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Abstract We introduce new optimized first-order methods for smooth uncon-
strained convex minimization. Drori and Teboulle [5] recently described a numer-
ical method for computing the N -iteration optimal step coefficients in a class of
first-order algorithms that includes gradient methods, heavy-ball methods [15], and
Nesterov’s fast gradient methods [10,12]. However, the numerical method in [5] is
computationally expensive for large N , and the corresponding numerically opti-
mized first-order algorithm in [5] requires impractical memory and computation
for large-scale optimization problems. In this paper, we propose optimized first-
order algorithms that achieve a convergence bound that is two times smaller than
for Nesterov’s fast gradient methods; our bound is found analytically and refines
the numerical bound in [5]. Furthermore, the proposed optimized first-order meth-
ods have efficient forms that are remarkably similar to Nesterov’s fast gradient
methods.

Keywords First-order algorithms · Convergence bound · Smooth convex
minimization · Fast gradient methods

1 Introduction

First-order algorithms are used widely to solve large-scale optimization problems
in various fields such as signal and image processing, machine learning, communi-
cations and many other areas. The computational cost per iteration of first-order
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algorithms is mildly dependent on the dimension of the problem, yielding com-
putational efficiency. Particularly, Nesterov’s fast gradient methods [10,12] have
been celebrated in various applications for their fast convergence rates and efficient
implementation. This paper proposes first-order algorithms (OGM1 and OGM2 in
Section 7) that achieve a worst-case convergence bound that is twice as small as
Nesterov’s fast gradient methods for smooth unconstrained convex minimization
yet have remarkably similar efficient implementations.

We consider finding a minimizer over R
d of a cost function f belonging to

a set FL(R
d) of smooth convex functions with L-Lipschitz continuous gradient.

The class of first-order (FO) algorithms of interest generates a sequence of points
{xi ∈ R

d : i = 0, · · · , N} using the following scheme:

Algorithm Class FO

Input: f ∈ FL(R
d), x0 ∈ R

d.

For i = 0, · · · , N − 1

xi+1 = xi −
1

L

i
∑

k=0

hi+1,kf
′(xk). (1.1)

The update step at the ith iterate xi uses a linear combination of previous and
current gradients {f ′(x0), · · · , f ′(xi)}. The coefficients {hi,k}0≤k<i≤N determine
the step size and are selected prior to iterating (non-adaptive). Designing these
coefficients appropriately is the key to establishing fast convergence. The algo-
rithm class FO includes gradient methods, heavy-ball methods [15], Nesterov’s
fast gradient methods [10,12], and our proposed optimized first-order methods.

Evaluating the convergence bound of such first-order algorithms is essential.
Recently, Drori and Teboulle (hereafter “DT”) [5] considered the Performance
Estimation Problem (PEP) approach to bounding the decrease of a cost function
f . For given coefficients h = {hi,k}0≤k<i≤N , a given number of iterations N ≥ 1
and a given upper bound R > 0 on the distance between an initial point x0 and an
optimal point x∗ ∈ X∗(f) , argminx∈Rd f(x), the worst-case performance bound
of a first-order method over all smooth convex functions f ∈ FL(R

d) is the solution
of the following constrained optimization problem:1 [5]:

BP(h, N, d, L,R) , max
f∈FL(Rd)

max
x0,··· ,xN∈R

d,
x∗∈X∗(f)

f(xN )− f(x∗) (P)

s.t. xi+1 = xi −
1

L

i
∑

k=0

hi+1,kf
′(xk), i = 0, · · · , N − 1,

||x0 − x∗|| ≤ R.

As reviewed in Section 4, DT [5] used relaxations to simplify the intractable prob-
lem (P) to a solvable form.

1 The problem BP(h, N, d, L,R) was shown to be independent of d in [17]; thus this paper’s
results are independent of d.
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Nesterov’s fast gradient methods [10,12] achieve the optimal rate of decrease
O
(

1
N2

)

for minimizing a smooth convex function f [11]. Seeking first-order algo-
rithms that converge faster (in terms of the constant factor) than Nesterov’s fast
gradient methods, DT [5] proposed using a (relaxed) PEP approach to optimize
the choice of h in class FO by minimizing a (relaxed) worst-case bound at the
Nth iteration with respect to h. In [5], the optimized h factors were computed
numerically, and were found to yield faster convergence than Nesterov’s methods.
However, numerical optimization of h in [5] becomes expensive for large N . In ad-
dition, the general class FO requires O(N2d) arithmetic operations for N iterations
and O(Nd) memory for storing all gradients {f ′(xi) ∈ R

d : i = 0, · · · , N − 1},
which is impractical for large-scale problems.

This paper proposes optimized first-order algorithms that have a worst-case
convergence bound that is twice as small as that of Nesterov’s fast gradient meth-
ods, inspired by [5]. We develop remarkably efficient formulations of the optimized
first-order algorithms that resemble those of Nesterov’s fast gradient methods,
requiring O(Nd) arithmetic operations and O(d) memory.

Section 2 reviews the smooth convex minimization problem and introduces the
approach to optimizing h used here and in [5]. Section 3 illustrates Nesterov’s
fast gradient methods that are in class FO. Section 4 reviews DT’s (relaxed)
PEP approach and Section 5 uses it to derive a new convergence bound for the
secondary variables in Nesterov’s fast gradient methods. Section 6 reviews DT’s
analysis on numerically optimizing h using (relaxed) PEP for first-order methods,
and derives an analytical form of the optimized coefficients h and a corresponding
new analytical bound. Section 7 investigates efficient formulations of the proposed
first-order methods (OGM1 and OGM2). Section 8 shows that the corresponding
analytical upper bound is tight and Section 9 concludes.

2 Problem and approach

2.1 Smooth convex minimization problem

We consider first-order algorithms for solving the following minimization problem

min
x∈Rd

f(x), (M)

where the following two conditions are assumed:

– f : R
d → R is a convex function of the type C

1,1
L (Rd), i.e., continuously

differentiable with Lipschitz continuous gradient:

||f ′(x)− f ′(y)|| ≤ L||x− y||, ∀x,y ∈ R
d,

where L > 0 is the Lipschitz constant.
– The optimal set X∗(f) = argminx∈Rd f(x) is nonempty, i.e., the prob-

lem (M) is solvable.

We focus on measuring the “inaccuracy” f(xN )− f(x∗) after N iterations to
quantify the worst-case performance of any given first-order algorithm.
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2.2 Optimizing the step coefficients h of first-order algorithms

In search of the best-performing first-order methods, DT [5] proposed to optimize
h = {hi,k}0≤k<i≤N in Algorithm FO by minimizing a worst-case bound of f(xN )−
f(x∗) for a given number of iterations N ≥ 1 and initial distance R > 0, by adding
argminh to problem (P) as follows:

ĥP , argmin
h∈RN(N+1)/2

BP(h, N, d, L,R). (HP)

Note that ĥP is independent2 of L, R, and d. (See footnote 1.) Solving prob-
lem (HP) would give the step coefficients of the optimal first-order algorithm
achieving the best worst-case convergence bound. DT [5] relaxed3 problem (HP) to
a tractable form, as reviewed in Sections 4 and 6.1. After these simplifications, the
resulting solution was computed by a semidefinite program (SDP) that remains
computationally expensive for large N [5]. In addition, the corresponding numeri-
cally optimized first-order algorithm was impractical for large-scale problems, re-
quiring a linear combination of previous and current gradients {f ′(x0), · · · , f ′(xi)}
at the (i+ 1)-th iteration.4

To make DT’s work [5] practical, we directly derive the “analytical” solution for
h in a relaxed version of the problem (HP), circumventing the numerical approach
in [5]. Interestingly, the analytical solution of the relaxed version of (HP) satisfies
a convenient recursion, so we provide practical optimized algorithms similar to
Nesterov’s efficient fast gradient methods.

3 Nesterov’s fast gradient methods

This section reviews Nesterov’s well-known fast gradient methods [10,12]. We fur-
ther show the equivalence5 of two of Nesterov’s fast gradient methods in smooth
unconstrained convex minimization. The analysis techniques used here will be im-
portant in Section 7.

3.1 Nesterov’s fast gradient method 1 (FGM1)

Nesterov’s first fast gradient method is called FGM1 [10]:

2 Substituting x′ = 1

R
x and f̆(x′) = 1

LR2 f(Rx′) ∈ F1(Rd) in problem (P), we

get BP(h, N, L,R) = LR2BP(h, N, 1, 1). This leads to ĥP = argminh BP(h, N, L,R) =
argminh BP(h, N, 1, 1).

3 Using the term ‘best’ or ‘optimal’ here for [5] may be too strong, since [5] relaxed (HP) to
a solvable form. We also use these relaxations, so we use the term “optimized” for our proposed
algorithms.

4 If coefficients h in Algorithm FO have a special recursive form, it is possible to find an
equivalent efficient form, as discussed in Sections 3 and 7.

5 The equivalence of two of Nesterov’s fast gradient methods for smooth unconstrained convex
minimization was previously mentioned without details in [18].
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Algorithm FGM1

Input: f ∈ C
1,1
L (Rd) convex, x0 ∈ R

d, y0 = x0, t0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

ti+1 =
1 +

√

1 + 4t2i
2

(3.1)

xi+1 = yi+1 +
ti − 1

ti+1
(yi+1 − yi).

Note that ti in (3.1) satisfies the following relationships used frequently in later
derivations:

t2i+1 − ti+1 − t2i = 0, t2i =
i
∑

k=0

tk, and ti ≥
i+ 2

2
, i = 0, 1, · · · . (3.2)

Algorithm FGM1 is in Algorithm Class FO [5, Proposition 2] with:

h̄i+1,k =











ti−1
ti+1

h̄i,k, k = 0, · · · , i− 2,
ti−1
ti+1

(h̄i,i−1 − 1), k = i− 1,

1 + ti−1
ti+1

, k = i,

(3.3)

for i = 0, · · · , N−1. Note that Algorithm FO with (3.3) is impractical as written for
large-scale optimization problems, whereas the mathematically equivalent version
FGM1 is far more useful practically due to its efficient form.

While the sequence {x0, · · · ,xN−1,yN} of FGM1 can be also written in class
FO [5, Proposition 2], only the primary sequence {y0, · · · ,yN} is known to achieve
the rate O

(

1
N2

)

for decreasing f [2,10]. DT conjectured that the secondary se-

quence {x0, · · · ,xN} of FGM1 also achieves the same O
(

1
N2

)

rate based on the
numerical results using the PEP approach [5, Conjecture 2]; our Section 5 verifies
the conjecture by providing an analytical bound using the PEP approach.

3.2 Nesterov’s fast gradient method 2 (FGM2)

In [12], Nesterov proposed another fast gradient method that has a different6 form
than FGM1 and that used a choice of ti factors different from (3.1). Here, we
use (3.1) because it leads to faster convergence than the factors used in [12]. The
algorithm in [12] then becomes FGM2 shown below.

6 The fast gradient method in [12] was originally developed to generalize FGM1 to the con-
strained case. Here, this second form is introduced for use in later proofs.
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Algorithm FGM2

Input: f ∈ C
1,1
L (Rd) convex, x0 ∈ R

d, t0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

zi+1 = x0 −
1

L

i
∑

k=0

tkf
′(xk)

ti+1 =
1 +

√

1 + 4t2i
2

xi+1 =

(

1− 1

ti+1

)

yi+1 +
1

ti+1
zi+1

Similar to FGM1, the following proposition shows that FGM2 is in class FO with

h̄i+1,k =







1
ti+1

(

tk −∑i
j=k+1 h̄j,k

)

, k = 0, · · · , i− 1,

1 + ti−1
ti+1

, k = i,
(3.4)

for i = 0, · · · , N − 1 with ti in (3.1).

Proposition 1 The sequence {x0, · · · ,xN} generated by Algorithm FO with (3.4)
is identical to the corresponding sequence generated by Algorithm FGM2.

Proof We use induction, and for clarity, we use the notation x′
0, · · · ,x′

N for Al-
gorithm FO. Clearly x′

0 = x0. To prove equivalence for i = 1:

x′
1 = x′

0 −
1

L
h̄1,0f

′(x′
0) = x0 −

1

L

(

1 +
t0 − 1

t1

)

f ′(x0)

=

(

1− 1

t1
+

1

t1

)(

x0 −
1

L
f ′(x0)

)

=

(

1− 1

t1

)

y1 +
1

t1
z1 = x1.

Assuming x′
i = xi for i = 0, · · · , n, we then have

x′
n+1 =x′

n − 1

L
h̄n+1,nf

′(x′
n)−

1

L

n−1
∑

k=0

h̄n+1,kf
′(x′

k)

=xn − 1

L

(

1 +
tn − 1

tn+1

)

f ′(xn)−
1

L

n−1
∑

k=0

1

tn+1



tk −
n
∑

j=k+1

h̄j,k



 f ′(xk)

=

(

1− 1

tn+1

)(

xn − 1

L
f ′(xn)

)

+
1

tn+1



xn +
1

L

n−1
∑

k=0

n
∑

j=k+1

h̄j,kf
′(xk)−

1

L

n
∑

k=0

tkf
′(xk)





6



=

(

1− 1

tn+1

)

yn+1 +
1

tn+1



xn +
1

L

n
∑

j=1

j−1
∑

k=0

h̄j,kf
′(xk)−

1

L

n
∑

k=0

tkf
′(xk)





=

(

1− 1

tn+1

)

yn+1 +
1

tn+1

(

x0 −
1

L

n
∑

k=0

tkf
′(xk)

)

= xn+1.

The fifth equality uses the telescoping sum xn = x0 +
∑n

j=1(xj − xj−1) and (1.1)
in Algorithm FO. ⊓⊔

We show next the equivalence of Nesterov’s two algorithms FGM1 and FGM2
for smooth unconstrained convex minimization using (3.3) and (3.4).

Proposition 2 The sequence {x0, · · · ,xN} generated by Algorithm FGM2 is iden-
tical to the corresponding sequence generated by Algorithm FGM1.

Proof We prove the statement by showing the equivalence of (3.3) and (3.4). We
use the notation h̄′

i,k for the coefficients (3.4) of Algorithm FGM2 to distinguish
from those of Algorithm FGM1.

It is obvious that h̄′
i+1,i = h̄i+1,i, i = 0, · · · , N − 1, and we can easily prove for

i = 0, · · · , N − 1 that

h̄′
i+1,i−1 =

1

ti+1

(

ti−1 − h̄′
i,i−1

)

=
1

ti+1

(

ti−1 −
(

1 +
ti−1 − 1

ti

))

=
(ti − 1)(ti−1 − 1)

titi+1
=

ti − 1

ti+1

(

h̄i,i−1 − 1
)

= h̄i+1,i−1.

We next use induction by assuming h̄′
i+1,k = h̄i+1,k for i = 0, · · · , n − 1, k =

0, · · · , i. We then have

h̄′
n+1,k =

1

tn+1



tk −
n
∑

j=k+1

h̄′
j,k



 =
1

tn+1



tk −
n−1
∑

j=k+1

h̄′
j,k − h̄′

n,k





=
tn − 1

tn+1
h̄′
n,k =

tn − 1

tn+1
h̄n,k = h̄n+1,k

for k = 0, · · · , n− 2. Note that this proof is independent of the choice of ti. ⊓⊔

3.3 A convergence bound for Nesterov’s fast gradient methods

Algorithms FGM1 and FGM2 generate the same sequences {xi} and {yi}, and
the primary sequence {yi} is known to satisfy the bound7 [2,10,12]:

f(yn)− f(x∗) ≤
L||x0 − x∗||2

2t2n−1

≤ 2L||x0 − x∗||2
(n+ 1)2

, ∀x∗ ∈ X∗(f) (3.5)

7 The second inequality of (3.5) is widely known since it provides simpler interpretation of a
convergence bound, compared to the first inequality of (3.5).
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for n ≥ 1, which was the previously best known analytical bound of first-order
methods for smooth unconstrained convex minimization; DT’s PEP approach pro-
vides a tighter numerical bound for the sequences {xi} and {yi} compared to the
analytical bound (3.5) [5, Table 1]. Using the PEP approach, Section 5 provides a
new analytical bound for the secondary sequence {xi} of FGM1 and FGM2.

Nesterov described a convex function f ∈ C
1,1
L (Rd) for which any first-order

algorithm generating the sequence {xi} in the class of Algorithm FO satisfies [11,
Theorem 2.1.7]:

3L||x0 − x∗||2
32(n+ 1)2

≤ f(xn)− f(x∗), ∀x∗ ∈ X∗(f) (3.6)

for n = 1, · · · ,
⌊

d−1
2

⌋

, indicating that Nesterov’s two FGM1 and FMG2 achieve

the optimal rate O
(

1
N2

)

. (Note that the bound (3.6) is valid if the large-scale
condition “d ≥ 2N + 1” is satisfied.) However, (3.6) also illustrates the potential
room for improving first-order algorithms by a constant factor.

To narrow this gap, DT [5] used a relaxation of problem (HP) to find the
“optimal” choice of {hi,k} for Algorithm FO that minimizes a relaxed bound on
f(xN ) − f(x∗) at the Nth iteration, which was found numerically to provide a
twice smaller bound than (3.5), yet remained computationally impractical.

We next review the PEP approach for solving a relaxed version of (P).

4 DT’s convergence bound for first-order algorithms using PEP

This section summarizes the relaxation scheme for the PEP approach that trans-
forms problem (P) into a tractable form [5]. The relaxed PEP bounds are used in
later sections.

Problem (P) is challenging to solve due to the (infinite-dimensional) functional
constraint on f , so DT [5] cleverly relax the constraint by using a well-known
property for the class of convex C

1,1
L functions in [11, Theorem 2.1.5] and further

relax as follows:

BP1(h, N, d, L,R) , max
G∈R

(N+1)d,

δ∈R
N+1

LR2δN (P1)

s.t. Tr
{

G⊤Ai−1,i(h)G
}

≤ δi−1 − δi, i = 1, · · · , N,

Tr
{

G⊤Di(h)G+ νu⊤
i G
}

≤ −δi, i = 0, · · · , N,

for any given unit vector ν ∈ R
d, by defining δi , 1

L||x0−x∗||2
(f(xi) − f(x∗))

and gi , 1
L||x0−x∗||

f ′(xi) for i = 0, · · · , N, ∗, and denoting the unit vectors8

8 The vector e
N,i

is the ith standard basis vector in R
N , having 1 for the ith entry and zero

for all other elements.
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ui = eN+1,i+1 ∈ R
N+1, the (N +1)× 1 vector δ = [δ0, · · · , δN ]⊤, the (N +1)×d

matrix G = [g0, · · · , gN ]⊤, and the (N + 1)× (N + 1) symmetric matrices:
{

Ai−1,i(h) ,
1
2 (ui−1 − ui)(ui−1 − ui)

⊤ + 1
2

∑i−1
k=0 hi,k(uiu

⊤
k + uiu

⊤
j ),

Di(h) ,
1
2uiu

⊤
i + 1

2

∑i
j=1

∑j−1
k=0 hj,k(uiu

⊤
k + uku

⊤
i ).

(4.1)

DT [5] finally use a duality approach on (P1). Replacing maxG,δ LR
2δN by

minG,δ −δN for convenience, the Lagrangian of the corresponding constrained min-
imization problem (P1) becomes the following separable function in (δ,G):

L(G, δ,λ, τ ;h) = L1(δ,λ, τ ) + L2(G,λ, τ ;h),

where
{

L1(δ,λ, τ ) , −δN +
∑N

i=1 λi(δi − δi−1) +
∑N

i=0 τiδi,

L2(G,λ, τ ;h) ,
∑N

i=1 λi Tr
{

G⊤Ai−1,i(h)G
}

+
∑N

i=0 τi Tr
{

G⊤Di(h)G+ νu⊤
i G
}

,

with dual variables λ = (λ1, · · · , λN )⊤ ∈ R
N
+ and τ = (τ0, · · · , τN )⊤ ∈ R

N+1
+ . The

corresponding dual function is defined as

H(λ, τ ;h) = min
δ∈RN+1

L1(δ,λ, τ ) + min
G∈R(N+1)d

L2(G,λ, τ ;h). (4.2)

Here minδ L1(δ,λ, τ ) = 0 for any (λ, τ ) ∈ Λ, where

Λ =

{

(λ, τ ) ∈ R
N
+ × R

N+1
+ :

τ0 = λ1, λN + τN = 1
λi − λi+1 + τi = 0, i = 1, · · · , N − 1

}

, (4.3)

and −∞ otherwise. In [5], the dual function (4.2) for any given unit vector ν ∈ R
d

was found to be

H(λ, τ ;h) = min
w∈RN+1

{

w⊤S(h,λ, τ )w + τ⊤w
}

= max
γ∈R

{

−1

2
γ : w⊤S(h,λ, τ )w + τ⊤w ≥ −1

2
γ, ∀w ∈ R

N+1

}

= max
γ∈R

{

−1

2
γ :

(

S(h,λ, τ ) 1
2τ

1
2τ

⊤ 1
2γ

)

� 0

}

(4.4)

for any given (λ, τ ) ∈ Λ, where DT [5] define the following (N + 1) × (N + 1)
matrix using the definition of Ai−1,i(h) and Di(h) in (4.1):

S(h,λ, τ ) =

N
∑

i=1

λiAi−1,i(h) +

N
∑

i=0

τiDi(h)

=
1

2

N
∑

i=1

λi(ui−1 − ui)(ui−1 − ui)
⊤ +

1

2

N
∑

i=0

τiuiu
⊤
i

+
1

2

N
∑

i=1

i−1
∑

k=0



λihi,k + τi

i
∑

j=k+1

hj,k



 (uiu
⊤
k + uku

⊤
i ). (4.5)
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In short, using the dual approach on the problem (P1) yields the following bound:

BD(h, N, L,R) , min
λ∈R

N ,

τ∈R
N+1,

γ∈R

{

1

2
LR2γ :

(

S(h,λ, τ ) 1
2τ

1
2τ

⊤ 1
2γ

)

� 0, (λ, τ ) ∈ Λ

}

,

(D)

recalling that we previously replaced maxG,λ LR2δN by minG,λ −δN for conve-
nience. Problem (D) can be solved using any numerical SDP method [3,6] for
given h and N , noting that R is just a multiplicative scalar in (D). Interestingly,
this bound BD(h, N, L,R) is independent of dimension d.

Overall, DT [5] introduced a series of relaxations to the problem (P), eventually
reaching the solvable problem (D) that provides a valid upper bound as

f(xN )− f(x∗) ≤ BP(h, N, d, L,R) ≤ BD(h, N, L,R)

where xN is generated by Algorithm FO with given h and N , and ||x0−x∗|| ≤ R.
This bound is for a given h and later we optimize the bound over h.

Solving problem (D) with a SDP method for any given coefficients h and N

provides a numerical convergence bound for f(xN )−f(x∗) [5]. However, numerical
bounds only partially explain the behavior of algorithms in class FO. An analytical
bound of gradient methods with a constant step 0 < h ≤ 1, for example, was found
using a specific PEP approach [5], but no other analytical bound was discussed
in [5]. The next section exploits the PEP approach to reveal a new analytical bound
for the secondary sequence {f(xi)} generated by FGM1 or FGM2 as an example,
confirming the conjecture by DT that the secondary sequence {xi} achieves the
same rate O

(

1
N2

)

as the primary sequence {yi} [5, Conjecture 2].

5 A new analytical bound for Nesterov’s fast gradient methods

This section provides an analytical bound for the secondary sequence {xi} in
FGM1 and FGM2.

For the h̄ factors in (3.3) or (3.4) of Nesterov’s fast gradient methods, the
following choice of dual variables (inspired by Section 6.2) is a feasible point of
problem (D):

λ̄i =
t2i−1

t2N
, i = 1, · · · , N, (5.1)

τ̄i =
ti

t2N
, i = 0, · · · , N, (5.2)

γ̄ =
1

t2N
, (5.3)

with ti in (3.1), as shown in the following lemma.

10



Lemma 1 The choice (λ̄, τ̄ , γ̄) in (5.1), (5.2) and (5.3) is a feasible point of the
problem (D) for the h̄ designs given in (3.3) or (3.4) that are used in Nesterov’s
FGM1 and FGM2.

Proof It is obvious that (λ̄, τ̄ ) ∈ Λ using t2i =
∑i

k=0 tk in (3.2). We next rewrite
S(h̄, λ̄, τ̄ ) using (3.4), (5.1) and (5.2) to show that the choice (λ̄, τ̄ , γ̄) satisfies
the positive semidefinite condition in (D) for given h̄.

For any h and (λ, τ ) ∈ Λ, the (i, k)-th entry of the symmetric matrix S(h,λ, τ )
in (4.5) can be written as

Si,k(h,λ, τ ) =































1
2

(

(λi + τi)hi,k + τi
∑i−1

j=k+1hj,k

)

,

i = 2, · · · , N, k = 0, · · · , i− 2,
1
2 ((λi + τi)hi,k − λi) , i = 1, · · · , N, k = i− 1,

λi+1, i = 0, · · · , N − 1, k = i,
1
2 , i = N, k = i.

(5.4)

Inserting h̄ (3.4), λ̄ (5.1) and τ̄ (5.2) into (5.4) and using λ̄i + τ̄i =
t2i
t2N

for

i = 1, · · · , N , we get

Si,k(h̄, λ̄, τ̄ ) =



































1
2

(

t2i
t2N

1
ti

(

tk −∑i−1
j=k+1 h̄j,k

)

+ ti
t2N

∑i−1
j=k+1 h̄j,k

)

,

i = 2, · · · , N, k = 0, · · · , i− 2,

1
2

(

t2i
t2N

(

1 + ti−1−1
ti

)

− t2i−1

t2N

)

, i = 1, · · · , N, k = i− 1,

t2i
t2N

, i = 0, · · · , N − 1, k = i,

1
2 , i = N, k = i,

=















titk
2t2N

i = 1, · · · , N, k = 0, · · · , i− 1,
t2i
t2N

, i = 0, · · · , N − 1, k = i,

t2N
2t2N

, i = N, k = i,

=
1

2t2N

(

t t⊤ + diag
{

(ť⊤, 0)
})

,

where t = (t0, · · · , tN )⊤ and ť = (t20, · · · , t2N−1)
⊤. The second equality uses t2i −

ti − t2i−1 = 0 in (3.2), and diag{t} denotes a matrix where diagonal elements are
filled with elements of a vector t and zero for other elements.

Finally, using γ̄ in (5.3), we have
(

S(h̄, λ̄, τ̄ ) 1
2 τ̄

1
2 τ̄

⊤ 1
2 γ̄

)

=

(

1
2t2N

(

t t⊤ + diag
{

(ť⊤, 0)
})

1
2t2N

t
1

2t2N
t⊤ 1

2t2N

)

=
1

2t2N

{

(

t

1

)(

t

1

)⊤

+ diag
{

(ť⊤, 0, 0)
}

}

� 0.

⊓⊔
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Using Lemma 1, we provide an analytical convergence bound for the sec-
ondary sequence {xi} of FGM1 and FMG2.

Theorem 1 Let f : R
d → R be convex and C

1,1
L and let x0,x1, · · · ∈ R

d be
generated by FGM1 or FGM2. Then for n ≥ 1,

f(xn)− f(x∗) ≤
L||x0 − x∗||2

2t2n
≤ 2L||x0 − x∗||2

(n+ 2)2
, ∀x∗ ∈ X∗(f). (5.5)

Proof Using γ̄ (5.3) and t2N ≥ (N+2)2

4 from (3.2), we have

f(xN )− f(x∗) ≤ BD(h̄, N, L,R) ≤ 1

2
LR2γ̄ ≤ 2LR2

(N + 2)2
, ∀x∗ ∈ X∗(f) (5.6)

for given h̄ in (3.3) or (3.4), based on Lemma 1. Since the coefficients h̄ in (3.3)
or (3.4) are recursive and do not depend on a given N , we can extend (5.6) for
all iterations (n ≥ 1). Finally, we let R = ||x0 − x∗||. ⊓⊔

Theorem 1 illustrates using the PEP approach to find an analytical bound for
an algorithm in class FO. We used a SDP solver [3,6] to verify numerically that
the choice (λ̄, τ̄ , γ̄) in (5.1), (5.2) and (5.3) is not an optimal solution of (D) for
given h̄ in (3.3) or (3.4). Nevertheless, this feasible point (λ̄, τ̄ , γ̄) provides a valid
upper bound for the sequence {xi} of FGM1 and FGM2 as shown in Theorem 1
that is similar to (3.5) and verifies DT’s conjecture [5, Conjecture 2].

The next section reviews DT’s work [5] on numerically optimizing step coef-
ficients h in the class of first-order methods over the relaxed convergence bound
BD(h, N, L,R). Then, we find an analytical form of the optimized step coefficients
and explicitly show that Algorithm FO with such coefficients achieves a conver-
gence bound that is twice as small as (3.5) and (5.5).

6 Towards optimized first-order algorithms

6.1 DT’s numerically optimized first-order algorithms

This section summarizes the numerically optimized first-order algorithms described
in [5].

Having relaxed (P) in Section 4 to (D), DT proposed to optimize h by relax-
ing (HP) as follows:

ĥ , argmin
h∈RN(N+1)/2

BD(h, N, L,R), (HD)

where ĥ is independent of both L andR, since BD(h, N, L,R) = LR2BD(h, N, 1, 1).
Problem (HD) is a bilinear optimization problem in terms of h and the dual

12



variables in (D), unlike the linear SDP problem (D). To simplify, DT [5] introduced
a variable r = {ri,k}0≤k<i≤N :

ri,k = λihi,k + τi

i
∑

j=k+1

hj,k (6.1)

to convert (HD) into the following linear SDP problem:

r̂ , argmin
r∈RN(N+1)/2

B̆D(r, N, L,R), (RD)

where

B̆D(r, N, L,R) , min
λ∈R

N ,

τ∈R
N+1,

γ∈R

{

1

2
LR2γ :

(

S̆(r,λ, τ ) 1
2τ

1
2τ

⊤ 1
2γ

)

� 0, (λ, τ ) ∈ Λ

}

,

S̆(r,λ, τ ) ,
1

2

N
∑

i=1

λi(ui−1 − ui)(ui−1 − ui)
⊤ +

1

2

N
∑

i=0

τiuiu
⊤
i

+
1

2

N
∑

i=1

i−1
∑

k=0

ri,k(uiu
⊤
k + uku

⊤
i ). (6.2)

An optimal solution (r̂, λ̂, τ̂ , γ̂) of (RD) for a given N can be computed by any
numerical SDP method [3,6]. DT showed that the resulting values (λ̂, τ̂ , γ̂) with
the following ĥ:

ĥi,k =







r̂i,k−τ̂i
∑i−1

j=k+1 ĥj,k

λ̂i+τ̂i
, λ̂i + τ̂i 6= 0

0, otherwise,
(6.3)

for i = 1, · · · , N, k = 0, · · · , i − 1 become an optimal solution of (HD) [5,
Theorem 3],9 where both (HD) and (RD) achieve the same optimal value, i.e.,
BD(ĥ, N, L,R) = B̆D(r̂, N, L,R).

The numerical results for problem (HD) in [5] provided a convergence bound
that is about two-times smaller than that of Nesterov’s fast gradient methods for a
couple of choices ofN in [5, Tables 1 and 2]. However, numerical calculations cannot
verify the acceleration for all N , and SDP computation for solving (RD) becomes
expensive for large N . In the next section, we analytically solve problem (HD),
which is our first main contribution.

9 Equation (5.2) in [5, Theorem 3] that is derived from (6.1) has typos that we fixed in (6.3).
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6.2 Proposed analytically optimized first-order algorithms

This section provides an analytical optimal solution of (HD) by reformulating (RD).

We first find an equivalent form of the dual function H(λ, τ ;h) in (4.2) that
differs from (4.4) by using the following equality:

SN,N (h,λ, τ ) =
1

2
for any (λ, τ ) ∈ Λ, (6.4)

i.e., the (N,N)-th entry of S(h,λ, τ ) in (4.5) and (5.4) is 1
2 for any (λ, τ ) ∈ Λ.

Hereafter we use the notation

S(h,λ, τ ) ,

(

Q(h,λ, τ ) q(h,λ, τ )
q(h,λ, τ )⊤ 1

2

)

, w ,

(

w̌

wN

)

, and τ ,

(

τ̌

τN

)

,

(6.5)

where Q(h,λ, τ ) is a N×N symmetric matrix, q(h,λ, τ ), w̌ and τ̌ are N×1 vec-
tors, and wN and τN are scalars. We omit the arguments (h,λ, τ ) inQ(h,λ, τ ) and
q(h,λ, τ ) for notational simplicity in the next derivation. For any given (λ, τ ) ∈ Λ,
we rewrite H(λ, τ ;h) in (4.2) and (4.4) as follows:

H(λ, τ ;h) = min
w∈RN+1

{

w̌⊤Qw̌ + τ̌⊤w̌ + 2w̌⊤qwN +
1

2
w2

N + τNwN

}

= min
w̌∈RN

{

w̌⊤(Q− 2qq⊤)w̌ + (τ̌ − 2qτN )⊤w̌ − 1

2
τ2N

}

=max
γ∈R

{

−1

2
γ :

w̌⊤(Q− 2qq⊤)w̌ + (τ̌ − 2qτN )⊤w̌ − 1
2τ

2
N ≥ − 1

2γ,

∀w̌ ∈ R
N

}

=max
γ∈R

{

−1

2
γ :

(

Q− 2qq⊤ 1
2 (τ̌ − 2qτN )

1
2 (τ̌ − 2qτN )⊤ 1

2 (γ − τ2N )

)

� 0

}

, (6.6)

where the second equality comes from minimizing the function with respect to wN .

Using (6.6) instead of (4.4) for the function H(λ, τ ;h) and again using the
variable r in (6.1) leads to the following optimization problem that is equivalent
to (RD):

r̂ = argmin
r∈RN(N+1)/2

B̆D1(r, N, L,R), (RD1)
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where

B̆D1(r, N, L,R) , min
λ∈R

N ,

τ∈R
N+1,

γ∈R

{

1

2
LR2γ :

(

Q̆− 2q̆q̆⊤ 1
2 (τ̌ − 2q̆τN )

1
2 (τ̌ − 2q̆τN )⊤ 1

2 (γ − τ2N )

)

� 0, (λ, τ ) ∈ Λ

}

,

Q̆(r,λ, τ ) =
1

2

N−1
∑

i=1

λi(ǔi−1 − ǔi)(ǔi−1 − ǔi)
⊤ +

1

2
λN ǔN−1ǔ

⊤
N−1

+
1

2

N−1
∑

i=0

τiǔiǔ
⊤
i +

1

2

N−1
∑

i=1

i−1
∑

k=0

ri,k(ǔiǔ
⊤
k + ǔkǔ

⊤
i ), (6.7)

q̆(r,λ, τ ) =
1

2

N−2
∑

k=0

rN,kǔk,+
1

2
(rN,N−1 − λN )ǔN−1 (6.8)

for ǔi = eN,i+1 ∈ R
N . We omit the arguments (r,λ, τ ) in Q̆(r,λ, τ ) and q̆(r,λ, τ )

for notational simplicity. Unlike (RD), we observe that the new equivalent form (RD1)
has a point at the boundary of the positive semidefinite condition, and we will show
that the point is indeed an optimal solution of both (RD) and (RD1).

Lemma 2 A feasible point of both (RD) and (RD1) is (r̂, λ̂, τ̂ , γ̂), where

r̂i,k =



























4θiθk
θ2
N

, i = 2, · · · , N − 1, k = 0, · · · , i− 2,

4θiθi−1

θ2
N

+
2θ2

i−1

θ2
N

, i = 1, · · · , N − 1, k = i− 1,
2θk
θN

, i = N, k = 0, · · · , i− 2,
2θN−1

θN
+

2θ2
N−1

θ2
N

, i = N, k = i− 1,

(6.9)

λ̂i =
2θ2i−1

θ2N
, i = 1, · · · , N, (6.10)

τ̂i =







2θi
θ2
N
, i = 0, · · · , N − 1,

1− 2θ2
N−1

θ2
N

= 1
θN

, i = N,
(6.11)

γ̂ =
1

θ2N
, (6.12)

for

θi =















1, i = 0,
1+

√
1+4θ2

i−1

2 , i = 1, · · · , N − 1,
1+

√
1+8θ2

i−1

2 i = N.

(6.13)
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Proof The following set of conditions are sufficient for the feasible conditions
of (RD1):



















Q̆(r,λ, τ ) = 2q̆(r,λ, τ )q̆(r,λ, τ )⊤,

τ̌ = 2q̆(r,λ, τ )τN ,

γ = τ2N ,

(λ, τ ) ∈ Λ.

(6.14)

The Appendix shows that the point (r̂, λ̂, τ̂ , γ̂) in (6.9), (6.10), (6.11) and (6.12) is
the unique solution of (6.14) and also satisfies the feasible conditions of (RD). ⊓⊔

Note that the parameter θi (6.13) used in Lemma 2 differs from ti (3.1) only at
the last iteration N . In other words, {θ0, · · · , θN−1} is equivalent to {t0, · · · , tN−1}
in (3.1) satisfying (3.2), whereas the last parameter θN satisfies

θ2N − θN − 2θ2N−1 = 0. (6.15)

The next lemma shows that the feasible point derived in Lemma 2 is an optimal
solution of both (RD) and (RD1).

Lemma 3 The choice of (r̂, λ̂, τ̂ , γ̂) in (6.9), (6.10), (6.11) and (6.12) is an op-
timal solution of both (RD) and (RD1).

Proof A proof based on the Karush-Kuhn-Tucker (KKT) conditions is given in a
previous version of this manuscript [7]. We removed this long proof (by reviewer
request) since it is not necessary for the proof of Theorem 2, the main result of
this paper, and to make room for the Discussion section. ⊓⊔

The optimized step coefficients ĥ of interest are then derived using (6.3) with
the analytical optimal solution (r̂, λ̂, τ̂ , γ̂) of (RD). It is interesting to note that the
corresponding coefficients ĥ in (6.16) below have a recursive form that is similar
to (3.4) of FGM2, as discussed further in Section 7.

Lemma 4 The choice of (ĥ, λ̂, τ̂ , γ̂) in (6.10), (6.11), (6.12) and

ĥi+1,k =







1
θi+1

(

2θk −∑i
j=k+1 ĥj,k

)

, k = 0, · · · , i− 1,

1 + 2θi−1
θi+1

, k = i,
(6.16)

for i = 0, · · · , N − 1 with θi in (6.13) is an optimal solution of (HD).

Proof Inserting r̂ (6.9), λ̂ (6.10) and τ̂ (6.11) into (6.3), and noting that λ̂i+τ̂i > 0
for i = 1, · · · , N , we get

ĥi,k =
r̂i,k − τ̂i

∑i−1
j=k+1 ĥj,k

λ̂i + τ̂i
, i = 1, · · · , N, k = 0, · · · , i− 1,

=



























θ2
N

2θ2
i

(

4θiθk
θ2
N

− 2θi
θ2
N

∑i−1
j=k+1 ĥj,k

)

, i = 1, · · · , N − 1, k = 0, · · · , i− 2,

θ2
N

2θ2
i

(

4θiθi−1

θ2
N

+
2θ2

i−1

θ2
N

)

=
2θiθi−1+θ2

i−θi
θ2
i

, i = 1, · · · , N − 1, k = i− 1,
2θk
θN

− 1
θN

∑N−1
j=k+1 ĥj,k, i = N, k = 0, · · · , i− 2,

2θN−1

θN
+

2θ2
N−1

θ2
N

=
2θNθN−1+θ2

N−θN
θ2
N

, i = N, k = i− 1,
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which is equivalent to (6.16). From [5, Theorem 3], the corresponding (ĥ, λ̂, τ̂ , γ̂)
becomes an optimal solution of (HD). ⊓⊔

The following theorem shows that Algorithm FO with the optimized ĥ (6.16)
achieves a new convergence bound.

Theorem 2 Let f : R
d → R be convex and C

1,1
L and let x0, · · · ,xN ∈ R

d be

generated by Algorithm FO with ĥ (6.16) for a given N ≥ 1. Then

f(xN )− f(x∗) ≤
L||x0 − x∗||2

2θ2N
≤ L||x0 − x∗||2

(N + 1)(N + 1 +
√
2)

, ∀x∗ ∈ X∗(f). (6.17)

Proof Using γ̂ (6.12) and θ2N−1 = t2N−1 ≥ (N+1)2

4 from (3.2) and (6.13), we get

γ̂ =
1

θ2N
=

4
(

1 +
√

1 + 8θ2N−1

)2 ≤ 4
(

1 +
√

1 + 2(N + 1)2
)2

≤ 2

(N + 1)2 +
√
2(N + 1) + 1

≤ 2

(N + 1)(N + 1 +
√
2)

.

Then, we have

f(xN )− f(x∗) ≤ BD(ĥ, N, L,R) =
1

2
LR2γ̂ ≤ LR2

(N + 1)(N + 1 +
√
2)

, ∀x∗ ∈ X∗(f),

based on Lemma 4. Finally, we let R = ||x0 − x∗||. ⊓⊔
Theorem 2 shows that algorithm FO with the optimized ĥ (6.16) decreases the

function f with a bound that is twice as small as that of Nesterov’s fast gradient
methods in (3.5) and (5.5), confirming DT’s numerical results in [5, Tables 1 and

2]. The proposed algorithm requires at most N =
⌈
√

L
ǫ
||x0 − x∗||

⌉

iterations to

achieve the desired accuracy f(xN ) − f(x∗) ≤ ǫ, while Nesterov’s fast gradient

methods require at most N =
⌈
√

2L
ǫ
||x0 − x∗||

⌉

, a factor of about
√
2-times more

iterations.
The next section describes efficient implementations of the corresponding Al-

gorithm FO with ĥ (6.16).

7 Efficient formulations of proposed optimized first-order algorithms

Even though the analytical expression for ĥ in (6.16) that solves (HD) does not
require an expensive SDP method, using ĥ in Algorithm FO would still be compu-
tationally undesirable. Noticing the similarity between (3.4) of FGM2 and (6.16),
we can expect that Algorithm FO with (6.16) may have an equivalent efficient form
as FGM2, as described next. In addition, we find an equivalent form of (6.16) that
is similar to (3.3) of FGM1, so that we can find a formulation that is similar to
FGM1 by analogy with how Proposition 2 shows the equivalence between (3.3)
and (3.4).
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Proposition 3 The optimized ĥ in (6.16) satisfies the following recursive rela-
tionship

ĥi+1,k =











θi−1
θi+1

ĥi,k, k = 0, · · · , i− 2,
θi−1
θi+1

(ĥi,i−1 − 1), k = i− 1,

1 + 2θi−1
θi+1

, k = i,

(7.1)

for i = 0, · · · , N − 1 with θi in (6.13).

Proof We follow the induction proof of Proposition 2 showing the equivalence be-
tween (3.3) and (3.4). We use the notation ĥ′

i,k for the coefficient (6.16) to dis-
tinguish from (7.1).

It is obvious that ĥ′
i+1,i = ĥi+1,i, i = 0, · · · , N − 1, and we clearly have

ĥ′
i+1,i−1 =

1

θi+1

(

2θi−1 − ĥ′
i,i−1

)

=
1

θi+1

(

2θi−1 −
(

1 +
2θi−1 − 1

θi

))

=
(2θi−1 − 1)(θi − 1)

θiθi+1
=

θi − 1

θi+1

(

ĥi,i−1 − 1
)

= ĥi+1,i−1.

for i = 0, · · · , N − 1.

We next use induction by assuming ĥ′
i+1,k = ĥi+1,k for i = 0, · · · , n − 1, k =

0, · · · , i. We then have

ĥ′
n+1,k =

1

θn+1



2θk −
n
∑

j=k+1

ĥ′
j,k



 =
1

θn+1



2θk −
n−1
∑

j=k+1

ĥ′
j,k − ĥ′

n,k





=
θn − 1

θn+1
ĥ′
n,k =

θn − 1

θn+1
ĥn,k = ĥn+1,k

for k = 1, · · · , n− 2. Note that this proof is independent of the choice of θi. ⊓⊔

Next, we revisit the derivation in Section 3 to transform Algorithm FO with (6.16)
or (7.1) into efficient formulations akin to Nesterov’s fast gradient methods, leading
to practical algorithms.

7.1 Proposed optimized gradient method 1 (OGM1)

We first propose the following optimized gradient method, called OGM1, us-
ing (7.1) in Algorithm FO. OGM1 is computationally similar to FGM1 yet the
sequence {xi} generated by OGM1 achieves the fast convergence bound in Theo-
rem 2.
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Algorithm OGM1

Input: f ∈ C
1,1
L (Rd) convex, x0 ∈ R

d, y0 = x0, θ0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

θi+1 =







1+
√

1+4θ2
i

2 , i ≤ N − 2
1+

√
1+8θ2

i

2 , i = N − 1

xi+1 = yi+1 +
θi − 1

θi+1
(yi+1 − yi) +

θi

θi+1
(yi+1 − xi)

Apparently, the proposed OGM1 accelerates FGM1 by using just one additional
momentum term θi

θi+1
(yi+1 − xi), and thus OGM1 is computationally efficient.

Also, unlike DT’s approach that requires choosing N for using a SDP solver before
iterating, the proposed OGM1 does not need to know N in advance because the
coefficients ĥ (or θi) for intermediate iterations (i = 0, · · · , N − 1) do not depend
on N .

Proposition 4 The sequence {x0, · · · ,xN} generated by Algorithm FO with (7.1)
is identical to the corresponding sequence generated by Algorithm OGM1.

Proof We use induction, and for clarity, we use the notation x′
0, · · · ,x′

N for Al-
gorithm FO. It is obvious that x′

0 = x0, and since θ0 = 1 we get

x′
1 = x′

0 −
1

L
ĥ1,0f

′(x′
0) = x0 −

1

L

(

1 +
2θ0 − 1

θ1

)

f ′(x0) = y1 +
θ0

θ1
(y1 − x0) = x1.

Assuming x′
i = xi for i = 0, · · · , n, we then have

x′
n+1 =x′

n − 1

L
ĥn+1,nf

′(x′
n)−

1

L
ĥn+1,n−1f

′(x′
n−1)−

1

L

n−2
∑

k=0

ĥn+1,kf
′(x′

k)

=xn − 1

L

(

1 +
2θn − 1

θn+1

)

f ′(xn)

− θn − 1

θn+1
(ĥn,n−1 − 1)f ′(xn−1)−

1

L

n−2
∑

k=0

θn − 1

θn+1
ĥn,kf

′(xk)

=xn − 1

L

(

1 +
θn

θn+1

)

f ′(xn)

+
θn − 1

θn+1

(

− 1

L
f ′(xn) +

1

L
f ′(xn−1)−

1

L

n−1
∑

k=0

ĥn,kf
′(xk)

)

=yn+1 +
θn

θn+1
(yn+1 − xn) +

θn − 1

θn+1

(

− 1

L
f ′(xn) +

1

L
f ′(xn−1) + xn − xn−1

)
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=yn+1 +
θn − 1

θn+1
(yn+1 − yn) +

θn

θn+1
(yn+1 − xn) = xn+1

⊓⊔

7.2 Proposed optimized gradient method 2 (OGM2)

We propose another efficient formulation of Algorithm FO with (6.16) that is
similar to the formulation of FGM2.

Algorithm OGM2

Input: f ∈ C
1,1
L (Rd) convex, x0 ∈ R

d, θ0 = 1.

For i = 0, · · · , N − 1

yi+1 = xi −
1

L
f ′(xi)

zi+1 = x0 −
1

L

i
∑

k=0

2θkf
′(xk)

θi+1 =







1+
√

1+4θ2
i

2 , i ≤ N − 2
1+

√
1+8θ2

i

2 , i = N − 1

xi+1 =

(

1− 1

θi+1

)

yi+1 +
1

θi+1
zi+1

The sequence {xi} generated by OGM2 achieves the fast convergence bound in
Theorem 2. Algorithm OGM2 doubles the weight on all previous gradients for {zi}
compared to FGM2, providing some intuition for its two-fold acceleration. OGM2
requires comparable computation per iteration as FGM2.

Proposition 5 The sequence {x0, · · · ,xN} generated by Algorithm FO with (6.16)
is identical to the corresponding sequence generated by Algorithm OGM2.

Proof We use induction, and for clarity, we use the notation x′
0, · · · ,x′

N for Al-
gorithm FO. It is obvious that x′

0 = x0, and since θ0 = 1 we get

x′
1 = x′

0 −
1

L
ĥ1,0f

′(x′
0) = x0 −

1

L

(

1 +
2θ0 − 1

θ1

)

f ′(x0) = y1 +
θ0

θ1
(y1 − x0) = x1.

Assuming x′
i = xi for i = 0, · · · , n, we then have

x′
n+1 =x′

n − 1

L
ĥn+1,nf

′(x′
n)−

1

L

n−1
∑

k=0

ĥn+1,kf
′(x′

k)

=xn − 1

L

(

1 +
2θn − 1

θn+1

)

f ′(xn)−
1

L

n−1
∑

k=0

1

θn+1



2θk −
n
∑

j=k+1

ĥj,k



 f ′(xk)
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=

(

1− 1

θn+1

)(

xn − 1

L
f ′(xn)

)

+
1

θn+1

(

x0 −
1

L

n
∑

k=0

2θkf
′(xk)

)

=

(

1− 1

θn+1

)

yn+1 +
1

θn+1
zn+1 = xn+1

The third equality uses the telescoping sum xn = x0 +
∑n

j=1(xj −xj−1) and (1.1)
in Algorithm FO. ⊓⊔

8 Discussion

After submitting this work [7], Taylor et al. [17] further studied the PEP approach
to compute the exact worst-case bound of first-order methods, unlike DT [5] and
this paper that use the relaxed PEP. Taylor et al. [17] studied the tightness of
relaxations on PEP introduced in [5] and avoided some strict relaxations.

Inspired by [17, Conjecture 5], we developed the following theorem that shows
that the smallest upper bound in (6.17) for OGM1 and OGM2 is tight, despite the
various relaxations of PEP used in [5] and herein. (Similar tightness results are
shown for the gradient methods with a constant step size 0 < h ≤ 1 in [5].) The
following theorem specifies a worst-case convex function φ(x) in C

1,1
L (Rd) for which

the optimized gradient methods achieve their smallest upper bound in (6.17).

Theorem 3 For the following convex functions in C
1,1
L (Rd) for all d ≥ 1:

φ(x) =

{

LR
θ2
N
||x|| − LR2

2θ4
N
, if ||x|| ≥ R

θ2
N
,

L
2 ||x||2, otherwise

(8.1)

both OGM1 and OGM2 exactly achieve the smallest upper bound in (6.17), i.e.,

φ(xN )− φ(x∗) =
L||x0 − x∗||2

2θ2N
.

Proof We show in the Appendix that the following property of the coefficients
ĥ (7.1) of OGM1 and OGM2 holds:

i
∑

j=1

j−1
∑

k=0

ĥj,k =

{

θ2i − 1, i = 1, · · · , N − 1,
1
2 (θ

2
N − 1), i = N,

(8.2)

Then, starting from x0 = Rν, where ν is a unit vector, and using (8.2), the
iterates of OGM1 and OGM2 are as follows

xi = x0 −
1

L

i
∑

j=1

j−1
∑

k=0

ĥj,kφ
′(xk) =







(

1− θ2
i−1

θ2
N

)

Rν, i = 0, · · · , N − 1,
(

1− θ2
N−1

2θ2
N

)

Rν, i = N,
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where the corresponding sequence {x0, · · · ,xN} stays in the affine region of the
function φ(x) with the same gradient value:

φ′(xi) =
LR

θ2N
ν, i = 0, · · · , N.

Therefore, after N iterations of OGM1 and OGM2, we have

φ(xN )− φ(x∗) = φ(xN ) =
LR2

2θ2N
,

exactly matching the smallest upper bound in (6.17). ⊓⊔

This result implies that the exact PEP bound BP(ĥ, N, d, L,R) of OGM1 and
OGM2 is equivalent to their relaxed bound BD(ĥ, N, L,R) that is independent
of d. Note that Taylor et al. [17] showed that the exact PEP BP(h, N, d, L,R) is
independent of d. Whereas the OGM bound (6.17) is tight, the FGM bounds (3.5)
and (5.5) are not tight [5,17], somewhat weakening the utility of the fact that the
OGM bound (6.17) is twice smaller than the FGM bounds. However, Figure 5
in [17] shows that the FGM bounds (3.5) and (5.5) become close to tight asymp-
totically as N increases, so the factor of 2 can have practical value when using
many iterations. We leave more complete comparisons as future work.

9 Conclusion

We proposed new optimized first-order algorithms that achieve a worst-case con-
vergence bound that is twice as small as that of Nesterov’s methods for smooth
unconstrained convex minimization, inspired by [5]. The proposed first-order meth-
ods are comparably efficient for implementation as Nesterov’s methods. Thus it is
natural to use the proposed OGM1 and OGM2 to replace Nesterov’s methods in
smooth unconstrained convex minimization. Numerical results in large-scale imag-
ing applications show practical convergence acceleration consistent with those pre-
dicted by the bounds given here [8,9]. Those applications use regularizers that
have shapes somewhat similar to the worst-case function (8.1).

The efficient formulations of both Nesterov’s methods and the new optimized
first-order methods still seem somewhat magical. Recently, [1], [14] and [16] stud-
ied Nesterov’s FGM formulations, and extending such studies to the new OGM
methods should further illuminate the fundamental causes for their efficient formu-
lations and acceleration. Also, new optimized first-order methods lack analytical
convergence bounds for the intermediate iterations, whereas numerical bounds are
studied in [17]; deriving those analytical bounds is interesting future work.

Drori recently extended the PEP approach to projected gradient methods for
constrained smooth convex minimization [4]. Extending this approach to general
first-order algorithms including our proposed OGM1 and OGM2 is important fu-
ture work. In addition, just as Nesterov’s fast gradient methods have been extended

22



for nonsmooth composite convex minimization [2,13], extending the proposed opti-
mized first-order algorithms for minimizing nonsmooth composite convex functions
would be a natural direction to pursue.

While DT’s PEP approach involves a series of relaxations to make the problem
solvable, OGM1 and OGM2 with the step coefficients ĥ that are optimized over the
relaxed PEP upper bound (HD) achieve an exact bound in Theorem 3. However, it
remains an open problem to either prove that the smallest upper bound in (6.17)
of OGM1 and OGM2 is optimal. We leave either proving the above statement
for (HP) or to further optimize the first-order methods as future work.

10 Appendix

10.1 Proof of Lemma 2

We prove that the choice (r̂, λ̂, τ̂ , γ) in (6.9), (6.10), (6.11) and (6.12) satisfies the
feasible conditions (6.14) of (RD1).

Using the definition of Q̆(r,λ, τ ) in (6.7), and considering the first two condi-
tions of (6.14), we get

λi+1 = Q̆i,i(r,λ, τ ) = 2q̆2i (r,λ, τ ) =
1

2τ2N
τ2i

=

{

1
2(1−λN )2λ

2
1, i = 0

1
2(1−λN )2 (λi+1 − λi)

2, i = 1, · · · , N − 1,

where the last equality comes from (λ, τ ) ∈ Λ, and this reduces to the following
recursion:

{

λ1 = 2(1− λN )2,

(λi − λi−1)
2 − λ1λi = 0. i = 2, · · · , N.

(10.1)

We use induction to prove that the solution of (10.1) is

λi =

{

2
θ2
N
, i = 1,

θ2i−1λ1, i = 2, · · · , N,

which is equivalent to λ̂ (6.10). It is obvious that λ1 = θ0λ1, and for i = 2 in (10.1),
we get

λ2 =
3λ1 +

√

9λ2
1 − 4λ2

1

2
=

3 +
√
5

2
λ1 = θ21λ1.

23



Then, assuming λi = θ2i−1λ1 for i = 1, · · · , n and n ≤ N − 1, and using the second
equality in (10.1) for i = n+ 1, we get

λn+1 =
λ1 + 2λn +

√

(λ1 + 2λn)2 − 4λ2
n

2
=

1 + 2θ2n−1 +
√

1 + 4θ2n−1

2
λ1

=



θ2n−1 +
1 +

√

1 + 4θ2n−1

2



λ1 = θ2nλ1,

where the last equality uses (3.2). Then we use the first equality in (10.1) to find
the value of λ1 as

λ1 = 2(1− θ2N−1λ1)
2

θ4N−1λ
2
1 − 2

(

θ2N−1 +
1

4

)

λ1 + 1 = 0

λ1 =
θ2N−1 +

1
4 −

√

(θ2N−1 +
1
4 )

2 − θ4N−1

θ4N−1

=
1

θ2N−1 +
1
4 +

√

θ2
N−1

2 + 1
16

=
8

(

1 +
√

1 + 8θ2N−1

)2 =
2

θ2N

with θN in (6.13).

Until now, we derived λ̂ (6.10) using some conditions of (6.14). Consequently,
using the last two conditions in (6.14) with (3.2) and (6.15), we can easily derive
the following:

τi =















λ̂1 = 2
θ2
N
, i = 0,

λ̂i+1 − λ̂i =
2θ2

i

θ2
N

− 2θ2
i−1

θ2
N

= 2θi
θ2
N
, i = 1, · · · , N − 1,

1− λ̂N = 1− 2θ2
N−1

θ2
N

= 1
θN

, i = N,

γ = τ2N =
1

θ2N
,

which are equivalent to τ̂ (6.11) and γ̂ (6.12).

Next, we derive r̂ for given λ̂ (6.10) and τ̂ (6.11). Inserting τ̂ (6.11) to the first
two conditions of (6.14), we get

{

q̆i(r̂, λ̂, τ̂ ) =
τ̂i

2τ̂N
= θi

θN
,

Q̆i,k(r̂, λ̂, τ̂ ) = 2q̆i(r, λ̂, τ̂ )q̆k(r, λ̂, τ̂ ) =
2θiθk
θ2
N

,
(10.2)
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for i, k = 0, · · · , N − 1, and considering (6.5) and (10.2), we get

S̆i,k(r̂, λ̂, τ̂ ) =























2θiθk
θ2
N

, i, k = 0, · · · , N − 1,
θi
θN

i = 0, · · · , N − 1, k = N,
θk
θN

, i = N, k = 0, · · · , N − 1,
1
2 i = N, k = N.

(10.3)

Finally, using the two equivalent forms (6.2) and (10.3) of S̆(r̂, λ̂, τ̂ ), we get

S̆i,k(r̂, λ̂, τ̂ ) =























1
2 r̂i,k = 2θiθk

θ2
N

, i = 2, · · · , N − 1, k = 0, · · · , i− 2,
1
2 (r̂i,k − λ̂i) =

2θiθk
θ2
N

, i = 1, · · · , N − 1, k = i− 1,
1
2 r̂i,k = θk

θN
, i = N, k = 0, · · · , i− 2,

1
2 (r̂i,k − λ̂i) =

θk
θN

. i = N, k = i− 1,

(10.4)

and this can be easily converted to the choice r̂i,k in (6.9).

For these given (r̂, λ̂, τ̂ ), we can easily notice that

(

S̆(r̂, λ̂, τ̂ ) 1
2 τ̂

1
2 τ̂

⊤ 1
2 γ̂

)

=

(

2
θ2
N
θ̌θ̌⊤ 1

θ2
N
θ̌

1
θ2
N
θ̌⊤ 1

2θ2
N

)

=
2

θ2N

(

θ̌
1
2

)(

θ̌
1
2

)⊤

� 0 (10.5)

for θ̌ =
(

θ0, · · · , θN−1,
θN
2

)⊤
, showing that the choice is feasible in both (RD)

and (RD1). ⊓⊔

10.2 Proof of (8.2)

We prove that (8.2) holds for the coefficients ĥ (7.1) of OGM1 and OGM2.
We first show the following property using induction:

j−1
∑

k=0

ĥj,k =

{

θj , j = 1, · · · , N − 1,
1
2 (θN + 1), j = N.

Clearly, ĥ1,0 = 1 + 2θ0−1
θ1

= θ1 using (3.2). Assuming
∑j−1

k=0 ĥj,k = θj for j =
1, · · · , n and n ≤ N − 1, we get

n
∑

k=0

ĥn+1,k = 1 +
2θn − 1

θn+1
+

θn − 1

θn+1
(ĥn,n−1 − 1) +

θn − 1

θn+1

n−2
∑

k=0

ĥn,k

= 1 +
θn

θn+1
+

θn − 1

θn+1

n−1
∑

k=0

ĥn,k =
θn+1 + θ2n

θn+1

=

{

θn, n = 1, · · · , N − 2,
1
2 (θN + 1), n = N − 1,
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where the last equality uses (3.2) and (6.15).
Then, (8.2) can be easily derived using (3.2) and (6.15) as

i
∑

j=1

j−1
∑

k=0

ĥj,k =

{

∑i
j=1 θj , i = 1, · · · , N − 1,

∑N−1
j=1 θj +

1
2 (θN + 1), i = N,

=

{

θ2i − 1, i = 1, · · · , N − 1,
1
2 (θ

2
N − 1), i = N.

⊓⊔
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