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Noise properties of motion-compensated
tomographic image reconstruction methods
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Abstract—Motion-compensated image reconstruction (MCIR)
methods incorporate motion models to improve image quality
in the presence of motion. MCIR methods differ in terms of
how they use motion information and they have been well-
studied separately. However, there have been less theorwl
comparisions of different MCIR methods. This paper compares
the theoretical noise properties of three popular MCIR mettods
assuming known nonrigid motion.

We show the relationship among three MCIR methods -
motion-compensated temporal regularization (MTR), the paa-
metric motion model (PMM), and post-reconstruction motion
correction (PMC) - for penalized weighted least square case
These analyses show that PMM and MTR arematrix-weighted
sums of all registered image frames, while PMC is ascalar-
weighted sum.

We further investigate the noise properties of MCIR methods
with Poisson models and quadratic regularizers by deriving
accurate and fast variance prediction formulas using an “am@-
lytical approach”. These theoretical noise analyses shovhat the
variances of PMM and MTR are lower than or comparable to the
variance of PMC due to the statistical weighting. These angbkes
also facilitate comparisons of the noise properties of diéfrent
MCIR methods, including the effects of different quadratic
regularizers, the influence of the motion through its Jacokan
determinant, and the effect of assuming that total activity
is preserved. 2D PET simulations demonstrate the theoretid
results.

Index Terms—motion-compensated image reconstruction,
noise properties, quadratic regularization, nonrigid motion.

I. INTRODUCTION

OTION-COMPENSATED  image

This paper analyzes three popular MCIR methods that
differ in their way of incorporating motion information:
post-reconstruction motion correction (PMC) [1]-[3], noot-
compensated temporal regularization (MTR) [4], [5], and
the parametric motion model (PMM) [6]-[14]. Each MCIR
method has been well-studied separately, but there has been
less theoretical research on comparing different MCIR meth
ods. There are some empirical comparisons between PMC and
PMM [17], [18], and between MTR and PMM [19]. Asnea
al. compared PMC and PMM theoretically in terms of their
mean and covariance by using a discrete Fourier transform
(DFT) based approximation [20]. However, the analytical
comparison was limited to the unregularized case and the
empirical comparison was performed for the regularizeccas

Theoretical noise analyses of MCIR methods can be useful
for regularizer design and for performance comparisonss&lo
prediction methods include matrix-based approaches [21],
DFT methods [22], and an “analytical approach” that is much
faster [23]. We extend this analytical approach to MCIR, and
investigate the noise properties of PMC, PMM, and MTR with
guadratic regularizertheoretically assuming known nonrigid
motion. This assumption is applicable to some multi-modal
medical imaging systems such as PET-CT [7], [8], [10] and
PET-MR [14]. These analyses provide fast variance pregicti
for MCIR methods and may also provide some insight into
unknown motion cases. These noise analyses not only &eilit
theoretical comparisons of the performance of differentIRIC
methods, but also help one understand the influence of the

reconstructionmotion (through its Jacobian determinant) and the effect of

(MCIR) methods have been actively studied foassuming that the total activity is preserved.
various imaging modalities. MCIR methods can provide high This paper is organized as follows. Section Il reviews the
signal-to-noise ratio (SNR) images (or low radiation doseasic models and the estimators of the MCIR methods [24]:
images)and reduce motion artifacts [1]-[14]. Gating method$MC, PMM, and MTR. Section Ill shows the similarity

implicitly use motion information i(e., no explicit motion

and difference between three MCIR estimators in penalized

estimation required) for motion correction, but yield lomB weighted least square (PWLS) cases. It shows that MTR and
images due to insufficient measurements (or require longeMM are essentially the Fisher information-basetrix-
acquisition to collect enough measurements) [15], [16]. Meightedsum of all registered image frames, while PMC is

contrast, MCIR methods use explicit motion informatiae.(

the scalar-weightedsum. Section IV derives fast variance pre-

motion estimation obtained jointly or separately) to cotre diction formulas for PMC and PMM with Poisson likelihoods
for motion artifacts and to produce high SNR images with aind general quadratic regularizers. Section V compares the

collected data.
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theoretical noise properties of MCIR methods. Section VI
illustrates the theories by 2D PET simulations with digital
phantoms for given affine and nonrigid motions.

II. MCIR MODELS AND METHODS

This section reviews MCIR models that were also described
in [24] and derives the PWLS estimator for each model.



2 IEEE TRANSACTIONS ON MEDICAL IMAGING, ACCEPTED FOR PUBLICHON

Although we focus on PWLS for simplicity, the general conwherem = 1,--- , M, L,, is a negative likelihood function
clusions are also applicable to penalized-likelihoodneation derived from (1),R,,, is a spatial regularizer, anglis a spatial
based on Poisson models [25]. We consider three MCIR metkgularization parameter.

ods: PMC [1]-[3], PMM [6]-[12], [26], [27], and MTR [4], For the PWLS casej.e., L, (Ym,Amfm) = ||ym —
[5], [19], [28]. We treat the nonrigid motion information asAmme%,Vm/Q where W,,, is a weight matrix that usually
predetermined (known) and focus on how the motion modedpproximates the inverse of the covarianceypf, one can
affect noise propagation from the measurements into tbbtain a closed form estimatdf,, as follows:

reconstructed image. In practice, errors in the motion nede

F —1 47
lead to further variability in the image. fn = [Fn + 0Rn] ™ Ay Winym ()
_ _ where the Fisher information matrix for thexth frame is
A. Review of basic MCIR models F, 2 Al W, A,,, “"" denotes matrix transpose, arfd,,

1) Measurement modeMCIR methods are needed wheris the Hessian matrix of a quadratic regularizgy,.
the time-varying objectf(Z,¢) has non-negligible motion
during an acquisition interval whergé € R? denotes spatial C. Post-reconstruction motion correction (PMC)
coordinate and denotes time. Often one can use gating or A A o
Once the framed, ..., fa; are reconstructed individually

temporal binning to group the measurements ifto sets, ¢ 4 . SNR b . I tructed
called “frames” here. Lety,, denote the vector of measure-.rom (4), one can improve y averaging all reconstructe

ments associated with theth frame. We assume the time'mage_s' US“_"Q the motion _information to map each imjge
varying objectf (7, ) is approximately motionless during theto_a single image’s co_ordmates can reduce m0t|0n_ artifacts
Without loss of generality, we chogg as our reference image.

acquisition of eachy,,. Let t,, denote the time associated . Y .
quist hy ! ! dUsmg (3) and (4), a natural definition for the (scalar-weggh)

with themth frame, and letf,,, = (f(Z1,tm), .-, f (TN, tm)) g ; X .
denote a spatial discretization of the objeft, 7,.) where PMC estimator is the following motion-compensated average

Z; denotes the center of thgth voxel forj = 1,..., N, . . M . .
and N denotes the number of voxels. We assume that the fome 2> amTimfm (6)
measurements are related to the object linearly as follows: m=1

Ym = AmFm + €m, m=1,...,M, (1) whereZﬁf:1 a,;, = 1. One choice isv,, = 1/M for all m
(unweighted PMC). Another option is,, = 7,,,/ 2%:1 Tm?
where A,,, denotes the system model for theth frame. e, \yharer i the acquisition time (or the number of counts) for

gﬁ(r)]v(\)/tfhsens(;/lztzr:nnﬁg dlzatheton:(r)r:?siek:Iiijﬁ‘faetrefo?;;rcahn}?;n\évqhe mth frame (scalar-weighted PMC). For the PWLS case,
2) Warp model:For a given spatial transformatich,, ,, : there is an explicit form fotfpwic using (3), (5), and (6):

R? — R<, define a warp operatdF,, ,, as follows: 4 sz: P R AW @
. ° . PMC — Qm | Em + N, a m,143m mYm
f((E,tm) = (Tm,ﬂf)(xatn) m=1
N - - . . . . . .
= VT (D) f (T (), ), @) where £, 2 T, FTn1 andR,, = T!, R, T, are es-

where the total activity is preserved when= 1. We discretize sentially Hessian matrices for theth frame in the coordinates
the warp7,,.,, to define aV x N matrix relating the image of the first (reference) frame.
fn to the imagef,, as follows:

Ffn =Tonnfn, nym=1--- M. (3) D. Parametric motion model (PMM)

For applications with periodic motion, we can additionally Without .IOSS of generality, we assume thiff is our.
define fare1 2 f1 and TM+1 v 2 Ty . The matrixT,, ., reference image frame for the PMM approach. Combining

can be implemented with any interpolation method; we usél?ie measurement model (1) with the warp (3.) y“?'ds a new
a B-spline based image warp [29]. U&T},. .(%)| denote the measurement model that depends only on the infagestead

determinant of the Jacobian matrix of a transfofiy,, (%) of_tthhe a!l imagesfi,-- -, fu (i.e., parameterizingall images
for a warp T, . Througohout we assume the warfi, , with f):
(or equivalentlyT,, ,, or 7,,,) are known. We also assume Ym = Am’f’m,lfl +€n, m=1..., M.
that invertibility, symmetry, and transitivity propersidnold for ) )
T, . [24]. Stacking up these models yields the overall model
Ye = Adfcfl + €c, (8)

B. Single gated reconstruction (SGR)

Often one can reconstruct each imafie from the corre- Where the components are each stacked accordingly:

sponding measuremet,, based on the model (1) and some ye 2 [y, vyl (9)
prior knowledge €.g, a smoothness prior). A single gated Ad 2 diag{Ay,--- Ay
(frame) reconstruction (SGR) can be obtained as follows: N . 1AL, AMS,

oA ) T. & [I,T;,,---,Ty,) and

Jm = argmin Ly, (Y, Am fm) + 1Rm (Fin) (4) a

Fm €c [6/17... ’ell\l]l'
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The PMM estimator for the measurement model (8) with a Ill. RELATIONSHIP BETWEENMCIR ESTIMATORS

spatial regularizer is In this section, we investigate the relationship among PWLS

Fea £ argmin L(ye, AdTaf1) + nReam (1) (10)  MCIR estimators in (5), (7), (12), and (18). Considering PSVL

i estimators helps show the similarity and differences among
where L is a negative likelihood function an®pyy is a MCIR methods more clearly than estimators for Poisson
spatial regularizer. likelihoods. Although the observations in this sectionudson

For the PWLS data fidelity functiom(yC,Ad’f‘Cfl) 4 PWLS estimators, similar results can be obtained for thermea
llye —Adfcf1||%V /2 where Wy £ diag {W71,--- , Wy} is and variance of MCIR estimators with Poisson likelihood
a diagonal matrixd, the PMM estimator is models [25]. The next section analyzes the variance of these

. ol o el MCIR methods.
fovm = [Te FaTe + nRpvm] ™~ T AyWay. (11)

where Fy & A\W43A,q = diag {Fy,---,Fy} is a block- A. Properties of MTR estimator far — 0 and ¢ — oo

diagonal matrix, andRpyy is the HeSS|an m]%trlx of @ The temporal regularization term (13) in (15) will increase
quadratic regularizeRpyi. SinceT. FuT, = SN Fn, the correlation between the estimatgsand f; for i # j as¢

we can rewrite the PMM estimator in (11) as is increased. Even though (18) provides the exact relatipns
M -1 between the PWLS MTR estimator ad this form itself
Forin = [Z F,+ nRPMM] Z WonYm. may not be informative in terms of comparing it with other
m—1 MCIR methods. So, we investigate the limiting behavior of

(12) the PWLS MTR estimator a§ — 0 and as¢ — oo. This

provides insights for comparisons with PMM and PMC.
E. Motion-compensated temporal regularization (MTR) It is straightforward to determine the limit of, in (18) as

The MTR method incorporates the motion information that — 0 because

:natches tVVf) adjacent images into a temporal regularization Fy+nRa + CRume — Fi+nRa 2 Gurn (19)
erm [4], [5]:
where GuTr IS a block -diagonal matrixj.e, Gyrr =
||fm+1 Tt 1,m Frmll3- (13)  diag{(F,n + nRyn)}h-_, . Therefore, as. — 0, the PWLS

form =1, ,M — 1. This penalty is added to the costMTR estimatorf. approaches
function in (4) for allm to define the MTR cost function. A _1 , T
Equations (4) for allm and (13) can be represented in a fe = GrrrAaWaye = [fl fM} (20)

simpler vector-matrix notation. First, stack up (1) for allas where £, are defined in (5). Thus, by (17)@MTR — f as

follows: ¢ — 0. In other words, ag — 0, the PWLS MTR estimator
Ye = Aafe + €, (14 for each frame approaches the PWLS SGR estimator (5).

where f. = [f],---, fi;) and Aq4, €. are defined in (9). As( — oo, f. has more interesting limiting behavior. The
Then, the MTR estimator based on (13), (14), and a spatiallowing theorem is proven in Appendix A.
regularizer is Theorem 1:As ¢ — oo, the MTR estimatorf, becomes

- ¢ -1

fo & argminL(ye, Aafe) + nR(fe) + gnnimcfcnz sy fo - TlFtnR]TT Aéledyc (21)

fe M

wherel is a negative likelihood function from the noise model
of (14),R is a spatial regularizeg, is a temporal regularization

M

parameter, and the temporal differencing matrix is where Jo“m.; _ j’wm_’mil . "1012,1, r_,”wc is defined in (9),15}; A
o o / o o o / o
T, I T. F,T., andR, £ T. R4T..
nime £ - . . (16)
: B. Equivalence of MTR and PMM estimators
~Tynm I

Equation (21) in Theorem 1 and (12) show that the PWLS
estlmators of PMM and MTR{( — oo) are remarkably
Milar. In particular, if we choose a PMM regularizer with

We may also modifyTi;,,. for periodic (or pseudo-periodic)
image sequences by adding a row corresponding to the tef
fi— T1 v far. Note that unlike the PMM method that esti-
mates one fram¢;, MTR estimates all image frames. The

MTR estimate off; (reference image) is Rpyin = Z R, (22)
o ) -
fure =T 0 - 0] fe. (17) " then the analysis leading to (21) with (17) shows that
For the PWLS case, the solution to (15) is Furn — foun @S ¢ — oo (23)
fo=[Fa+nRa+ (Rume] ' AaWaye,  (18)

In other Words,fC — ’f}prM as( — oo. Therefore, assum-
where Rq £ diag {Ry,--- , Ry} and Ryjpe = TinoThime- ing some mild conditions on motion and spatial regularizers
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the PWLS estimators of PMM and MTR with sufficiently largaletector efficiency, the patient-dependent attenuationgathe
¢ will be approximately the same, and thus so will the meaith ray, and the acquisition timg,, for the mth frame.
and covariance. For the Poisson likelihood, one can shotv thawe assume known attenuation mae.( D,, is given),
the mean and covariance of the MTR estimator will approaebhich is the usual assumption for PET-CT [30] or PET-
the mean and covariance of the PMM estimato¢ &screases. MR [31]. We still allow the warplo’m,l to differ for eachm. We
We will show the covariance case for the Poisson likelihoasksume that the given nonrigid motion is locally affine [24].
in the next section. The mean case with the Poisson liketihow/e also assume that the measuremapis for all m are
can be shown by consulting [24] and using Appendix A. independenti.e., Cov{fm, fn} =0 for all m # n.

We use an “analytical approach” to derive approximate vari-
ances for SGR and MCIR methods. This appproach provides
fast variance prediction methods [23] compared to the DFT-

Using (5), (7), and (22), we rewrite the PWLS PMMpased variance approximations or numerical simulations.
estimator (12) as follows:

C. Difference between PMC and PMM estimators

M ) )
form = Z Lo (F + Wém)’l’.i”,’mlAinmem A. Single gated reconstruction (SGR)
m=1 If L in (4) is a negative Poisson log-likelihood functiore(

M . L(y,u) £ 3, u; — yilogu,), then one can approximate the
- Z LinTm fim, (24) covariance of the SGR estimatgy, of (4) by [25]:
m=1
where the weighting matrices are given by Cov{fm} = [Frn + nRu] ' Fu[Fy + Ry~ (26)

Mo 17t ) where F,, £ A,D! W,,D,, Ay, Wy, 2 D (1/[§m(Fm)]:)
| lZ(Fl + an)] (Fon +nRy). (25) is a diagonal matrixg,, is the mean ofy,,, the Hessian of
=1 the regularizer isR,, 2 V2R(f,n), and fo 2 Fo (G (Fin))-
Comparing the PWLS PMM estimator (24) and the PWLS To study (26) using the “analytical approach” of [23], we
PMC estimator (6), we see that the PWLS PMC estimaté@cus on a first-order difference quadratic regularizer:
is a scalar-weightedaverage of the motion corrected PWLS I
SGR estimators of all frames whereas the PWLS PMM / N J S 1\2
estimator is anatrix-weightedaverage of the motion corrected I B Fn = Z Z M (e fm) 17 (2D)
PWLS estimators. The PWLS MTR estimator (with proper
motion and regularizers) approaches the samatrix-weighted where ++ denotes 2D convolutiory7 is a non-negative
average of the motion corrected estimators (24] as co.  regularization weightd.g, regularization designs for uniform
The weightsT',, in (25) are calculated using the Fisheand/or isotropic spatial resolution [24], [32]),.[7;] denotes
information matricesF},,. This implies that the PWLS PMM the 2D array corresponding to the lexicographically ordere
estimator (and the PWLS MTR estimator with — o0) vector f,,, j is the lexicographic index of the pixel at 2D
automatically assigns different weights to the estimgite coordinatesi;, and
depending on factors such as noise (Fisher informationixnatr

i ol=1

F,,) and motionT,, ;. For the Poisson likelihood case, the ali;] = 1 (82]i15] — 82[it; — 1)), (28)
next section shows the benefit of this matrix-weighted ayera ! [|772 |2 ’ ’

(24) by investigating the noise properties of MCIR methods - . . .
. B - . Where denote the spatial offsets of thgh pixel's
using an *analytical approach” extended from [24] and pg]heighbé@in@ 7] denoteg the 2D Kroneckerﬁimplijlse. We

used the usual 8-pixel 2D neighborhood with = 4 and
IV. NoIseE PROPERTIES OMCIR {my b, = {(1,0),(0,1),(1,1),(1,-1)}.

This section analyzes the noise properties of differentRICI For a polar coordinatep, ¢) in the frequency domain, we
methods. The analysis applies both to PWLS estimators &#@ represent the variance of (26) at tfh voxel in an
to maximum a posteriori (MAP) estimators based on Poiss@falytical form as follows [23]:
likelihoods. Since the analysis is based on a first-orderapp

. 27 ppmax
imation of the gradient of the likelihood, the accuracy of th Varj{fm} ~ / / Piar(po)pdpde  (29)
analysis for Poisson likelihoods will decrease as the numbe o Jo
of counts per frame decreases as shown in [25]. For simyplicit A

where pna.x = 1/2/A, A is the pixel spatial sampling

y;e floct:us on 2DhPET v;nth.a few a§Sumptlgnts. \:Ve (E)clmsu\jlsr %ri]stance, and the local power spectriff (p, ) at thejth
Ideal tomography system.e., we ignore detector biur. Ve pixel, which is the Fourier transform of thgh column of the

also assume tha#d,, = D,, A for all m. The (unitless) : - .
m m . L 26 I . 220 of [33]),
elements ofA, describe the probability that an emission fron%:ovarlance in (26) (see also p of [33]), is

the jth pixel is recorded by théth detector in the absence of ; N W (03 2)/p) A
attenuation or scatter and for an ideal detector. Fhelement  Figr (0, @) = B B — j
of the diagonal matrixD,,, has units of time and includes the (U%n(eﬁ;fﬁj)/l’/A + 77(27TP)2Qm(<P))

5 (30)
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where the angular component of the local frequency respongkere the local power spectrurﬁ’gMC(p, v), at thejth pixel

of the regularizer (27) is

L
éZrmcos ©—®1)
=1

andy; = /. For a standard quadratic regularizy,, () =
wo Wherewy is a constant. The analytical forms &f,, and
R, at thejth voxel arew,, (¢; Z;)/p and (27p)2Q7, (¢) (see
[23], [32]) where

(31)

o a Xiex, Gy Om,i
i3 5) & S (32)
iez, Yij
I, is the set of rays at the angle, a;; = [Aolij,

Wi 2 [DynWmDpli, A 2 A2AA,, A, is a detector

sampling interval, and\, is an angular sampling interval.

For fast computation, one can approximate,(y;Z;) ~
Wi (T - (cos p,sing), o) Where iy, (ri, i) = Wy One
can further simplify the local variacharj{fm} in (29) by
calculating the intergral (29) with respect gaas follows [23]:

Var‘{f }N/7T 2/3
s 0 wﬂj(w;fj) +’I747T2Qj (‘P)
A3 ax "

where Pl (p, ¢ + 7) = Plagr(p,¢). The variance of the

dep, (33)

SGR estimator for the Poisson likelihood depends on the ... F1 ofpi

measurement statistics,,,, the sampling distancea, A,,

A, and the regularization parameter One can also obtain

the local autocovariance of the SGR estimator atjthepixel

is given by

M a2, B (23 T ) (9)/p/A

11 (@ EE, () 0/ B+ 0(@mp) Qb (B)th, (9))

where the following factors arise from the Fisher inforroati
matrix F;,, and the Hessian of the regularizRy,, respectively
due to motion compensation

|VTm 1(

)P

y N 38
Fl?) T cos prsm o) T >
(@) 2 VT (35) (cos o, sin @) |3V T () P2

For rigid motion,, () =t} (y) = 1 whereas for nonrigid
motion such as (isotropic or anisotropic) scalimgr}] (¢) and
t{{m (¢) usually diffe[ from 1. By integrating, we simplify the
local varianceVar;{ feamc} in (37) further as follows:

(pa Ik)tf‘lll (90)

/W (%)
Ap o "

Note that the variance of the PMC estimator depends on the
motion throughty, () andty, (¢) terms. One can also obtain
the local autocovariance of the PMC estimator by taking an

;)

l 202, /3

dp. (39)

+ AT QE (@)t

PMC(

C. Parametric motion model

by taking an inverse Fourier transform (FT) of the local powe For the PMM estimator (10) with the Poisson likelihood,

spectrumP (p, @) in (30).

B. Post-reconstruction motion correction (PMC)

Assuming that the measuremenjs, for each frame are
statistically independent and the reconstruction alforitises

the Poisson likelihood, the covariance of the PMC estimator

(6) is approximately

M
= Z aimfl,mcov{fm}fll,m

ml
Za

We can derive the analytical forms (ﬁ'm and f?m (the
quadratic regularizer (27)) in the frequency domain asofed
(see Appendix B in [24]):

Wi (@3 Tk) |V T 1 (T5)' [P~

P VTim,1(Z;) (cos g, sinp)'||2

(279)? ||V T 1 (75)' (cos g, sin )3
AV T 1 (25) P71 Q (2)
where 7, is the closest pixel toT,;}l (@;) and ¢
LNV T 1 (%) (cos g, sin ). ]
forms, we approximate the variance fifyic at thejth voxel:

2m Pmax )
Varj{prc} ~ / / Phyc(p, p)pdpde (37)

COV{fPMc} (34)

m‘|’77R ] m[ﬁ'm‘i‘ném]

F, (35)

R, (36)

A

-1 where the local power spectruﬁ?ﬁMM(p,

Therefore, by using analytical

the covariance of the PMM estimat(ﬁpv{prM}, can be
approximated using the matrix-based methods of [25] as
—1
Z F, + WRPMM] :

Mo -1y
lz Fm+77RPMM‘| ZF l

m=1
Using the analytical forms in (35) and (36), the variance of
the PMM estimator at thgth pixel is approximately

M

. 27 Pmax
Var;{ femm} ~ / / Plum(p, )pdpde,  (41)
0 0

), at thejth pixel
for (40) is defined as follows:

Yot @@ 80t (2)/p/ A
. ~ . 20
(Zi\f:l W (3 T ), () /A + 77(27rp)2QJpMM(<p))
where Qhyni(e) 2 Y1 7] cos’ (¢ — ). Integrating

Pl (ps @) over p simplifies the local varianc®ar; { feav }
in (41) to

T 2/3
dp. (42
/0 M wm(cp,xk)t m(%") 2 ’ 2
Z Ap? + ndn QPMM( )
m=1 max

Like the PMC case, the noise depends on the given motion.
The local covariance of the PMM estimator can be approxi-
mated with an inverse FT aP},\(p, ¢).
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The covariance of the PMM estimator with the regularizer For v/, (¢) > 0, one can show that
(22) will be approximately

1 M2
M -1 v M -1 - = Z T (46)
> Eut "R’”l 2 Fo [Z F+ an] (43) Cmrvm(9) =i vn(9)
m=1 m=1 m=1

using the Cauchy-Schwarz inequality [20 aﬁg f_ o, = 1.
and with the same procedure as above, the variance of ;hg\,f set Y qualty [20] -

PMM estimator at thgth pixel for (43) is approximately

™ 2/3 0], () £ W (@3 T)th (9)/ D) pha + nAmth (0)QF,(2),
: dp. (44
/0 M (5 T ) () . # O en (39), (44), and (46) show that
S TR QL (Pt (¢) A A
m=1 Apmax Varj{prM} < Varj{prc} 47

One can evaluate (33), (39), (42), and (44) using a simple bag; the regularized PMC and PMM. Equality holds when all
projection (.., approximate integral by sum over projection,; are the same for all. This inequality is consistent with

angley) to predict variance for every image pixel. the empirical observations in [20]. Therefore, PMM (and MTR
with sufficiently large() is preferable over PMC in terms of
D. Motion-compensated temporal regularization noise variance.
From (15) with the Poisson likelihood, the covariance
matrix of the MTR estimatotf. is approximately B. Comparing noise properties of SGR for three regularizers

Cov{ f.} ~ [Grrr+C Riime] " Fia|Grrr+C Riime] ' (45) Because of the interactions between the likelihood and
regularizer, spatial resolution will be anisotropic andnno

2 : -
where Gytr = Fa + nRq. Section Ill showed that the \ic i if one uses a standard regularizer [23, Qi (p) =

PWLS MTR estimator converges to the PWLS SGR and PM , in (30), which we call SGR-S. There has been some

estimators ast — 0 and ¢ — oo, respectively. For the \oqoarch on regularizers that provide approximately unifo

estimators_ with the Poisson Iik_elihood, one“ can S_hOW th?ﬁd/or isotropic spatial resolution [21], [32], [34]. Ttdection
the covariance of the MTR estimator (45) a_pprOX|mater nalyzes the effect of such regularizers on the noise ptieger
converges to the covariance of the SGR estimator and SGR

F;'\:M eAstimatg_r ‘ngz 0 fand <h—>l OO’I respectivel}y, husm The certainty-based quadratic regularizer proposed i [21
(64) in Appendix A. Therefore, the local variance of the %an provide approximately uniform (but still anisotropic)

estimator at thejth pixel will approach the SGR result (33)spatial resolution. In this case/  in (27) is designed to
approximately agl — 0 and will approach the PMM result approximately satisfy tm

(44) approximately ag — oc.
Obtaining an analytical form for the variance of MTR with j 1 / . I /
. . ~ — m (' 2;)dy’, 48
any ¢ seems challenging due to the complicated structure @ (%) 0 D ('3 75) dp (48)
of T“f“e matrix. However, from (45) one can show that theémd we call the estimation SGR-C. Alternatively, one can
covariance of the MTR decreases asincreases. We can design{rj } to approximately satisfy
also intuitively expect that higlit value will increase the tm

correlation between estimated image frames, which willioed Q) = W (5 T5) (49)
the variance of MTR. We evaluate this intuition empiricaty _ _ _ _ .
Section VI. so that the spatial resolution will be approximately unifor

and isotropic [32], [35], which we call SGR-P. From (33), one
can show the relationship between the variances of SGR-S and

. . . . SGR-C as follows:
This section presents theoretical comparisons of the noise

properties of SGR and MCIR methods with the Poisson Var;{fS¢R=S1 < var,{f5GR-C} wo > QI ()
likelihood. Var; { fSGR=8Y > var, { fSCR-C1 4w, (50)

V. PERFORMANCE COMPARISONS INVICIR

M The same relationship holds between SGR-S and SGR-P. The
variance of SGR-S can be larger or smaller than the variance

As discussed in Section III-C, the PMC estimator is gt sgr-c and SGR-P for each locatiofth{ pixel)
scalar-weightedaverage of the motion corrected estimators of There is a more interesting relationship .between the

all frames, yvhereas th_e PMM estimat_or imtrix—weighted variances of SGR-C and SGR-P. In both (48) and (49),
average using the weight in (25). This difference led to the (p:7:) ~ QI () [21], [32], and substituting this further

different variances of the PMC estimator (39) and of PIv”\épproximation into (33) yields the following simplified var
ance approximation:

(44) (and the variance of MTR faf — o0). By matching the
spatial resolutions of PMM and PMC using the regularizer

(22) for PMM (see [24]), we can also compare the variancevar_{f )~ ( 2/3 ) /’T _1 (51)
of PMC and PMMtheoretically JLam 1A/ g3+ 1472 ) Jo Qha()

A. Comparing noise properties between PMC and PM




CHUN et al. NOISE PROPERTIES OF MOTION-COMPENSATED TOMOGRAPHIC IMEGRECONSTRUCTION METHODS 7

This approximation becomes increasingly accuratep@s, D. Total activity preserving condition for MCIR

_and/orn increase. In our simulations, using (49) in (51_) signif- The total activity preserving condition (2) is important
icantly reduced the accuracy of (51) because small diff&®8n o qccurate motion modeling and it also affects the spatial
in (49) became large differences in (51) due to their re@alo yegoiytion [24] and noise properties of MCIR. Using the
relationship. Using (48) and (49) to achieve approximatelyample in Section V-C, we analyze the influence of motion on
uniform and/or isotropic spatial resolution will increatfee e noise focusing on PMC and PMM. (MTR with sufficiently

effect of the measurement statisties, on the estimator 546 ¢ will have approximately the same noise properties as
variance (51) compared to (33). This tendency was emplmcabMM_)

observed in [21]. Using the Cauchy-Schwarz inequality, one ¢ gne yses standard quadratic regularizers for PMC and
can show that the variance approximation in (51) satisfies ppym (€.9. QJ,(¢) = wo and Q. () = Muy in (31))

Varj{fSGRfc} < Varj{fSGRfP}. (52) then the variance of the PMC estimator in (39) reduces to
o - . o ; : : Gt 202 /3
This inequality is verified empirically in Section VI-B. Evi / Z — _m dy (56)
dently, imposing more properties on the spatial resolusiach 0 o=t W5 k)83 /A pFax + nAT w0 P

as isotropy requires sacrificing the noise performancechkvhi

. . . I J — ¢4p—3 J — G4p
shows the spatial resolution-noise trade-off. sincety (¢) = s andty () = s when (53) holds.

The variance of the PMM estimator in (42) reduces to
2/3

C. Comparing noise properties between SGR and MCIR / 7 de. (57)
0

If there is no motion between image frames ang = w, Z (wm(cﬁ;fk)s“”*?’/ﬁ/pfnax + 7747T2w0)
for all m, then (33), (39), and (44) yiel&ar;{ femc}t = m=1
Varj{fenm} = Varj{fn}/M, as expected since PMC andwhens = 1 (e.g, rigid motion), the variance is not affected
PMM useQM times more counts than SGR. The MTR varipy motion. However, whes # 1, the variance of PMC will
anceVar{ furr } with very high( also yields approximately be always affected by motion, whether the total activity is
the same variance as PMM and PMC in this case. preserved or not, due to the?—3 and s*? terms in (56).
However, this1/M relationship between MCIR and SGRHowever, whermp,,., and/or are relatively large, the variance
variances may not hold exactly when there is motion betweef PMM may be less affected by motion when= 1 than
image frames. For example, if there is locally isotropiclisca  whenp = 0 since (57) only containg, which is relatively

motion between frames as follows: closer to 1 thans* or s—3. Since the regularizer in PMM does
s 0 not involve the motion warp, there is rtg (¢) term in the
V() = { 0 s ] (53) variance (42) of PMM. Thus, when we use the total activity

preserving conditiopp = 1 with the standard regularizers, the
wheres > 0, thent-%m (@) = s¥—3 andt{_’{m(sp) = 5% jn (38). variance of PMM may be less affected by motion than the

For PMC, if we design the regularizer to achieve isotropi¢ariance of PMC.

resolution by using ‘When one designs the spatial regularizers.,(determine
) , le,m in (27)) to achieve approximately uniform and/or isotropic
th (@)Q (@) ~ W (P Ti)th (), (54) spatial resolution for the MCIR methods [24], as shown in

Section V-C, the variances of PMC and PMM will be affected

and if pmax and/ory are relatively large, then the variance,y nqtion with the factor of**—#. Thus, the variance of PMC
of the PMC estimator at thgth pixel in (39) approximately 5.4 pMM will be less affected by motion when= 1 than

reduces to whenp = 0. Note that the analyses above assumed that both
2 M r measurement model and reconstruction model follow the same
2/3/M 1 o . .
R/ 2 Z T AR de. (55) condition. One could generalize these analyses to conttider
VA P+ 1472 ) 25 o 1y, (9) Q5 (9) effects of motion model mismatch.

Comparing with (51), the variance of PMC (55) will be ap-

proximately1/M/s* times the variance of SGR fav/ >> 1. VI. SIMULATION RESULTS

The varianc:(.e of PMM (44) will have a similar_relationship The analyses in this paper apply to nonrigid motions that
with the variance of SGR. If the total activity is preservedye approximately locally affine [24]. We performed PET sim-
(e, p = 1), then local expansions(< 1) will increase jations with two digital phantoms: one is a simple phantom
the variance and local shrinkage ¢ 1) will decrease the \yith global affine motion between frames and the other is the

variance. Intuitively, if the same amount of total activityycaT phantom [36] with non-affine nonrigid motion that we
produces the same number of Poisson counts, the expanggfieled using B-splines [37].

area that contains the same total activity will have larger

image area to estimatee., effectively more parameters. Thus, . . .

the expanded area will lead to higher estimator variance. o Simulation setting

regularizers other than (54), the variance of PMC will algo b Two digital phantoms were used, each with four frames of
affected by motion throughf,m(go) and tgm (¢) terms. 160x 160 pixels with 3.4 mm pixel width. Sinograms were
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generated using a PET scanner geometry with 400 detec
samples, 1.9 mm spacing, 220 angular views, and 1.9 m
strip width. We used 300K, 500K, 200K, 200K mean trut
coincidences for each frame (1.2M total) with 10% randor
coincidences. Simple uniform attenuation maps were used1 % .4}

the first simulation and no attenuation was used for the skcor ?3
We investigated SGR, PMC, and PMM by comparing g 03 ——A-SGR-P X
analytical standard deviation (SD) with empirical SD from & 0.2p~ * E-SGR-P 5
500 Poisson noise realizations. We used spatial regular o1k # ”éizgiig t
ers (with regularization parametey = 10%) that provide ot . . . .|
approximately uniform (SGR-C, PMC-C, PMM-C) and uni- % 40 60 Ps_zoel 100 120 140
IX

form/isotropic (SGR-P, PMC-P, PMM-P) spatial resolutions

respectively [20], [21], [24], [32]. We also studied the s®i Fig. 2. Analytical SD of SGR (A-SGR-P, A-SGR-C) matches weith

properties of MTR empirically with varioug values. The empirical SD of SGR (E-SGR-P, E-SGR-C), respectively. SIBGR-P (with

spatial resolutions of SGR, PMC, PMM and MTR were afegularizer that approximately uniform and isotropic $glatesolution) is
] P . higher than SD of SGR-C (with regularizer that approximatahiform spatial

matched to each other using the regulanzatlon deS|gnSr olution), which is consistent with theoretical compani.

[24]. Allimages were reconstructed using a L-BFGS-B (quasi

Newton) algorithm with non-negativity constraints [3839].

0.35f
B. Simple phantom with affine motion ok
. .
Four frames with affine motion g 0.251
>
1 2 02
B
< 0.15f
2
S 0af - * E-PMC-P
@ - x - - A-PMC-C v "
0.05f E-PMC-C %
%‘mﬁ* . . - ) ) S
0 40 60 80 100 120 140
160 Pixel
Fig. 3. Analytical SD of PMC (A-PMC-P, A-PMC-C) matches walith

empirical SD of PMC (E-PMC-P, E-PMC-C), respectively.

0.35F
0.3f
1 160 <
F 0.25
3
Fig. 1. Four true images with anisotropic scaling, rotatad translation. o 0zf
Total activity is preserved. ®
yisp g 0151 — A-PMM-P
X
. .. . . . I — - k
We used a simple digital phantom with known affine motior & 01~ ¢ i i Emm z 3
(anisotropic scaling between frame 1 and 2, rotation betwer .05} ’* E—PMM-C % -
frame 2 and 3, and translation between frame 3 and 4) it g

shown in Fig. 1. The total activity is preserved between fsam 0 40 60 80 100 120 140

. . . . . Pixel

Fig. 2 displays profiles through the variance image anu
shows that our analytical equation for SGR in (33) (and (51pg. 4. Analytical SD of PMM (A-PMM-P, A-PMM-C) matches waellith
provides accurate noise predictions. (The location of tioéilp  empirical SD of PMM (E-PMM-P, E-PMM-C), respectively.
is indicated in Fig. 1 as a horizontal line). The analyticBl S
of SGR with quadratic regularizers (A-SGR-C and A-SGR-P)
matches well with the empirical SD of SGR from 500 noise Fig. 3 shows that our analytical variance prediction for PMC
realizations (E-SGR-C and E-SGR-P). Fig. 2 also shows tH&PMC-C and A-PMC-P) in (39) agrees with the empirical
the variance of SGR-C is lower than the variance of SGRariance of PMC (E-PMC-C and E-PMC-P). Fig. 4 also shows
P as shown in (52) (in this casg, was fairly large). This that the analytical variance formula for PMM in (44) predict
analytical and empirical agreement of SGR does not hdllde empirical variance of PMM well.
well near the boundary of and outside the object because ofig. 5 confirms the theoretical noise comparison between
the non-negativity constraint and because the “locallyftshPMC and PMM shown in (47). As shown in Fig. 5, the
invariant” approximation is less accurate there. We ob=grvSD of unweighted PMC was generally lower than the SD
similar results for a constant quadratic regularizer (faven). of PMM. However, the difference between the SD of PMM
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and the SD of scalar-weighted PMC (using weights that
account for the number of counts per frame) was very small.
Using the spatial regularizer for PMM as proposed in (22)
that matches to PMC, the full-width-half-maximum (FWHM)
of PMC (2.30 £+ 0.13 pixels) was slightly larger than the
FWHM of PMM (2.19 + 0.05 pixels). Our target FWHM
was 2.19 £+ 0.01 pixels. This small discrepancy was because
our analysis assumed perfect interpolations for warps redse
the actual interpolations induce slight blurring. For PMRg
warp is appliedafter the reconstruction, thus the FWHM was
slightly larger than the target FWHM. We observed that the R »
SD of scalar-weighted PMC wadightly lower than the SD i I S Y=EM
of PMM empirically, due to it being slightly blurred more. . y=x

I
~

©
w

o
)

Empirical SD of SGR-C

o
i

91X

0 0.1 0.2 0.3 0.4 0.5
0.4 - Empirical SD of PMC-C

A Unweighted PMC

O Scalar-weighted PMC o Fig. 6. Empirical SD of SGR vs. empirical SD of PMC (MCIR) with
frames (M = 4). The SD of PMC will be affected bypoth the number of
frames and the motion (Jacobian determinant of transfoomat7 ).

0.35

o
o2}

Empirical SD of PMC-P
o
w
o
L

©
N
[$)]
I
~
T

2'S
0.2 0.25 0.3 0.35 0.4
Empirical SD of PMM-P

Standard Deviation
o
W

O E-MTR-P,Z=0.01 b
0O E-MTR-P,(=0.3 &
% E-MTR-P,Z=1 *

o

N

<T
.|

=}
=
HD>5

Fig. 5. If the spatial resolutions are matched, the SD of PBIGigher than ]
or comparable to the SD of PMM, depending on the choice of kisig., . 0 ) fA_PM’Y'_P _ ) e
20 40 60 80 100 120 140
Section V-C showed that if we combine image frames Pixel

with the motion (53)’ then the variance of MC_ZIR would noF:ig. 7. Empirical SD of MTR with different{. As { — 0, the SD of
be 1/M of the variance of SGR due to motion effects. IMTR approaches the analytical SD of SGR. As— oo, the SD of MTR
other words, as shown in Fig. 6, the SD of PMC will not b@pproaches the analytical SD of PMM.
1/2 of the SD of SGR (4 frames), but will be approximately
1/2/|J| of the SD of SGR whereJ £ VT,,; andm # 1. . _ _
This example confirms that the variance of MCIR methoddice per each volume (same location) for a 2D simulation.
depend on the Jacobian determinant of the transformation After estimating transformations between frames for alllIRC
Fig. 7 shows that the empirical variance of MTR approach&iethods consistently (see [24] for details), we used them as
the analytical variance of SGR {f — 0 and to the analytical the true motion, leading to the true images shown in Fig. 8.
variance of PMM if¢ — oo as shown in Section IV-D. Thus, there is no motion model mismatch in this experiment.
We also repeated the reconstructions and noise predictionés shown in the previous simulation with affine motion,
using motion parameters that were translated by 1 pixel (P4r fast variance predictions for PMC and PMM, which
mm) away from their true values. We examined the empiric&Prrespond to (39) and (44), work well for the case of nowkigi
and predicted noise standard deviations for all pixels iwithnon-affine motion as shown in Figs. 9 and 10. There are some
two pixels of the outer boundary of the object. For PMC-@reas that match less well than other areas (and compared to
the maximum (mean) percent error between the predicted #h§ case of affine motion) since there are areas that contain
empirical SD increased from 16.5% (3.2%) without motioAbrupt change of motion so that the local affine approxinmatio
error to 17.0% (3.3%) with motion error. For PMM-C thedoes not hold well. Fig. 11 also shows that the empirical SD
maximum (mean) percent errors were 16.0% (3.7%) ad MTR approached to the analytical SD of SGR and PMM
15.0% (3.8%) without and with motion error, respectively. a8s¢ — 0 and¢ — oo, respectively.

C. XCAT phantom with nonrigid motion VIl. DiscussioN

We used the XCAT digital phantom [36] to generate 4 We analyzed the noise properties of three different PWLS
volumes with respiratory and cardiac motion and selectezdl oRICIR methods for the case of known nonrigid motion.
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Four frames with nonrigid motion

160

1 160

Fig. 8. Four true images with nonrigid motion. Total acfvis preserved.

* E-PMC-P x
0.1f" .. - - A-PMC-C ]
E-PMC-C

Standard Deviation
o
N

N

0 40 60 80 100 120 140
Pixel

Fig. 9. Analytical SD of PMC (A-PMC-P, A-PMC-C) matches welith
empirical SD of PMC (E-PMC-P, E-PMC-C), respectively.

— A-PMM-P
; * E-PMM-P
0.1F 7 - - A-PMM-C 2]

Standard Deviation
o
N

® E-PMM-C
i . . - . ) Hitge
%0 40 60 80 100 120 140
Pixel

Fig. 10. Analytical SD of PMM (A-PMM-P, A-PMM-C) matches welith
empirical SD of PMM (E-PMM-P, E-PMM-C), respectively.

We showed that the PMC is scalar-weightedsum of the
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e
, O,
0.7} ¢ )\
]
§06 ﬁ - @éb@%%@% 3 R
2 0s 'qg@m i @%%%a}%%‘
S o
a @ D,
g o4 a &
=)
% 03_ ’ == A—SGR—P
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Fig. 11. Empirical SD of MTR with different. As ¢ — 0, the SD of
MTR approaches to the analytical SD of SGR. As~» oo, the SD of MTR
approaches to the analytical SD of PMM.

and also studied the limiting behavior of the MTR variance
as¢ — oo and{ — 0. These predictions worked well for
digital phantoms with affine motion and non-affine nonrigid
motion. Furthermore, as in [23], the variance predictia3®)(

(39), and (42) require computation time comparable to a back
projection, which is much faster than DFT-based variance
prediction methods [20]. However, as the number of counts
per frame decreases (due to less total counts or more number
of frames), the accuracy of the variance predictions wilbal
decrease since our variance approximations are based on a
first-order approximation of the gradient of the likelihood
function. [25]. More accurate variance predictions basad o
higher-order approximations will be challenging.

These analytical variance formulas showed a few intergstin
relationship between MCIR methods. The variance of SGR-C
(using spatial regularizer that approximately providegarm
spatial resolution) is lower than the variance of SGR-Pngisi
spatial regularizer that approximately provides uniformda
isotropic spatial resolution). We observed this trend in®M
and PMM as well. The variance of PMM is less than or
comparable to the variance of PMC and the gap between them
will be larger when the frames have significantly different
counts and PMC uses equal scalar weighted sum. When PMC
uses proper weightse(g, normalized scan durations), PMC
and PMM empirically had similar variances in our simple
phantom simulation with affine motions. The variance of
PMM is also less affected by motion than the variance of
PMC when the total activity preserving condition is usedeTh
variance of MCIR withM frames may not providé/M times
lower variance than the variance of SGR due to motion. This
suggests that one can choose the reference frame to minimize
the variance of MCIR methods based on this intuition. Lastly
MTR with very large ¢ usually yields images as good as

motion corrected estimated image frames, whereas the PMNYIM. However, too large; can slow convergence of the

and the MTR with( — oo are matrix-weightedsum with

reconstruction algorithm. When the motion is given, PMM

weights that depend on the Fisher information matrix of eagi¢ems to be preferable to PMC and MTR.

frame. We further investigated the noise properties ofdghre This paper has focused on the case of known true motion.
different MCIR methods with Poisson likelihood. We derivedn practice motion is never known perfectly and motion
approximate variance prediction equations for PMC and PMBfrors may introduce further bias and/or variability intd@CMR
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results and motion errors may also degrade the accuracy ofJnder the usual assumption thRy and R4 have disjoint
noise predictions. Our anecdotal results with motion erfar null spaces, one can verify that

Section VI-B suggest that the noise predictions are notliigh
sensitive to small motion errors; in fact the noise preditsi

seem to be less sensitive to motion errors than were tlﬁg proceed, we expresSyrr in (19) as follows:

regularizer designs for MCIR described in [24]. Methods for
reducing motion errors will of course improve MCIR results,
regularizer designs, and noise prediction accuracy.

This analysis can serve as a starting point for understgndi
joint estimation of image and motion [12]. Since the Jacobia
determinant of estimated deformations affects the noise-pr
erties, it is important to enforce correct prior knowledge f
local volume changes. Extending this analysis for unknown

B2 U GurrUp - 0. (62)
N M’
U, Uo)Gurr|Ui Up) = { M B ]
, 11
[Gurr + CRiime) ' =U [ N —;/_,421 J\g } U’

nonrigid motion will be interesting future work [40]. Ourwo WhereU £ [U;  Up). By Schur complement [43], we have

has been focused on spatial resolution [24] and noise amlys
of MCIR methods; it would also be interesting to extend the
work to analyze detection performance [41], [42].

APPENDIXA
PROOF OFTHEOREM 1

To prove this theorem, we need to treat the null space of

|

[GMTR + CRtimc]il -

A ~-AM'B~!

!
~-B-'MA B~'+B 'MAM'B™! }U (63)

whereA 2 [N +(X; — M'B~'M|~!. SinceX, is positive
definite, A — 0 as{ — oc. Thus, by (62)

. -1 =1y
Ryime carefully. Since the matridRme in (18) is symmetric [Garrr + CRuime - I{OBi, Uo ) ., (64)
nonnegative definitei.e., positive semidefinite), it has an = T.[T. GurrT.) 'T. .
orthonormal eigen-decomposition of the form
Therefore, ag — oo
>, 0 R o o o .
Riime = [Ur U] { 0 o ] U Uyl (58) fo = T[T, Gurr Ty T A, Waye. (65)

where the columns of the matricé$;, U, are orthonormal
and3; > 0, i.e, X; is positive definite. The columns &f),
span the null space dRy;.. From the definition offy;,,. in
(16), it is clear that the null space &;;,,,. consists of images
that satisfy the following conditions:

(1]

[2]
P To1f1 (59)
£ = DT 3

[4]
fur = Tum—rToifi,

(5]

for any imagef; € R”. In other words, theM N x MN
matrix Ry has a null space of dimensiaK. (In contrast,
the spatial regularize€, usually has a null space only of [©!
dimension1, which is usually formed of constant images.)

We rewrite the system of equations (59) as 7
O fo=Thi G

whereT; is defined in (9) and’},, 1 = i{’m,m—1 ---T5 1. Even

if we add a periodic conditiorf; = Ty far to (16), then [

Ryine still has a null space of dimensiolN provided the
transitivity property of the motion model holds. Using (60)
we can construcly in (58) as follows: [10]

U, =TS, (61)

o o —-1/2
whereS £ (TC/TC) so thatUj is orthonormal. Note that [11]

f”clf”c =0 becausei“cli“C =1+ Z%:z ’f}’mli“mJ and I is
positive definite. SoS is invertible.
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