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Monte Carlo SURE-Based Parameter Selection for Parallel
Magnetic Resonance Imaging Reconstruction

Daniel S. Weller,1* Sathish Ramani,1 Jon-Fredrik Nielsen,2 and Jeffrey A. Fessler1,2

Purpose: Regularizing parallel magnetic resonance imaging
(MRI) reconstruction significantly improves image quality but
requires tuning parameter selection. We propose a Monte Carlo
method for automatic parameter selection based on Stein’s
unbiased risk estimate that minimizes the multichannel k-space
mean squared error (MSE). We automatically tune parameters
for image reconstruction methods that preserve the undersam-
pled acquired data, which cannot be accomplished using existing
techniques.
Theory: We derive a weighted MSE criterion appropriate for
data-preserving regularized parallel imaging reconstruction and
the corresponding weighted Stein’s unbiased risk estimate. We
describe a Monte Carlo approximation of the weighted Stein’s
unbiased risk estimate that uses two evaluations of the recon-
struction method per candidate parameter value.
Methods: We reconstruct images using the denoising sparse
images from GRAPPA using the nullspace method (DESIGN) and
L1 iterative self-consistent parallel imaging (L1-SPIRiT). We val-
idate Monte Carlo Stein’s unbiased risk estimate against the
weighted MSE. We select the regularization parameter using
these methods for various noise levels and undersampling factors
and compare the results to those using MSE-optimal parameters.
Results: Our method selects nearly MSE-optimal regularization
parameters for both DESIGN and L1-SPIRiT over a range of noise
levels and undersampling factors.
Conclusion: The proposed method automatically provides
nearly MSE-optimal choices of regularization parameters for
data-preserving nonlinear parallel MRI reconstruction methods.
Magn Reson Med 71:1760–1770, 2014. © 2013 Wiley Periodi-
cals, Inc.

Key words: parallel imaging reconstruction; regularization
parameter selection; Stein’s unbiased risk estimate; Monte Carlo
methods

INTRODUCTION

Although SENSE (1), GRAPPA (2), and SPIRiT (3) suc-
cessfully reconstruct full field-of-view (FOV) images from
undersampled parallel MRI data, many recent develop-
ments improve on these methods using regularization
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(4–7). Practical clinical use of such methods requires
selecting appropriate values of the regularization param-
eter(s). Often, a developer hard-codes a single value that
“works” over a range of tested situations, or a user tunes
the parameter manually for their particular application.
When the scanning protocol remains unchanged across
many subjects, such reuse may be justifiable. However,
in cases where image contrast varies, some users may
wish to ensure that their regularization parameters are
reasonable.

The problem of regularization parameter selection has
a long history, leading to a variety of techniques. In an
extended scan session, one can adapt regularization param-
eters using data acquired earlier in the scan (8). However,
such adaptations require acquiring and reconstructing a
high-quality data set initially without regularization. Many
applications cannot provide such a ground truth acquisi-
tion. For example, accelerated diffusion-weighted imaging
can use shorter echo times, so an unaccelerated “ground
truth” may actually have reduced image quality (9): a longer
single-shot sequence would have greater geometric distor-
tions and reduced contrast and signal from the long echo
time. A multishot acquisition would take much longer,
making motion and fatigue potential issues. Dynamic stud-
ies such as abdominal or cardiac perfusion imaging are
corrupted by motion and other time-varying effects that are
hard to replicate to produce a ground truth suitable for reg-
ularization. The same goes for dynamic contrast-enhanced
studies. Functional magnetic resonance imaging (MRI) is
another area where ground truths are often inaccessible due
to limited temporal resolution and nonrepeatability of the
underlying dynamic processes. Although one could ignore
these dynamics when they are small in amplitude, as is
the case with functional activation, doing so risks selecting
parameters that would not adequately preserve these small
deviations in the reconstruction.

Other techniques automatically tune regularization
parameters based on a statistical model of the noise and
just the acquired data (no training set). Among the most
well-known, the discrepancy principle (10), generalized
cross-validation (11,12), and L-curve curvature maximiza-
tion (4,13,14) are founded in mathematical theory derived
for quadratic regularizers with closed-form solutions. Their
extension to nonlinear regularization is limited (15,16).
All these methods rely on the measurement residual, the
difference between the acquired (noisy) data, and the mea-
surement model applied to the reconstructed image(s),
to tune parameters. Thus, these methods are ineffective
when the acquired data are preserved by the reconstruction
method, as the resulting residual is exactly zero, regardless
of the regularization parameter values. Although noisy, the
acquired data contain essential details that could be com-
promised by regularization, so many image reconstruction
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techniques aim to preserve the acquired data, includ-
ing regularized parallel imaging techniques like denoising
sparse images from GRAPPA using the nullspace method
(DESIGN) (6) and L1 iterative self-consistent parallel imag-
ing (L1-SPIRiT) (3,7,17,18). In this article, we propose a
new error criterion that is appropriate for data-preserving
regularized reconstruction methods, for which we derive a
novel parameter selection scheme.

We seek the parameter that minimizes the k-space mean
squared error (MSE) for reconstruction methods based on
nonlinear regularizers such as the �1 norm commonly used
to promote sparsity (19). Although k-space MSE may not be
sensitive to local image errors in small features of diagnos-
tic value, it is a convenient quality measure used frequently
in the literature. MSE is the basis for many image recon-
struction methods, including SENSE, which yields the
MSE-optimal combined image consistent with the mul-
tichannel data, when given correct coil sensitivities (1).
Because calculating the actual MSE would require know-
ing the true image, we turn to Stein’s unbiased risk estimate
(SURE; 20), which approximates the MSE for a gaussian
noise model and accommodates nonlinear reconstruction
algorithms. Using the noise model and partial derivatives
of the reconstruction function, SURE yields an expression
that is equal in expected value to the MSE and can be min-
imized to select a suitable regularization parameter value
without knowing the true signal.

SURE has been exploited for parameter selection in
denoising (21–23), deblurring (24–26), single-channel
MRI (16,27), and image-domain noniterative SENSE recon-
struction (28) for uniform (nonrandom) undersampled
parallel MRI. However, in its basic formulation, evaluat-
ing SURE involves computing the Jacobian matrix of the
targeted reconstruction function. Although feasible, analyt-
ically evaluating SURE is difficult for iterative methods and
requires exactly differentiating nearly every computation
performed in a particular implementation. A Monte Carlo
SURE framework (23,27) was derived to avoid this compli-
cation, also motivating this work. The original derivation
of the Monte Carlo framework, and of SURE in general, is
restricted to the denoising setting, where the entire image
is observed. Later work extends SURE to inverse problems
such as image reconstruction, using modified error metrics
such as predicted-MSE or projected-MSE (16,25–27). How-
ever, such frameworks share the limitation of discrepancy
principle, cross validation, and L-curve-based methods,
that the criteria are based on the measurement residual,
which is insensitive to the parameter choice for data-
preserving reconstructions. That limitation also extends
to the Monte Carlo nonlinear generalized cross validation
method described previously (16).

We extend the Monte Carlo SURE framework to regu-
larized autocalibrating parallel MRI reconstruction meth-
ods that preserve the data. The novelty of our method
consists of applying parallel imaging to express the unac-
quired (or full) k-space error criterion in terms of just
the k-space that we measure. This approach avoids the
complications that arise from data discrepancy but lim-
its our method to parallel imaging applications. We
demonstrate the generality and utility of this method
using two regularized iterative algorithms on real data:
DESIGN (6) and L1-SPIRiT (3,7). The first improves on

GRAPPA with uniform undersampling, whereas the sec-
ond applies compressed sensing (19) to random Cartesian
undersampling. In preliminary studies, we described the
extension to parallel imaging with uniform Cartesian
undersampling and depicted simulated data using SURE-
optimized DESIGN (29), and we applied SURE to L1-SPIRiT
for a range of synthetic noise levels (30). Here, we validate
the Monte Carlo estimate of the weighted SURE criterion
against the true weighted MSE for both parallel-imaging
methods and apply the proposed method to DESIGN for
different noise levels and to L1-SPIRiT for various under-
sampling factors. We conclude with a discussion of the
implications of a general algorithm for automatic parameter
selection and useful extensions of this work.

THEORY

Parallel imaging reconstruction methods like SENSE (1)
use coil sensitivity profiles to reconstruct a single full-FOV
combined image from multiple coil channels of under-
sampled k-space data. However, coil sensitivities may be
difficult to measure accurately, motivating autocalibrating
methods such as GRAPPA (2) or SPIRiT (3) that do not
require explicit knowledge of those profiles. These meth-
ods typically operate in the k-space domain and fill the
Cartesian k-space grid for every coil, so the MSE of the
full-multichannel k-space is the cost function we aim to
minimize. Methods like sum-of-squares (31) can be used to
combine these full-FOV data sets afterwards.

Measurement Model and Error Criteria

The target Cartesian k-space grid for an N -voxel volume can
be represented as a length-N vector; for P coils, these vec-
tors stack to form the length-NP vector x. We undersample
k-space, acquiring M < N points arranged in some fash-
ion, and represented as a length-M vector. The sampling
pattern for each receive coil is identical; we combine these
vectors into a length-MP vector y. The full k-space relates to
the acquired data via the linear equation y = Mx. When our
sampling pattern is Cartesian, M is a simple MP×NP mask,
where each row has a single entry equal to one and all the
other elements equal to zero. To complete our model, we
consider our measurements to be contaminated with addi-
tive complex Gaussian noise η, independent across k-space
locations, and correlated across channels, with zero mean
and covariance Λ:

y = Mx + η. [1]

To reconstruct the full k-space x from our noisy samples
y, we focus on improving autocalibrating linear methods
such as GRAPPA and SPIRiT. The regularized version of
these methods is in general nonlinear and can be written
as x̂ = fγ(y), where user-specified parameter(s) γ control
the level of regularization.

To guide selection of the regularization parameters γ, one
might aim to use a criterion based on the MSE of the full
multichannel k-space:

MSE(γ) Δ= ‖x − fγ(y)‖2
2, [2]

which is a function of the unknown true values of the full
k-space x. When applied to Cartesian undersampled data,
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we are interested in preserving the acquired data in the
reconstruction, so Mfγ(y) = y, regardless of the value of γ.
Thus, we attempt to minimize the MSE weighted over the
set of unacquired k-space points:

WMSE(γ) Δ= ‖M̃(x − fγ(y))‖2
2, [3]

where M̃ is the mask complementary to M for Carte-
sian undersampled data. One can use the weighted MSE
(WMSE) criterion directly only if one postulates a Bayesian
prior model for x. Because such priors are rarely realistic for
medical images, we take a non-Bayesian approach where x
is deterministic but unknown.

Applying SURE to WMSE Using Parallel Imaging

SURE is an unbiased estimate of the MSE of some unknown
vector x from direct measurements y = x + η corrupted by
Gaussian noise η. Thus, approximating the WMSE (or MSE)
of the unacquired (or full) multichannel k-space would
require directly measuring the entire k-space x to apply
SURE. Because we undersample k-space, we essentially
need to invert the measurement matrix M in Eq. 1 to mini-
mize the WMSE in Eq. 3. Because the measurement matrix
undersamples k-space, M is singular, and such an inversion
naturally would be ill-posed. This key problem is avoided
in previous work by modifying the error criterion to be a
function of the measurement error only, like projected-MSE
and predicted-MSE (16,25–27), which apply the measure-
ment mask M to the reconstructed image(s). However, such
efforts do not work for reconstructions that retain the mea-
surements. Our novel contribution uses parallel imaging
to perform the necessary inversion. We introduce the lin-
ear operator G that estimates the full-multichannel k-space
from the true k-space values at the sampled locations.
For instance, unregularized parallel imaging methods like
GRAPPA and SPIRiT provide approximately true values of
the full-multichannel k-space when no noise is present:
x ≈ GMx. Thus, we write

WMSE(γ) ≈ ‖M̃(GMx − fγ(y))‖2
2. [4]

Given a properly calibrated G and an appropriate level of
undersampling for the number of channels and geometry
of the array coil, minimizing this criterion should nearly
optimize the true WMSE, and minimizing the SURE for this
error should yield γ that is also nearly WMSE-optimal. In
the examples using DESIGN and L1-SPIRiT as the regular-
ized reconstruction fγ(y), we choose the linear mapping G
to be the unregularized version of the reconstruction fγ(y),
namely GRAPPA and SPIRiT, respectively. However, the
theory does not require any such connection between G
and fγ(y). We emphasize that we do not need to consider
noise amplification in choosing G, since G is applied to
noise-free Mx in our derivation, not to our actual obser-
vations y. However, the number of available coils and the
desired acceleration factor can influence the accuracy of
this approximation, so we investigate the effects of violat-
ing this assumption in our experiments. This use of G for
regularization parameter selection is unique to this work,
and the last subsection of the Methods section investigates
how this approximation affects parameter selection.

Monte Carlo SURE Approximation

Expanding the approximate WMSE in Eq. 4, and using
Eq. 1,

WMSE(γ) ≈ ‖M̃GMx‖2
2 + ‖M̃fγ(y)‖2

2

− 2Re{y′G′M̃′M̃fγ(y)} + 2Re{η′G′M̃′M̃fγ(y)},
[5]

where [·]′ denotes the conjugate transpose operator. The
WMSE isolates x to the first term of Eq. 5, which does
not depend on γ, so it can be considered a constant C and
ignored when optimizing γ. The next two terms of Eq. 5 can
be computed directly using fγ(y) and Gy, but the last term is
a function of both γ and the unknown noise vector η. Stein’s
lemma (16,20,25) approximates this last term, so that we
can find γ that minimizes the WMSE. Without our parallel-
imaging-based approximation of the full k-space, we could
not express the unacquired multichannel k-space in terms
of the acquired data and the noise, and there would be no
noise term in Eq. 5 to approximate using Stein’s lemma.

Now, we modify previous derivations of Monte Carlo
SURE (23,27) to include the matrix G. When fγ(y) is (sub-)
differentiable, let Jfγ (y) be the Jacobian matrix of all first
order partial (sub-) derivatives of fγ(y) with respect to y.
Using the chain rule for derivatives, the Jacobian of the
expression G′M̃′M̃fγ(y) is G′M̃′M̃Jfγ (y). This expression in
combination with Stein’s lemma implies (27) that

E{η′G′M̃′M̃fγ(y)} = E{tr{ΛG′M̃′M̃Jfγ (y)}}. [6]

Applying Eq. 6 to the approximate WMSE in Eq. 5 yields the
weighted SURE (WSURE) function, which is an unbiased
estimate of the WMSE:

WSURE(γ) = ‖M̃fγ(y)‖2
2 − 2Re{y′G′M̃′M̃fγ(y)}

+ 2Re{tr{ΛG′M̃′M̃Jfγ (y)}} + C . [7]

However, this expression involves computing all the par-
tial derivatives of the reconstruction function. For iterative
reconstructions, the Jacobian matrix could be computed
step-by-step, but such an approach requires a careful
derivation customized for that particular reconstruction
method (16,24,26). For an iterative reconstruction like
DESIGN and L1-SPIRiT, expressions for the Jacobian matri-
ces must be derived for each step in the implementation.
Instead, we use Monte Carlo SURE (23,27), which does not
require such in-depth knowledge of the algorithm under
consideration. Under mild conditions on fγ(y) (23,27,29),
the directional derivative Jfγ (y)b can be approximated by

ρ(y, b, ε) = (fγ(y + (ε‖y‖2/
√

MP)b) − fγ(y))/(ε‖y‖2/
√

MP),
[8]

for sufficiently small ε > 0. The scale factor ‖y‖2/
√

MP
adjusts ε for the relative scale of the data; this is moti-
vated by the fact that some algorithms (like DESIGN) use
an un-normalized Fourier transform to relate k-space to
image space, whereas others (like L1-SPIRiT) use a nor-
malized transform. Then, choosing b to be a vector of
independent, identically distributed complex zero-mean,
unit-variance Bernoulli-distributed random variables (i.e.,
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the real and imaginary parts of each element of b are
drawn independently from {±1/

√
2} with equal probabil-

ity), we form a Monte Carlo approximation to the trace of
the Jacobian (23,27) with just one realization of b:

tr{ΛG′M̃′M̃Jfγ (y)} ≈ b′
ΛG′M̃′M̃ρ(y, b, ε), [9]

Plugging this approximation into Eq. 7 yields the Monte
Carlo estimate of WSURE:

WSURE(γ) ≈ ‖M̃fγ(y)‖2
2 − 2Re{y′G′M̃′M̃fγ(y)}

+ 2Re{b′
ΛG′M̃′M̃ρ(y, b, ε)} + C . [10]

The same b can be used for evaluating WSURE with differ-
ent choices of regularization parameter, so we can compute
and store M̃GΛb just once. When we apply WSURE to regu-
larized GRAPPA or SPIRiT reconstructions, we can find the
parameters γ that minimize WSURE using a derivative-free
minimization algorithm. In this work, we deal with scalar
γ, and we use a coarse-to-fine parameter sweep, where we
evaluate WSURE for successively narrower intervals of γ.

Next, we summarize two regularized reconstruction
methods that illustrate the broad applicability of Monte
Carlo WSURE to regularization parameter selection:
DESIGN (6) and L1-SPIRiT (3,7). GRAPPA is a popular and
time-tested autocalibrating parallel imaging reconstruction
method for uniformly spaced undersampled k-space data.
The regularized method DESIGN is attractive from a com-
putational standpoint because it denoises the GRAPPA
reconstruction output, instead of iteratively reapplying
GRAPPA to denoised data, which would be slower. L1-
SPIRiT also is a useful example of an autocalibrating
regularized reconstruction method because it can readily
process nonuniformly or randomly undersampled k-space
data.

DESIGN: Sparsity-Promoting GRAPPA

For uniformly undersampled Cartesian k-space, the
GRAPPA reconstruction directly fills missing k-space in all
the coil array channels with a linear combination of neigh-
boring acquired points weighted by a shift-invariant kernel.
GRAPPA reconstruction is implemented efficiently using
convolution or the fast fourier transform (FFT). For Rx ×Ry
two-dimensional (2D) undersampled k-space, the GRAPPA
method using a set of Bx ×By 2D kernels gp,q,rx ,ry [bx , by ] for
each input/output channel pair (p, q) and target frequency
shift (rx , ry ) evaluates

x̂[kx + rx , ky + ry , q] =
P∑

p=1

Bx/2∑
bx=−Bx/2

By /2∑
by =−By /2

gp,q,rx ,ry [bx , by ]

· y [kx + bxRx , ky + by Ry , p]. [11]

These GRAPPA kernels are calibrated the usual way, using
a least-squares fit with densely sampled k-space training
data, potentially with regularization. Then, we regularize
the GRAPPA reconstruction using a null space formulation
of the data-preserving DESIGN method (6):

fγ(y) = M̃′̃x* + M′y;

x̃* = arg min
x̃

1
2

‖(ΛG)−
1
2 (̃x − M̃Gy)‖2

2

+ γ‖ΨF−1(M̃′̃x + M′y)‖1,2, [12]

where x̃/̃x* is the length-(N −M )P vector of missing k-space
for all the coil channels, ΛG is the noise covariance of the
GRAPPA-reconstructed missing data ΛG = M̃GΛG′M̃′, γ

is the regularization parameter of interest, Ψ is the linear
sparsifying transform, F−1 is the inverse FFT, and ‖ · ‖1,2
is the joint sparsity-promoting hybrid �1/�2 norm. To eval-
uate this mixed norm, for each transform coefficient, we
form a vector of that coefficient’s values across all the
coil channels, and we compute the sum of the �2 norms
of these vectors. The matrix G corresponds to convolv-
ing the GRAPPA kernels with the undersampled k-space.
Because GRAPPA introduces correlations among many fre-
quencies into the noise covariance ΛG , and such a covari-
ance matrix is expensive to store or invert, we simplify
the matrix by ignoring the correlations across frequencies,
considering only the noise amplification and correlation
across coils (32). The resulting optimization problem can
be implemented using any number of algorithms; we use a
Split-Bregman approach (33) with auxiliary variable w =
ΨF−1(M̃′̃x + M′y).

Sparsity-Regularized SPIRiT

Although GRAPPA is effective for uniformly-spaced Carte-
sian undersampling, a more flexible method is desirable for
nonuniformly undersampled k-space. The SPIRiT recon-
struction method is an iterative formulation that uses
kernel-weighted linear consistency equations similar to
the GRAPPA convolution equation in Ref. 11 to esti-
mate missing k-space data. However, SPIRiT consistency
equations operate over the entire k-space, including unac-
quired frequencies. For a 2D Bx × By kernel sp,q[bx , by ]
with sq,q[0, 0] = 0, the consistency equation for the point
x[kx , ky , q] is

x[kx , ky , q] =
P∑

p=1

Bx/2∑
bx=−Bx/2

By /2∑
by =−By /2

sp,q[bx , by ]x[kx + bx , ky + by , p]. [13]

The data-preserving version of SPIRiT forms a linear sys-
tem x = Sx of these consistency equations over all of
multichannel k-space and minimizes the least-squares fit
constrained by the data consistency equation y = Mx:

Gy = arg min
x

‖(S − I)x‖2
2 subject to y = Mx. [14]

This constrained optimization problem can be regular-
ized using an additional sparsity term on the wavelet-
transformed images obtained by taking the inverse FFT
of the full-multichannel k-space, yielding the regularized
problem

fγ(y) = arg min
x

1
2

‖(S − I)x‖2
2 + γ‖ΨF−1x‖1,2

subject to y = Mx. [15]
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FIG. 1. The combined normalized reference images from data sets
#1 (a) and #2 (c) are shown alongside inset regions enlarged to show
detail (b, d).

The projection-onto-convex-sets-based implementation
called L1-SPIRiT (7) uses a sparsity-promoting shrinkage
operation on the sparse transform of x, controlled by the
predetermined scalar threshold γ.

METHODS

We demonstrate our parameter selection method on real
data from consented subjects in accordance with institu-
tional review board-approved protocols using a GE Discov-
ery 3T MRI scanner with a vendor-supplied eight-channel
array coil. We performed six repetitions of a T1-weighted
3D-spoiled gradient echo sequence [pulse repetition time
(TR) = 10.1 ms, echo time (TE) = 4.3 ms, flip angle (FA)
= 16 degrees, bandwidth (BW) = 31.25 kHz] to sample a
256 × 256 × 10 Cartesian multichannel reference volume
with 24 × 24 × 3-cm FOV, 0.94 × 0.94 × 3.0-mm resolution,
and no acceleration. We separately saved four repetitions
of a T1-weighted 2D-spoiled gradient echo sequence (TR =
20.0 ms, TE = 9.1 ms, FA = 10 degrees, BW = 15.63 kHz) to
sample a 256×256 multichannel axial slice with 24×24-cm
FOV, 0.94×0.94×4.0-mm resolution, with no acceleration,
similar to T1-weighted slice-by-slice acquisitions used for
overlaying anatomical information. We used 3D and 2D
acquisitions to add generality to the data sets for valida-
tion purposes. The averaged data are used as low-noise
reference images for the experiments that follow.

We processed the acquired raw multichannel data using
MATLAB. Both T1-weighted images were cropped tightly
around the subject’s head before undersampling and recon-
structing the data. Then, we undersampled an axial slice of
the reference volume using the desired sampling scheme
(uniform or nonuniform Cartesian), and we reconstructed

the data using the autocalibrating method of choice
(GRAPPA-based DESIGN for uniform Cartesian sampling
or L1-SPIRiT for nonuniform). Because we are interested in
reconstructing images without sensitivity maps, we formed
combined images using a sum-of-squares algorithm (31).
Reconstructed images are evaluated against the ground
truth (when available) using difference images and WMSE.
Figure 1 shows the coil-combined reference images for both
T1-weighted data sets after cropping. The signal-to-noise
ratio (SNR) of the acquired data (in dB) is calculated using

SNR = 10 log10

( ‖x‖2

(# of points in x)‖Λ‖2
*

)
, [16]

where ‖ · ‖* is the nuclear norm. The nuclear norm is
used because each coil has a potentially different noise
level, which correspond to the singular values of Λ after
whitening the noise to remove correlations.

Validation of WSURE as an Estimate

Using our averaged T1-weighted acquired slices as low-
noise ground truths, we added complex gaussian noise
so the total noise covariance matches the covariance of a
single acquisition before averaging in each instance. The
synthetic noise reduces the fully sampled SNR from 30 to

FIG. 2. WSURE for GRAPPA-based DESIGN, shown for data sets #1
(a) and #2 (b) with ε = 10−4, are similar in shape to the true WMSE
curves and the GRAPPA-approximated WMSE curves and are mini-
mized by nearly the same value of γ as the true WMSE curves in each
case. The error bars on WSURE curves correspond to ±5 standard
deviations from the mean WSURE value. Only the error bars were
estimated from 20 realizations of the complex Bernoulli noise vector
b; the WSURE curves correspond to using just the first realization
of b. The curves are shown for 2 × 2 uniform undersampling (with
a 24 × 24 fully sampled central autocalibration signal block), with
22.3-dB input SNR for the first data set and 19.7-dB input SNR for
the second. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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FIG. 3. WSURE for L1-SPIRiT, shown for data sets #1 (a) and #2 (b)
with ε = 10−4, closely tracks both the true WMSE and the SPIRiT-
approximated WMSE curves. WSURE curve error bars correspond to
±5 standard deviations from the mean WSURE value. Only the error
bars were estimated from 20 realizations of the complex Bernoulli
noise vector b; the WSURE curves correspond to using just the first
realization of b. The curves are shown for R ≈ 5 Poisson-disc under-
sampling (with a 24×24 fully sampled autocalibration signal region),
with 22.3-dB input SNR for the first data set and 19.7-dB input SNR
for the second.

22 dB for the first data set, and 26 to 20 dB for the sec-
ond. We applied the GRAPPA-based DESIGN method to
uniformly 2 × 2 undersampled k-space and the L1-SPIRiT
method to 2D Poisson-disc nonuniformly undersampled
Cartesian k-space (undersampling factor R ≈ 5), leaving
a 24 × 24 non-undersampled block of central k-space
for calibration data in both instances to train the 4 × 4-
block GRAPPA and 5 × 5 SPIRiT kernels. In this and
the experiments that follow, DESIGN was implemented
using 20 Split–Bregman iterations and an isotropic (dis-
crete) total variation sparsifying transform, and L1-SPIRiT
was implemented using 25 projection-onto-convex-sets
iterations with the four-level “db4” orthonormal DWT
sparsifying transform (the code is publicly available
at http://www.eecs.berkeley.edu/∼mlustig/Software.html).

We computed WSURE values for both DESIGN and L1-
SPIRiT using the expressions in Eqs. 7 and 10 over ranges of
γ known to contain the WMSE-optimal values (γ ∈ [10, 104]
for DESIGN and γ ∈ [10−4, 0.1] for L1-SPIRiT) and sev-
eral choices of ε (ε ∈ {10−5, 10−4, 0.001, 0.01} for both
methods). The difference in ranges of γ can be ascribed
to the relatively different scales of the k-space data—the
implementation of L1-SPIRiT uses the unitary FFT opera-
tor, whereas DESIGN uses the un-normalized FFT. These
WSURE estimates were generated using the same realiza-
tion of the complex random vector b, and we computed

M̃GΛb just once. Also, when evaluating WSURE for the
same γ and different values of ε, we reused fγ(y). To validate
WSURE as an appropriate proxy for the MSE criterion, we
compared these values to the true WMSE in Eq. 3 and
approximate WMSE in Eq. 4. To gauge the precision of our
estimates, we repeated our WSURE calculations for a total
of 20 realizations of b to compute the sample standard devi-
ations of these Monte Carlo estimates. To generalize our
validation, we repeated these experiments for both data
sets, using the same values of ε in each.

Parameter Selection for DESIGN

Using ε = 10−4 for both T1-weighted data sets, we com-
puted the WSURE-optimized DESIGN reconstructions for
uniformly 2 × 2 undersampled Cartesian k-space data
with various noise levels. For the first data set, we added
simulated complex Gaussian noise to the averaged multi-
channel reference k-space before undersampling to pro-
duce a range of 1.2 dB–13 dB SNR. We added noise to the
second data set to yield a range of 4.6 dB–17 dB SNR as well.
We found the WSURE-optimized reconstruction using a
coarse-then-fine two-level parameter sweep of γ, with the
coarse level considering γ between 0.01 and 106 for the
first data set and between 10−3 and 105 for the second. We

FIG. 4. Varying the noise level of 2 × 2 uniform undersampled
data, the sparsity-promoting DESIGN method yields similarly lower
WMSE (a) for both WMSE-optimal and WSURE-optimized choices
of γ, relative to the un-regularized GRAPPA reconstruction, for the
first data set. The WMSE of the DESIGN reconstruction using the
WSURE-optimized choice is within 0.038 dB of the true WMSE-
optimal DESIGN reconstruction. This behavior is consistent with
the WMSE-optimal and WSURE-optimized choices for the DESIGN
regularization parameter γ (b) being nearly the same for this exam-
ple. The L-curve-style method, however, appears to overestimate
γ, yielding images with slightly higher WMSE, and in the high-SNR
case, worse than performing unregularized GRAPPA.
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FIG. 5. The GRAPPA-recon-
structed image (a) and difference
image (b) for data set #1 with
10.3 dB input SNR display signif-
icant noise, while DESIGN with
both WMSE-optimal (e,f) and
WSURE-optimized (i,j) choices
of γ effectively denoise the image
while losing only a small amount
of detail. The L-curve-based
method (m,n) oversmooths the
image, resulting in significant
blurring artifacts. Similar results
are observed for the second
data set with 16.7-dB input
SNR, where remaining noise
in the GRAPPA reconstruction
(c,d) is mitigated by DESIGN
using the WMSE-optimal (g,h),
WSURE-optimized (k,l), and
L-curve-selected (o,p) choices of
γ. Again, oversmoothing in the
L-curve-based reconstruction is
visible in the second data set. The
difference images are displayed
at 5× scale.

compared the WSURE-optimized reconstruction against
the WMSE-optimal reconstruction found using MATLAB’s
fminsearch() function from a starting point of γ = 1000
for the first data set and γ = 10 for the second. This
WMSE-optimal reconstruction takes advantage of the fully
sampled ground truth to avoid the x ≈ GMx approxima-
tion. We also included a comparison against an L-curve-like
curvature maximization of the log-log pareto optimality
curve for DESIGN, trading off �1,2 norm joint sparsity for
least-squares consistency with the GRAPPA reconstruc-
tion [12]. To maximize the curvature, we used a two-level
parameter sweep over the same range as for WSURE. We
emphasize that this method differs from L-curve methods
in that the L-curve balances the data prediction residual
norm with the regularization term. Because DESIGN pre-
serves the acquired data, the data prediction residual does
not depend on γ, so the standard L-curve method cannot
be applied. The unregularized GRAPPA reconstruction was
included as a baseline.

Performance of WSURE for L1-SPIRiT

Using ε = 10−4, we studied the same performance trends for
the L1-SPIRiT reconstruction method for a range of under-
sampling factors on both T1-weighted data sets. We per-
formed Poisson-disc random Cartesian undersampling for
accelerations between 2 and 6, and we repeated finding the
WSURE-optimized and WMSE-optimal L1-SPIRiT recon-
structions for each sampling pattern. The noise level was
held fixed at 13-dB SNR and 14-dB SNR, respectively, for
the two data sets (again adding synthetic complex Gaussian
noise to the averaged reference k-space before undersam-
pling). We used a coarse-to-fine two-level parameter sweep
to find the WSURE-optimized γ, with the coarse level
sweeping γ between 10−7 and 10 for both data sets, and
we used fminsearch() with a starting point of γ = 0.01
(again for both data sets) to find the WMSE-optimal γ. We
also computed the L-curve-like log-log pareto optimality
curve of the SPIRiT-consistency and sparsity terms [15] and
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FIG. 6. The sparsity-regularized L1-SPIRiT reconstruction for data
set #2 with 14-dB input SNR yields lower WMSE (a) for both the
WMSE-optimal and WSURE-optimized choices of γ, relative to the
unregularized SPIRiT reconstruction. The L1-SPIRiT reconstruction
using the WSURE-optimized choice is within 0.056 dB of the true
WMSE-optimal L1-SPIRiT reconstruction. The WMSE-optimal and
WSURE-optimized choices for the L1-SPIRiT regularization param-
eter γ (b) tend to decrease slowly as the undersampling factor
increases. The larger values of γ from the L-curve-like method
increase the WMSE, but not as substantially as for DESIGN. The plot-
ted values of R account for the central k-space calibration region.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

maximized its curvature using the same two-level param-
eter sweep for both data sets. This L-curve-like method
is not a standard L-curve method for the same reason as
for the DESIGN reconstruction. Unregularized SPIRiT was
provided as a baseline.

Violating the Assumption x = GMx

At high levels of acceleration, or when the coil channels do
not provide sufficient spatial encoding to overcome that
acceleration, the linear parallel imaging method symbol-
ized by G does not satisfy x = GMx, even for noise-free
k-space x. In such cases, our WSURE metric may not accu-
rately reflect the true WMSE, and automatic parameter
tuning may suffer. To investigate the effects of such a viola-
tion, we applied L1-SPIRiT to the first data set at a high level
of undersampling, R ≈ 6. For this undersampling factor, we
repeat the validation experiment carried out earlier on the
first data set, using the same range of ε and γ as before.

RESULTS

The results of our validation experiments for DESIGN and
L1-SPIRiT are illustrated for both T1-weighted data sets in

Figures 2 and 3, respectively. The value of ε shown is 10−4

for both data sets with both DESIGN and L1-SPIRiT. The
other values of ε considered yielded essentially identical
curves to these curves, implying that WSURE estimates are
fairly insensitive to ε for either of these nonlinear meth-
ods. For ease of comparison, the constant term in Eq. 10,
which depends on the true value x, is computed from the
reference k-space and added to WSURE estimates in the
figures. This value is a constant offset, so it is not needed
to find the WSURE-optimized γ. In both cases, the trend
of WSURE estimates follows the shape of the curves for
both true and approximate WMSE, although they tend to
deviate more for smaller values of the regularization param-
eter. In addition, the approximate WMSE values are similar
to the true WMSE values, validating the approximation
GMx ≈ x made in Eq. 4. In addition to having similar
shapes, these curves share similar minima, validating the
accuracy of our proposed WSURE error criterion. The error
bars depicting ±5 sample standard deviations from the
sample mean of our 20 WSURE estimates also suggest that a
single realization of b is sufficiently precise to choose γ that
minimizes the WMSE effectively. The maximum observed
sample standard deviations were 1.2 and 0.63 percent of
the mean for DESIGN and L1-SPIRiT, respectively.

Figure 4 shows the optimal γ’s and WMSE values for
the first T1-weighted data set of the WSURE-optimized
and WMSE-optimal DESIGN reconstructions, for a range of
noise levels, with 2 × 2 uniform Cartesian undersampling.
The curves for the second data set display similar behav-
ior and can be found online as Supporting Information.
The staircase-ramp effect observed in the plot of WSURE-
optimized γ is due to the coarseness of the employed
parameter sweep. Additional sweep levels would not be
meaningful considering that the change in WMSE is so
small around the minimum as to be nearly comparable
to the standard deviation in the Monte Carlo WSURE
estimates. The L-curve-like method maximizing the cur-
vature of the log-log pareto optimality frontier tends to
overestimate γ for both these data sets, particularly in
the cases of high-input SNR. For the second data set, the
L-curve-selected γ does not increase monotonically, indi-
cating difficulty in estimating the second derivative of the
log-log pareto curve numerically for this application. The
WMSEs of the reconstructions guided by L-curve selection
suffer as a result. The multichannel k-space WMSE values
for the WMSE-optimal and WSURE-optimized choices of γ

show little difference between reconstructions optimal for
these error criteria, so we examine the reconstructed sum-
of-squares-combined magnitude and difference images for
data set #1 with 10.3-dB input SNR and data set #2
with 16.7-dB input SNR, all in Figure 5. Both WMSE-
optimal and WSURE-optimized DESIGN reconstructions
display similar reduction in noise level over the GRAPPA-
reconstructed image and minimal residual image structure
in the difference images. Both data sets’ reconstructions
for DESIGN with L-curve-selected γ portray significant
oversmoothing.

The results for WSURE-optimized L1-SPIRiT yield nearly
WMSE-optimal performance over a range of undersam-
pling factors for both T1-weighted data sets. The trends in
the optimal choices of γ and the resulting WMSE’s plotted
in Figure 6 for the second data set with 14-dB SNR noise
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FIG. 7. The unregularized SPIRiT
reconstruction (a) and difference
image (b) for data set #1 with
R ≈ 4 Poisson-disc under-
sampling and 13-dB input SNR
display significant noise, while
L1-SPIRiT with WMSE-optimal
(e,f), WSURE-optimized (i,j),
and L-curve-selected (m,n)
choices of γ effectively improve
image quality by nearly the same
amount. The L-curve-based
method results in a slightly
oversmoothed image, although
the difference is not as apparent
as for the DESIGN reconstruc-
tion. Similar conclusions can be
inferred from the second data
set with R ≈ 4 Poisson-disc
undersampling and 14-dB input
SNR. The SPIRiT reconstruction
(c,d) is relatively noisy, whereas
L1-SPIRiT with WMSE-optimal
(g,h), WSURE-optimized (k,l),
and L-curve-selected (o,p)
choices of γ all denoise the
image while avoiding substantial
oversmoothing. The difference
images are displayed at 5× scale.

nearly match the optimal performance over the entire range
of acceleration. The curves for the first data set with 13-dB
input SNR are similar to these curves; they can be found
online as Supporting Information. The same staircase-ramp
effect is observed for the WSURE-optimized γ curve due
to the resolution of the parameter sweep. Although the
L-curve-like curvature maximization of the log-log pareto
optimality curve yields suboptimal γ curves for both data
sets, the WMSEs appear to be much closer for L1-SPIRiT
than DESIGN. The reconstructed images in Figure 7 con-
firm the numerical comparisons for the 4× undersam-
pled case for both T1-weighted data sets, as the sum-of-
squares-combined magnitude and difference images are
nearly indistinguishable between the WSURE-optimized,
and WMSE-optimal, and L-curve-based reconstructions.
Each yields noticeable noise reduction over the unregular-
ized SPIRiT reconstruction shown for comparison.

Last, we investigate the effects of violating the x = GMx
approximation used to form WSURE estimates. In the case
of L1-SPIRiT with the first T1-weighted data set, shown in

Figure 8, WSURE validation appears to show a breakdown
in the approximation starting at R ≈ 6, but at this high level
of undersampling, the image quality of even the WMSE-
optimal L1-SPIRiT reconstruction is degraded beyond the
point of diagnostic utility. The WSURE-optimized choice
of γ is a bit off the WMSE-optimal choice, but the additional
loss of image quality appears negligible.

DISCUSSION

The experiments validate the use of Monte Carlo WSURE
for regularization parameter selection for both DESIGN
with uniform Cartesian and L1-SPIRiT with nonuniform
Cartesian undersampling, over a wide range of acquisition
parameters including different undersampling factors and
noise levels. Because the derivation of the Monte Carlo
WSURE method is applicable to data-preserving recon-
struction methods, and the implementation requires only
the ability to evaluate the reconstruction function, this
approach to parameter selection should readily generalize
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FIG. 8. At an acceleration of R ≈ 6,
WSURE for L1-SPIRiT, shown for data set
#1 with ε = 10−4, tracks the SPIRiT-
approximated WMSE curve when the x =
GMx approximation is violated (a). However,
both these curves do not follow the true
MSE curve as closely as before. The result-
ing WSURE-optimized γ hence is slightly
off, but the overall performance degrada-
tion in the WSURE-optimized image (d) is
insignificant compared to the low quality of
the WMSE-optimal L1-SPIRiT reconstruc-
tion (c). The unregularized SPIRiT recon-
struction (b) is shown for reference. WSURE
curve error bars correspond to ±5 standard
deviations from the mean WSURE value.
Only the error bars were estimated from 20
realizations of the complex Bernoulli noise
vector b; the WSURE curves correspond to
using just the first realization of b. [Color
figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

to other parallel imaging reconstruction algorithms. Also,
the Monte Carlo WSURE can be applied to existing recon-
struction methods such as L1-SPIRiT without consider-
ing the implementations of such methods. Our method
requires just two evaluations of the regularized reconstruc-
tion per candidate γ. Although hard-coding regularization
parameters may suffice to produce high-quality images
in some instances, as suggested by the relatively narrow
range of WMSE-optimal γ for the presented experiments,
being able to choose such parameters automatically would
reduce the burden on programmers and practitioners to
ensure parameter choices are indeed reasonable. This arti-
cle describes a novel way of using parallel imaging to
estimate the WMSE (or MSE) with SURE for image recon-
struction problems that applies to data-preserving meth-
ods. This ability to tune parameters for algorithms that
preserve the acquired data sets, the proposed method apart
both from previous work using SURE, and popular param-
eter selection methods such as discrepancy principle,
cross-validation, and L-curve curvature maximization.

In this article, we consider uniform and nonuniform
Cartesian undersampling, but our framework also can han-
dle regularized non-Cartesian parallel imaging reconstruc-
tions and reconstructions that do not preserve the data with
only minor modifications. However, in non-Cartesian par-
allel imaging, where the reconstructed k-space typically are
located on a Cartesian grid, preserving the data makes less
sense, and existing Monte Carlo SURE-based methods can
be applied instead. More sophisticated cost functions that
preserve edges and local details may also be compatible
with the WMSE and WSURE framework.

Our experiments involved optimizing a single-
regularization parameter, but our SURE-based method
extends to tuning multiple parameters. In the multivari-
ate case, various minimization methods can be used (34,
35). However, these methods may be more sensitive to

initialization and nonconvexity of the error criterion with
respect to the regularization parameters.

A limitation of the framework is the approximation
GMx ≈ x that is necessary to relate the measurement
locations to the full k-space; at high accelerations, this
approximation becomes limited by the number and geome-
try of the coils (or more generally, the limitations on linear
reconstruction G). We demonstrated that at the level of
acceleration where this approximation becomes an issue,
the quality of even the WMSE-optimal images is too low
to be useful. Another limitation is the need to choose the
noise scaling parameter ε. Our validation experiments indi-
cate that choosing the absolute best ε is not critical, and
that a wide range of ε would yield similar results, even
for nonlinear reconstruction methods like DESIGN and
L1-SPIRiT.

CONCLUSIONS

We described an extension to the Monte Carlo SURE
method for regularized autocalibrating parallel imaging
reconstruction methods such as DESIGN and L1-SPIRiT.
We performed experiments on real data to validate WSURE
estimates of the WMSE and demonstrated that the Monte
Carlo WSURE estimates yield nearly WMSE-optimal recon-
struction quality for both uniform undersampling with
DESIGN and nonuniform Cartesian undersampling with
L1-SPIRiT. In these experiments, we also compared our
method against an L-curve-like method for parameter selec-
tion that tended to oversmooth the reconstructed images.
We concluded with a discussion of useful extensions and
possible limitations of our method.
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LIST OF SUPPLEMENTARY FIGURES

Figure S1: The true and approximate WMSE validation curves for DESIGN for data set #1 (a) and data

set #2 (b) are compared against WSURE repeated for various ε’s spanning several orders

of magnitude. The curves (just a single trial for each point) are nearly identical, and they all

provide decent approximations of the true and approximate WMSE’s for both T1-weighted

data sets.

Figure S2: The true and approximate WMSE validation curves for L1-SPIRiT for data set #1 (a) and

data set #2 (b) are compared against WSURE repeated for various ε’s spanning several

orders of magnitude. The curves (just a single trial for each point) are nearly identical,

and they all provide decent approximations of the true and approximate WMSE’s for both

T1-weighted data sets.

Figure S3: The sparsity-promoting DESIGN method yields similarly lower WMSE (a) for both WMSE-

optimal and WSURE-optimized choices of γ, relative to the un-regularized GRAPPA re-

construction, for the second data set. The WMSE of the DESIGN reconstruction using

the WSURE-optimized choice is within 0.047 dB of the true WMSE-optimal DESIGN re-

construction. This behavior is consistent with the WMSE-optimal and WSURE-optimized

choices for the DESIGN regularization parameter γ (b) being nearly the same for this ex-

ample. The L-curve-style method, however, appears to overestimate γ, yielding images

with slightly higher WMSE, and in the high-SNR case, again worse than performing un-

regularized GRAPPA. The non-monotonic behavior of the L-curve estimates of γ confirm

the difficulty of estimating the maximum curvature.

Figure S4: The sparsity-regularized L1-SPIRiT reconstruction for data set #1 yields similarly lower

WMSE (a) for both the WMSE-optimal and WSURE-optimized choices of γ, relative to the

un-regularized SPIRiT reconstruction. The L1-SPIRiT reconstruction using the WSURE-

optimized choice is within 0.057 dB of the true WMSE-optimal L1-SPIRiT reconstruction.

The WMSE-optimal and WSURE-optimized choices for the L1-SPIRiT regularization pa-

rameter γ (b) tend to decrease slowly as the undersampling factor increases. The larger

values of γ from the L-curve-like method increase the WMSE, but not as substantially as

for DESIGN. The plotted values of R account for the central k-space calibration region.
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Figure S3: The sparsity-promoting DESIGN method yields similarly lower WMSE (a) for both WMSE-optimal 
and WSURE-optimized choices of γ, relative to the un-regularized GRAPPA reconstruction, for the second 

data set. The WMSE of the DESIGN reconstruction using the WSURE-optimized choice is within 0.047 dB of 
the true WMSE-optimal DESIGN reconstruction. This behavior is consistent with the WMSE-optimal and 
WSURE-optimized choices for the DESIGN regularization parameter γ (b) being nearly the same for this 
example. The L-curve-style method, however, appears to overestimate γ, yielding images with slightly 

higher WMSE, and in the high-SNR case, again worse than performing un-regularized GRAPPA. The non-
monotonic behavior of the L-curve estimates of γ confirm the difficulty of estimating the maximum 

curvature.  
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Figure S4: The sparsity-regularized L1-SPIRiT reconstruction for data set #1 yields similarly lower WMSE (a) 
for both the WMSE-optimal and WSURE-optimized choices of γ, relative to the un-regularized SPIRiT 

reconstruction. The L1-SPIRiT reconstruction using the WSURE-optimized choice is within 0.057 dB of the 
true WMSE-optimal L1-SPIRiT reconstruction. The WMSE-optimal and WSURE-optimized choices for the L1-
SPIRiT regularization parameter γ (b) tend to decrease slowly as the undersampling factor increases. The 

larger values of γ from the L-curve-like method increase the WMSE, but not as substantially  
as for DESIGN. The plotted values of R account for the central k-space calibration region.  
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