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Source Detection Performance Prediction
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Abstract—The complex system response of 3D position-sensitive
gamma-ray detectors complicates modeling the recorded mea-
surements and makes exact expressions for detection performance
intractable. This makes source detection performance difficult
and expensive to compute. Asymptotic analysis has the potential
to simplify detection performance prediction with complex sys-
tems and has previously been applied to detection performance
prediction with simulated gamma-ray detectors. In this work,
we use asymptotic performance prediction methods to predict
points on the receiver operating characteristic (ROC) curve for
the illustrative task of detecting a 137 Cs source in background
with an 18-detector CdZnTe array. We assume that the source
position, source energy, background spectrum, and background
spatial distribution are known. Although these assumptions are
not always valid in practice, the efficiency of the prediction method
makes it attractive for detection system design problems. Our
results show that the asymptotic performance prediction method
accurately predicts the empirically observed performance with
real data recorded with a real system. Our results also char-
acterize the performance of the detector array for the task of
source detection. The accuracy and computational efficiency of
the asymptotic detection performance prediction method make it
a viable alternative to empirical performance evaluation.

Index Terms—Asymptotics, Compton imaging, performance
prediction, receiver operating characteristic, source detection.

1. INTRODUCTION

AMMA-RAY source detection problems arise in secu-

rity screening, nuclear nonproliferation, and medical di-
agnostics. Simple systems for radioactive source detection look
for an increase in the rate of received photons due to a radiation
source. More complex measurement systems use spatial and
spectral information to more accurately detect radiation sources,
but these systems often have a complicated system response,
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making it difficult to compute detection performance analyt-
ically. The 3D position-sensitive detector and its system re-
sponse in [1] illustrate this point.

In this work, we quantify detection performance in terms
of points on the receiver operating characteristic (ROC) curve,
which is the probability of detection as a function of the prob-
ability of false alarm [2]. Previous work that characterized the
detection performance of gamma-ray detectors relied on empir-
ical ROC calculation, e.g., [3], [4]. Empirical ROC calculation
is performed by simulating multiple scans with a detector, and
using the statistics of those scans to compute the probabilities
of false alarm and detection. Empirical ROC calculation is com-
putationally expensive and provides only limited intuition about
how detector or environment parameters affect detection perfor-
mance. However, empirical ROC computation may be prefer-
able when recorded data is readily available or highly accurate
predictions are necessary.

Asymptotic ROC prediction is a computationally efficient
alternative to empirical ROC computation for likelihood-based
tests, or tests that are functions of estimates obtained by
maximizing a modeled likelihood. We developed asymptotic
approximations for the distributions of likelihood-based esti-
mates in [5], and used these approximations to predict detection
performance in the presence of model mismatch. It was shown
in [5] that the asymptotic performance prediction method
yields more accurate predictions in terms of mean-square error
than empirical methods, especially when few measurements
are available. It was also shown in [5] that ROC predictions
based on asymptotics achieve the same accuracy, in terms of
mean-squared error of the area under the ROC, with fewer
recorded or simulated events. This reduces the computational
cost of producing the ROC curve because system response
calculations can be expensive.

The simulation results of [5] do not demonstrate that the pro-
posed method can accurately predict the performance of real
detectors. In this work, we show that the performance predic-
tion method that accounts for model mismatch developed in [5]
can accurately predict source detection performance with a real
Compton imaging system. To our knowledge, this work is the
first to successfully apply an asymptotic performance prediction
method to characterize the performance of the source detection
task with a real gamma-ray imaging system.

In addition to demonstrating the practical utility of the
asymptotic performance predictions of [5], this work serves as
an example application of the asymptotic performance predic-
tion method using real data. We use the asymptotic method to
predict the probability of detection as a function of scan time
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with a fixed false-alarm rate for various source-to-background
ratios. These examples demonstrate how the asymptotic per-
formance prediction method can be applied to evaluate the
performance of real detectors in the field.

Demonstrating the accuracy of the asymptotic performance
prediction method with real data is significant because there
is more model mismatch than in the simulated case. For ex-
ample, Doppler broadening ([6], p. 311) is not simulated in
[5]. Room-temperature pixellated semiconductor detectors, in-
cluding the detectors used in this work [7], have an area near the
anode where interacting photons are not detected. To simplify
computation, the model used in this work, based on [1], does
not account for this non-ideal detector behavior. Furthermore,
crystal defects can cause errors in the measured interaction po-
sitions that are not accounted for by the model. Our results show
that the asymptotic prediction method is reasonably accurate in
the scenarios considered despite the system response approxi-
mation and failure to account for all non-ideal detector behavior.

The contributions of this work are: (i) to show that the
asymptotic performance prediction method developed in [5]
gives reasonable predictions with a real system, (ii) to illustrate
practical uses of this method, and (iii) to provide representative
detection performance figures for a real CdZnTe gamma-ray
imaging system. This paper is organized as follows: Section II
describes the experimental setup, Section III shows predicted
and empirical performance of the detector for various tasks,
and Section I'V gives our conclusions and plans for future work.

II. METHODS

We recorded gamma-ray interaction data with a Compton
imaging system consisting of an 18-detector CdZnTe array sim-
ilar to the system described in [8]. We obtained list-mode mea-
surements of the natural background in a room with concrete
walls, and measurements in the same position with a 1-uCi Cs
source located 1.83 meters from the front of the detector. We
used the events obtained from these measurements to evaluate
the source detection performance of the system.

A. Measurement Model

There are many aspects of the gamma-ray source detection
problem that one can model. The system model and sensitivity
are necessary for the likelihood-based detection methods used
in this work. We also model the background spatial and energy
distributions because this improves detection performance when
the modeling is reasonably accurate.

1) Model Parameters: There are several parameters that
characterize the gamma-ray source detection problem. We char-
acterize the source by its intensity « with units of gamma-rays
emitted per unit time, position ¢, which lies in the space ¢
of possible source positions, and energy e, which lies in the
space of possible energies £. In the 3D far-field with a known
source energy, the set ® could be [0, 27] X [0, 7], representing
all possible azimuth and polar angles on a sphere. The set of
possible source positions ® is independent of the detector.
We parameterize the background intensity by the background
count rate )\, with units of gamma-ray emissions recorded
per unit time. We assume that the background spectrum is
known. Let @ be the vector of all parameters, where 6 lies in the

d-dimensional parameter space ©. In what follows, we assume
that @ takes the form:

0= (a,¢.eN), ey

for which d = 4. Throughout this work, we assume that the
source intensity is unknown, the source position in space ¢ and
energy e is known, and the background intensity A; can be ei-
ther known or unknown. Let the modeled sensitivity 5(¢, e) ap-
proximate the probability that a photon emitted from a source
positioned at ¢ is recorded. We model the total rate of recorded
photons by the sum of the rates of recorded source and back-
ground photons

AO) 2 N+ ai( o). 6

2) System Model: We use the model given in [5] to describe
the system used in this work. Let r be a vector of recorded
attributes associated with a single photon interaction. The
recorded attributes contain any and all information that a
detector records during a photon interaction. In a position-sen-
sitive Compton detector, the attribute vector r contains the
interaction positions and deposited energies for a single in-
teracting photon. In fixed-time mode, the number of recorded
photons J is reasonably modeled as a random variable, where
J ~ Poisson(.J(8)). The mean number of recorded photons
J(8) is given by

J(8) 2 A\0)r,

where 7 is the scan time. We define the scan time to be the
interval during which the system is recording events. Let
7 =[ry,7o,...,75] be a list of the recorded attributes for all
interacting photons during a fixed-time scan. By the statistics
of list-mode data [9], a reasonable statistical model for the list
of recorded attributes 7 is

#0) 2 e OO /1 ] b(ri0). B

j=1

okl

This model is the product of a Poisson term involving the
number of recorded counts and the densities of the recorded at-
tributes from each photon. We model the probability density of
the individual recorded attributes p(r; @) using the approximate
model in [1] because it results in reasonable detection perfor-
mance and does not require numerical integration.

Let ps(r; ¢, e) denote the modeled density of a recorded at-
tribute vector r given that the interacting photon emanated from
a source at position ¢, and let pg(r) denote the modeled density
of a recorded attribute vector r given that the interacting photon
originated from the background. Note that ps(r; @, ¢) depends
on the source position and energy, and pp(r) does not depend
on any of the parameters in (1).

We model the distribution of a single recorded attribute as a
mixture of ps(r; ¢, ¢) and pg(r) given by

o _ a§(¢7 6)[55(1‘; ¢7 6) + /\bf)B("')
p(r:0) = as(d,e) + X

We substitute (4) into (3) to compute the likelihood of a list of
observations.

“
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Fig. 1. Estimated probability density function for the incident energy of
recorded background photons. This density was estimated using 10 000
recorded events from the natural background.

3) Sensitivity Model: The detector sensitivity is the proba-
bility that an emitted photon is recorded, which is a function of
the photon energy e, detector geometry, and the source position
¢. Let 5(¢, e) be the modeled system sensitivity. We computed
the sensitivity model 5(¢, ¢) by simulating the detector system
in a uniform background using Geant4 [10]. We used simple
back projection [11] to compute the sensitivity as a function of
position and energy. We normalized the sensitivity so the sensi-
tivity to the source at its true position and energy is unity. This
method of computing the sensitivity is approximate and it too
may be a source of model mismatch.

4) Background Distribution: To model the background spec-
trum, we discretize the background energy spectrum into 80 uni-
formly spaced bins from 0 keV to 2000 keV. We assume that
the shape of the background spectrum is known, and perform
detection with and without the assumption that its intensity is
known. When the background intensity is known, we use a pre-
viously measured value for the intensity, which assumes that
the background is governed by a stationary process. When the
background intensity is not known, we estimate it along with the
other unknown parameters, such as source intensity. This study
examines the effect of different background models on detec-
tion performance.

We measured the natural background using 10 000 recorded
background photons with two or more interactions. We used an
expectation maximization (EM) algorithm [12] to reconstruct
the incoming spectrum as a function of energy. This estimated
incident spectrum serves as a model for the true incident back-
ground. We chose to use 10 000 recorded events because we
were able to obtain a reasonable estimate at a reasonable com-
putational cost.

Let pp(¢, e) be the probability of the incoming position ¢
and energy e of a background photon. The source detection
model assumes that the background emission density is uniform
in space, but varying in energy, i.e., pg(@, €) is only a function
of energy e. Let f(&, e) be the measured intensity of the back-
ground. We have that [9]

— f(¢7 €)§(¢ 6)
Joxe F(@,€)3(h, e)dpde”

We evaluate (5) numerically to compute pg(¢, e). Fig. 1 shows
the modeled probability density of recorded energy given that
the photon originated from background pp(¢,e) computed
using (5).

(¢ ¢) &)
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Fig. 2. Uniform incident background energy model.

Fig. 2 shows the modeled probability of the recorded energy
given that it originated from the background under the assump-
tion that the recorded energies are uniform. Use of this model
will introduce model mismatch.

We evaluate the distribution of recorded attributes given that
they originated from background pg(r) by

Né Nenergy

Pa(r) =Y > ps(ridic;)pe(dic)),

=1 j=1

where Ng is the number of position bins and Nepergy is the
number of energy bins, and ps(r;¢,,e;) is the density of
recorded attributes r for source position ¢, and energy e;. This
is a weighted average of the detector response to sources at
each position and energy bin.

B. Detection Methods

We analyze the performance of the source intensity test (SIT)
[13] applied to the gamma-ray source detection problem. The
SIT is based on the quasi maximum-likelihood (QML) estimate
for the source intensity. A QML estimator is equivalent to the
ML estimator if the true distribution is in the class of model
distributions. The QML estimate for the parameter vector 6 is
defined as [14]

A e
0. = arg max log p(7;0). ©)

We use the SIT because experiments showed that its perfor-
mance was superior to the generalized likelihood ratio test
(GLRT) when applied to simple systems [13].

In the absence of model mismatch, the parameter estimate
vector 0, converges in probability to the true parameter values
as the scan time goes to infinity. However, when model mis-
match is present, the estimates may converge to some other
value. For example, when there is no source present, the true
source intensity is zero, but model mismatch may cause the
source intensity estimate to converge to some nonzero value.
To precisely define the value to which the parameter estimates
converge, we first define the expected log-likelihood by

3(0) = Ellog p(#:0)]
- /R log p(#; 0)p(7)dF, ™

where the expectation is with respect to the true distribution and
‘R is the set of all lists of recorded attributes. This definition uses
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the expected value of the log-likelihood because it is the likeli-
hood function one would obtain with an infinitely large number
of observations, and thus it defines the asymptotic behavior of
the estimates. The parameter estimates converge to the asymp-
totic mean, which is defined as

2

arg max g(0). 8)

M
The asymptotic mean is the maximizer of the log-likelihood re-
sulting from an infinite number of measurements, and thus es-
timates will become very close to the asymptotic mean as the
number of observations becomes large. The asymptotic mean is
an important component of the performance prediction method.
Let o' be the true source intensity, which is unknown in prac-
tice. The objective of the SIT is to determine whether a source
is present (H) or a source is absent (Hp), i.e.,

at>0

ot =0.

Hli
H(]:

The source intensity test (SIT) [13] for detecting the presence
of a radiation source of unknown intensity « is given by

Hy

ar Z 7, 9
Hy

where &, is the QMLE for «, which is the first element of éq.,
and + is a threshold chosen by the user to obtain the desired
false alarm rate. The user decides that a source is present, or
H, is true, when the source intensity estimate ¢, is greater than
the threshold ~. The distribution of a.. determines the threshold
value that satisfies the desired false alarm rate, but the distri-
bution of & is intractable in the gamma-ray imaging problem.
Therefore, we use asymptotics to predict the distribution of &
in a computationally efficient manner.

C. Performance Measure

We state our results in terms of the probability of detection
as a function of scan time, which is the value of the ROC at
a particular false alarm rate as a function of time. This is in
contrast to previous works that state performance prediction [3],
[5], [13] in terms of ROC and the area under the ROC curve
(AUC). We choose to fix a false alarm probability and examine
how the probability of detection varies as a function of scan time
because the probability of detection is arguably more important
to the practitioner than the AUC.

D. Performance Prediction
We predict the ROC by approximating the distribution of &,
justified by Theorems 1 and 2 of [5], by

~ approx ~ 1 ~
a, "R N(u[u,;x(u)u,l]), (10)

where fi[y) is the first element of f, which corresponds to the
asymptotic mean of the source intensity. This approximation

becomes exact as the scan time goes to infinity. The covariance
is

2(8) = H1(0)G(B)H=1(8), (11)
where [5]
G(8) £ AE[(Volog p(r;8) + Vglog A(6))
x (Vglog p(r;8) + Vglog A(8))T], (12)
and
H(8) = —\V3log A(8) + V3A(8) — AE [V§ log p(r; )]
(13)

Vg is the column gradient with respect to @, Vg? is the Hessian
with respect to 8, ) is the true recorded count rate, and expec-
tations are with respect to the true distribution. The approxima-
tion in (10) gives a distribution that one can use to approximate
the distribution of the gamma-ray source intensity estimate. The
mean and covariance of this distribution are given by (8) and
(12), respectively.

If the source position ¢ and background intensity \; are
known, then X(8), G(8), and H(@) are scalar, otherwise they
are matrices. G(#) and H(#) characterize the uncertainty in
estimates of the parameter . Larger values of G(#) and H(0)
correspond to lower uncertainty in the measurements. Since
the true distribution is unknown, we describe a method for
evaluating /ij1) and ¥(f) in the next section.

E. Procedure for Computing Predicted Performance

We used the following procedure to apply the asymptotic ap-

proximation in (10) for detection performance prediction.

1) Obtain N recorded events with a source placed d meters
from the detector at an azimuth angle ¢, and polar angle
fs in a coordinate system centered at the detector, and
(¢s = 0°,605 = 90°) is the vector pointing from the front
of the detector. One should choose N to be large enough to
achieve the desired confidence in estimates of source and
background intensity.

2) Evaluate the asymptotic mean fi[;) by solving (6) using the
recorded events.

3) Evaluate the asymptotic covariance () using (11), (12),
and (13). Use Monte Carlo integration with the recorded
data to evaluate the expectations, e.g., for i.i.d. random
variables X;,i =1,2,..., N with density functions p(x)
and a function f(z),

1 N
E[f(0)] =  D_ f(Xa).
=1

4) Compute the true count rate As by averaging the count over
a sufficiently long time to achieve the desired confidence
in the estimate. We chose two hours.

5) Obtain N recorded events with the detector in the same
position as step 1 but without a source present.

6) Repeat steps 2—4 in the absence of a source.
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7) Use the computed asymptotic means and covariances
to compute the approximate distribution of &, with and
without a source present.

8) Use the approximate distributions to compute the probabil-
ities of false alarm and detection. Compute the probability
of false alarm by evaluating the probability that the source
intensity estimate ¢, is greater than the threshold v in (9)
using the Gaussian cumulative distribution function and
the mean and covariance in the absence of a source com-
puted in step 7. Compute the probability of false alarm by
evaluating the probability that the source intensity estimate
a is greater than the threshold 7 in (9) using the Gaussian
cumulative distribution function and the mean and covari-
ance in the presence of a source computed in step 7. Use
several different thresholds «y to produce an ROC curve.

9) Generate multiple ROC curves to generate the probability
of detection as a function of scan time for a fixed false
alarm rate.

E. Source Intensity Variation

We recorded data with and without a source present to predict
detection performance. We achieved the desired source-to-back-
ground ratio by combining events from the measurements with
and without a source. For example, the measurements of a 1-;,Ci
137Cs source placed 1.83 meters from the detector contain ap-
proximately 48% source events and 52% background events
across the entire energy spectrum. We observed the recorded
background count rate \; to be approximately 9114 counts per
minute using a measurement of 90.7 hours. The observed count
rate of the measurement containing both source and background
events is 18984 counts per minute, which we obtained with a
scan time of 121 minutes. We combined events from the lists ob-
tained with and without a source to explore a range of source-to-
background ratios.

G. Conventional Method for Empirical Calculations

We compared the predicted performance to the empirical per-
formance in terms of probability of detection. This method is
similar to that used in [3], [5], and [13]. We used the following
procedure to compute the empirical performance:

1) Repeat N, times with a source present and N, times

without a source present:

a) Draw the number of recorded source counts from a
Poisson distribution with mean 7atst, where at is
the true source intensity, st is the true sensitivity, and
Tatst is the mean number of received counts from the
source.

b) Draw the number of recorded background counts
from a Poisson distribution with mean equal to the
mean number of recorded background counts 7y

¢) Generate a list of events that contains Tatst source
counts and 7\, background counts using the events
recorded in the presence and absence of a source.
Combine the events from the measurements with and
without a source to achieve the proper mean number
of source counts.

d) Solve (6) using the list generated in the previous step.
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2) Use the empirical source intensity estimates obtained in
step 1 to compute the empirical probabilities of detection
and false alarm.

3) Generate multiple ROC curves to generate the probability
of detection as a function of scan time for a fixed false
alarm rate.

We computed the empirical performance by emulating
N, = 100 scans with a source present and N, = 100 scans
without a source present.

This empirical calculation method requires the emulation of
200 scans for each point on the graph of probability of detec-
tion versus scan time. In contrast, the asymptotic prediction
method based on (10) requires one computation with approx-
imately 20 000 recorded events for all scan times because the
asymptotic mean is invariant to scan time and the asymptotic
covariance in (11) scales as the inverse of the scan time. Thus,
computing detection performance as a function of scan time
with the asymptotic prediction method requires less computa-
tion than computing the performance empirically. The perfor-
mance gain is proportional to the number of scan time samples.

III. RESULTS

We computed the probability of detection as a function of
scan time when the source position, source energy, and back-
ground spectrum are assumed known. We examined the case of
a known and unknown background intensity and investigated
how inaccuracies in the background spectral model affect de-
tection performance. We found that the performance predicted
using (10) agreed well with the empirical performance in the
known background case. In the unknown background case, the
agreement between the theoretical and empirical predictions is
not as good as in the known background case. In both cases,
there is model mismatch due to the noisy background spectrum
estimate, the incorrect assumption that the background is spa-
tially uniform, and approximations in the detector system re-
sponse [1].

The results were generated with data recorded with an 18-de-
tector CdZnTe array. The detector records photon interactions
with up to four interaction events, including single-interaction
events.

A. 137Cs With Measured Background Spectrum and Known
Background Intensity

We first examined the problem of detecting a 37Cs source
when the background spectrum is modeled by the measured
background spectrum in Fig. 1, and the background intensity
is assumed known. Fig. 3 shows the probability of detection as
a function of scan time for probability of false alarms of 5%
and 10% with source intensities of 7.6 counts per second and
15.2 counts per second. The background intensity is 152 counts
per second. We use large false alarm rates so the system can
achieve a probability of detection near one in less than ten sec-
onds. One could apply this theory to obtain predicted perfor-
mance for lower false alarm rates. The markers on the plot are
intended to aid the reader in distinguishing the curves. These
markers do not represent data points.

The agreement between the empirical and predicted proba-
bility of detection is better with the higher source intensity for
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Fig. 3. Probability of detection versus scan time for detecting a 137 Cs source
in a natural background with intensity 152 counts per second using an 18 de-
tector CdZnTe array. The background shape and intensity are assumed known
and the background shape is modeled using a prior spectral measurement.
(a) Probability of false alarm: 5%, (b) Probability of false alarm: 10%.

both false alarm rates. This is likely due to the fact that the
Gaussian approximation for the distribution of the source inten-
sity estimate (10) improves as the number of recorded counts
increases [5]. This shows that the ROC approximation based
on asymptotics is more accurate for larger numbers of recorded
counts in this case.

Fig. 4 shows the probability of detection versus scan time
for source intensities of 7.6 and 15.2 counts per second with a
false alarm rate of 10%. The curves in each graph correspond to
the performance achieved when using all imaging and spectral
information, spectral information only, and the number of
recorded counts only. The detector used in this experiment
records positions and energies of all interacting photons, and
the performance using all imaging information takes all of this
information into account. We obtained the performance using
spectral information by only parameterizing the source energy
and not its position. We eliminated the parameterization with
respect to position by numerically integrating the likelihood
with respect to position over the sphere surrounding the de-
tector. The spectral information case essentially disregards the
information from the recorded positions in the detector. We
computed the performance using counting only by considering
the Gaussian approximation to the distributions of the source
intensity estimates obtained using only the number of recorded
counts. The counting case essentially disregards all information
except the number of recorded counts.

Fig. 4 shows that using imaging information results in the
best detection performance with both source intensities. The in-
crease in probability of detection over the spectral and counting
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Fig. 4. Probability of detection versus scan time for detecting a *37 Cs source in
a natural background with intensity 152 counts per second at a false alarm rate
of 10% using an 18 detector CdZnTe array with imaging and spectral informa-
tion, spectral information only, and counting information only. The background
shape and intensity are assumed known and the background shape is modeled
using a prior spectral measurement. (a) Source intensity: 7.6 counts/sec, (b)
Source intensity: 15.2 counts/sec.

cases is more in the case where the source intensity is lower. For
both source intensities, the performance difference between the
case of spectral information and imaging information is small.
The estimation problem is much simpler when only spectral in-
formation is used. In this experiment, there are 324 position bins
and 80 energy bins. There are 80 parameter bins when energy
is used without position, and 80 X 324 parameter bins when
energy and imaging are used. Thus, parameterizing the image
space requires 324 times more computation. There may be prac-
tical applications where the slight decrease in performance is
justified by the reduced computation when the source position
and energy are known.

As in Fig. 3, the agreement between the predicted and em-
pirical performance is better for the higher source intensity for
small scan times. As scan time increases, the empirical and pre-
dicted performance agree well.

B. '37Cs With Measured Background Spectrum and Unknown
Background Intensity

We also examined the problem of detecting a **7Cs source in
background when the background spectrum is modeled by the
measured background spectrum in Fig. 1, but the background in-
tensity is unknown and estimated. Fig. 5 shows the probability
of detection as a function of scan time with a background inten-
sity of 152 counts per second. The predicted and empirical per-
formance values are lower than in the known background case
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Fig.5. Probability of detection versus scan time for detecting a 137 Cs source in
a natural background with intensity 152 counts per second using an 18 detector
CdZnTe array. The background shape is assumed known and is spectral mea-
surement, but the background intensity is assumed unknown. (a) Probability of
false alarm: 5%, (b) Probability of false alarm: 10%.

of Fig. 3, which is expected since we introduced a nuisance pa-
rameter.

The agreement between the predicted and empirical proba-
bility of detection is poor in the unknown background case con-
sidered here. Fig. 6 shows histograms of the empirical source
intensity estimates with and without a source present when the
scan time 7 = 2 seconds and the source intensity is 15.2 counts
per second. The empirical performance is based on the empir-
ical histogram and the predicted performance is based on the
predicted distribution. The histograms in Fig. 6 do not agree
well with the predicted distributions because the scan time is too
small for the predicted distribution to be accurate. The accuracy
of the predicted distribution increases as scan time increases be-
cause it is based on an asymptotic approximation [5].

Fig. 7 shows empirical histograms and predicted distributions
when the scan time 7 = 10 seconds. The distribution agrees
better under H; than it did with scan time 7 = 2 seconds, but
the histogram under H; shows that the empirical distribution
has a lower variance than predicted, causing the empirical per-
formance to be better than the predicted performance. The poor
agreement between the empirical and predicted distributions
is likely because the predicted distribution is less accurate for
small scan times when the background intensity is unknown.
Our results only use 100 scans with and without a source, and
one may obtain better agreement by using a larger number of
trial scans.

Fig. 8 shows the probability of detection as a function of
scan time for a probability of false alarm of 10% with posi-
tion, spectral, and counting information. In the unknown back-
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Fig. 6. Histograms of source intensity estimates and predicted distributions for
scan time 7 = 2 seconds and source intensity ot = 15.2. (a) Source Absent
(Hoy), (b) Source Present (H;).
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Fig. 7. Histograms of source intensity estimates and predicted distributions for
scan time 7 = 10 seconds and source intensity at = 15.2. (a) Source Absent
(Ho), (b) Source Present (H).

ground case, the predicted performance using counting statistics
assumes a known background intensity because the source and
background intensities cannot be estimated otherwise. In this
case, the performance using imaging and spectral information
in an unknown background is better than the performance of the
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Fig. 8. Probability of detection versus scan time for detecting a '37Cs source
in a natural background with intensity 152 counts per second at a false alarm
rate of 10% using an 18 detector CdZnTe array with imaging and spectral in-
formation, spectral information only, and counting information only. The back-
ground shape is assumed known and is modeled using a prior spectral measure-
ment, but the background intensity is assumed unknown. (a) Source intensity:
7.6 counts/sec, (b) Source intensity: 15.2 counts/sec.

counting method, even though the counting method assumes a
known background.

The difference in performance between the imaging, spec-
troscopy, and counting cases is more pronounced with the
weaker source in Fig. 8(a). Even when the source intensity
is 15.2 counts per second in Fig. 8(b), the performance with
imaging information in an unknown background is still better
than the performance using counting statistics only in a known
background, although the results are not significantly different.

C. Effect of Incorrect Modeled Background Spectrum

We also explored the robustness of the SIT to changes in the
modeled background spectrum. The background spectrum may
change over time or if the detector is moved to a new location,
making it difficult to acquire a background spectrum estimate
that will be accurate at all times. Fig. 9 shows the probability
of detection as a function of scan time when the background
spectrum is modeled using the estimated spectrum in Fig. 1 and
the uniform spectrum in Fig. 2 when the background intensity
is known.

Fig. 9 shows that in this case, the predicted performance does
not change significantly when the background spectral model is
changed. This is likely because the source energy is known to
be 662 keV.

Fig. 10 shows the probability of detection as a function of
scan time for the estimated and uniform background models
with an unknown background intensity. The difference between
the predicted performance curves is also negligible in this case.
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Fig. 9. Probability of detection vs. scan time with an estimated background
spectral model and a uniform background spectral model. The source intensity
is 7.6 counts per second. The background intensity is 152 counts per second and
is assumed known. The probability of false alarm is 10%.
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Fig. 10. Probability of detection vs. scan time with an estimated background
spectral model and a uniform background spectral model. The source intensity
is 7.6 counts per second. The background intensity is 152 counts per second and
is not assumed known. The probability of false alarm is 10%.

However, the predicted performance is a poor approximation of
the empirical performance.

The comparison between the estimated and uniform spectral
models shows that the SIT is robust to the background spec-
tral model in this case when the source position and isotope are
known. This robustness is a result of the source having a single
energy and the background having a continuous and diffuse en-
ergy spectrum.

D. Practical Applications

The results in this section show that the proposed ROC pre-
diction method is accurate in certain scenarios. This method
would be useful in system design problems where one needs
to choose parameters such as the number of detectors, the phys-
ical arrangement of the detectors, or even the type of detectors.
The approximate distribution of the source intensity estimate in
(10) is a function of the scan time, so one can produce ROC
curves for different scan times with the same data set, reducing
the time required for measurement, simulation, and computa-
tion. The time required to compute the asymptotic approxima-
tion of the probability of detection versus scan time with 20 000
recorded events is approximately three hours on modern hard-
ware at the time of publication. For example, the empirical cal-
culations in this work were preformed for 10 distinct scan times.
The most computationally intensive task in this problem is cal-
culating the likelihoods, which must be done for both the em-
pirical and approximate methods. Thus, it should take approxi-
mately 10 times as much computation to produce the empirical
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curves in this section than the approximate curves, and this dif-
ference in computation time was observed while generating the
results.

IV. CONCLUSION AND FUTURE WORK

We applied the asymptotic detection performance prediction
method developed in [5] to a real system with real recorded
data. Our results showed that the asymptotic prediction method
accurately predicts detection performance for 5% and 10%
source-to-background ratios when the background intensity
is known. When the background intensity is unknown, the
predicted ROC was within the uncertainty of the empirical
ROC when the source-to-background ratio was 10%, but not
when the source-to-background ratio was 5%.

This work serves as an example application of the theory of
[5] to performance characterization of real systems. Our results
show that the asymptotic performance prediction method gives
reasonably accurate performance predictions that one can use to
help determine sensor placement, configuration, or viability.

We considered the case where the source position and energy
are known. Future work would investigate the accuracy of the
detection performance prediction method of [5] when the source
position and energy are unknown. The unknown energy case
presents additional challenges because in a typical application,
only a set of possible sources are of interest, and each source
may emit gamma-rays with multiple energies. The prediction
method of [5] only applies to continuous parameters, but an un-
known isotope is a discrete parameter. Future work would ex-
tend the performance prediction method to the case of a discrete
parameter.

We also assumed that the background spectrum and spatial
distribution are known. We used this assumption because back-
ground shape and spectrum estimation is a high-dimensional
problem. Future work would investigate methods of reducing
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the dimensionality of the background estimation problem
so reasonable estimates could be obtained with a reasonable
amount of data and computation.
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