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Noise properties of motion-compensated
tomographic image reconstruction methods
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Abstract—Motion-compensated image reconstruction (MCIR)
methods incorporate motion models to improve image quality
in the presence of motion. MCIR methods differ in terms of
how they use motion information and they have been well-
studied separately. However, there have been less theoretical
comparisions of different MCIR methods. This paper compares
the theoretical noise properties of three popular MCIR methods
assuming known nonrigid motion.

We show the relationship among three MCIR methods -
motion-compensated temporal regularization (MTR), the para-
metric motion model (PMM), and post-reconstruction motion
correction (PMC) - for penalized weighted least square cases.
These analyses show that PMM and MTR arematrix-weighted
sums of all registered image frames, while PMC is ascalar-
weighted sum.

We further investigate the noise properties of MCIR methods
with Poisson models and quadratic regularizers by deriving
accurate and fast variance prediction formulas using an “ana-
lytical approach”. These theoretical noise analyses show that the
variances of PMM and MTR are lower than or comparable to the
variance of PMC due to the statistical weighting. These analyses
also facilitate comparisons of the noise properties of different
MCIR methods, including the effects of different quadratic
regularizers, the influence of the motion through its Jacobian
determinant, and the effect of assuming that total activity
is preserved. 2D PET simulations demonstrate the theoretical
results.

Index Terms—motion-compensated image reconstruction,
noise properties, quadratic regularization, nonrigid motion.

I. I NTRODUCTION

M OTION-COMPENSATED image reconstruction
(MCIR) methods have been actively studied for

various imaging modalities. MCIR methods can provide high
signal-to-noise ratio (SNR) images (or low radiation dose
images)and reduce motion artifacts [1]–[14]. Gating methods
implicitly use motion information (i.e., no explicit motion
estimation required) for motion correction, but yield low SNR
images due to insufficient measurements (or require longer
acquisition to collect enough measurements) [15], [16]. In
contrast, MCIR methods use explicit motion information (i.e.,
motion estimation obtained jointly or separately) to correct
for motion artifacts and to produce high SNR images with all
collected data.
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This paper analyzes three popular MCIR methods that
differ in their way of incorporating motion information:
post-reconstruction motion correction (PMC) [1]–[3], motion-
compensated temporal regularization (MTR) [4], [5], and
the parametric motion model (PMM) [6]–[14]. Each MCIR
method has been well-studied separately, but there has been
less theoretical research on comparing different MCIR meth-
ods. There are some empirical comparisons between PMC and
PMM [17], [18], and between MTR and PMM [19]. Asmaet
al. compared PMC and PMM theoretically in terms of their
mean and covariance by using a discrete Fourier transform
(DFT) based approximation [20]. However, the analytical
comparison was limited to the unregularized case and the
empirical comparison was performed for the regularized case.

Theoretical noise analyses of MCIR methods can be useful
for regularizer design and for performance comparisons. Noise
prediction methods include matrix-based approaches [21],
DFT methods [22], and an “analytical approach” that is much
faster [23]. We extend this analytical approach to MCIR, and
investigate the noise properties of PMC, PMM, and MTR with
quadratic regularizerstheoretically, assuming known nonrigid
motion. This assumption is applicable to some multi-modal
medical imaging systems such as PET-CT [7], [8], [10] and
PET-MR [14]. These analyses provide fast variance prediction
for MCIR methods and may also provide some insight into
unknown motion cases. These noise analyses not only facilitate
theoretical comparisons of the performance of different MCIR
methods, but also help one understand the influence of the
motion (through its Jacobian determinant) and the effect of
assuming that the total activity is preserved.

This paper is organized as follows. Section II reviews the
basic models and the estimators of the MCIR methods [24]:
PMC, PMM, and MTR. Section III shows the similarity
and difference between three MCIR estimators in penalized
weighted least square (PWLS) cases. It shows that MTR and
PMM are essentially the Fisher information-basedmatrix-
weightedsum of all registered image frames, while PMC is
thescalar-weightedsum. Section IV derives fast variance pre-
diction formulas for PMC and PMM with Poisson likelihoods
and general quadratic regularizers. Section V compares the
theoretical noise properties of MCIR methods. Section VI
illustrates the theories by 2D PET simulations with digital
phantoms for given affine and nonrigid motions.

II. MCIR MODELS AND METHODS

This section reviews MCIR models that were also described
in [24] and derives the PWLS estimator for each model.
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Although we focus on PWLS for simplicity, the general con-
clusions are also applicable to penalized-likelihood estimation
based on Poisson models [25]. We consider three MCIR meth-
ods: PMC [1]–[3], PMM [6]–[12], [26], [27], and MTR [4],
[5], [19], [28]. We treat the nonrigid motion information as
predetermined (known) and focus on how the motion models
affect noise propagation from the measurements into the
reconstructed image. In practice, errors in the motion models
lead to further variability in the image.

A. Review of basic MCIR models

1) Measurement model:MCIR methods are needed when
the time-varying objectf(~x, t) has non-negligible motion
during an acquisition interval where~x ∈ R

d denotes spatial
coordinate andt denotes time. Often one can use gating or
temporal binning to group the measurements intoM sets,
called “frames” here. Letym denote the vector of measure-
ments associated with themth frame. We assume the time
varying objectf(~x, t) is approximately motionless during the
acquisition of eachym. Let tm denote the time associated
with themth frame, and letfm = (f(~x1, tm), . . . , f(~xN , tm))
denote a spatial discretization of the objectf(·, tm) where
~xj denotes the center of thejth voxel for j = 1, . . . , N ,
and N denotes the number of voxels. We assume that the
measurements are related to the object linearly as follows:

ym = Amfm + ǫm, m = 1, . . . , M, (1)

whereAm denotes the system model for themth frame,ǫm

denotes noise, andM is the number of gates or frames. We
allow the system modelAm to possibly differ for each frame.

2) Warp model:For a given spatial transformationTm,n :
R

d → R
d, define a warp operator̊Tm,n as follows:

f(~x, tm) = (T̊m,nf)(~x, tn)

, |∇Tm,n(~x)|pf(Tm,n(~x), tn), (2)

where the total activity is preserved whenp = 1. We discretize
the warpT̊m,n to define aN × N matrix relating the image
fn to the imagefm as follows:

fm = T̊m,nfn, n, m = 1, · · · , M. (3)

For applications with periodic motion, we can additionally
definefM+1 , f1 and T̊M+1,M , T̊1,M . The matrixT̊m,n

can be implemented with any interpolation method; we used
a B-spline based image warp [29]. Let|∇Tm,n(~x)| denote the
determinant of the Jacobian matrix of a transformTm,n(~x)
for a warp T̊m,n. Throughout we assume the warps̊Tm,n

(or equivalentlyTm,n or T̊m,n) are known. We also assume
that invertibility, symmetry, and transitivity properties hold for
T̊m,n [24].

B. Single gated reconstruction (SGR)

Often one can reconstruct each imagef̂m from the corre-
sponding measurementym based on the model (1) and some
prior knowledge (e.g., a smoothness prior). A single gated
(frame) reconstruction (SGR) can be obtained as follows:

f̂m , argmin
fm

Lm (ym, Amfm) + ηRm(fm) (4)

wherem = 1, · · · , M , Lm is a negative likelihood function
derived from (1),Rm is a spatial regularizer, andη is a spatial
regularization parameter.

For the PWLS case,i.e., Lm(ym, Amfm) , ‖ym −
Amfm‖2

Wm
/2 where Wm is a weight matrix that usually

approximates the inverse of the covariance ofym, one can
obtain a closed form estimator̂fm as follows:

f̂m = [Fm + ηRm]−1A′
mWmym (5)

where the Fisher information matrix for themth frame is
Fm , A′

mWmAm, “ ′” denotes matrix transpose, andRm

is the Hessian matrix of a quadratic regularizerRm.

C. Post-reconstruction motion correction (PMC)

Once the frameŝf1, . . . , f̂M are reconstructed individually
from (4), one can improve SNR by averaging all reconstructed
images. Using the motion information to map each imagefm

to a single image’s coordinates can reduce motion artifacts.
Without loss of generality, we chosef1 as our reference image.
Using (3) and (4), a natural definition for the (scalar-weighted)
PMC estimator is the following motion-compensated average:

f̂PMC ,

M
∑

m=1

αmT̊1,mf̂m (6)

where
∑M

m=1
αm = 1. One choice isαm = 1/M for all m

(unweighted PMC). Another option isαm = τm/
∑M

m′=1
τm′

whereτm is the acquisition time (or the number of counts) for
the mth frame (scalar-weighted PMC). For the PWLS case,
there is an explicit form forf̂PMC using (3), (5), and (6):

f̂PMC =
M
∑

m=1

αm[F̊m + ηR̊m]−1T̊ ′
m,1A

′
mWmym (7)

whereF̊m , T̊ ′
m,1FmT̊m,1 andR̊m , T̊ ′

m,1RmT̊m,1 are es-
sentially Hessian matrices for themth frame in the coordinates
of the first (reference) frame.

D. Parametric motion model (PMM)

Without loss of generality, we assume thatf1 is our
reference image frame for the PMM approach. Combining
the measurement model (1) with the warp (3) yields a new
measurement model that depends only on the imagef1 instead
of the all imagesf1, · · · , fM (i.e., parameterizingall images
with f1):

ym = AmT̊m,1f1 + ǫm, m = 1, . . . , M.

Stacking up these models yields the overall model

yc = AdT̊cf1 + ǫc, (8)

where the components are each stacked accordingly:

yc , [y′
1, · · · , y′

M ]′, (9)

Ad , diag {A1, · · · , AM} ,

T̊c , [I, T̊ ′
2,1, · · · , T̊ ′

M,1]
′, and

ǫc , [ǫ′1, · · · , ǫ′M ]′.
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The PMM estimator for the measurement model (8) with a
spatial regularizer is

f̂PMM , argmin
f1

L(yc, AdT̊cf1) + ηRPMM(f1) (10)

where L is a negative likelihood function andRPMM is a
spatial regularizer.

For the PWLS data fidelity functionL(yc, AdT̊cf1) ,

‖yc − AdT̊cf1‖
2
Wd

/2 whereWd , diag {W1, · · · , WM} is
a diagonal matrix, the PMM estimator is

f̂PMM = [T̊c

′

FdT̊c + ηRPMM]−1T̊c

′

A′
dWdyc (11)

where Fd , A′
dWdAd = diag {F1, · · · , FM} is a block-

diagonal matrix, andRPMM is the Hessian matrix of a
quadratic regularizerRPMM. Since T̊c

′

FdT̊c =
∑M

m=1
F̊m,

we can rewrite the PMM estimator in (11) as

f̂PMM =

[

M
∑

m=1

F̊m + ηRPMM

]−1 M
∑

m=1

T̊ ′
m,1A

′
mWmym.

(12)

E. Motion-compensated temporal regularization (MTR)

The MTR method incorporates the motion information that
matches two adjacent images into a temporal regularization
term [4], [5]:

1

2
‖fm+1 − T̊m+1,mfm‖2

2. (13)

for m = 1, · · · , M − 1. This penalty is added to the cost
function in (4) for allm to define the MTR cost function.

Equations (4) for allm and (13) can be represented in a
simpler vector-matrix notation. First, stack up (1) for allm as
follows:

yc = Adfc + ǫc, (14)

where fc = [f ′
1, · · · , f ′

M ]′ and Ad, ǫc are defined in (9).
Then, the MTR estimator based on (13), (14), and a spatial
regularizer is

f̂c , argmin
fc

L(yc, Adfc) + ηR(fc) +
ζ

2
‖Ttimefc‖

2
2 (15)

whereL is a negative likelihood function from the noise model
of (14),R is a spatial regularizer,ζ is a temporal regularization
parameter, and the temporal differencing matrix is

Ttime ,







−T̊2,1 I

. . .
. . .

−T̊M,M−1 I






. (16)

We may also modifyTtime for periodic (or pseudo-periodic)
image sequences by adding a row corresponding to the term
f1 − T̊1,MfM . Note that unlike the PMM method that esti-
mates one framêf1, MTR estimates all image frameŝfc. The
MTR estimate off1 (reference image) is

f̂MTR , [I 0 · · · 0] f̂c. (17)

For the PWLS case, the solution to (15) is

f̂c = [Fd + ηRd + ζRtime]
−1AdWdyc, (18)

whereRd , diag {R1, · · · , RM} andRtime , T ′
timeTtime.

III. RELATIONSHIP BETWEENMCIR ESTIMATORS

In this section, we investigate the relationship among PWLS
MCIR estimators in (5), (7), (12), and (18). Considering PWLS
estimators helps show the similarity and differences among
MCIR methods more clearly than estimators for Poisson
likelihoods. Although the observations in this section focus on
PWLS estimators, similar results can be obtained for the mean
and variance of MCIR estimators with Poisson likelihood
models [25]. The next section analyzes the variance of these
MCIR methods.

A. Properties of MTR estimator forζ → 0 and ζ → ∞

The temporal regularization term (13) in (15) will increase
the correlation between the estimatorsf̂i andf̂j for i 6= j asζ
is increased. Even though (18) provides the exact relationship
between the PWLS MTR estimator andζ, this form itself
may not be informative in terms of comparing it with other
MCIR methods. So, we investigate the limiting behavior of
the PWLS MTR estimator asζ → 0 and asζ → ∞. This
provides insights for comparisons with PMM and PMC.

It is straightforward to determine the limit of̂fc in (18) as
ζ → 0 because

Fd + ηRd + ζRtime → Fd + ηRd , GMTR (19)

where GMTR is a block-diagonal matrix,i.e., GMTR =
diag {(Fm + ηRm)}

M
m=1

. Therefore, asζ → 0, the PWLS
MTR estimatorf̂c approaches

f̂c → G−1

MTR
A′

dWdyc =
[

f̂ ′
1 · · · f̂ ′

M

]′

(20)

where f̂m are defined in (5). Thus, by (17),̂fMTR → f̂1 as
ζ → 0. In other words, asζ → 0, the PWLS MTR estimator
for each frame approaches the PWLS SGR estimator (5).

As ζ → ∞, f̂c has more interesting limiting behavior. The
following theorem is proven in Appendix A.

Theorem 1:As ζ → ∞, the MTR estimatorf̂c becomes

f̂c → T̊c[F̊c + ηR̊c]
−1T̊c

′

A′
dWdyc (21)

= T̊c

[

M
∑

m=1

F̊m + ηR̊m

]−1 M
∑

m=1

T̊ ′
m,1A

′
mWmym

where T̊m,1 = T̊m,m−1 · · · T̊2,1, T̊c is defined in (9),F̊c ,

T̊c

′

FdT̊c, andR̊c , T̊c

′

RdT̊c.

B. Equivalence of MTR and PMM estimators

Equation (21) in Theorem 1 and (12) show that the PWLS
estimators of PMM and MTR (ζ → ∞) are remarkably
similar. In particular, if we choose a PMM regularizer with

RPMM =

M
∑

m=1

R̊m, (22)

then the analysis leading to (21) with (17) shows that

f̂MTR → f̂PMM as ζ → ∞. (23)

In other words,f̂c → T̊cf̂PMM asζ → ∞. Therefore, assum-
ing some mild conditions on motion and spatial regularizers,
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the PWLS estimators of PMM and MTR with sufficiently large
ζ will be approximately the same, and thus so will the mean
and covariance. For the Poisson likelihood, one can show that
the mean and covariance of the MTR estimator will approach
the mean and covariance of the PMM estimator asζ increases.
We will show the covariance case for the Poisson likelihood
in the next section. The mean case with the Poisson likelihood
can be shown by consulting [24] and using Appendix A.

C. Difference between PMC and PMM estimators

Using (5), (7), and (22), we rewrite the PWLS PMM
estimator (12) as follows:

f̂PMM =
M
∑

m=1

Γm(F̊m + ηR̊m)−1T̊ ′
m,1A

′
mWmym

=

M
∑

m=1

ΓmT̊1,mf̂m, (24)

where the weighting matrices are given by

Γm ,

[

M
∑

l=1

(F̊l + ηR̊l)

]−1

(F̊m + ηR̊m). (25)

Comparing the PWLS PMM estimator (24) and the PWLS
PMC estimator (6), we see that the PWLS PMC estimator
is a scalar-weightedaverage of the motion corrected PWLS
SGR estimators of all frames whereas the PWLS PMM
estimator is amatrix-weightedaverage of the motion corrected
PWLS estimators. The PWLS MTR estimator (with proper
motion and regularizers) approaches the samematrix-weighted
average of the motion corrected estimators (24) asζ → ∞.

The weightsΓm in (25) are calculated using the Fisher
information matrices̊Fm. This implies that the PWLS PMM
estimator (and the PWLS MTR estimator withζ → ∞)
automatically assigns different weights to the estimatef̂m

depending on factors such as noise (Fisher information matrix
Fm) and motionT̊m,1. For the Poisson likelihood case, the
next section shows the benefit of this matrix-weighted average
(24) by investigating the noise properties of MCIR methods
using an “analytical approach” extended from [24] and [23].

IV. N OISE PROPERTIES OFMCIR

This section analyzes the noise properties of different MCIR
methods. The analysis applies both to PWLS estimators and
to maximum a posteriori (MAP) estimators based on Poisson
likelihoods. Since the analysis is based on a first-order approx-
imation of the gradient of the likelihood, the accuracy of the
analysis for Poisson likelihoods will decrease as the number
of counts per frame decreases as shown in [25]. For simplicity,
we focus on 2D PET with a few assumptions. We consider an
ideal tomography system,i.e., we ignore detector blur. We
also assume thatAm = DmA0 for all m. The (unitless)
elements ofA0 describe the probability that an emission from
the jth pixel is recorded by theith detector in the absence of
attenuation or scatter and for an ideal detector. Theith element
of the diagonal matrixDm has units of time and includes the

detector efficiency, the patient-dependent attenuation along the
ith ray, and the acquisition timeτm for the mth frame.

We assume known attenuation map (i.e., Dm is given),
which is the usual assumption for PET-CT [30] or PET-
MR [31]. We still allow the warp̊Tm,1 to differ for eachm. We
assume that the given nonrigid motion is locally affine [24].
We also assume that the measurementsym for all m are
independent,i.e., Cov{f̂m, f̂n} = 0 for all m 6= n.

We use an “analytical approach” to derive approximate vari-
ances for SGR and MCIR methods. This appproach provides
fast variance prediction methods [23] compared to the DFT-
based variance approximations or numerical simulations.

A. Single gated reconstruction (SGR)

If L in (4) is a negative Poisson log-likelihood function (i.e.,
L(y, u) ,

∑

i ui − yi log ui), then one can approximate the
covariance of the SGR estimator̂fm of (4) by [25]:

Cov{f̂m} ≈ [Fm + ηRm]−1Fm[Fm + ηRm]−1 (26)

whereFm , A′
0D

′
mWmDmA0, Wm , D (1/[ȳm(fm)]i)

is a diagonal matrix,̄ym is the mean ofym, the Hessian of
the regularizer isRm , ∇2R(f̌m), and f̌m , f̂m(ȳm(fm)).

To study (26) using the “analytical approach” of [23], we
focus on a first-order difference quadratic regularizer:

f ′
mRmfm ,

∑

j

L
∑

l=1

rj
l,m((cl ∗ ∗fm)[~nj ])

2, (27)

where ∗∗ denotes 2D convolution,rj
l,m is a non-negative

regularization weight (e.g., regularization designs for uniform
and/or isotropic spatial resolution [24], [32]),fm[~nj ] denotes
the 2D array corresponding to the lexicographically ordered
vector fm, j is the lexicographic index of the pixel at 2D
coordinates~nj, and

cl[~nj ] =
1

‖~ml‖2

(δ2[~nj] − δ2[~nj − ~ml]), (28)

where {~ml} denote the spatial offsets of thejth pixel’s
neighbors andδ2[~nj] denotes the 2D Kronecker impulse. We
used the usual 8-pixel 2D neighborhood withL = 4 and
{~ml}

4
l=1

= {(1, 0), (0, 1), (1, 1), (1,−1)}.
For a polar coordinate(ρ, ϕ) in the frequency domain, we

can represent the variance of (26) at thejth voxel in an
analytical form as follows [23]:

Varj{f̂m} ≈

∫ 2π

0

∫ ρmax

0

P j
SGR

(ρ, ϕ)ρ dρ dϕ (29)

where ρmax , 1/2/∆, ∆ is the pixel spatial sampling
distance, and the local power spectrumP j

SGR
(ρ, ϕ) at thejth

pixel, which is the Fourier transform of thejth column of the
covariance in (26) (see also p. 220 of [33]), is

P j
SGR

(ρ, ϕ) ,
w̄m(ϕ; ~xj)/ρ/∆̃

(

w̄m(ϕ; ~xj)/ρ/∆̃ + η(2πρ)2Qj
m(ϕ)

)2
(30)
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where the angular component of the local frequency response
of the regularizer (27) is

Qj
m(ϕ) ,

L
∑

l=1

rj
l,m cos2(ϕ − ϕl) (31)

andϕl = ∠~ml. For a standard quadratic regularizer,Qj
m(ϕ) =

w0 wherew0 is a constant. The analytical forms ofFm and
Rm at thejth voxel arew̄m(ϕ; ~xj)/ρ and(2πρ)2Qj

m(ϕ) (see
[23], [32]) where

w̄m(ϕ; ~xj) ,

∑

i∈Iϕ
a2

ijw̃m,i
∑

i∈Iϕ
a2

ij

, (32)

Iϕ is the set of rays at the angleϕ, aij , [A0]ij ,
w̃m,i , [DmWmDm]ii, ∆̃ , ∆2∆r∆ϕ, ∆r is a detector
sampling interval, and∆ϕ is an angular sampling interval.
For fast computation, one can approximatēwm(ϕ; ~xj) ≈
w̃m (~xj · (cosϕ, sin ϕ), ϕ) where w̃m(ri, ϕi) , w̃m,i. One
can further simplify the local varianceVarj{f̂m} in (29) by
calculating the intergral (29) with respect toρ as follows [23]:

Varj{f̂m} ≈

∫ π

0

2/3

w̄m(ϕ; ~xj)

∆̃ρ3
max

+ η4π2Qj
m(ϕ)

dϕ, (33)

where P j
SGR

(ρ, ϕ + π) = P j
SGR

(ρ, ϕ). The variance of the
SGR estimator for the Poisson likelihood depends on the
measurement statistics̄wm, the sampling distances∆, ∆r,
∆ϕ, and the regularization parameterη. One can also obtain
the local autocovariance of the SGR estimator at thejth pixel
by taking an inverse Fourier transform (FT) of the local power
spectrumP j

SGR
(ρ, ϕ) in (30).

B. Post-reconstruction motion correction (PMC)

Assuming that the measurementsym for each frame are
statistically independent and the reconstruction algorithm uses
the Poisson likelihood, the covariance of the PMC estimator
(6) is approximately

Cov{f̂PMC} =

M
∑

m=1

α2
mT̊1,mCov{f̂m}T̊ ′

1,m (34)

≈

M
∑

m=1

α2
m[F̊m + ηR̊m]−1F̊m[F̊m + ηR̊m]−1.

We can derive the analytical forms of̊Fm and R̊m (the
quadratic regularizer (27)) in the frequency domain as follows
(see Appendix B in [24]):

F̊m :
w̄m(ϕ̃; ~xk)|∇Tm,1(~xj)

′|2p−1

ρ‖∇Tm,1(~xj)′(cosϕ, sin ϕ)′‖2

(35)

R̊m : (2πρ)2‖∇Tm,1(~xj)
′(cosϕ, sin ϕ)′‖2

2 (36)

·|∇Tm,1(~xj)
′|2p−1Qk

m(ϕ̃)

where ~xk is the closest pixel toT−1
m,1(~xj) and ϕ̃ ,

∠∇Tm,1(~xj)
′(cosϕ, sin ϕ)′. Therefore, by using analytical

forms, we approximate the variance off̂PMC at thejth voxel:

Varj{f̂PMC} ≈

∫ 2π

0

∫ ρmax

0

P j
PMC

(ρ, ϕ)ρ dρ dϕ (37)

where the local power spectrum,P j
PMC

(ρ, ϕ), at thejth pixel
is given by

M
∑

m=1

α2
mw̄m(ϕ̃; ~xk)tj

Fm
(ϕ)/ρ/∆̃

(

w̄m(ϕ̃; ~xk)tj
Fm

(ϕ)/ρ/∆̃ + η(2πρ)2Qk
m(ϕ̃)tj

Rm
(ϕ)

)2

where the following factors arise from the Fisher information
matrix Fm and the Hessian of the regularizerRm respectively
due to motion compensation

tj
Fm

(ϕ) ,
|∇Tm,1(~xj)

′|2p−1

‖∇Tm,1(~xj)′(cosϕ, sin ϕ)′‖2

(38)

tj
Rm

(ϕ) , ‖∇Tm,1(~xj)
′(cosϕ, sin ϕ)′‖2

2|∇Tm,1(~xj)
′|2p−1.

For rigid motion,tj
Fm

(ϕ) = tj
Rm

(ϕ) = 1 whereas for nonrigid
motion such as (isotropic or anisotropic) scaling,tj

Fm
(ϕ) and

tj
Rm

(ϕ) usually differ from 1. By integrating, we simplify the
local varianceVarj{f̂PMC} in (37) further as follows:

∫ π

0

M
∑

m=1

2α2
m/3

w̄m(ϕ̃; ~xk)tj
Fm

(ϕ)

∆̃ρ3
max

+ η4π2Qk
m(ϕ̃)tj

Rm
(ϕ)

dϕ. (39)

Note that the variance of the PMC estimator depends on the
motion throughtj

Fm
(ϕ) andtj

Rm
(ϕ) terms. One can also obtain

the local autocovariance of the PMC estimator by taking an
inverse FT ofP j

PMC
(ρ, ϕ).

C. Parametric motion model

For the PMM estimator (10) with the Poisson likelihood,
the covariance of the PMM estimator,Cov{f̂PMM}, can be
approximated using the matrix-based methods of [25] as
[

M
∑

m=1

F̊m + ηRPMM

]−1 M
∑

m=1

F̊m

[

M
∑

m=1

F̊m + ηRPMM

]−1

.

(40)
Using the analytical forms in (35) and (36), the variance of
the PMM estimator at thejth pixel is approximately

Varj{f̂PMM} ≈

∫ 2π

0

∫ ρmax

0

P j
PMM

(ρ, ϕ)ρ dρ dϕ, (41)

where the local power spectrum,P j
PMM

(ρ, ϕ), at thejth pixel
for (40) is defined as follows:

∑M
m=1

w̄m(ϕ̃; ~xk)tj
Fm

(ϕ)/ρ/∆̃
(

∑M
m=1

w̄m(ϕ̃; ~xk)tj
Fm

(ϕ)/ρ/∆̃ + η(2πρ)2Qj
PMM

(ϕ)
)2

,

where Qj
PMM

(ϕ) ,
∑L

l=1
rj
l cos2(ϕ − ϕl). Integrating

P j
PMM

(ρ, ϕ) overρ simplifies the local varianceVarj{f̂PMM}
in (41) to

∫ π

0

2/3
M
∑

m=1

w̄m(ϕ̃; ~xk)tj
Fm

(ϕ)

∆̃ρ3
max

+ η4π2Qj
PMM

(ϕ)

dϕ. (42)

Like the PMC case, the noise depends on the given motion.
The local covariance of the PMM estimator can be approxi-
mated with an inverse FT ofP j

PMM
(ρ, ϕ).
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The covariance of the PMM estimator with the regularizer
(22) will be approximately

[

M
∑

m=1

F̊m + ηR̊m

]−1 M
∑

m=1

F̊m

[

M
∑

m=1

F̊m + ηR̊m

]−1

(43)

and with the same procedure as above, the variance of the
PMM estimator at thejth pixel for (43) is approximately
∫ π

0

2/3
M
∑

m=1

w̄m(ϕ̃; ~xk)tj
Fm

(ϕ)

∆̃ρ3
max

+ η4π2Qk
m(ϕ̃)tj

Rm
(ϕ)

dϕ. (44)

One can evaluate (33), (39), (42), and (44) using a simple back
projection (i.e., approximate integral by sum over projection
angleϕ) to predict variance for every image pixel.

D. Motion-compensated temporal regularization

From (15) with the Poisson likelihood, the covariance
matrix of the MTR estimator̂fc is approximately

Cov{f̂c} ≈ [GMTR+ζRtime]
−1Fd[GMTR+ζRtime]

−1 (45)

where GMTR , Fd + ηRd. Section III showed that the
PWLS MTR estimator converges to the PWLS SGR and PMM
estimators asζ → 0 and ζ → ∞, respectively. For the
estimators with the Poisson likelihood, one can show that
the covariance of the MTR estimator (45) “approximately”
converges to the covariance of the SGR estimator and the
PMM estimator asζ → 0 and ζ → ∞, respectively, using
(64) in Appendix A. Therefore, the local variance of the MTR
estimator at thejth pixel will approach the SGR result (33)
approximately asζ → 0 and will approach the PMM result
(44) approximately asζ → ∞.

Obtaining an analytical form for the variance of MTR with
any ζ seems challenging due to the complicated structure
of Ttime matrix. However, from (45) one can show that the
covariance of the MTR decreases asζ increases. We can
also intuitively expect that highζ value will increase the
correlation between estimated image frames, which will reduce
the variance of MTR. We evaluate this intuition empiricallyin
Section VI.

V. PERFORMANCE COMPARISONS INMCIR

This section presents theoretical comparisons of the noise
properties of SGR and MCIR methods with the Poisson
likelihood.

A. Comparing noise properties between PMC and PMM

As discussed in Section III-C, the PMC estimator is a
scalar-weightedaverage of the motion corrected estimators of
all frames, whereas the PMM estimator is amatrix-weighted
average using the weight in (25). This difference led to the
different variances of the PMC estimator (39) and of PMM
(44) (and the variance of MTR forζ → ∞). By matching the
spatial resolutions of PMM and PMC using the regularizer
(22) for PMM (see [24]), we can also compare the variance
of PMC and PMMtheoretically.

For vj
m(ϕ) ≥ 0, one can show that

1
∑M

m=1
vj

m(ϕ)
≤

M
∑

m=1

α2
m

vj
m(ϕ)

(46)

using the Cauchy-Schwarz inequality [20] and
∑M

m=1
αm = 1.

If we set

vj
m(ϕ) , w̄m(ϕ̃; ~xk)tj

Fm
(ϕ)/∆̃/ρ3

max + η4π2tj
Rm

(ϕ)Qk
m(ϕ̃),

then (39), (44), and (46) show that

Varj{f̂PMM} ≤ Varj{f̂PMC} (47)

for the regularized PMC and PMM. Equality holds when all
vj

m are the same for allm. This inequality is consistent with
the empirical observations in [20]. Therefore, PMM (and MTR
with sufficiently largeζ) is preferable over PMC in terms of
noise variance.

B. Comparing noise properties of SGR for three regularizers

Because of the interactions between the likelihood and
regularizer, spatial resolution will be anisotropic and non-
uniform if one uses a standard regularizer [21],i.e., Qj

m(ϕ) =
w0 in (30), which we call SGR-S. There has been some
research on regularizers that provide approximately uniform
and/or isotropic spatial resolution [21], [32], [34]. Thissection
analyzes the effect of such regularizers on the noise properties
of SGR.

The certainty-based quadratic regularizer proposed in [21]
can provide approximately uniform (but still anisotropic)
spatial resolution. In this case,rj

l,m in (27) is designed to
approximately satisfy

Qj
m(ϕ) ≈

1

π

∫ π

0

w̄m(ϕ′; ~xj) dϕ′, (48)

and we call the estimation SGR-C. Alternatively, one can
design{rj

l,m} to approximately satisfy

Qj
m(ϕ) ≈ w̄m(ϕ; ~xj) (49)

so that the spatial resolution will be approximately uniform
and isotropic [32], [35], which we call SGR-P. From (33), one
can show the relationship between the variances of SGR-S and
SGR-C as follows:

Varj{f̂
SGR−S
m } ≤ Varj{f̂

SGR−C
m } w0 ≥ Qj

m(ϕ)

Varj{f̂
SGR−S
m } > Varj{f̂

SGR−C
m } o.w. (50)

The same relationship holds between SGR-S and SGR-P. The
variance of SGR-S can be larger or smaller than the variance
of SGR-C and SGR-P for each location (jth pixel).

There is a more interesting relationship between the
variances of SGR-C and SGR-P. In both (48) and (49),
w̄m(ϕ; ~xj) ≈ Qj

m(ϕ) [21], [32], and substituting this further
approximation into (33) yields the following simplified vari-
ance approximation:

Varj{f̂m} ≈

(

2/3

1/∆̃/ρ3
max + η4π2

)
∫ π

0

1

Qj
m(ϕ)

dϕ. (51)
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This approximation becomes increasingly accurate asρmax

and/orη increase. In our simulations, using (49) in (51) signif-
icantly reduced the accuracy of (51) because small differences
in (49) became large differences in (51) due to their reciprocal
relationship. Using (48) and (49) to achieve approximately
uniform and/or isotropic spatial resolution will increasethe
effect of the measurement statistics̄wm on the estimator
variance (51) compared to (33). This tendency was empirically
observed in [21]. Using the Cauchy-Schwarz inequality, one
can show that the variance approximation in (51) satisfies

Varj{f̂
SGR−C
m } ≤ Varj{f̂

SGR−P
m }. (52)

This inequality is verified empirically in Section VI-B. Evi-
dently, imposing more properties on the spatial resolutionsuch
as isotropy requires sacrificing the noise performance, which
shows the spatial resolution-noise trade-off.

C. Comparing noise properties between SGR and MCIR

If there is no motion between image frames andw̄m = w̄1

for all m, then (33), (39), and (44) yieldVarj{f̂PMC} =
Varj{f̂PMM} = Varj{f̂m}/M , as expected since PMC and
PMM usedM times more counts than SGR. The MTR vari-
anceVar{f̂MTR} with very highζ also yields approximately
the same variance as PMM and PMC in this case.

However, this1/M relationship between MCIR and SGR
variances may not hold exactly when there is motion between
image frames. For example, if there is locally isotropic scaling
motion between frames as follows:

∇Tm,1(~xj) =

[

s 0
0 s

]

(53)

wheres > 0, thentj
Fm

(ϕ) = s4p−3 andtj
Rm

(ϕ) = s4p in (38).
For PMC, if we design the regularizer to achieve isotropic
resolution by using

tj
Rm

(ϕ)Qk
m(ϕ̃) ≈ w̄m(ϕ̃; ~xk)tj

Fm
(ϕ), (54)

and if ρmax and/orη are relatively large, then the variance
of the PMC estimator at thejth pixel in (39) approximately
reduces to

(

2/3/M2

1/∆̃/ρ3
max + η4π2

) M
∑

m=1

∫ π

0

1

tj
Rm

(ϕ)Qk
m(ϕ̃)

dϕ. (55)

Comparing with (51), the variance of PMC (55) will be ap-
proximately1/M/s4p times the variance of SGR forM ≫ 1.
The variance of PMM (44) will have a similar relationship
with the variance of SGR. If the total activity is preserved
(i.e., p = 1), then local expansion (s < 1) will increase
the variance and local shrinkage (s > 1) will decrease the
variance. Intuitively, if the same amount of total activity
produces the same number of Poisson counts, the expanded
area that contains the same total activity will have larger
image area to estimate,i.e., effectively more parameters. Thus,
the expanded area will lead to higher estimator variance. For
regularizers other than (54), the variance of PMC will also be
affected by motion throughtj

Fm
(ϕ) and tj

Rm
(ϕ) terms.

D. Total activity preserving condition for MCIR

The total activity preserving condition (2) is important
for accurate motion modeling and it also affects the spatial
resolution [24] and noise properties of MCIR. Using the
example in Section V-C, we analyze the influence of motion on
the noise, focusing on PMC and PMM. (MTR with sufficiently
large ζ will have approximately the same noise properties as
PMM.)

If one uses standard quadratic regularizers for PMC and
PMM (e.g., Qj

m(ϕ) = w0 and Qj
PMM

(ϕ) = Mw0 in (31)),
then the variance of the PMC estimator in (39) reduces to

∫ π

0

M
∑

m=1

2α2
m/3

w̄m(ϕ̃; ~xk)s4p−3/∆̃/ρ3
max + η4π2w0s4p

dϕ (56)

since tj
Fm

(ϕ) = s4p−3 and tj
Rm

(ϕ) = s4p when (53) holds.
The variance of the PMM estimator in (42) reduces to

∫ π

0

2/3
M
∑

m=1

(

w̄m(ϕ̃; ~xk)s4p−3/∆̃/ρ3
max + η4π2w0

)

dϕ. (57)

When s = 1 (e.g., rigid motion), the variance is not affected
by motion. However, whens 6= 1, the variance of PMC will
be always affected by motion, whether the total activity is
preserved or not, due to thes4p−3 and s4p terms in (56).
However, whenρmax and/orη are relatively large, the variance
of PMM may be less affected by motion whenp = 1 than
when p = 0 since (57) only containss, which is relatively
closer to 1 thans4 or s−3. Since the regularizer in PMM does
not involve the motion warp, there is notj

Rm
(ϕ) term in the

variance (42) of PMM. Thus, when we use the total activity
preserving conditionp = 1 with the standard regularizers, the
variance of PMM may be less affected by motion than the
variance of PMC.

When one designs the spatial regularizers (i.e., determine
rj
l,m in (27)) to achieve approximately uniform and/or isotropic

spatial resolution for the MCIR methods [24], as shown in
Section V-C, the variances of PMC and PMM will be affected
by motion with the factor ofs4p−3. Thus, the variance of PMC
and PMM will be less affected by motion whenp = 1 than
whenp = 0. Note that the analyses above assumed that both
measurement model and reconstruction model follow the same
condition. One could generalize these analyses to considerthe
effects of motion model mismatch.

VI. SIMULATION RESULTS

The analyses in this paper apply to nonrigid motions that
are approximately locally affine [24]. We performed PET sim-
ulations with two digital phantoms: one is a simple phantom
with global affine motion between frames and the other is the
XCAT phantom [36] with non-affine nonrigid motion that we
modeled using B-splines [37].

A. Simulation setting

Two digital phantoms were used, each with four frames of
160×160 pixels with 3.4 mm pixel width. Sinograms were
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generated using a PET scanner geometry with 400 detector
samples, 1.9 mm spacing, 220 angular views, and 1.9 mm
strip width. We used 300K, 500K, 200K, 200K mean true
coincidences for each frame (1.2M total) with 10% random
coincidences. Simple uniform attenuation maps were used for
the first simulation and no attenuation was used for the second.

We investigated SGR, PMC, and PMM by comparing
analytical standard deviation (SD) with empirical SD from
500 Poisson noise realizations. We used spatial regulariz-
ers (with regularization parameterη = 104) that provide
approximately uniform (SGR-C, PMC-C, PMM-C) and uni-
form/isotropic (SGR-P, PMC-P, PMM-P) spatial resolutions,
respectively [20], [21], [24], [32]. We also studied the noise
properties of MTR empirically with variousζ values. The
spatial resolutions of SGR, PMC, PMM and MTR were all
matched to each other using the regularization designs in
[24]. All images were reconstructed using a L-BFGS-B (quasi-
Newton) algorithm with non-negativity constraints [38], [39].

B. Simple phantom with affine motion

Four frames with affine motion

1 160

1

160

Fig. 1. Four true images with anisotropic scaling, rotationand translation.
Total activity is preserved.

We used a simple digital phantom with known affine motion
(anisotropic scaling between frame 1 and 2, rotation between
frame 2 and 3, and translation between frame 3 and 4) as
shown in Fig. 1. The total activity is preserved between frames.

Fig. 2 displays profiles through the variance image and
shows that our analytical equation for SGR in (33) (and (51))
provides accurate noise predictions. (The location of the profile
is indicated in Fig. 1 as a horizontal line). The analytical SD
of SGR with quadratic regularizers (A-SGR-C and A-SGR-P)
matches well with the empirical SD of SGR from 500 noise
realizations (E-SGR-C and E-SGR-P). Fig. 2 also shows that
the variance of SGR-C is lower than the variance of SGR-
P as shown in (52) (in this case,η was fairly large). This
analytical and empirical agreement of SGR does not hold
well near the boundary of and outside the object because of
the non-negativity constraint and because the “locally shift
invariant” approximation is less accurate there. We observed
similar results for a constant quadratic regularizer (not shown).
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A−SGR−P
E−SGR−P
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E−SGR−C

Fig. 2. Analytical SD of SGR (A-SGR-P, A-SGR-C) matches wellwith
empirical SD of SGR (E-SGR-P, E-SGR-C), respectively. SD ofSGR-P (with
regularizer that approximately uniform and isotropic spatial resolution) is
higher than SD of SGR-C (with regularizer that approximately uniform spatial
resolution), which is consistent with theoretical comparison.
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Fig. 3. Analytical SD of PMC (A-PMC-P, A-PMC-C) matches wellwith
empirical SD of PMC (E-PMC-P, E-PMC-C), respectively.
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Fig. 4. Analytical SD of PMM (A-PMM-P, A-PMM-C) matches wellwith
empirical SD of PMM (E-PMM-P, E-PMM-C), respectively.

Fig. 3 shows that our analytical variance prediction for PMC
(A-PMC-C and A-PMC-P) in (39) agrees with the empirical
variance of PMC (E-PMC-C and E-PMC-P). Fig. 4 also shows
that the analytical variance formula for PMM in (44) predicts
the empirical variance of PMM well.

Fig. 5 confirms the theoretical noise comparison between
PMC and PMM shown in (47). As shown in Fig. 5, the
SD of unweighted PMC was generally lower than the SD
of PMM. However, the difference between the SD of PMM



CHUN et al.: NOISE PROPERTIES OF MOTION-COMPENSATED TOMOGRAPHIC IMAGE RECONSTRUCTION METHODS 9

and the SD of scalar-weighted PMC (using weights that
account for the number of counts per frame) was very small.
Using the spatial regularizer for PMM as proposed in (22)
that matches to PMC, the full-width-half-maximum (FWHM)
of PMC (2.30 ± 0.13 pixels) was slightly larger than the
FWHM of PMM (2.19 ± 0.05 pixels). Our target FWHM
was 2.19 ± 0.01 pixels. This small discrepancy was because
our analysis assumed perfect interpolations for warps, whereas
the actual interpolations induce slight blurring. For PMC,the
warp is appliedafter the reconstruction, thus the FWHM was
slightly larger than the target FWHM. We observed that the
SD of scalar-weighted PMC wasslightly lower than the SD
of PMM empirically, due to it being slightly blurred more.
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Scalar−weighted PMC

Fig. 5. If the spatial resolutions are matched, the SD of PMC is higher than
or comparable to the SD of PMM, depending on the choice of weights αm.

Section V-C showed that if we combineM image frames
with the motion (53), then the variance of MCIR would not
be 1/M of the variance of SGR due to motion effects. In
other words, as shown in Fig. 6, the SD of PMC will not be
1/2 of the SD of SGR (4 frames), but will be approximately
1/2/|J | of the SD of SGR whereJ , ∇Tm,1 and m 6= 1.
This example confirms that the variance of MCIR methods
depend on the Jacobian determinant of the transformationT .

Fig. 7 shows that the empirical variance of MTR approaches
the analytical variance of SGR ifζ → 0 and to the analytical
variance of PMM ifζ → ∞ as shown in Section IV-D.

We also repeated the reconstructions and noise predictions
using motion parameters that were translated by 1 pixel (3.4
mm) away from their true values. We examined the empirical
and predicted noise standard deviations for all pixels within
two pixels of the outer boundary of the object. For PMC-C
the maximum (mean) percent error between the predicted and
empirical SD increased from 16.5% (3.2%) without motion
error to 17.0% (3.3%) with motion error. For PMM-C the
maximum (mean) percent errors were 16.0% (3.7%) and
15.0% (3.8%) without and with motion error, respectively.

C. XCAT phantom with nonrigid motion

We used the XCAT digital phantom [36] to generate 4
volumes with respiratory and cardiac motion and selected one
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y = x

Fig. 6. Empirical SD of SGR vs. empirical SD of PMC (MCIR) with4
frames (M = 4). The SD of PMC will be affected byboth the number of
frames and the motion (Jacobian determinant of transformation |J|).
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E−MTR−P, ζ = 0.01
E−MTR−P, ζ = 0.3
E−MTR−P, ζ = 1
A−PMM−P

Fig. 7. Empirical SD of MTR with differentζ. As ζ → 0, the SD of
MTR approaches the analytical SD of SGR. Asζ → ∞, the SD of MTR
approaches the analytical SD of PMM.

slice per each volume (same location) for a 2D simulation.
After estimating transformations between frames for all MCIR
methods consistently (see [24] for details), we used them as
the true motion, leading to the true images shown in Fig. 8.
Thus, there is no motion model mismatch in this experiment.

As shown in the previous simulation with affine motion,
our fast variance predictions for PMC and PMM, which
correspond to (39) and (44), work well for the case of nonrigid,
non-affine motion as shown in Figs. 9 and 10. There are some
areas that match less well than other areas (and compared to
the case of affine motion) since there are areas that contain
abrupt change of motion so that the local affine approximation
does not hold well. Fig. 11 also shows that the empirical SD
of MTR approached to the analytical SD of SGR and PMM
asζ → 0 andζ → ∞, respectively.

VII. D ISCUSSION

We analyzed the noise properties of three different PWLS
MCIR methods for the case of known nonrigid motion.
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Four frames with nonrigid motion

1 160

1

160

Fig. 8. Four true images with nonrigid motion. Total activity is preserved.
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Fig. 9. Analytical SD of PMC (A-PMC-P, A-PMC-C) matches wellwith
empirical SD of PMC (E-PMC-P, E-PMC-C), respectively.
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Fig. 10. Analytical SD of PMM (A-PMM-P, A-PMM-C) matches well with
empirical SD of PMM (E-PMM-P, E-PMM-C), respectively.

We showed that the PMC is ascalar-weightedsum of the
motion corrected estimated image frames, whereas the PMM
and the MTR withζ → ∞ are matrix-weightedsum with
weights that depend on the Fisher information matrix of each
frame. We further investigated the noise properties of three
different MCIR methods with Poisson likelihood. We derived
approximate variance prediction equations for PMC and PMM
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Fig. 11. Empirical SD of MTR with differentζ. As ζ → 0, the SD of
MTR approaches to the analytical SD of SGR. Asζ → ∞, the SD of MTR
approaches to the analytical SD of PMM.

and also studied the limiting behavior of the MTR variance
as ζ → ∞ and ζ → 0. These predictions worked well for
digital phantoms with affine motion and non-affine nonrigid
motion. Furthermore, as in [23], the variance predictions (33),
(39), and (42) require computation time comparable to a back-
projection, which is much faster than DFT-based variance
prediction methods [20]. However, as the number of counts
per frame decreases (due to less total counts or more number
of frames), the accuracy of the variance predictions will also
decrease since our variance approximations are based on a
first-order approximation of the gradient of the likelihood
function. [25]. More accurate variance predictions based on
higher-order approximations will be challenging.

These analytical variance formulas showed a few interesting
relationship between MCIR methods. The variance of SGR-C
(using spatial regularizer that approximately provides uniform
spatial resolution) is lower than the variance of SGR-P (using
spatial regularizer that approximately provides uniform and
isotropic spatial resolution). We observed this trend in PMC
and PMM as well. The variance of PMM is less than or
comparable to the variance of PMC and the gap between them
will be larger when the frames have significantly different
counts and PMC uses equal scalar weighted sum. When PMC
uses proper weights (e.g., normalized scan durations), PMC
and PMM empirically had similar variances in our simple
phantom simulation with affine motions. The variance of
PMM is also less affected by motion than the variance of
PMC when the total activity preserving condition is used. The
variance of MCIR withM frames may not provide1/M times
lower variance than the variance of SGR due to motion. This
suggests that one can choose the reference frame to minimize
the variance of MCIR methods based on this intuition. Lastly,
MTR with very large ζ usually yields images as good as
PMM. However, too largeζ can slow convergence of the
reconstruction algorithm. When the motion is given, PMM
seems to be preferable to PMC and MTR.

This paper has focused on the case of known true motion.
In practice motion is never known perfectly and motion
errors may introduce further bias and/or variability into MCIR
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results and motion errors may also degrade the accuracy of
noise predictions. Our anecdotal results with motion errors in
Section VI-B suggest that the noise predictions are not highly
sensitive to small motion errors; in fact the noise predictions
seem to be less sensitive to motion errors than were the
regularizer designs for MCIR described in [24]. Methods for
reducing motion errors will of course improve MCIR results,
regularizer designs, and noise prediction accuracy.

This analysis can serve as a starting point for understanding
joint estimation of image and motion [12]. Since the Jacobian
determinant of estimated deformations affects the noise prop-
erties, it is important to enforce correct prior knowledge for
local volume changes. Extending this analysis for unknown
nonrigid motion will be interesting future work [40]. Our work
has been focused on spatial resolution [24] and noise analyses
of MCIR methods; it would also be interesting to extend the
work to analyze detection performance [41], [42].

APPENDIX A
PROOF OFTHEOREM 1

To prove this theorem, we need to treat the null space of
Rtime carefully. Since the matrixRtime in (18) is symmetric
nonnegative definite (i.e., positive semidefinite), it has an
orthonormal eigen-decomposition of the form

Rtime = [U1 U0]

[

Σ1 0

0 0

]

[U1 U0]
′ (58)

where the columns of the matricesU1, U0 are orthonormal
andΣ1 ≻ 0, i.e., Σ1 is positive definite. The columns ofU0

span the null space ofRtime. From the definition ofTtime in
(16), it is clear that the null space ofRtime consists of images
that satisfy the following conditions:

f2 = T̊2,1f1 (59)

f3 = T̊3,2T̊2,1f1

...

fM = T̊M,M−1 · · · T̊2,1f1,

for any imagef1 ∈ R
N . In other words, theMN × MN

matrix Rtime has a null space of dimensionN . (In contrast,
the spatial regularizerCd usually has a null space only of
dimension1, which is usually formed of constant images.)
We rewrite the system of equations (59) as

fc = T̊cf1, (60)

whereT̊c is defined in (9) and̊Tm,1 = T̊m,m−1 · · · T̊2,1. Even
if we add a periodic conditionf1 = T̊1,MfM to (16), then
Rtime still has a null space of dimensionN provided the
transitivity property of the motion model holds. Using (60)
we can constructU0 in (58) as follows:

U0 = T̊cS, (61)

whereS ,

(

T̊c

′

T̊c

)−1/2

so thatU0 is orthonormal. Note that

T̊c

′

T̊c ≻ 0 because̊Tc

′

T̊c = I +
∑M

m=2
T̊ ′

m,1T̊m,1 and I is
positive definite. So,S is invertible.

Under the usual assumption thatFd and Rd have disjoint
null spaces, one can verify that

B , U ′
0GMTRU0 ≻ 0. (62)

To proceed, we expressGMTR in (19) as follows:

[U1 U0]
′GMTR[U1 U0] =

[

N M ′

M B

]

.

Thus,

[GMTR + ζRtime]
−1 = U

[

N + ζΣ1 M ′

M B

]−1

U ′

whereU , [U1 U0]. By Schur complement [43], we have

[GMTR + ζRtime]
−1 =

U

[

∆ −∆M ′B−1

−B−1M∆ B−1 + B−1M∆M ′B−1

]

U ′ (63)

where∆ , [N + ζΣ1−M ′B−1M ]−1. SinceΣ1 is positive
definite,∆ → 0 asζ → ∞. Thus, by (62)

[GMTR + ζRtime]
−1 → U0B

−1U ′
0 (64)

= T̊c[T̊c

′

GMTRT̊c]
−1T̊c

′

.

Therefore, asζ → ∞

f̂c → T̊c[T̊c

′

GMTRT̊c]
−1T̊c

′

A′
dWdyc. (65)
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