACT

We propose a new method for the joint design of k-space
trajectory and RF pulse in 3D small-tip tailored excitation.
Designing time-varying RF and gradient waveforms for a
desired 3D target excitation pattern in MRI poses a non-linear,
non-convex, constrained optimization problem with relatively
large problem size that is difficult to solve directly. Existing
joint pulse design approaches are therefore typically restricted
to predefined trajectory types such as EPI or stack-of-spirals
that intrinsically satisfy the gradient maximum and slew
rate constraints and reduce the problem size (dimensionality)
dramatically, but lead to suboptimal excitation accuracy for
a given pulse duration. Here we use a 2nd-order B-spline
basis that can be fitted to an arbitrary k-space trajectory, and
allows the gradient constraints to be implemented efficiently.
We show that this allows the joint optimization problem to be
solved with quite general k-space trajectories. Starting from an
arbitrary initial trajectory, we first approximate the trajectory
using B-spline basis, and then optimize the corresponding
coefficients. We evaluate our method in simulation using four
different k-space initializations: stack-of-spirals, SPINS, KT-
points, and a new method based on KT-points. In all cases, our
approach leads to substantial improvement in excitation accu-
racy for a given pulse duration. We also validated our method
for inner-volume excitation using phantom experiments. The
computation is fast enough for online applications.

keywords: MRI, tailored excitation, joint design, RF pulse
design, k-space trajectory design.

II. INTRODUCTION

Spatially tailored RF excitation has a range of applications
in MRI, including B1 shimming [1]-[6], reduced FOV ex-
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citation [7]-[13], susceptibility artifact correction [14]-[18],
and fat suppression [19], [20]. The task of designing time-
varying RF and gradient waveforms for a desired target
excitation pattern poses a non-linear, non-convex, constrained
optimization problem with relatively large problem size that
is difficult to solve directly. In conventional small-tip tailored
excitation pulse design, the k-space (gradient) trajectory is pre-
defined, allowing the RF waveform to be obtained using linear
least-squares optimization [21]. However, for a given pulse
duration, using a pre-determined k-space trajectory leads to
suboptimal excitation accuracy.

Several methods have been proposed for jointly designing
the k-space trajectory and RF pulse, achieving improved tai-
lored excitation accuracy compared to pre-defined gradient ap-
proaches. These methods can be classified into two categories:
sparse approximation and parametrization approaches. In the
sparse approximation approach, a complete dictionary A based
on the small-tip-angle approximation [22] is defined, and the
joint pulse design task reduces to selecting a few k-space phase
encoding locations (i.e., columns in A, typically less than 20)
by either thresholded Fourier transform or sparsity-promoting
or greedy algorithms. The output of those methods are discrete
k-space trajectories like fast-kz/spoke pulses (discrete in kx-
ky plane) [4], [23]-[26], or KT-points (discrete in 3D) [5].
Grissom et al. [27] recently combined sparse approximation
with local optimization in fast-kz pulse design to improve
the result and incorporate BO inhomogeneity information.
However, complex target excitation patterns require more than
a few phase encoding locations, so sparse approximation
approaches are used only in particular applications such as
B1 shimming, and they would be difficult to use for other
applications needing non-smooth target excitation patterns
(especially in 3D).

In parametrization approaches to RF pulse design, the k-
space trajectory is approximated by a linear combination of
basis functions, and the joint pulse design task is to optimize
the basis function coefficients as well as the RF waveform.
Hardy expressed the k-space trajectory and RF pulse as Fourier
series and then optimized the coefficients using simulated
annealing [28] for 2D tailored excitation; that method is
computationally too expensive for real-time tailored RF pulse
design. Levin approximated the spiral trajectory by concentric
rings and then optimized the radius of those rings [29]. Yip
proposed a general approach for selecting basis coefficients,
and applied it to optimize an EPI trajectory [30]. Shao opti-
mized the extent of the stack-of-spirals trajectory and the fast-
kz trajectory [31]. Davids optimized the extent of a 3D cross



trajectory in k,, k,, k. for its different shells/segments [9]. By
parametrization, those methods reduced the problem dimen-
sion, and the computation complexity. However, these methods
(except [9], [28]) did not explicitly consider the maximum
gradient and slew rate constraint in the optimization, instead
avoiding this constrained minimization problem by limiting
solutions to a certain type of trajectory (e.g., EPL, spiral, stack-
of-spiral). Davids et al. [9] and Hardy et al. [28] considered the
constraint, but their methods require large computation time,
making it impractical for online pulse design problems. Also,
all the parametrization methods do not choose the trajectory
type based on the information of the target excitation pattern.

In this work, we present a general approach for jointly
optimizing the k-space trajectory and RF waveforms in 3D
tailored excitation. Our method starts with some initial k-
space trajectory (e.g., such as that obtained with one of
the approaches described above), parametrizes the trajectory
using 2nd-order B-spline functions, and optimizes the basis
coefficients and RF waveform using constrained optimization.
The peak gradient and slew rate are constrained directly during
the optimization, and the trajectory is not limited to a pre-
defined type such as concentric rings or EPI. We demonstrate
our approach using four different k-space initializations: stack-
of-spirals(SoS) [32], spiral nonselective (SPINS) [6], KT-
points [5], and a new proposed initialization which we refer to
as “extended KT-points” [33]. We illustrate our method in two
different applications: 3D reduced FOV excitation, and spin
pre-phasing. In all cases, our optimized k-space trajectories
achieve improved excitation accuracy compared to the initial
trajectory. Both SPINS and our proposed extended KT-points
method provide good initialization.

III. THEORY
A. Problem Formulation

In joint design of a k-space trajectory and RF pulse, we
want to solve the following optimization problem [30]:
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where k., k,, k. are N;-length vectors containing 3D k-
space trajectory locations, and b is an N;-length vector
containing the complex RF pulse values. R(b) is a reg-
ularizer to limit the RF power, and we use a Tikhonov
regularizer A||b||3 with A\ = 8 in our study. D; and D,
are the first and second order difference matrices, A is
the small-tip-angle approximation system matrix with a;; =
1y Moe!(Fai@ithy;yithz;2i+8wi(t;=T)) where 4 is the spatial
index from 1 to Ny and j is the time index from 1 to V. 7' is
the duration of the RF pulse. A is similar to an inverse DFT
matrix, but with an additional term due to BO inhomogeneity
Aw;. The RF pulse sampling interval is At and d is the desired

excitation pattern. W is a weighting matrix that restricts the
optimization to voxels within a region of interest. The problem
size varies in practice depending on the pulse length and the
resolution of the target excitation pattern, but A is typically a
tall matrix. S is the transmit coil sensitivity matrix; often it is
simply chosen to be the identity matrix. The first and second
order derivative constraints correspond to the maximum gra-
dient (g.nqy) and gradient slew rate (sj,q;) limits of the MR
scanner. The equality constraints mean the excitation k-space
trajectory must end at zero, by definition [22].

B. k-space trajectory parametrization

Problem (1) is a nonlinear, nonconvex, and constrained
problem that is difficult to solve. Following [30], we simplify
this problem by parametrizing the k-space trajectory using
basis functions:
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where H,, H,, H, are N; x L matrices containing L basis
vectors as columns, and c,, ¢, c, are the basis coefficients.
Now the joint trajectory/RF design problem (1) becomes
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Unlike previous joint pulse design approaches that are based
on predefined trajectory types (e.g., EPI or spiral) that intrinsi-
cally satisfy the gradient constraints, here we aim to solve the
constrained optimization problem (3). In our approach, we do
not predefine the trajectory type to form the basis, but instead
use a 2nd-order B-spline basis that can closely approximate an
arbitrary trajectory. In particular, for a given k-space trajectory
initialization, we first approximate the trajectory using B-
spline basis, and then optimize the corresponding coefficients.
We choose a 2nd-order B-spline basis because the gradient
constraints can be implemented efficiently, as shown next.

C. Efficient implementation of constraints

To satisfy the maximum gradient and slew rate constraints
in (3), we would in general need to consider IV, time points.
However, a 2nd-order B-spline basis function is a piecewise
second-order polynomial (illustrated in Figure 1). Therefore,
extreme points of the gradient waveform g¢(t) (the first-order
derivative of k-space trajectory) occur only at the zero-crossing
point of the slew rate s(t) (the second-order derivative). The
slew rate s(t) is a linear combination of magnitude-scaled and



shifted rect functions, and its extremes occur at all time points
along the violating rect function segment, and thus it suffices
to consider just one time point for each rect function. The total
number of constraints that need to be considered is therefore
greatly reduced by using the 2nd-order B-splines. Higher order
B-splines do not have this property.

Define P; and P, as the matrices that pick the rows
corresponding to the candidate extreme points of gradient and
slew rate, respectively. Then we can rewrite the inequality
constraints for the = gradient in the following form (only one
term is shown for simplicity):

||P1DHrcz||oo < P)’Atgmaw 4)

Therefore, the total number of inequality constraints is reduced
from 12N; to 12L (L. <« N;), where L is the number
of B-splines. The number 12 arises because there are 6
constraints per time point in terms of absolute value, giving
12 when reformulating them as linear inequality constraints.
For compact notation, we combine all inequality constraints
as follows:
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The B-spine basis functions end with 0, so the k-space
trajectory always ends with 0, ensuring the final three equality
constraints in (3).

D. Gradient and Hessian

The optimization algorithms we investigated (see Section
E) involve calculating the gradient and Hessian of the cost
function (3) with respect to the coefficients (c;, c,, c.).
Denoting the cost function as f, one can show that the gradient
is [30]:

Ve, f =4nRe{tH' B'A’ X S'We} 9)

where H is the basis function, B is a diagonal matrix with
the RF pulse b on the diagonal, A is the small-tip-angle
system matrix, X is a diagonal matrix containing the z; spatial
coordinates, S is the diagonal coil sensitivity matrix, W is a
diagonal weighting matrix, and e = d — S Ab denotes the
excitation error. Denote the Jacobian matrix as:

d
J, =~ — SXABH. (10)
de,
The gradient can then be written as:
Ve, f = 4nRe{1J.We}. (11)

Ve, f and V_f have the same form except X is replaced
with Y and Z, respectively.
The Hessian with respect to k, is (see Appendix A):
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The second term in (12) is usually much smaller than the
first term since e is close to zero. We therefore ignore the
second term to reduce computation, and use the following
approximation (with respect to c;):

V2 f~8rRe{J,WJ,}. (13)

In addition, our problem is non-convex and the true Hessian
may not be positive semidefinite, therefore —(V2, f) "1V . f
may not be a descent direction. In contrast, J.WJ, is
always a PSD matrix and using the approximated Hessian can
guarantee a descent direction.

The overall 3L x 3L Hessian matrix for the x, y, z basis
coefficients is then:

V2f =8r*Re {JWJ}, (14)

where J = [J,, Jy, J.] is typically a tall matrix since the
number of spatial locations /N, is much larger than the number
of basis function 3L, so the Hessian matrix J'W J can be
easily stored (3L x 3L), and efficiently calculated (O(N,L?)).

E. Optimization algorithms

To minimize the cost function (3), we alternate between
optimizing the RF waveform b and k-space trajectory co-
efficients ¢, as shown in Algorithm 1. We use conjugate
gradient (CG) for the update of b, implemented using [34].
For the update of ¢, we want the optimization algorithm to be
monotonically decreasing and feasible in each iteration. This
ensures that the optimization can be terminated at any point,
which is useful in practical “online” settings where patient-
tailored pulses must be designed quickly. We investigated
four different algorithms that are both monotone and feasible:
(1) projected gradient descent algorithm with backtrack line
search [35], (2) projected Levenberg-Marquardt (LM) algo-
rithm [36], (3) interior point algorithm with backtrack line
search, and (4) MATLAB ‘fmincon’ function using active-set
solver. We implemented the algorithms and compared their
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Figure 1: 2nd-order B-spline function basis, and its 1st, 2nd-order derivative. The gradient and slew rate are linear combinations
of the 1st, 2nd-order derivative, respectively. The simple properties of extrema of these functions greatly reduce the number
of inequality constraints that need to be considered during optimization.

speed in MATLAB on an Intel Xeon 3.3 GHz 4-core desktop
with 8§ GB memory.

Algorithm 1 Alternative minimization

1: Initialize: Calculate ¢(©) by B-spline curve fitting to some
initial k. Obtain b using CG. Set Nyyter = 20.

2: fori =1 to Nyyier do

3:  Approximately optimize c.

4:  Run 20 iterations CG to optimize b.

5: end for

In the projected LM algorithm, the projection is a quadratic
programming problem that we solved using MATLAB func-
tion “quadprog”. Instead of finding the exact minimizer over
¢, we ran the algorithms for only 2 iterations before updating
b again.

The interior point algorithm used in our work is shown in
Algorithm 2. In each iteration, we minimize the following cost
function ® that combines a scaled original cost function and
a log barrier function, using Newton’s method

S =tf+ W (15)

where ¢ is a barrier parameter that balances the contribution
of the true obJectlve function with that of the barrier term, and
U = — Y2 log(ul e — v;). The gradient and Hessian of W
are:
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where w; = 1/(v; — ul'c). We use approximated Hessian

instead of true Hessian in our implementation (line 5). « is
a parameter ensuring enough decrease of the cost function,
and we set it to 0.01 in our implementation (line 6). Strictly
feasible condition is enforced in our implementation (line 6).

Algorithm 2 Interior point algorithm
0)

from the last outer iteration, t = 20,
Ninterior = 27 NNewton =2

2: for i =1 to Njpterior dO

3: fOl‘j =1 to Nnewton dO

1: Initialize: ¢

4: s=1
5 Compute & from Re{(J (c)WJI(cD)}§ =
Vo(c)

6: if ®(c) + 56) < ®(c)) — ad’'VO AND ¢ + 5§
is feasible then

7: Set clitD) = () 4 g4
else
s =0.5s
10: end if
11:  end for
122 t=2t
13: end for

F. Initialization

The above algorithms are local optimization algorithms that
require good initialization. To demonstrate that our method can
be applied to any initial k-space trajectory, we evaluated four
different initial 3D trajectories: (1) stack-of-spirals (SoS) [32],
(2) spiral nonselective (SPINS) [6], (3) KT-points [5], and (4)
a novel trajectory design initialization approach which we will
refer to as “extended KT-points” [33].

The KT-points method models the joint design problem as
the following sparse approximation problem:

min [|[SFz — dJ|2, such that ||z]g = Ny. (18)
z€eCNt

F is a complete iDFT matrix and z is the RF weighting vector.
This minimization problem tries to select /N; phase encoding
locations from all possible k-space locations in the dictionary
to best approximate d, and the non-zero term in z corresponds
to the RF pulse weighting at those phase encoding locations.
The BO field inhomogeneity term in A in (1) is ignored. The
reason is that the actual visiting time for each phase encoding
location is undetermined when constructing the dictionary.
The sparse approximation problem can be solved by either



thresholding the inverse discrete Fourier transform or using
greedy algorithms. We choose a modified OMP [24] method
since it can easily model the region of interest and transmit
sensitivities in the system matrix. The KT-points method pro-
duces 3D k-space phase encoding locations and RF weights at
those locations. Those phase encoding locations are traversed
using gradient blips.

This conventional KT-point method is inefficient in 3D
excitation since moving between phase encoding locations
takes a large portion of the pulse duration but no RF is
transmitted during this time. A natural extension is to use the
k-space trajectory from KT-points but transmit continuous RF
during the whole pulse duration. This is our third initialization
method.

However, this simple extension may also be inefficient since
the visiting order and the gradient waveform is not optimized.
We therefore propose to order those phase encoding points
before generating the gradient waveform. We treat this as a
traveling salesman problem, and use a genetic algorithm to
solve it [37]. We then generate the fastest gradient waveform
to traverse those (approximately) optimally ordered points
using the method in [38], [39]. This “extended KT-points”
intialization is summarized in Algorithm 3. Our extension is
similar to [25], but [25] does not optimize the visiting order
of phase encoding locations, and was demonstrated only for
2D tailored excitation.

Algorithm 3 Extended KT-points
1: Find phase encoding locations using method [24].
2: Find the optimal visiting order using traveling salesman
algorithm [37].
3: Generate the fastest gradient waveform using [38].

IV. METHODS
A. Simulation study

We applied our method to two pulse design problems:
3D inner-volume excitation and spin prephasing. For inner-
volume excitation, we excited a 6 X 6 x 6 cm® cube with 10
degree flip angle using an RF pulse of approximate duration
4 ms transmitted on a single transmit coil. We simulated the
excitation results for a 64 x 64 x 8 matrix over a 24 x 24 x 16
cm?® FOV. To reduce computation time, we downsampled the
matrix to 32 x 32 x 8 for optimization. We used a measured
BO field map from an Agar ball phantom in the simulation.
We measured the BO field map by acquiring spoiled gradient-
echo (SPGR) images with two different echo times (3 ms and
5.3 ms), and taking the phase difference on a voxel-by-voxel
basis. We assume uniform coil transmit sensitivity.

For spin prephasing [14], we want to achieve the following
excitation pattern: d(Aw(r)) = "2« (")Teee gin o, where o
is the flip angle (uniform for all spins), Aw(r) is the BO
field map, and Tf... is the free precession time. The goal is
to achieve refocusing Ti... after the excitation'. Prephasing

'We use the convention w = B in our paper. Since the free precession
is rotated clockwise with a positive B field, the accumulated phase is in the
negative direction: 6 = —wWT}ree

pulses may be used to compensate for susceptibility (T2*) sig-
nal loss, and are needed in the “small-tip fast recovery” steady-
state imaging sequence being developed by our group [14]-
[16]. We designed a prephasing pulse with 10 degree flip angle,
2.5 ms Ttee, and measured BO field map from a human brain.
We simulate with 64 x 64 x 8 matrix size and 24 x 24 x 4
cm?® FOV.

We evaluated four different algorithms for parametric op-
timization, and four initializations, but we did not compare
all 16 combinations. Instead, we first compare the speed
of optimization algorithms for inner-volume excitation using
the extended KT-point initialization. After finding the fastest
algorithm, we compared the excitation accuracy using different
initializations, both before and after constrained optimization.

Figure 2 shows the four different k-space trajectory initial-
izations used in the inner-volume excitation. The prephasing
problem uses the same SoS and SPINS initialization, but
different KT-points and extended KT-points initialization since
they are excitation pattern dependent. The parameters for SoS
and SPINS trajectories were manually tuned to achieve good
initial excitation results. For SoS, we used 5 spiral stacks with
17 cm excitation FOV in z direction, and each spiral has 6
cycles with 24 cm excitation FOV in the x-y plane. For SPINS,
we set the maximum extent of k-space to 0.48 cycles/cm,
polar angular velocity to 37/ms, azimuthal angular velocity to
27/ms, and speed and position of transition between slow and
radial phase to 10 and 0.5 [6]. The resulting SPINS trajectory
is accelerated using the fastest gradient waveform [39]. There
are small variations in the pulse length since it can not be
directly constrained when generating different initializations.
For fair comparison, we tuned the parameters to generate
initial trajectories around 4 ms, and then cut all of them to
the same length as the shortest one, resulting in approximately
3.8 ms and 3.9 ms pulse length for all initial trajectories for
inner-volume excitation and prephasing problem, respectively
(corresponding to 954 and 982 time points sampled at 4 ps).

In all simulations, we created a region of interest (ROI)
that covers the whole object by thresholding the non-selective
SPGR images used in BO field map acquisition, resulting in
a total number of 2243 spatial positions on the 32x32x8 grid
for inner-volume excitation. Therefore, the system matrix A
is a 2243 by 954 matrix in the inner-volume excitation case
and it is constructed explicitly. The prephasing problem has
similar problem size. When the problem size gets much larger,
we may have to implement the system matrix implicitly using
NUFFT [40].

B. Phantom experiment study

We evaluated our method for an inner-volume excitation
task on an Agar ball phantom using a GE MR750 3.0T clinical
scanner. We used the same target pattern as our inner-volume
excitation simulation (i.e., a 6 x 6 x 6 cm® cube). We measured
the BO field map by acquiring spoiled gradient-echo (SPGR)
images with two different echo times (3 ms and 5.3 ms), and
taking the phase difference on a voxel-by-voxel basis. This
BO field map was used in the simulation study (Figure 5). We
designed the RF pulse using the same parameter settings as we
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Figure 2: Different k-space trajectory initializations for the inner-volume excitation: stack-of-spirals (SoS); SPINS; KT-points;
and “extended KT-points”. For KT-points and extended KT-points initializations, the discrete KT-points are included in the
plot as red circles. Note that the extended KT-points trajectory does not pass through the discrete KT-points exactly, due to
the small gradient/slew rate violation in the fastest gradient waveform algorithm [38], [39], as also reported in [41]. KT-points
and extended KT-points selectively traverse the k-space based on the target excitation pattern. The extended KT-points method
manages to traverse a larger k-space region than the simple KT-points initialization because of the improved visiting order and

the use of a time-optimal gradient waveform.

did in the simulation. For readout, we used an SPGR sequence
with 500 ms TR and minimum available TE.

V. RESULTS
A. Simulation results

Figure 3 shows the cost function value and normalized root
mean square error (NRMSE) of the excitation versus compu-
tation time for different algorithms in solving the parametrized
constrained optimization (3) in the inner-volume excitation
case using extended KT-points as the initialization. NRMSE
is defined as %, where « is the target excitation
angle, and the transmit sensitivity matrix S is set to identity
matrix. The interior point and projected LM algorithms are
much faster than the simple projected GD and MATLAB
‘fmincon’. Compared to projected LM, the interior point
algorithm is slightly faster and its final k-space trajectory has
lower slew rate (not shown). We use the ‘active-set’ solver

for the MATLAB ‘fmincon’ function. There is an ‘interior-
point’ solver for the MATLAB ‘fmincon’ function, but it is
not strictly feasible in each iteration and its speed is slower
than our projected LM and interior point implementations.
The shapes are similar between the NRMSE plot and the
cost function value plot. There is a small increase in the first
iteration for projected GD. This is because the first point in
the plot corresponds to the initial k-space trajectory, not the
initial approximation using B-spline basis, and applying the
approximation can lead to a potentially higher cost and/or
NRMSE in the first iteration. Based on these results we chose
the interior point algorithm for all subsequent simulations.

Figure 4 shows the k-space trajectory before (dashed line)
and after (solid line) the interior point optimization using an
extended KT-point initialization for prephasing excitation. The
gradient waveform, slew rate, and RF pulse are also shown
in the figure. The peak gradients are well below the 4 G/cm
limit we set, while the slew rates are close to the imposed
limit of 15 G/cm/ms. The differences between the final k-
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Figure 3: Convergence speed of different algorithms used to solve the parametrized constrained optimization problem (3):
(Left) Cost function value versus time. (Right) NRMSE versus time. There are two data points at time O: the lower one is
using the initial k-space trajectory and the higher one is using the k-space trajectory after B-spline fitting. The fitting at the
beginning of optimization slightly increases the NRMSE and the cost function value. The interior point and projected LM
algorithms converge much faster than the other two, with the interior point algorithm slightly faster.

space trajectory and the initialization are also included in the
figure.

Figure 5 shows inner-volume excitation results. Four dif-
ferent methods are used as initialization to the parametrized
optimization (3). Bloch simulation results before and after
initialization are shown in the left and right column, respec-
tively. Without parametrized optimization, our extended KT-
points method generates the least excitation error with the
shortest pulse. With parametrized optimization, all methods
are improved by 10~30%. Using SPINS or extend KT-points
as initialization generate the best final results. The peak RF is
below the limit of our GE scanner (0.25 Gauss). The measured
10 sec average SAR (or the integrated RF power) is below 0.3
W/Kg, much lower than the 6.4 W/Kg limit for human brain.

Figure 6 shows the excitation error of the prephasing prob-
lem using the same 8 methods. Similar to the reduced FOV
excitation case, optimization greatly reduced the excitation
error for all initializations. Without interior point optimization,
SPINS generated the best result. Extended KT-points gener-
ated a good result, but not as good as in the reduced FOV case,
probably because the energy in k-space is more uniformly
distributed, so the sparsity-based extended KT-points method
is not as effective as it is in the reduced FOV case.

B. Phantom experiment results

Figure 7 shows a phantom experimental result for inner-
volume excitation. The experiment demonstrated that our
pulse is feasible in practice, and the results agree with our
conclusion that the optimization improves excitation accuracy
for a given initialization. The NRMSEs of the magnitude
excitation patterns are reported for each method (excitation
phases are excluded in the NRMSE calculations because the
transmit and receive coil phase were not measured).

VI. DISCUSSION

We have shown that the proposed optimization improves
excitation accuracy for all initial k-space trajectories tested.
The improvement in excitation relative to that produced by
the initial pulse depends on both the initial k-space trajectory
and the target excitation pattern. For example, for target
patterns with concentrated energy in excitation k-space, an
initialization based on sparse approximation may already be
close to optimal. In other cases, the optimization step may sig-
nificantly improve the excitation compared to the initialization.
However the simulation and experimental evidence presented
here suggests that the proposed optimization can be used to
improve excitation accuracy for any initialization that is (at
least locally) suboptimal.

For the examples shown here, the computation time for the
parametric optimization step is typically less than 1 minute.
Using KT-points or extended KT-points requires additional
optimization to form the initial pulse, which takes less than 1
minute. The overall computation time for all methods tested
in this study is less than 2.5 minutes, fast enough for normal
online pulse design, particularly with a faster computer.

We conclude that both SPINS and extended KT-points pro-
vide good initializations. The extended KT-points initialization
performs extremely well in the inner-volume excitation case,
probably because the inner-volume excitation pattern has a
sparser corresponding k-space weighting than the prephasing
target pattern. SPINS initialization has shorter computation
time (no sparse approximation step). However, it has the
disadvantage that more parameters (e.g., k-space extent, ro-
tation speeds) need to be manually tuned in the design [6],
while the extended KT-points method generates a trajectory
automatically without manual parameter tuning.

We used 2nd-order B-spline functions to represent the k-
space trajectory. B-splines are widely used to represent general
smooth curves because the low-order polynomials are fast to
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Figure 4: Example k-space trajectory, gradient waveform, slew rate and RF waveform for spin prephasing simulation. The
extended KT-points k-space trajectory before (dashed line) and after 20 iterations of alternating optimization with interior point
algorithm (solid line) have similar shape. Their difference is plotted in the bottom row of the figure with unit cycles/fov. Both
gradient and slew rate are within our constraint, but the slew rates are closer to the limit.

evaluate and it has a finite support. Also, 2nd-order B-splines
provide the additional benefit that the number of constraints
can be reduced as shown before. In our study, we used the
same basis functions for k;, k, and k.. We used 100 basis
functions to represent one component of a k-space trajectory
(i.e., 100 for k;, 100 for k,, and 100 for k) of length around
3.8 ms (corresponding to 954 time points for one component),
and we found that the resulting fits are quite good for all
four k-space initializations. We also simulated using different
number of basis functions (L = 20 to 200), and observed that
the final NRMSEs are quite similar for L = 50 to 200 (not
shown). The computational time increased from 20 sec (L =
20) to 50 sec (L = 200). We obtained good results using this
basis, but we do not claim this is the optimal choice.

In Figure 4, we note that neither the gradients nor the slew
rates reach their limits in some portion of the excitation pulse,
indicating that the overall pulse could be shortened without
sacrificing excitation accuracy, but at the cost of increased
RF power. We also found that the slew rates are usually
closer to their limits than the gradient amplitudes based on
our experience, indicating that the gradient constraints could
potentially be eliminated to accelerate the algorithm in most
cases.

Our choice of the iteration number and regularization
parameter are relatively heuristic. We choose the iteration
number such that the total computation time (including ex-

tended KT-point initialization) is limited to 3 minutes for
the different excitation tasks we have tested. Increasing the
iteration number usually further improves the excitation result,
but the improvements are usually very small based on our
experience. A smaller RF regularization parameter leads to
smaller excitation error calculated using the small-tip approx-
imation model, but it has to be large enough such that the
resulting RF pulse satisfies peak RF and SAR constraints, and
the small-tip approximation. We choose a number that satisfies
those requirements in most cases based on our experience.
A better approach may be adding RF inequality constraints
instead of a regularization term in the cost function.

Parallel transmission is a means of improving the tailored
excitation accuracy using multiple coils [42]-[44]. We demon-
strated our proposed method only for single coil excitation in
this paper, but it could be easily extended to parallel excitation.
The problem formulation in the parallel transmit case can
follow the equations in Yip’s joint pulse design paper [30].
In particular, we simply modify the cost function (1) to
include the coil sensitivities of all coils. For the optimization
algorithms, we can use the spatial domain method for parallel
transmit RF pulse design [44] to update the RF waveform,
and use the interior point method in our paper to update k-
space trajectory but with a modified gradient and Hessian (see
section 7.5 of [45] for more detail).

Sometimes, constraints on total gradient and slew rate across
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Figure 5: Inner-volume excitation, simulation results. Target pattern (top left) and field map in Hz (top right) used in the
simulation. Row 2 to 5: results for different pulse design methods: left column contains the results of initialization pulse, right
column contains the results after optimization using interior point algorithm. Four initialization methods were investigated:
from top to bottom: SoS, SPINS, KT-points, our extended KT-points. All pulses have 3.8 ms pulse length. Optimization always
improves the excitation results, reducing the NRMSE by 10 to 30% depending on the initialization method. Using extended
KT-points as the initialization gave the best results.
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excitation error for all initializations, and SPINS and extended KT-points produce final results with similar accuracy in this
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Figure 7: Inner-volume excitation, phantom experimental result. The target excitation pattern and BO field map are the same as
shown in Figure 5. Two initialization methods were tested in the experiment: SPINS (top row) and extended KT-points (bottom
row). The left column contains the acquired image using the initialization excitation pulse, and the right column contains
the image using the optimized excitation pulse. The magnitude NMRSEs are labeled above the corresponding images. The
experimental result agrees well with simulation: the extended KT-points initialization produces a relatively good result, and
the optimized pulses improve the excitation results for both initializations.

channels are also enforced. Our method can be extended to
this case by modifying (6) and (8) since the constraints on
total gradient and slew rate can be written as linear inequality
constraints as well.

For the inner-volume excitation, the maximum outer-volume
flip angle may be also important. With a 10° inner-volume
flip angle, the maximum outer-volume flip angles (before/after
optimization) in our simulation study were 3.5°/3.4° (SoS),
3.7°/2.6° (SPINS), 2.5°/2.7° (KT-points), 2.8°/2.2°(extended
KT-points) excluding the boundary voxels (most of the exci-
tation error occurred at the boundary between inner volume
and outer volume, but those boundary voxels are usually
not important in practice since we can slightly increase the
readout FOV to cover those boundary voxels, so the outer-
volume mask was eroded by five pixels in the calculation). Our
optimization reduces the maximum outer-volume excitation
for all initializations except KT-points. This is not surprising
since the maximum outer-volume excitation is not the direct
minimization target in our simulation. In practice, a higher
weighting could be applied to the outer volume to further
reduce the outer-volume excitation, or a minimax pulse design
method could be used [26], [45].

In addition to the phantom experimental data we have shown
in this paper, we have previously evaluated our extended-
KT points initialization (which has very high slew rate) in
phantom and in vivo experiments in [13], [33]. We used the
initialization instead of the fully optimized k-space trajectory
and RF waveform in that study because we had not fully
developed the constrained optimization part of our method at
that point. We also measured the output k-space trajectory

of the extended KT-point initialization and it agrees well
with the nominal k-space trajectory (see [33]), indicating that
eddy currents may not be a problem for our implementation
on our GE MR750 3.0T human scanner. We believe all
those experimental studies demonstrate the feasibility of the
proposed method. If a scanner has higher gradient distortion,
a gradient system characterization and k-space trajectory esti-
mation method like [46] may be used to pre-compensate the
designed gradient waveforms.

In the phantom simulation and experiment, we have a
relatively small BO inhomogeneity. To evaluate a case with
high BO inhomogeneity, we also simulated an inner-volume
excitation with acquired brain B0 field map and cylinder target
excitation pattern. The results are included in the supplemen-
tary material, and again demonstrate that our optimization can
significantly reduce the excitation error.

VII. CONCLUSIONS

We have proposed a new joint design method for 3D tailored
excitation that can improve excitation accuracy for arbitrary
k-space trajectory initializations. We also proposed a new k-
space initialization method, extended KT-points, that appears
to be better or at least as good as several existing 3D trajectory
choices. The total computation time is short enough for online
applications. We anticipate that the proposed 3D selective
excitation pulses will find use in inner-volume imaging and
related applications.



VIII. APPENDIX

We derive the Hessian of the cost function (1) with re-
spect to k here. Define the excitation error term e = d —
SA(ky, ky, k)b and the N; x 1 temporal vector:
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Joint design of excitation k-space trajectory and RF pulse for small-tip 3D
tailored excitation in MRI

Supplementary material

Hao Sun, Jeffrey A. Fessler, Douglas C. Noll, and Jon-Fredrik Nielsen*

To further evaluate our proposed joint RF pulse and k-space trajectory design method, we added this sup-
plementary material showing an inner-volume excitation simulation with acquired brain BO field map that has
greater B0 inhomogeneity than our phantom results in the paper. Also, we changed the excitation pattern from
a cube to a short cylinder with 9 cm diameter and 6 cm thickness, which may be useful for, e.g., stack-of-spirals
imaging applications.

Figure 1 shows the simulation result. The extended KT-points pulse itself does not generate the best result
among all initial trajectories, but it generates the best final results after optimization. We think the reason is that
the extended KT-points method can automatically find a proper maximum k-space extent, so it can generate a
final result with proper excitation resolution in all directions. As shown in the main text, optimization always
improves the excitation results, reducing the NRMSE by 30 to 40% depending on the initialization method.
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Ann Arbor, MI 48109 USA. Douglas C. Noll and Jon-Fredrik Nielsen are with the Department of Biomedical Engineering, University
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Figure 1: Simulated inner-volume excitation results using a cylinder target pattern (top left) and acquired human
brain field map (top right). Rows 2 to 5: result excitation patterns for different pulse design methods: the left
column contains the results of the initialization pulse, while the right column contains the results after optimization
using the proposed interior point algorithm. Four initialization methods were investigated: SoS, SPINS, K'T-points,
extended KT-points. All pulses have 3.8 ms pulse length. The extended KT-points pulse generates the best final
result after optimization. Optimization always improves the excitation result, reducing the NRMSE by 30 to 40%

depending on the initialization method.
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