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Abstract—Magnetic resonance image (MRI) reconstruction
from undersampled k-space data requires regularization to
reduce noise and aliasing artifacts. Proper application ofreg-
ularization however requires appropriate selection of assciated
regularization parameters. In this work, we develop a datadriven
regularization parameter adjustment scheme that minimize

an estimate (based on the principle of Stein’s unbiased risk

estimate—SURE) of a suitable weighted squared-error mease

in k-space. To compute this SURE-type estimate, we propose
a Monte-Carlo scheme that extends our previous approach to

inverse problems (e.g., MRI reconstruction) involving conplex-

control the strength of these regularizers during recanson.
These parameters are often set manually (based on visual
perception) for MRI reconstruction. In this paper, we focus
on the problem of automatic selection of these parameters fo
MRI reconstruction from undersampled k-space data.

Various quantitative criteria exist for automatic selenti
of parameters for regularized image reconstruction in ggne
[10], [11]. These may be broadly classified as those based
on the discrepancy principle [10], [11], the L-curve [1204],

valued images. Our approach depends only on the output of a generalized cross-validation (GCV) [15]-[19] and estiiorat

given reconstruction algorithm and does not require knowlelge of
its internal workings, so it is capable of tackling a wide vaiety of
reconstruction algorithms and nonquadratic regularizersinclud-
ing total variation and those based on the/;-norm. Experiments
with simulated and real MR data indicate that the proposed
approach is capable of providing near mean squared-error (MSE)
optimal regularization parameters for single-coil undersampled
non-Cartesian MRI reconstruction.

Index Terms—Image reconstruction, non-Cartesian MR, reg-
ularization parameter, Stein's unbiased risk estimate §URE),
Monte-Carlo methods.

I. INTRODUCTION

MAGE reconstruction is a crucial task in magnetic res
nance imaging (MRI). Model-based reconstruction metho
[1] can improve image-quality over direct methods such z1|§3] [24]
iFFT- or gridding-based reconstruction [2], especiallyr f '
undersampled k-space data. The problem is usually soly

o

of (weighted) mean squared-error (MSE, also knowmidg
using the principles underlyinftein’s unbiased risk estimate
(SURE) [20]-[27]. Unlike task-based methods [28]-[30]ttha
focus on developing quality assessment criteria specific to
a given task (e.g., detecting a lesion), the above parameter
selection methods only determine a “reasonable” solutiom f

a “feasible set” that is predetermined by the chosen cost
function.

Among these methods, we focus on the weighted MSE
(WMSE) based approach since WMSE is easily manipulated
and estimated using the SURE-framework [23], [24], [27] and
also because it is commonly used to quantify reconstruction
quality [22]-[27]. Moreover, SURE-based methods can t&ckl

C%’onitera\tive nonlinear reconstruction [22], [25], [26]dsitera-

Ve regularized reconstruction using nonquadratic ragzers

, [27] and also provide (near) MSE-optimal (regl

Léeation) parameter selection [22]-[27]. SURE-based patam
ection assumes that real- or complex-valued noise in the

by minimizing a cost function involving a model-hased da_tadbserved data follows a Gaussian distribution with known

fidelity term and regularization. Regularization is oftem i

mean and covariance, so it is well-suited for MRI.

clluged to reduce LI)I.-Iposehdness of the Pmb'em for ur:%?rfam'Previous applications of SURE-type parameter selection fo
pied cases, to.sta. llize t © reconstruction process and@ils \iny include noniterative denoising of magnitude imageq,[25
incorporate prior information about the object being reco%ENSitivity Encoding [31] (SENSE) based noniterative reco

structed. Nonquadratic regularizers can better suppreise n
and aliasing artifacts compared to quadratic ones [3]. Syar

promoting regularizers such as those based od;t#morm and
edge-preserving total variation (TV) are popular nongatdr
regularizers in MRI [4]-[9]. Successful regularizatiomjuires
careful selection of associatedgularization parameters that
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struction fromuniformly undersampled multi-coiCartesian
k-space data [26] and iterative MRI reconstruction (using
nonquadratic regularizers) from single-cGiirtesian k-space
data witharbitrary undersampling [27]. These papers derive
analytically a (weighted) SURE-type estimate of a (weighted)
MSE for a particular (iterative) reconstruction algorithm

In this work, we propose a SURE-based regularization pa-
rameter selection method for iterative MRI reconstrucfrom
undersampled data using nonquadratic regularizers. &nlik
earlier work [23]-[27], we propose a Monte-Carlo scheme
for computing the desired weighted SURE-type estimates Thi
Monte-Carlo scheme extends our previous work for real-
valued denoising algorithms [32] to complex-valued recon-
struction algorithms with application to MRI reconstracti
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Our Monte-Carlo method depends only on the output of Bhus, (1) can accommodate continuous-domain physical-
given reconstruction algorithm and does not require kndgde effects representative of MR physics and imaging such as
of its internal workings beyond confirming that it satisfiesransverse relaxation, inhomogeneity of the applied mégne
certain (weak) differentiability conditions, so it is veftgxible field, chemical shifts and nonuniform sensitivity of reeeiv
and can be applied to a wide variety of iterative/nonitgeati coils [1, Eqg. (10)] viay,w.- It also applies to several types
nonlinear algorithms. of MRI including single-coil/parallel imaging, undersalag

We illustrate the efficacy of the proposed Monte-Carl@artesian/non-Cartesian imaging and combinations thereo
scheme for MRI reconstruction from single-coil undersaadpl
pon—Cartesian k-space data with severa! nonquadratic regulaé—_ Image Reconstruction
izers such as a smooth edge-preserving one, TV and,an ] )
regularizer. We present numerical results for simulatimita ~ FOr the purpose of image reconstruction, we use the follow-
the analytical Shepp-Logan phantom [33] and experimerifd discretizedinear model [1, Eq. (18)]
with real GE phantom data and in-vivo human brain data. y = AXirue + € @)
These results extend those in our previous work [27] for MRI ’
reconstruction from single-coil undersampled Cartesiatad that is based on a discretization [1, EQ. (14¥ue, Of
We demonstrate that the proposed Monte-Carlo SURE-bagbhd continuous-domain objegf;... This discretization cor-
method provides near-MSE-optimal regularization parametespondingly yields [1, Eqgs. (14)-(17)] a system matu,
selection and performs equally well or better than GCV fdhat approximates continuous-domain imaging operatiank s
nonlinear algorithms [18], [27, Eq. (7)]. Methods proposeds those mentioned in Section II-A. The matdx depends
in this paper can also be extended to tackle nongquadratiainly upon (among other factors such as the pulse sequence
regularization based iterative parallel MRI reconstruefirom and coil geometry) the k-space trajectory used to acquire
Cartesian and non-Cartesian k-space data with arbitratgmrin and is assumed to be known. Whife is essential for image
sampling (see Section VII). reconstruction, we remark thai,,. is a hypothetical object

The paper is organized as follows. We introduce our daftaat is not necessary for the methods proposed in this paper
model and describe the parameter selection problem mathed is used purely for validating our simulations. For an
matically in Section Il. We briefly review the principles ward appropriate discretization [1A represents (nonuniform) dis-
lying SURE in Section Il and describe the proposed Monterete Fourier transform for (non-Cartesian) single-aoiging
Carlo method in detail in Section IV. We briefly describe regignoring field inhomogeneity and relaxation effects) whil
ularized iterative single-coil non-Cartesian MRI recounstion for parallel MR, it corresponds to the combined Fourier and
in Section V. We present a variety of experimental results #patial sensitivity encoding matrix [3].
Section VI and discuss implementation aspects and possibléiven (1)-(2), the goal of image reconstruction is to obtain
extensions to this work in Section VII. We finally concludea discretized estimaté&, of yiyue from y. This corresponds
with Section VIII. to an ill-posed inverse problem whév < N and is usually

In the rest of the papex;)", (-)’ respectively denote thetackled in a regularized-reconstruction framework wheme a
non-Hermitian and Hermitian transposes, gng; and (-)z iterative reconstruction algorithm is applied gnto yield x.
respectively indicate the real and imaginary components ofWe denote the reconstruction process by
complex vector or matrix. The:th element of any vectoy

is denoted by eithefy],, or y,, and themnth element of X =ux(y), (3)
any matrixA. is written as[A],,,. For any vectoly and any whereu, : CM — CV is a (possibly nonlinear) operator
matrix W, |ly|3 =y’ Wy. representative of the corresponding iterative recongtmic
algorithm. The vectoA in uy denotes one or more tunable
Il. PROBLEM DESCRIPTION parameters (e.g., number of iterations, regularizaticength)
A. Data Model that characterize the reconstruction method and govern the

uality of x. Selecting a suitablé thus plays an important
In MRI, noise originates in the analog domain (due tg y o1 x 9 ey P

. . e ole in problems such as (3). OfteA,is adjusted manually
thermal fluctuations of spins) before acquisition of k-spa%_ased on visual perception & In this work, we focus on

samples but can be modeled reasonably accurately as &ddii, itative methods for selectin automatically. Specifi-

fGﬁusgiandin the acquired k—spa(?e samples. So, we use Qﬁy we propose to use a weighted squared-error measure in
ollowing data-model [1, Eq. (12)]: the measurement domain that can be estimated using Stein’s
Y = Ytrue T &, (1) principle [20], [21] and then minimized to yield an apprae

o choice of.
where we assume that,.. € CM, containing samples of

the true unknown MR signal, is a deterministic unknown )
y € CM contains noisy measurements, afde CM is C. Weighted Squared-Error Measures
a zero-mean complex-valued Gaussian random vector within imaging inverse problems, reconstruction quality inft
covariance matriX) € CMxM quantified using mean squared-ertdSE(A) £ N || x¢rue —

At this point, (1) does not involve discretization of the unuy (y)||3, and is thus a reasonable metric for adjustig
derlying continuous-domain objegt, .. that is being scanned. However, MSE()) is neither accessible in practice (due to



its dependence oR;...) nor amenable for estimatiér(e.qg., 2) Proposed Measure: To avoid this discrepancy in rea-
using Stein’s principle) in ill-posed inverse problems doe soning, we propose to consider the following WMSE metric
the ill-posedness of (2) foM < N [21], [23], [27]. with respect to the True Datgy,y. Sinceyw. accounts for

1) Previous Extensions to MSE: To circumvent this diffi- continuous-domain imaging operations:

culty, some authors [21], [23] have focussed on _
Y [21]. 1223] WMSETD(A) £ M7 |ytrue — Amn(y) 3. (7)

Projected-MSEX) = M ! |P[xuue — ur(y)]lI3,  (4) We still require Auy(y) in (7) because we are recon-
structing a discretized version, i.euy(y), of the origi-
where P £ A’(AA’)fA, ()! represents pseudo-inversenal continuous-domain objegt:.e SO thatA mapsuy (y)
Another alternative [11], [27] is to its corresponding k-space vector. Similar WMSE(X),
WMSETD(X) is also a measurement-domain error metric
Predicted-MSEX) = M~ !||A[xuue — ua(y)][|3.  (5) that is not directly accessible due to its dependence on the
true unknown sampleg;,... However, sincey;,,. describes
Both of these metrics are tractable with Stein’s principI®IR data-acquisition more realistically via continuous+don
[21], [23], [27]. In our previous work [27], we consideredoperations thanAx,,., WMSETD(X) is a more accurate

a weighted variant, representation of the k-space error tREMSE(X). Below, we
show that Stein’s principle [20], [21] can be used to est#hat
WMSEA) £ M~ Axgue — ux(y)] |3, (6) WMSETD(A) and leads to an expression f&¥ SURE(X)

that is very similar to that reported in our previous work,[27

that subsumes both Projected-M3Eand Predicted-MSR) Eq. (12)].
for appropriate choices of the symmetric positive semiriefi ~ Due to the generality of (1)-(2), we can UBEMSETD(X)
weighting matrix W > 0 [27, Sec. llI-B]. All of these [via WSURE(X)] to tunel in a variety of MRI reconstruction
metrics that depend oxy,,. assume that the observed dgta problems including single-coil / multi-coil MRI reconstru
follows the discretized linear model in (2). For such a modébn (from undersampled data) with / without compensation
(2), WMSE(X) can be unbiasedly estimated using Stein®r field-inhomogeneity and relaxation effects. Howevee t
principle to yieldWSURE(X) [27, Eq. (12)] wherg in (2) is appropriateness dVMSETD()) for a given MRI technique
Gaussian [27, Thm. 2]. Unlik8ISE(X) however, WMSE(A) needs to be validated using numerical experiments on a case-
evaluates the error in the measurement-domain, i.e., tigeraby-case basis. In this paper, we considigle-coil non-
space ofA; for MRI, WMSE(\) corresponds to evaluatingCartesian MRI ignoring field-inhomogeneity and relaxation
weighted squared-error in k-space. Despite this dissiityila effects as an extension to our previous work [27] that foedss
from MSE(X), we found thatWMSE(X), via its estimate on single-coil Cartesian® MRI. We present experimental re-
WSURE(A) [27, Eq. (12)], can be used to obtain nearsults in Section VI illustrating thaWSURE(A) can provide
MSE-optimal regularization parameters for iterative moedr near-MSE-optimal regularization parameter selectionrégy-
image-deblurring and MRI reconstruction from undersamplellarized MRI reconstruction fronsingle-coil undersampled
Cartesian k-space data [27]. non-Cartesian k-space data. We also briefly discuss extensions

Using Stein’s principle [20], [21] to estimat&/ MSE(X) to parallel MRI in Section VII and report results for usingeth
involves substitutingA x;,,c = y — € from (2) in WMSE(X) proposed methods for parallel MRI reconstruction using two
(6) and exploiting the statistics df to analytically evaluate different algorithms in [34]-[36].
&-related terms in the expectation sense [27, Thm. 1]. The

resulting unbiased estimate WSURE(X) [27, Eq. (12)] is  [II. ESTIMATING WMSETD USING STEIN’S PRINCIPLE
in_dependent ofAx;... and depends only om, a fir_st-order ExpandingWMSETD(A) and using (1) to writey e —
differential response ofiy and the mean and covariance$f _ £, we get that

thereby making it a practical proxy foVMSE(A). However, yo& 9
the unbiasedness of WSURE(A) to WMSE(X) is meaningful ~ WMSETD(A) = M || yuuell3v + M | Aun(y) |3
only when the observed data follows (2). The discretizeedin —2M 'R{y'WAu,(y)} (8)
model (2), although crucial for image reconstruction, doefs 1 /

adequately describe how imaging systems work in practice: +2MTR{EWAU(Y)},
observed datg often involves continuous-domain imagingvhereR{-} stands for real part of a complex-number. Apart
operations, e.g., representative of MR physics describedfiom the irrelevant constanty:...|/3y that does not depend
Section 1I-A, that may not be completely captured by the

discretization in Ax¢e. Thus, sinceWSURE(A) depends ZSince (1) and (2) are based on the same noise MaSE(X) (6)

N y and not ONAxu., a discrepancy arises ireasoning & WMSEID) () lead o fuclonaly sivlanySURE() such 2=
that WSURE(X) is unbiased for practical imaging inverseySuRE(M) as an unbiased estimate WiMSETD(X) for practical imaging

problems. inverse problems.
SPreviously [27], we assumed that the observed data follothed dis-
cretized linear model (2) for single-coil MRI reconstractiwith retrospective
1in some special cases such as whérehas full column-rank or when undersampling, so we focussed oRWVMSE(M) (6) in [27]. However, since
uy (y) belongs to the range-space Af, it is possible to estimat®ISE(A)  the model in (1) is more realistic than that in (2), we preféMSETD(X)
[21], [23], [27]. over WMSE(A) in this work.
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on A, the only inaccessible term i§'WAu,(y). In the IV. MONTE-CARLO ESTIMATION

sequel, we use the principles underlying Stein's resulf [20 The proposed Monte-Carlo method for tunikgxtends our
and generalized SURE [21] for estimating this term. previous result, [32, Thm. 2] that focussed on real-valugd
Lemma 1. Let the following be true: for denoising applications, to handle complex-valued in
1) ¢ € CM in (1) is complex Gaussian witBs{¢} = 0, (3) with application to imaging inverse problems, espégial
Ee{€€T} = 0, andE¢{¢¢'} = Q =~ 0, whereE, denotes MRI. Similar to [32, Thm. 2], we probeu, and analyze
expectation with respect g, its response to complex-valued random perturbationg to
2) uy : CM — C¥ is individually analytic [37] with estimatetr{T'J,, (y)}.
respect to the real and imaginary parts of its argumentTheorem 2: Consider the random vector
(in the weak sense of distributions [38, Ch. 6]), and

3) the matl’iX Q(u)\v Y7 Ab7 6) é u/\(y + 6Ab) - u)\(y)v (13)
a NN whereb € CM is an i.i.d. random vector independent pf
I'= QWA € C7F ) such thatEp{b} = 0, Ep{bb"} = 0, Ep{bb’} = I, and

A € CM*M js an invertible deterministic matrix. iy admits
a second order Taylor expansion in addition to satisfyireg th
hypotheses in Lemma 1, we have that

satisfiesEe {|[Tup (y)]m|} < oo, m=1,..., M.
Then, we have that

Ee{¢'WAu,(y)} = E¢ {tr{TJu, (¥)}}, (10) tr{TJy, (y)} = gl_r)% éEb{b/A_ll"g(u)\,y, Ab,e)}.  (14)

where tr{-} denotes the trace of a matrix arll,, (y) €
CN*M js the Jacobian matrix of (weak) partial derivativeg;
of the components ofiy, with respect to the components pf '

Proof: Whenu, (y) admits a second-order Taylor expan-
we have that [39]

and is defined via its elements as o(ur,y,Ab,e) = eJy, (y)Ab + eJy, (y*)A*b* + o(Ab, ),
15

R N Y0 PR 7 ER RS (19)

ux lnm =5 OYrm OYTm ' where o(Ab, ¢) satisfieslim._,o Ep{|bm 0(Ab, )|}/ = O,

. . ) form=1,..., M. Then, from (15), we have that
Proof: The proof is a straightforward extension of previ-

ous results [20], [21, Thm. 1], [27, Lem. 1] and is given in jiy lEb{b/A_lI‘g(u)\,y,Ab,e)}

Appendix A for completeness. m 0 o A e
We now use (10) to show that = Ep{b'A7 T'Ju, (y)Ab} + Ep{b'A™ "Iy, (y*)A™D"},
(16)
A ar—-1 2 -1
WSURE(X) = M ™|y — Aup(y)llsw — M~ tr{QW} where the last term in the right-hand-side (rhs) of (15) shes
+2M T R{tr{T Ty, (¥)}} (12) due to the limit. The second term in the rhs of (16) vanishes

] ) ) since
is an unbiased estimate 8FMSETD(X).

Theorem 1: Let uy(y) and T in (9) satisfy the hypothe- En{b’A™'TJy, (y*)A*b*}

ses of Lemma 1. TheAWSURE(A) (12) is an unbiased = Ep{tr{A"'TJ,, (y*)A*b*b'}}
estimate of WMSETD(X) (7), i.e., Ee{WMSETD(\)} = 1 YA Ty
= tr{A"'TJ, A*(Ep{bb =0, 17
Proof: The proof is straightforward and uses Lemma wvhile the first term can be manipulated as
to estimatet’ Auy (y) in WMSETD(A) (8). [ | S B . ,
The estimate WSURE(A) (12), of WMSETD(A) (7) is ~ TP{PA Tuy(y)Ab} = Eb{tr_{lA FJux(y)Abb/}}
independent of/... and depends only og, the noise covari- = tr{A" TJy, (y)AEp{bb'}}
ance matrix2 anduy, via tr{T'Jy, (y)}. Thus, it is feasible to = tr{ AT Ty, (y)A}
computeWSURE(A) as a proxy fofWM_SETD(/\) for tuning = tr{T Ty, (y)}, (18)
A. In our previous work [27], we analytically evaluatdd, (y) o _
recursively for some iterative reconstruction algorithfos Which is the desired result. ]

image-deblurring and single-coil undersampled CartelsiRh ~ Theorem 2 generalizes [32, Thm. 2] to complex-valued

reconstruction. Although accurate, such an analyticateggh Problems allowing for a correlation matria in (13)-(14).

demands tedious mathematical derivations that dependeon Yie briefly discuss the role oA later in this section and in

specifics ofuy and that must be repeated for differamy Section VII. The Monte-Carlo result (14) does not explicitl

individually on a case-by-case basis. rely on the functional form ofi, and is equally applicable to
In this work, we propose a Monte-Carlo scheme for nipoth linear and nonlineau,.

merically estimatingr{T'J,, (y)} in WSURE(\) (12). The A generic linear reconstruction algorithm has the form

proposed scheme does not require knowledge of the implemen- _

tation details ofuy, as we shall see next; this advantage makes ux(y) = Hyy (19)

it readily applicable to a wide variety of (weakly differéattle) for some (reconstruction) matridy ¢ CV*M parametrized

estimatorsu,,. by A. Our Monte-Carlo result (14) further simplifies for linear



uy, (19) as shown in the following corollary that extends our Using (21), we thus require only two evaluationswf for
previous result [32, Prop. 2] to the case of complex-valued a giveny and ), i.e., the response afy to y andy + cAb
Corollary 1: When uy is linear, (14) holds without the for estimatingtr{T'Jy, (y)} for a givenA. Our approach does
limit, independent ot leading to the following identity not need the knowledge of the structure wf, so (21) is
Fa—1 very flexible in its applicability. This is unlike the anailyal
Ep{b’A™ THAAD} = tr{T'H,}. (20) development in our earlier work [27] that varied with the
Proof: For linear uy (19), the rhs of (14) reduces tochoice of uy and also required storage and computation
Ep{b’A~'T'H)Ab} without lim._.o, which does not depend equivalent to 3 evaluations afy for a given\ as discussed
on . A manipulation similar to that in (18) leads to (20m in [27, Sec. VI-C].
When A = I,,, Corollary 1 is a restatement of existing Theorem 2 is somewhat restrictive in its applicability ginc
results [40]-[43] for Monte-Carlo estimation of the tracdét is based on a Taylor expansion afy. In practice, uy
of a matrix and is useful [viaWSURE(M)] for adjusting may involveweakly differentiable operators that do not admit
A of linear MRI reconstruction algorithms [32], [40], e.g,(15). A typical instance is wher;-type (including total
conjugate phase reconstruction with density compensfjon variation) regularizers are used for reconstruction; for
[44] where A could describe some parametrization of ththese regularizers would involve (for certain implemebotas)
density compensation weights or such as those encounteamedonsmooth shrinkage operator that satisfies Lemma 1 but
when using Tikhonov-type quadratic regularizers [32],][40ot (15). In such cases, it is possible to extend the scope of
where) could denote regularization parameters. Theorem 2 toweakly differentiable functions similar to that
For MRI reconstruction from undersampled data, it idocumented in [32, Thm. 2]. However, this would require
preferable to use nonquadratic regularizers to betterceeduedious derivations using measure theory and the theory of
aliasing artifacts and noise in the reconstructed image [8listributions [38, Ch. 6] and is beyond the scope of this pape
[5]. The reconstruction process associated with a nongiiadr Instead, we investigate using (21) fax corresponding td; -
regularizer is nonlinear, so henceforth we concentrate type regularizers based on empirical validation with nuoar
nonlinearuy. experiments both in the paper (see Secs. VI-C-VI-D) and in a
In practice, for nonlineamy, the limit in (14) cannot be supplementary materiél.
applied analytically except in some special cases whgres Finally, our Monte-Carlo result (14) precludes iterative /
analytically tractable. So we make an approximation to (14pniterative estimators that involve non-weakly-diffeiable
by dropping the limit and th&y{-} operations similar to [32, operators, e.g., the hard-thresholding operator [45],, [32
Eq. (17)] and use Sec. V-B]; such operators do not satisfy the conditions of
Lemma 1 and are not suitable for use WWiSURE(X).

tr{TJy, (y)} =~ e 'b’A"'To(uy,y, Ab, <) (21)
for a sufficiently smalle and one realization of a complex- V. SINGLE-COIL NON-CARTESIAN MRI
valued random vectds satisfying the hypotheses of Theorem RECONSTRUCTION

2. The choice ot represents a trade-off: for too small @ Tpe theoretical development so far has been general both in
value,u, may be insensitive to the perturbatioAb in y +  terms of the data model (1)-(2) and the reconstruction algo-
eAb due to finite numerlcal precision of digital COMPULErs, SRihm (3) due to the Monte-Carlo nature of our approach for
the Monte-Carlo estimate (21) could be unstable, i.e., ildto estimatingWMSETD()) (7). However, numerical validation
have Iarge variance. On the other hand,the_approximat'[bh (%f our approach needs to be done on a case-by-case basis
may be inaccurate for largevalues for nonlinearn,. for different applications and reconstruction algorithrier

The robustness of (21) to the choice ofdepends on jj,stration, we henceforth focus aingle-coil non-Cartesian
several factors such as the magnitude of the elemenis ofyr| ignoring field-inhomogeneity and relaxation effects as
(9), the energy ofAb, Ep{|Abl|3}, relative to that ofy, 4, extension to our previous work [27] aimgle-coil Carte-
E¢{|lyl|3}, numerical precision of the variables used in thgan MRI. In this case, a good model for noise in (1) is

implementation and the sensitivity of, (y) to changes iry; ~ N(0,0%1,/), so that
the approximation (21) must thus be validated for a givea da ’ )
model (1)-(2) and a reconstruction algorithm (3) indivithpa I'=0"WA (22)

The matrixA_ in (21) may be chosen soasto 503'9 the_ elements (9). For the purpose of reconstruction (3), we use the
of Ab relative to thqse oly, _essennally allowing o_ln‘ferent discretized linear model in (2). Unlike for Cartesian MRI
amounts of perturbation for different elementsyofThis may 27], A is not a simple undersampled DFT matrix for non-

be beneficial in some applications such as MRI where t rtesian MRI. But for a suitable discretizatiod, in (2)

elements ofy span several orders of magnitude and relativegl?n be implemented using nonuniform FFT (NUFFT) [46]

scaling the perturbation can help maintain the accuracy for single-coil non-Cartesian MRI. We then formulate MRI
the approximation (21) for a fixed, sufficiently smallfor reconstruction in (3) as

varyingy. Althoughe is a user-provided parameter, we show

in Section VI-B that the choice of spans several decades

without significantly affecting the results, so the progbse X = uy(y) = argmin ||y — Ax|2 + \¥(Rx), (23)
MCSURE method can be applied without having to repeatedly *

adjuste. 4The supplementary material is available at http://ieamepieee.org.
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wherex € CV is the reconstructed imagad,£ A > 0 is the assume either-1 or —1 with equal probability. It is easily
scalar regularization parametdr, is a (possibly nonsmooth) verified thatb.. satisfies the hypotheses of Theorem 2. For
convex regularizer, an® £ [R] ---RL]T € RPN*N js a simplicity, we usedA = I in (21) throughout. To avoid
regularization operator, e.g., finite differences. repeated computation di*b in (21) for use in (12) with

We used the split-Bregman (SB) scheme [47] for in  several\-values, we precomputed and stored® I''b and
(23). At each iteration, the SB algorithm requires (amorigeot usedc’ in (21). In our simulations, we assumed that the noise
simple update steps) “inverting” a matr® 2 A’A + yR'R  variances? was known for computingVSURE()) via (12)
[27, Eq. (32)] for some penalty paraméter > 0 [27], [47]. and (22), while for experiments with real MR data, we used
For Cartesian MRI, this step can be achieved via FFTs [4ah estimate computed by empirical sample-variance fromrout
Sec. 5.2], [27, Sec. IV-F]. For non-Cartesian MRI howevek-space data samples as those are mostly dominated by noise.
B is block-Toeplitz with Toeplitz-blocks [49] and cannot béVe compared-selection using the propos&dSURE(A) (12)
inverted noniteratively for large image sizes, i.e., forgla against that using generalized cross-validation for mesal
N, so we used a preconditioned conjugate gradient (PCa&yorithms (NGCV) [18], [27, Eq. (7)]:
solver with a circulant preconditioner [48] that approxieig R M~y — Aur(y)|2

-1 i / i “ i =

matchedB~!. We implementedA’A using the “embedding- NGCV(A) (0= M R{(Tda, (y) 12

toeplitz-in-circulant” trick, i.e.,A’A = Z'QZ, whereZ is ; 3
a PN x N zero-padding matrix an@Q is an appropriate where we used the Monte-Carlo estimation procedure (21)

PN x PN circulant matrix [50] ¢ = 2 for 1D andP = 4 for foég{r)‘\]“?](y”hi” the denominatc_;r ONGCV()‘)h' Thus, d
2D images). In all our experiments, we ran 5 PCG iteratior% V(A) has the same computation cost as the propose

for this step [27, Eq. (32)] and 100 iterations of the SQNSURE()‘)'

algorithm. These numbers ensured that the SB aIgoritthe experimented with 3 types of regularizers in (23): a

nearly converged in the sense that the normalized “distanca’

(25)

ooth convex regularizer with Fair potential (FP) [51]2][5

between two successive iterates®) — x(=D||,/||x*-1 |, 9IVEN by
was close to zero for a large range okalues. Rt
Upp(Rx) £ > @pp(| [Rx], |), (26)
V1. EXPERIMENTS r=1
A. Setup where ®pp(z) = 2/6 — log(1 + /), § > 0, total variation

In all our experiments, we focussed on selectirig (23) by (TV) regularizer
minimizing the proposed Monte-Carlo estimat§ SURE())

N
(12), of WMSETD(A) (7). We investigated two versions of Uy (Rx) N Z @7
WMSETD(A) corresponding toW = I, and o
W = Wp £ aly + D, (24) and an¢;-regularizer
whereD > 0 is a diagonal matrix of suitable density com- it
pensation weights [2] for non-Cartesian trajectories anel 0 Uy, =) | [Rx], |. (28)
is chosen so thaW has a user-provided condition number r=1

x(W); we seta such thatx(W) = 100. For W = I,,, We used finite differences foR in (26)-(28) with P = 4
WMSETD(\) can be interpreted as the predicted squareghorizontal, vertical, and two diagonal) directions in eper-
error (similar to Predicted-MSE [11], [27]) that uniformlyiments.
weighs the error at all sample locations in k-space. WAdin Itis possible to verify that the SB algorithm for, satisfies
(24), WMSETD()\) favors errors at certain sample locationghe hypotheses of Theorem 2 fdrpp (26) because it is
in k-space more than others depending upurtypically, for differentiable everywhere. However, Theorem 2 is not diyec
non-Cartesian trajectories, the central k-space is maneedg applicable when¥ry or ¥,, are involved in (23) as the
sampled than outer k-space,Bds designed to provide highercorrespondingu, may not satisfy the hypotheses of Theo-
weighting for outer k-space samples than around central lem 2. As discussed at the end of Section IV, we demonstrate
space [2]. using numerical experiments in Sections VI-C — VI-D (and
We implemented the SB algorithm and conducted all expép-the supplementary material) that the proposed MontdeCar
iments in Matlab using double-precision variables. We us@gproach can be used for estimatWgURE()) for Uy and
the conjugate phase (CP) reconstruction with suitableigens?e, in (23). In all experiments, we minimizeWSURE()
compensation [2] (described lated/ Dy, to initialize the SB andNGCV () as a function of\.
algorithm in all experiments. ) ] ]
In the proposed Monte-Carlo estimation scheme (21), vie Redial MRI Smulation
usedb = by 2 (br + tbz)/\/2 wherebg, bz are inde- We used the analytical Shepp-Logan phantom [33] to simu-
pendent binary random vectérahose elements are i.i.d. andate noisy datay of 40 dB SNR on a radial trajectory with 96
spokes each containing 512 samples (reduction faet®).
SWe chosey = fimin ><~10—2 in all experiments, wherg,,,;, minimized

the condition number oA’A + pR’'R for a givenR, where A’A is a We used the app_roach in [53], [54] for selecting t.he density
circulant approximation taA’A [48]. compensation weight® (24). We setd = Ugp (26) in (23)
6Another choice is complex Gaussi&n~ A (0,1;). with 6 = M~1y||3 x 10~
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normalized byWMSETD(A) as a function ofs. The plots
indicate that < 10~7 consistently leads to increased variance.
Moreover, the variance is approximately constant forc
[10~7, 1073] indicating the robustness of the approximation
in (21). We present similar results for varying SNR of data in
the supplementary material.
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o 2) Selection of A for different ¢: We used only one realiza-
22, s = = > a tion of by in (21) for computing SURE()) (12). We varied
? 108 g7ocale) e, minimized MSE(\) and WSURE()) with respect to\ for

Fig. 1. Plots of standard deviation OWSURE()) normalized by eache. Fig. 2a plots the resulting-values, while Fig. 2b plots

WMSETD()) as a function of in (21) for (top) A = Aopt /10, (middle) P€ak-SNR (PSNR) defined as
A = Xopt, and (bottomW\ = 10Aopt, Wheredops is the MSE-optimal value

of the regularization parameter. The curves correspondhecekperiment in PSNR()\) A 101log [max{\[Xtmc]n|2}/MSE(/\)]
Section VI-B1 whereWSURE(\) was obtained by averaging (21) over 25 oy

realizations ofb. As expected, the variance rapidly increases for smaller . . )
as functions ofe for the various A-selections. Fore ¢

[1077, 1072], WSURE(\) based\-selection and correspond-
ing PSNR(\) are close to those of minimudSE()) selec-
1) Variance of WSURE: To analyze the accuracy of (21),tion. We present similar results for varying SNR of data and
we reconstructeds12 x 512 images of the Shepp-Loganthe TV regularizer in the supplementary material.
phantom for three different values af and correspondingly Based on Figs. 1-2 and corresponding results in the sup-
computed the standard deviation of Monte-CaNSURE(\) plementary material, a suitable choice ofappears to be
by averaging it over 25 realizations bf. for differente. Fig. 1 in the range[10~7, 10~2]. However, from our experience,
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Fig. 3. Simulation with the analytical Shepp-Logan phant®ection VI-B3). Plots oMSE(\), WMSETD()A), WSURE()) versus\ for W = Iy,

(left) and W in (24) (right). Vertical dashed lines indicate minima ofieas curvesWSURE(\) captures the trend dWMSETD(A) in both plots and
their minima are close to that of the trddSE()).

351 TABLE |
EXPERIMENT IN SECTIONVI-B4: PSNR OF IMAGES RECONSTRUCTED

33pF T FESEEEIsssssssssssc s USING ¥pp WITH A OPTIMIZED BY VARIOUS METHODS FOR DATA WITH
p—— } VARYING SNR.
319 . |
% MSE-optimal , PSNR (dB)
NGCV-based
30.3 . WSURE.based (W= ) sdr\éR MSE(\) | NGCV(\) 7\INSURE()\2
~ WSURE-based (W = | (dB) W=1Iy | W=Wp
o 28.7r + i 20 28.60 28.60 28.60 28.60
: 30 32.26 32.26 32.26 32.26
! 40 33.81 33.66 33.66 33.66
I
1 TABLE II
| EXPERIMENT IN SECTION VI-B5: PSNR OF IMAGES RECONSTRUCTED
! USING Urpyy WITH X OPTIMIZED BY VARIOUS METHODS FOR DATA WITH
2.3 : VARYING NUMBER OF SAMPLES(REDUCTION FACTORS.
207 : PSNR (dB)
194 ‘ ‘ ‘ ‘ ‘ o ‘ ‘ Reduction | MSE(A) | NGCV(}\) WSURE())
<76 -62 -48_-34 2 -06 08 22 36 5 64 Factor W=Iy | W=Wp
Regularization parameter ?Iog10 scale) 5 28.41 28.37 28.34 28.34
4 28.58 28.54 28.54 28.51
Fig. 4. Simulation with the analytical Shepp-Logan phan{@ection VI-B3). 3 28.81 28.81 28.81 28.78
Plot of PSNR()) versus). Vertical dashed lines indicate-selections made 2 28.98 28.94 28.98 28.94

by various methodsSWSURE(\) andNGCV () lead to near-PSNR-optimal
reconstructions.

WSURE(\) led to the same-value close to the MSE-optimal
it is beneficial to be conservative with so we recommend one in this experiment. Fig. 5 preserii$2 x 512 images
choosinge € [107°, 1072]. reconstructed using-values that minimized GCV(\) and

In the remaining experiments, we set= 10~* and used WSURE()). As expected, the respective reconstructed im-
only one realization ob.. in (21) for computingSURE()\) ages, Fig. 5d-5f, closely resemble that obtained usingrthe t
(12) andNGCV(A) (25). minimum-MSE-X\ in Fig. 5c. Finally, all the regularized re-

3) Trends of WMSETD(\) and WSURE()\): We re- constructed images, Fig. 5¢-5f, have almost no radidiaatt
constructed512 x 512 images, and compute®SURE()), @and display improved quality over CP reconstruction, Fig. 5
the oraclesWMSETD()), and MSE()), for a range of)- 4) Varying Noise Level: We repeated the radial MRI sim-
values. Fig. 3 plot3VSURE(\), WMSETD()), andMSE()) ulation with varying levels of noise in the simulated datee W
as a function of .. WSURE()\) captures the trend of tabulatePSNR of reconstructed images obtained by minimiz-
WMSETD(\) over the entire range of\ indicating the ing WSURE(A) andNGCV () in Table I. WSURE()A) was
accuracy of the proposed Monte-Carlo scheme with a singlble to provide near-MSE-optimal-selections as indicated
realization ofb.. Moreover, the minima o WMSETD()\) by the PSNR-values in Table NGCV also provided similar
and WSURE()) are all close to that of the truBISE()\) A-selections in this experiment.
indicating their reliability in selecting\. In Fig. 4, we plot  5) Varying Reduction Factor: We repeated the radial MRI
PSNR(A) for a range ofi-values indicating the\-selections simulation for varying number of spokes of the radial trajec
made byNGCV(A\) and WSURE()). Both NGCV()A) and tory corresponding to reduction factors of 2, 3, 4 and 5 amd fo



Fig. 5. Simulation with the analytical Shepp-Logan phant(®ection VI-B3). (a) Discretized noise-frégl2 x 512 phantom; (b) CP reconstruction
(PSNR = 16.57 dB) has prominent streak artifacts and noise; Images réembed usinglrp regularizer withA selected to minimize (c) trudISE())
(A = 4.3 x 1077; PSNR = 33.81 dB); (d) NGCV()\) (A = 1.7 x 10~7; PSNR = 33.66 dB); (€) WSURE(A) with W = Ip; (A = 1.7 x 10~7;
PSNR = 33.66 dB); () WSURE(\) with Wp in (24) (\ = 1.7 x 10~7; PSNR = 33.66 dB). In this experimentWSURE and NGCV lead to the
same\-selections, see Fig. 4, thus resulting in similar visuallilyi comparable to the trudISE(\)-based reconstruction in (c).

Fig. 6. Experiment with real GE phantom data (Section VI{&).Very mildly U -regularized256 x 256 reference reconstruction from “fully-sampled” data
averaged over 3 acquisitions; (b) CP reconstruction (feomundersampled data from a single acquisition) is strewn sgihal artifacts; Images reconstructed
from 2x undersampled data (from a single acquisition) usingy -regularizer withA selected to minimize (cNGCV () (A = 53); (d) WSURE()) with
W = I (A = 37); (e) WSURE(A) with Wp in (24) (A\ = 37). The A-value selected bNGCYV s slightly higher than those selected BySURE.
The resulting image (e) is thus slightly over smoothed,caithh the over smoothing is not visually apparent due to tkeepwise constant nature of the GE
phantom. Moreover, some fine details present in (a) are togt)i(e) owing both to undersampling and regularization.

fixed data-SNR of 40 dB. We tabulaRSNR of reconstructed spiral k-space trajectofywith 120 leaves each containing 841
images obtained by minimizinSURE()\) andNGCV(\) samples. The readout duration per leaf was 3.3 ms, which is
for Uy in Table Il. WSURE()\) was able to provide near- sufficiently short to make the assumption that any distartio
MSE-optimal A-selection as indicated by the PSNR-valuedue to field-inhomogeneity is negligible. We designed the VD
in Table Il. NGCV also provides similar\-selections. This spiral so that the central k-space was over-sampled by arfact
experiment illustrates thAYMSETD()) [via WSURE())]is  of two and achieved Nyquist sampling at the periphery. We
a reasonable metric for optimizing for agreeable reduction acquired 3 independent 2D data-sets using the same scan-
factors for single-coil non-Cartesian MRI reconstruction  setting and averaged them to obtain a relatively less-noisy
data-set. We useB® = diag{d} in CP reconstructiol\’Dy,
C. GE Phantom MRI Scan where thel-th element[d]; = |k + tkoi| with ky; and

ner with the following scan setting: gradient-echo seqeenc

TR = 300 ms, Tp ~ 2 ms, FOV = 15 cm, fl.ip angle 11_00’ “An illustration of the VD spiral trajectory used in this expeent is
slice thickness = 5 mm. We used a 2D variable density (V)esented in the supplementary material.
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Fig. 7. Experiment with real in-vivo human head data (Secth-D); Slice 14. (a) Very mildly¥,, -regularized256 x 256 reference reconstruction from
“fully-sampled” data averaged over 3 acquisitions; (b) €Eonstruction (fron2x undersampled data from a single acquisition) is strewn sgihal artifacts;
Images reconstructed fro@x undersampled data (from a single acquisition) using -regularizer withA selected to minimize (NGCV(X) (A = 3); (d)
WSURE(X) with W = I, (A = 0.6); (€) WSURE(A) with Wp in (24) (A = 0.3). In this experimentNGCV () resulted in a noticeably over-smoothed
image due to a correspondingly higher valueXofwhile WSURE(\) still yielded results comparable to the reference (a). Séineedetails in (a) are lost
in (d), (e) that also contain minor residual spiral artifadhese can be attributed to undersampling of k-space data.

image (corresponding to Slice 14),.¢ in Fig. 7a, by running
the SB algorithm with¥,, and A ~ 0 (such that\ < ||y]?)
in (23).

We again undersampled one of the 3 data-sets (corre-
sponding to Slice 14) with a reduction factor of 2 and
reconstructed256 x 256 2D images withW,, in (23) by
minimizing NGCV(A) and WSURE(). In this experiment,
NGCYV yielded an over-smoothed result, Fig. 7c, that lacks
fine details inx,ef, Fig. 7a. However, WSURE()\) led to
images that exhibit reasonably better quality than CP re-
construction, Fig. 7b and th&GCV-result, Fig. 7c, and
Fig. 8.  Experiment with real in-vivo human head data (Sectid-D); closely resemblex,..;. These results indicate the robustness
cen 10 TinMZeWSURE (. 0). Lot image. conresponds v — 1, 1 the proposed Monte-Cark/SURE()) for A-selection and
A=0.36x107,6 = 0.31x 10~7. Right image corresponds W = Wp, also its applicability for¥,, in (23). We obtained similar
A =10 x 1077, § = 6.7 x 10~7. Although the parameter selections arepromising results (included in the supplementary mafgfial

different, the resulting image quality is similar in bottsea and is comparable reconstructing other slices of this 3D volume
to Figs. 7d, 7e. ’

reconstructed 56 x 256 reference imagex,.¢ in Fig. 6a, VII. Discussion

by running the SB algorithm on this_data-set using (23) with ag with other parameter tuning methods such as the dis-
Ury and A & 0 (such that < [|y||?) in (23). crepancy principle, L-curve, and generalized cross-aditiah,

Next, we simulated undersampling of one of the 3 datge proposed Monte-Carl&/SURE-method requires multiple
sets by retaining only 60 equally spaced interleaves (i8huC gyayations of the reconstruction algorithuy for optimizing
factor = 2) and reconstructexb6 x 256 images withWrv in - 5 ' For the purpose of illustration, we optimizeéd= )\ by
(23) by minimizingNGCV(A) and WSURE(). The corre- searching over a range of scalevalues in our experiments.
sponding reconstructed images, Fig. 6¢-6e, are devoidialisp|y practice, derivative-free optimization schemes can ey
artifacts present in CP reconstruction, Fig. 6b, and dos&l g golden-section search for optimizing the scalar the
resemblex..t, Fig. 6a, in this experiment. These results alspgyell method [55] for optimizing the vector.
illustrate the reliability of the proposed Monte-Carlo eoie WSURE()) with W = I, and Wp (24) led to similar
(21) employed inWSURE(}) (12) andNGCV(2) (25) for  \ sejections in all our experiments both in the paper and
optimizing A for Wy . in supplementary material. This is probably because there

) ) ) is only one degree of freedom, in terms of the scalain
D. In-vivo Human Brain Imaging minimizing WSURE(A). However, minimizingWSURE())

We acquired 3 independent 3D VD stack-of-spiral data-setsth respect to the vectok may lead to different parameter
(with the same 2D VD spiral trajectory described in Sectioselections depending upon wheth = I, or Wp (24) in
VI-C) of a live human brain using a 3T GE scanner with th& MSETD()) (7) and WSURE(X) (12). As an illustration,
following scan setting: spoiled gradient-echo sequefigesx we repeated the experiment in Section VI-D, but udeg-
18.5 ms, Tg =~ 2 ms, FOV = 25 cm, flip angle 35°, slice (26) and optimized\ and § of ¥rp jointly by exhaustive
thickness = 5 mm, number of slices = 24. We averaged thesgarch. OptimizingWSURE(),§) with W = I,, led to
3 data-sets and reconstructed a sirzjié x 256 2D reference (), §) = (0.36, 0.31) x 10~7, while WSURE(X,d) with
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W = Wp, yielded (), §) = (10, 6.7) x 10~7. While (),§)- for undersample@artesian parallel MR data indicate that our
values are different in each case, the images reconstruct88URE-based approach is able to provide near-MSE-optimal
with these selections, Fig. 8, appear visually similar.sTisi selection of regularization parameters for these methdds.
probably because the rativ/o that appears imUgp (23), are currently investigating extensions to undersamppiledt
(26) is approximately the same for these selections. Cartesian parallel MRI.
Methods proposed in this paper can also tadKIRURE ()
with arbitrary measurement-domain symmetric positiveisem
definite weighting matricesW > 0, e.g., a nondiagonal VIIl. SUMMARY & CONCLUSION
matrix such as that encountered in Projected-MSH27,
Sec. IlI-B] or a diagonal matrix with zeros and ones that Selection of proper regularization paramet&ris a crucial
corresponds to specifying a subset of k-space locatiorts tk@sk in regularized MRI reconstruction from undersampled k
contribute toWMSETD(A) andWSURE()). One could also space data. We proposed a weighted squared-error measure
use a diagonaW with significantly larger weights for outer in k-space, WMSETD(A) (7), to assess MRI reconstruction
k-space samples so as to boost the error in high spafiglality and thereby adjust by minimizing it. The proposed
frequencies when computinfg MSETD(A) andWSURE(X). WMSETD(M) is amenable for estimation using Stein’s prin-
The proposed methods thus allow the user some freedonrciple [20], [21] for Gaussian noise. The Stein-type estavit
choosing the type of k-space weightiVy for the quadratic WMSETD(X), denoted byWSURE(X), requires (in addition
error WMSETD(X). Finding suitable weighting matrices,to the noise covariance matrix) computing the trace of a
W, that yield “better” parameter selections th¥ = I, linear transformation of the Jacobian matrix of the MRI
is interesting future work. reconstruction algorithmuy with respect to k-space daga
Theorem 2 is a key result in this work that forms the basfgur major contribution in this work is a Monte-Carlo scheme
of our Monte-Carlo parameter selection method for singl#at enables the estimation of this trace without requithrey
coil MRI. While it demands strong differentiability hypatbes knowledge of the internal working ofiy. This feature thus
on uy as presented in Section IV, numerical experimengfables its applicability for a wide-range of reconstrrti
in this paper and the accompanying supplementary mateségorithms involving a variety of convex nonquadratic reg-
corroborate its applicability to complex-valued weakly-di ularizers including total variation ané-regularization. The
ferentiableuy as well. Broadening the theoretical scope dproposed Monte-Carlo method extends our previous result fo
Theorem 2 to suchiy along with a bias-variance analysigdenoising of real-valued images in [32, Thm. 2] to the case
of the Monte-Carlo estimate (21) are interesting directio®f inverse problems involving complex-valued images with
for future research. The bias-variance analysis espgdill application to MRI reconstruction.
important from a practical perspective as it can help the use Although WMSETD()) differs from the image-domain
choose a suitablA ande in (21) for a given reconstruction MSE()A) that is not amenable for estimation in practical in-
methoduy,. verse problems [21], we demonstrated using experiments wit
Another interesting extension of this work is application tundersampled synthetic and real MR data ®Wa&tISETD (M),
parameter selection for parallel MRI. A straightforwardywavia its estimateWSURE()), is able to provide near-MSE-
of doing this would be to directly apply the proposed Montesptimal selection of regularization parameters for sirgié
Carlo WSURE approach individually for data from each coilnon-Cartesian MRI reconstruction. These results bothnelxte
of a multi-coil array and combine the resulting MR imageand corroborate our previous work [27] on similar parameter
for all coils via a sum-of-squares-type method. Alterrelly tuning methods for single-coil undersampled Cartesian MRI
one could use a SENSE-based [3], [31], [56] approach: theconstruction. Theoretical developments in this paper ar
data model (1), proposed metric (7) and Monte-CavioURE  fairly general and can be readily extended to handle paemet
(12), (21) are directly applicable to this case with= FS tuning for (iterative) linear/nonlinear parallel MRI retstruc-
[3], [9], where F represents the Fourier encoding matrition from undersampled Cartesian/non-Cartesian k-spatze d
and S denotes the matrix of sensitivity maps for all coils.
However caution must be exercised in this case: in practice,
is usually unknown and needs to be estimated, e.g., from low- APPENDIXA
resolution images. SincBVMSETD(A) [and WSURE(A)] PROOF OFLEMMA 1
involves S (via A), its appropriateness as an image-quality
metric depends on the quality of the estima®e,of S, and From the hypotheses of Lemma 1, it is clear that the
needs to be validated for a give®. One faces a similar Probability density function of¢ is given by g(&) =
issue with image-domain SURE-based methods for SENSE-exp(—£'Q7'£), where K > 0 is some normalization

type parallel MRI reconstruction [26]. constant. It is easy to verify thg(&) satisfies
To circumvent the dependence Snwe recently proposed a
similar Monte-CarloWSURE-based parameter tuning scheme 9(€) €& = —Veg(&)RQ, (29)

[34]-[36] for some existing parallel MRI reconstruction time

ods such as(;-SPIRIT [7] and DESIGN [8] (based onwhere V. £ 1(Ver — tVey) and Ve, Ve, arel x M
GRAPPA [57] and sparsity) that do not need explicit knowlgradient operators with respect to the ré&al, and imaginary,
edge of coil-sensitivity mapS. Preliminary results [34]-[36] £z, parts ofg&, respectively. We start from the left hand side
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of (10) and use (9), (29) and¢ £ d¢r d¢7 to obtain (8]

Ee{¢'WAu(y)) = / 0(6)6' WA (y)dé
[9]
—— [ Veol€)Tus(y)de
1 [10]
——5 [ Vexsl©Tu(y)de
L (30) [11]
+3 [ Ves@rumie
In the sequel,b,m = 1,....M andn = 1,...,N, 2]

respectively. We focus on the term involvinge, in
(30) and use integration-by-parts along with the fact tha]
Ee{|[Tux(y)]m|} < oo, to get that [21, Thm. 1]

Olur(y)]n [14]

/ Verg(€)Tua(y)dé = —m§’n: / g(@{r}mn%de
- Iur(y)]n [15]
- Z/g(é)[r]mnmdf, [16]

(31)

where we have s&l/0¢r., = 0/0Yyrm SINCEYirue IN (1) iS
a deterministic constant. Similarly,

[ Veserunmie = -3 [ o@itl

[17]

o .

d§.
aylm 5

(32)

[19]

Combining (30)-(32) and using (11), we get that

Ee{¢'WAu,(y)}

[20]

[21]

S (ORI e
= E¢ 3> [TlnnTuy (9)]om -
= Eﬁ {tr{FJu,\ (y)}} )

[24]
which is the desired result.
[25]
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We provide here additional results for various experiments
in [1]. Fig. 1 illustrates some of the non-Cartesian trajeess
used in [1]. References to equations, tables, figures,-bibli
ography, etc., are within this material only unless spetifie
otherwise.

|. ROBUSTNESS OAMONTE-CARLO ESTIMATION

We are interested in determining the range=dbr which
the Monte-Carlo estimation procedure (with only one real-
ization of random vectob) in [1, Sec. IV] is an adequate
approximation:

tr{TJy, (y)} =~ e 'D’A"'To(uy,y, Ab,¢) Q)

where

o(ux,y,Ab,c) = ur(y +cAb) — ur(y). (2)
The Monte-Carlo estimate (1) is used in

WSURE(\) £ M~y — Aux(y)llsy — M~ {QW}
+2M 7 R{tr{TJu, (y)}} ®3)

that is an unbiased estimate of
WMSETD(A) 2 M~ yiwe — Aun(y)|3v.  (4)

We use the experimental setup described in [1, Sec. VI-A]

throughout this material wittW = I, and W = Wp in

[1, Eq. (24)] andA = I,; in (1)-(2). The proposed Monte-

Carlo estimation scheme (1) and the hypotheses of [1, Thm.

2] are applicable to the smooth-convex regulariger [1,

Eq. (26)], but they do not directly apply to the total-vaieat Fig. 1. Top: 32 spokes (with 512 samples each) of the noreSiart radial

regularizer¥ry [1, Eq. (27)]. One of our aims in this note isk-space trajectory used in [1, Sec. VI-B]. Bottom: 20 irgexles (with 841

to provide numerical results that further corroborate ¢hivs samples each) of the non-Cartesian variable density dpisalace trajectory
. . _used in [1, Secs. VI-C, VI-D].

[1] extending the scope of (1)-(4) to nonsmooth regulaszer

such as¥ry.

We rgpeated the rad_ial _MRI simulation in [1, Sec. VI-B.1] Next, we repeated the experiment in [1, Sec. VI-B.2] for
for varying levels of noise in the data and plotted the Stmhdavarying SNR of data using only one realization bfas is

deviation of Monte-CarlGVSURE normalized byWMSETD desirable in practice. Figs. 6-13 platvalues andPSNR())

in Figs. 2-5. The plots were generated by averaging Montgs 4, ctions of where) was chosen to minimizZ&/ SURE(\)

C"’,‘HOWSURE()‘) (1)-(3) over 25 Monte-CarIo_reaIizations Ofand the trueMSE()\). These plots indicate that a suitable
b in (1)-(2). Thgse plots |nd!cate that th_e variance of Mgnt%’hoice ofe is ¢ € [10-5, 10-2]; however, it should be kept
Carlo WSURE increases with decreasing consistently in in mind this range may change depending upon the type of

all experiments and corroborate the expected behavior)of {ljnaging problem, the reconstruction algorithny in [1] and
described in [1, Sec. IV]. From these plots= 107 appears the scale ofy relative to that ofb

to be a reasonable lower bound fofor such experiments. We successfully used = 10~ with the SB algorithm in

This work was supported by the National Institutes of Healtlder Grant all ?Xpe”ments in this m?-te”al and <"i|SO n [1] for near-MSE
P01 CA87634 and by CPU donations from Intel. optimal MRI reconstruction from single-coil undersampled
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TABLE |

EXPERIMENTIN [1, SEC. VI-B]: PSNR OF IMAGES RECONSTRUCTED
USING Wy WITH A OPTIMIZED BY VARIOUS METHODS FOR DATA WITH

VARYING SNR.
PSNR (dB)

MSE())

NGCV(N)

WSURE())

W =1y

W =Wp

0.5

20 28.21
30 31.20
40 32.85

28.21
31.14
32.85

28.21
31.14
32.85

28.21
31.20
32.85

data (both simulated and acquired using a GE 3T MRI scann
on different non-Cartesian (radial and variable-dengiiyas)
k-space trajectories. These experimental results alsioated
that the proposed Monte-Carlo estimation scheme (1) can
successfully used with nonsmooth regularizers sucly ag.

Normalized standard deviation of WSURE (log

Il. SIMULATION WITH VARYING NOISE LEVEL

-scale)

Here, we repeated the experiment in [1, Sec. VI-C] wit 2
varying levels of noise in the simulated data, but with-,.
We again assumed that the noise varianéewvas known in
each case for use iIRWSURE()) (3). We tabulatePSNR
[1, Sec. VI-B] of reconstructed images obtained by min
mizing WSURE(\) and NGCV()A) [1, Sec. VI-A] in Ta-
ble I. WSURE()) was able to provide near-MSE-optima
selections as indicated by the PSNR-values in TalddCV
also provides similai-selections in this experiment.

Normalized standard deviation of WSURE (log

1. I N-VIVO HUMAN BRAIN DATA

We repeated the experiment in [1, Sec. VI-D] for differer
slices of the acquired 3D volume. Figs. 14-15 show imag
reconstructed using,, [1, Sec. VI-A] as the regularizer with
A selected by minimizingfW SURE(\) and NGCV(\) [1,
Sec. VI-A]. In agreement with the results in [1, Sec. VI ~
D], NGCV(\) yielded over-smoothed images for this dats €
set whileWSURE(\) was able to provide images that appeeHgJ
comparable to the corresponding references.

@
<
(s}
i
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Fig. 4. Same experiment as in Fig. 2. The SNR of data was 40 dB.

Same experiment as in Fig. 2. The SNR of data was 30 dB.

Fig. 3.
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Fig. 8. Same as in Fig. 6, but SNR = 40 dB.
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Fig. 10. Plots of (left)\, and (rightyPSNR()) as functions of= for A\ selected to minimizVSURE(\) with W = I,; and Wp, in (3) andMSE())
for the experiment described in [1, Sec. VI-B2] wiNR = 20 dB and ¥y as the regularizer.
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Fig. 11. Same as in Fig. 10, but SNR = 30 dB.
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Fig. 12. Same as in Fig. 10, but SNR = 40 dB.
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Fig. 13. Same as in Fig. 10, but SNR = 50 dB.
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Fig. 14. Experiment with real in-vivo human head data [1,.S&]; Slice 10. (a) Very mildly¥,, -regularized reference reconstruction from “fully-saatl
data averaged over 3 acquisitions; (b) conjugate phasestaoction from2x undersampled data (from a single acquisition) with deritypensation; Images
reconstructed fron2x undersampled data (from a single acquisition) using -regularizer withA selected to minimize (C(NGCV(X); (d) WSURE())
with W = I,; () WSURE(A) with Wp [1, Eq. (24)].

Fig. 15. Same experiment as in Fig. 14; Slice 12.





