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Abstract—Several magnetic resonance (MR) parallel imaging
techniques require explicit estimates of the receive coil sensitivity
profiles. These estimates must be accurate over both the object
and its surrounding regions to avoid generating artifacts in
the reconstructed images. Regularized estimation methods that
involve minimizing a cost function containing both a data-fit term
and a regularization term provide robust sensitivity estimates.
However, these methods can be computationally expensive when
dealing with large problems. In this paper, we propose an
iterative algorithm based on variable splitting and the augmented
Lagrangian method that estimates the coil sensitivity profile by
minimizing a quadratic cost function. Our method, ADMM–Circ,
reformulates the finite differencing matrix in the regularization
term to enable exact alternating minimization steps. We also
present a faster variant of this algorithm using intermediate
updating of the associated Lagrange multipliers. Numerical
experiments with simulated and real data sets indicate that our
proposed method converges approximately twice as fast as the
preconditioned conjugate gradient method (PCG) over the entire
field-of-view. These concepts may accelerate other quadratic
optimization problems.

Index Terms—Augmented Lagrangian, coil sensitivity, finite
differences, parallel imaging, quadratic minimization.

I. INTRODUCTION

A
CCURATE radio-frequency coil sensitivity profiles are

required in many parallel imaging applications (e.g.,

sensitivity encoding (SENSE) [1], simultaneous acquisition of

spatial harmonics (SMASH) [2], and k-t SENSE [3]). Due to

coil deformation during patient setup and dielectric coupling,

these profiles must be determined at the time of acquisition [4].

One common approach is to perform a calibration scan prior

to the parallel imaging acquisition in which images from a

large body coil and multiple surface coils are acquired and

reconstructed. Since the body coil has near uniform sensitivity,

its image can be used in conjunction with a surface coil image

to estimate the surface coil sensitivity profile.
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The most straightforward method to estimate the coil sen-

sitivity is to compute the ratio of the surface coil image voxel

values (zi) to the body coil image voxel values (yi), zi/yi.
However, ratio estimates can be corrupted by measurement

noise, particularly in low signal regions. Furthermore, such

estimates can have sharp discontinuities at object edges, con-

trary to the smooth nature of true coil sensitivity profiles [5]. It

is also desirable to have reasonable sensitivity estimates in any

low signal regions surrounding the object to avoid reconstruc-

tion artifacts that could arise due to patient motion [6]. The

ratio estimator, however, does not extrapolate; thus, improved

estimation methods can be beneficial.

One approach to generate smooth sensitivity estimates is to

measure only the center of k-space [6]. Although simple, this

approach does not accurately estimate sensitivities near object

edges and can introduce Gibbs ringing artifacts. Filtering

procedures have also been proposed including polynomial

fitting [1], [7]–[9], wavelet denoising [10], and using thin-

plate splines [11]. These methods do not completely eliminate

the Gibbs ringing, while selecting a particular basis function is

complicated by the varying size of low signal regions within

the images [5], [12]. Furthermore, many of these methods

disregard the non-stationary variance of the noise in the ratio

estimates. In contrast, regularized estimation methods [5],

[13], [14] provide smooth sensitivity estimates and are capable

of extrapolation without explicit basis function selection or

filtering. These methods, however, can be computationally

expensive for large problems [5] and this cost is compounded

by the large number of coils in some arrays [15]. Although

sensitivity estimation can be performed off-line, the compu-

tational costs of regularized methods can increase the overall

compute times of parallel imaging.

In this paper, we take a regularized approach and pose

sensitivity estimation as the minimization of a quadratic cost

function like in [5]. The large matrices in the cost function

prevent one from computing a simple, non-iterative solution.

Instead, iterative methods must be used for large data sets;

however, traditional methods like conjugate gradient (CG) con-

verge slowly for this problem [5], [16]. Augmented Lagrangian

(AL) based minimization techniques [17], and the related

Bregman iterations method [18], have been used to accelerate

convergence in imaging problems such as denoising [19] and

reconstruction [19]–[27]. Those papers primarily focus on

problems that contain non-differentiable regularization terms

such as those based on the ℓ1-norm. However, the underlying

theory applies to a wide variety of optimization problems,
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including the quadratic problem considered here. We therefore

propose a new AL based method for estimating sensitivity

profiles. To derive this method, we introduce a reformulation

of the finite differencing matrix and a subsequent variable

splitting that lead to an algorithm with exact alternating min-

imization steps. This algorithm is equivalent to an alternating

direction method of multipliers (ADMM) [28] formulation,

which provides a guarantee of convergence. We also explore

a variation of this algorithm that updates the Lagrange multi-

pliers between alternating minimization steps. Such variations

have been found to improve the convergence rates of other AL

based algorithms [29].

Section II presents the derivation of our ADMM algorithm

and its intermediate updating variant. Section III compares

the convergence speeds of these algorithms with those of

CG based methods by performing experiments on both sim-

ulated and real data. Section IV discusses the results of

these experiments and additional properties of the algorithms.

Section V concludes by discussing other problems that have

quadratic cost functions where our methods may provide an

improvement over the traditional techniques.

II. MATERIALS AND METHODS

This section introduces our proposed methods for MR coil

sensitivity estimation. We begin by posing the estimator as an

optimization problem. We then outline the general approach

used to solve this problem and present our specific algorithm,

with variations, in detail.

A. Cost Function Formulation

Regularized methods for MR coil sensitivity estimation

are both robust to noise and effective at extrapolating the

estimate in regions of low signal [5], [14]. These methods

avoid computing the quotient (zi/yi) by finding the minimizer

of a cost function containing a data-fidelity term and a regular-

ization term that promotes smoothness in the estimate. Similar

to [5], [13], we estimate the sensitivity profile by minimizing

a weighted sum of quadratic terms:

ŝ , arg min
s

1

2
‖z−Ds‖2W +

λ

2
‖Rs‖22, (1)

where s = [s1, . . . , sN ]T with si ∈ C denoting the desired

coil sensitivity at the ith voxel and N denoting the number

of voxels, z = [z1, . . . , zN ]T with zi ∈ C denoting the

surface coil image value at the ith voxel, D = diag{yi}
is a diagonal matrix containing the body coil image voxel

values (yi ∈ C), R ∈ RM×N is a finite differencing matrix

for the case of non-periodic boundary conditions with M sets

of finite differences, and λ > 0 is a regularization coefficient.

Additionally, W = diag{wi} is a diagonal weighting matrix

(with wi ∈ [0, 1]) that allows us to ensure that the estimate is

based primarily on voxels that provide meaningful sensitivity

information. Note that a finite differencing matrix with non-

periodic boundary conditions is necessary as periodic bound-

ary conditions introduce errors at the edges of the image that

can propagate and corrupt the estimate near the object voxels.1

1See the supplementary material for additional details.

Equation (1) has a quadratic cost function and therefore has

the closed-form solution ŝ = [DHWD + λRHR]−1DHWz
where XH denotes the Hermitian transpose of X; however,

computing this solution is impractical due to the size and

complexity of R. Memory constraints further restrict the

use of other direct methods, such as Cholesky factorization,

for large problems like 3D data sets. Furthermore, standard

iterative solution methods, such as CG, exhibit slow converge

for this problem even when using carefully selected precon-

ditioners [30]. To address this, we propose an augmented

Lagrangian method to minimize the cost function, the de-

velopment of which consists of three stages [20]. First, we

use variable splitting [25], [31] to convert the unconstrained

optimization problem into an equivalent constrained problem,

thereby decoupling the effects of the matrices in (1). Second,

we introduce vector Lagrange multipliers and express the

constrained problem in an AL framework. Third, we solve

the resulting AL problem using an alternating minimization

scheme.

B. ADMM–Circ: ADMM Sensitivity Estimation Algorithm

with Circulant Substeps

Directly applying variable splitting to (1) results in an AL

algorithm requiring an approximate solution for one of the

alternating minimization steps due to the complexity of the

finite differencing matrix R [16]. The supplementary material

for this paper presents one such algorithm, ADMM–CG. We

can avoid this complication if we focus on traditional finite

differencing matrices (those with spatially invariant stencils).

For such regularizers, we can express the finite differencing

matrix as R = BC where C ∈ RM×N is a typical

finite differencing matrix for the case of periodic boundary

conditions, containing additional non-zero rows that penalize

the differences between voxels on opposing boundaries of

the image, and B ∈ {0, 1}M×M is a diagonal matrix that

contains a mask to eliminate the effects of the added rows.

The additional non-zero rows in C ensure that CHC is block

circulant with circulant blocks unlikeR. Fig. 1 illustrates these

matrices for the case of 1D second-order finite differences. We

then write the estimation problem in (1) as

ŝ = arg min
s

1

2
‖z−Ds‖2W +

λ

2
‖BCs‖22. (2)

We introduce two splitting variables, u0 ∈ CM and

u1 ∈ CN , to this new formulation to decouple the matrices D,

B, and C. The resulting equivalent constrained optimization

problem is

ŝ = arg min
s,u0,u1

1

2
‖z−Du1‖2W +

λ

2
‖Bu0‖22

s.t. u1 = s and u0 = Cs.

(3)

Solving this constrained optimization problem is exactly

equivalent to solving the unconstrained problem (1).

We express (3) in the more concise notation:

arg min
s,u

1

2
‖h−Au‖22 s.t. u = Ts, (4)
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Fig. 1. The matrices R, B, and C for the case of 1D second-order finite differences. The top and bottom rows of C compute the difference between the
first and last pixels, hence the need for the mask B.

where

u ,
[
u1

u0

]
,T ,

[
I
C

]
,h ,

[
W

1
2 z
0

]
,A ,

[
W

1
2D 0

0
√
λB

]
,

and W
1
2 , diag{√wi}.

We then introduce two vectors of Lagrange multipliers,

η0 ∈ CM and η1 ∈ CN , and express (4) as an AL

problem. We use the general AL formulation outlined in [20]

that incorporates the Lagrange multiplier into the quadratic

penalty term. This formulation is a natural extension of the

traditional AL to the case of complex values and it simplifies

the derivation of the subsequent alternating minimization steps.

The resulting AL function-based minimization problem is

arg min
s,u

1

2
‖h−Au‖22 +

1

2
‖u−Ts− η‖2V, (5)

where

η ,
[
η1

η0

]
, V ,

[
ν1I 0
0 ν0I

]
,

and ν0, ν1 > 0 are AL penalty parameters that influence the

convergence rate of the algorithm but do not affect the final

estimate [26].

Traditional AL methods would require jointly minimizing

(5) over the vectors s and u; however, such an approach is

computationally expensive for typical image sizes. Instead,

we use a block Gauss–Seidel type alternating minimization

strategy that has been effective in solving other AL prob-

lems [19], [28] in which we alternate between minimizing

(5) independently with respect to s and u as follows:

s(j+1) = arg min
s

1

2
‖u(j) −Ts− η(j)‖2V, (6)

u(j+1) = arg min
u

1

2
‖h−Au‖22+

1

2
‖u−Ts(j+1) − η(j)‖2V.

(7)

Update (7) has a simple closed-form solution:

u(j+1) =
(
AHA+V

)−1
[
AHh+V(Ts(j+1) + η(j))

]
.

(8)

In fact, the block diagonal structures of A and V decouple

the update of u into two parallel updates in terms of u1 and

u0:

u
(j+1)
1 = D−1

2

[
DHWz+ ν1(s

(j+1) + η
(j)
1 )

]
, (9)

u
(j+1)
0 = B−1

2 (Cs(j+1) + η
(j)
0 ), (10)

where B2 , λ
ν0
BHB + I and D2 , DHWD + ν1I are both

diagonal matrices that are trivial to invert. The closed-form

update for s may at first appear more complicated to compute:

s(j+1) =
(
THVT

)−1
THV

(
u(j) − η(j)

)

=
(
ν1I+ ν0C

HC
)−1

[
ν0C

H(u
(j)
0 − η

(j)
0 ) + ν1(u

(j)
1 − η

(j)
1 )

]
.

(11)

However, since CHC is block circulant with circulant blocks,

CHC = QHΦQ where Q is a (multidimensional) discrete

Fourier transform (DFT) matrix and Φ is a diagonal matrix

containing the spectrum of the convolution kernel of CHC.

Substituting this decomposition into (11) yields:

s(j+1) =QHΦ−1
2 Q[

ν0C
H(u

(j)
0 − η

(j)
0 ) + ν1(u

(j)
1 − η

(j)
1 )

]
,

(12)

where Φ2 , ν1I + ν0Φ. This formulation is simpler to

compute since Φ2 is a diagonal matrix and we implement

Q efficiently using fast Fourier transforms (FFTs).

Fig. 2 summarizes the resulting sensitivity profile estimation

algorithm, ADMM–Circ. Each stage of the proposed algorithm

consists of an exact, non-iterative update. Furthermore, it can

be shown that the steps in this formulation are identical to

those of an ADMM algorithm applied to the real valued case

where we treat the complex valued terms as a stack of their

real and imaginary components. As discussed in Section IV,

this equivalence allows us to conclude that the ADMM–Circ

algorithm converges to the solution of (1). In contrast, the

parallel imaging reconstruction algorithm in [20] is an AL

method that lacks a convergence proof due to the type of

splitting used.

C. Alternating Minimization with Intermediate Updating

Updating the Lagrange multipliers η between each alternat-

ing minimization step has been shown to increase the conver-

gence rates of several AL based algorithms [29]. We also ex-

plore this variation in our proposed algorithm by updating the

relevant Lagrange multipliers after each alternating minimiza-

tion step, Fig. 3. The resulting algorithm, ADMM–Circ–IU,

requires no additional variables and the added updates (Step 2)

are computationally inexpensive. Section IV describes the

convergence properties of such adaptations.
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ADMM–Circ

Initialize: u
(0)
1 = s(0), u

(0)
0 = Cs(0), η

(0)
0 = 0,

η
(0)
1 = 0 and j = 0.

Set D−1
2 =

[
DHWD+ ν1I

]−1
and z2 = DHWz.

Set B−1
2 =

[
λ
ν0
BHB+ I

]−1

.

Set Φ−1
2 = [ν1I+ ν0Φ]

−1
.

Repeat until stop criterion is achieved:

1) s(j+1) from (12) exactly,

2) u
(j+1)
1 = D−1

2

[
z2 + ν1(s

(j+1) + η
(j)
1 )

]
,

u
(j+1)
0 = B−1

2 (Cs(j+1) + η
(j)
0 ),

3) η
(j+1)
1 = η

(j)
1 − (u

(j+1)
1 − s(j+1)),

η
(j+1)
0 = η

(j)
0 − (u

(j+1)
0 −Cs(j+1)),

4) j = j + 1.

Fig. 2. Overview of the ADMM–Circ algorithm. Note that Cs(j+1) only
needs to be computed once per iteration.

ADMM–Circ–IU

Initialize: u
(0)
1 = s(0), u

(0)
0 = Cs(0), η

(0)
0 = 0,

η
(0)
1 = 0 and j = 0.

Set D−1
2 =

[
DHWD+ ν1I

]−1
and z2 = DHWz.

Set B−1
2 =

[
λ
ν0
BHB+ I

]−1

.

Set Φ−1
2 = [ν1I+ ν0Φ]

−1
.

Repeat until stop criterion is achieved:

1) s(j+1) from (12) exactly,

2) η
(j+1/2)
1 = η

(j)
1 − (u

(j)
1 − s(j+1)),

η
(j+1/2)
0 = η

(j)
0 − (u

(j)
0 −Cs(j+1)),

3) u
(j+1)
1 = D−1

2

[
z2 + ν1(s

(j+1) + η
(j+1/2)
1 )

]
,

u
(j+1)
0 = B−1

2 (Cs(j+1) + η
(j+1/2)
0 ),

4) η
(j+1)
1 = η

(j+1/2)
1 − (u

(j+1)
1 − s(j+1)),

η
(j+1)
0 = η

(j+1/2)
0 − (u

(j+1)
0 −Cs(j+1)),

5) j = j + 1.

Fig. 3. The ADMM–Circ algorithm with intermediate Lagrange multiplier
updating (ADMM–Circ–IU). Note that Cs(j+1) only needs to be computed
once per iteration.

D. Parameter Selection

Any regularized method requires the selection of the regu-

larization parameter, λ in (1), which controls the smoothness

of the sensitivity profile. We discuss how λ is selected for

typical problems in Section III-C.

In addition, our proposed AL methods require that we

specify values for the AL penalty parameters ν0 and ν1.
Following [20], we determine the parameter values using

the condition numbers of the matrices requiring inversion in

the alternating minimization steps. For both the ADMM–Circ

method and its variation, we consider the matrices B2, Φ2,

and D2. We normalize the coil images before performing

the estimate; thus, the condition number of D2, κ(D2), is
(1 + ν1)/(d

2
min + ν1) where d2min is the smallest diagonal el-

ement of DHWD. Furthermore, effective weighting matrices

should have near zero values to remove the effects of noise in

the low signal regions of the body coil image. Thus, d2min ≈ 0
and κ(D2) does not typically depend on the data. We therefore

set our parameters by considering the condition numbers of

the other two matrices, κ(B2) and κ(Φ2). Through extensive

numerical simulation, we found that setting ν0 such that

κ(B2) ∈ [225, 400] and then ν1 such that κ(Φ2) ∈ [200, 1000]
provided good convergence rates for a variety of data sets.

III. RESULTS

We evaluated our proposed sensitivity estimation methods

using two very different data sets. The first experiment used

simulated brain data whereas the second used real breast

phantom data. Previous publications investigated the accuracy

of similar regularized estimators [5]; however, there have been

few comparisons with other methods concerning their effects

on SENSE reconstruction quality. We therefore included an

illustration of the improved SENSE reconstruction quality

obtained from using regularized sensitivity estimates over

standard techniques in the supplementary material. The focus

of this paper is on accelerating these algorithms and thus, in

this section, we compare the convergence speeds of our AL

algorithms with those of conventional CG and PCG with the

following circulant preconditioner (PCG–Circ):

PC = QH (I+ λΩ)Q, (13)

where Ω is a diagonal matrix containing the spectrum of the

convolution kernel of RHR [32].

We initialized each algorithm with a sensitivity profile

comprising the standard ratio estimate over the object voxels

and the mean magnitude and phase of these values over the

non-object voxels. All of the algorithms were implemented

in MATLAB (The MathWorks, Natick, MA, USA) and the

experiments were run on a PC with a 2.66 GHz, quad-core

Intel Xeon CPU.

We compared the convergence properties of the algorithms

using the normalized ℓ2-distance between the current estimate,

s(j), and the minimizer of (1), ŝ:

D(s(j)) =
‖s(j) − ŝ‖2

‖ŝ‖2
. (14)

We focused on 2D estimation problems so that we could use

Cholesky factorization to determine a non-iterative “exact”

solution to (1). Using this non-iterative solution for ŝ avoids

favoring a specific iterative algorithm.

A. Cost Function Setup

In defining the estimation problem (1), we chose a second-

order finite differencing matrix for R as it resulted in more

accurate sensitivity estimates than both first-order and fourth-

order finite differences (results not shown). We used a binary

mask, created by thresholding the body coil image, for the

weighting matrix W. This ensured that the majority of voxels
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Fig. 4. The (a) magnitude and (b) phase (masked) of the body coil image
for the simulated brain data.

in the object support were included in the estimate, while

limiting the number of noisy, non-object voxels.

We selected the AL penalty parameters ν0 and ν1 for both

experiments using the same set of condition numbers. In

particular, we selected ν0 and ν1 such that κ(B2) = 255 and

κ(Φ2) = 650 for both the ADMM–Circ and ADMM–Circ–IU

algorithms.

B. Simulated Brain Data

Our first experiment used a 256× 192 pixel, T1 weighted,

transverse plane brain image from the BrainWeb database [33]

(1mm isotroptic in-plane resolution, slice thickness = 1mm,

no noise). To create a more realistic MR image, we added a

slowly varying phase component to the brain image. We then

added complex random Gaussian noise to create a body coil

image, y, with a signal-to-noise ratio2 (SNR) of 10. Fig. 4

presents the magnitude and phase of the resulting body coil

image.

We simulated sensitivity profiles for four circular coils

placed just outside the field-of-view (FOV) using an analytic

method [34]. These sensitivities were then combined with our

complex brain image and complex random Gaussian noise to

create four surface coil images, z, with SNRs of approximately

10. Fig. 5 presents the true sensitivities and their corresponding

surface coil images.

We estimated the coil sensitivities using our proposed AL

methods and the two CG methods. We set λ = 25 as this

value produced accurate estimates (compared to the truth)

over both the high intensity voxels and their surrounding

regions. We ran 20 000 iterations of each method to ensure

convergence. All of the algorithms converged to a normalized

ℓ2-distance of less than -200 dB from, and appeared nearly

identical to, the Cholesky based solution ŝ. Fig. 6 presents

the estimated coil sensitivities as well as their percentage

difference to the truth. The convergence rates of the algorithms

were similar for all four coils so we present the results for

one representative coil. Fig. 7 plots D(s(j)) with respect to

both iteration and time for the bottom left coil in Fig. 5.

ADMM–Circ–IU was the fastest algorithm, converging within

D(s(j)) = 0.1% in approximately 85 seconds. PCG–Circ was

faster than ADMM–Circ with convergence times of nearly 130

2SNR = µo/σb where µo is the mean of the magnitudes of the non-
zero object pixels in the true image and σb is the standard deviation of the
background pixels in the noisy image.

and 165 seconds, respectively. Conventional CG took by far

the longest time at 535 seconds.

C. Breast Phantom Data

Our second experiment used a breast phantom consisting of

two containers plastered with vegetable shortening and filled

with “Super Stuff” bolus material (Radiation Products Design

Inc., Albertville, MN, USA). Calibration data was acquired

using four surface coils and one body coil on a Philips 3T

scanner (TR = 4.6 ms, TE = 1.7 ms, matrix = 384× 96). We

reconstructed four surface coil images and one body coil

image, each 384 × 96 pixels, using an inverse FFT. Figs. 8

and 9(a) show the magnitudes of the body coil image and

surface coil images, respectively. This data set presents several

challenges for sensitivity estimation due to the placement of

coils near the center of the FOV and because of large regions

of low signal both within and outside the object.
To determine a suitable regularization parameter, λ, we first

estimated the coil sensitivities using the CG method for several

values of λ. We then performed two-fold accelerated SENSE

reconstructions [1] using each set of estimated sensitivities

and compared the resulting images to the body coil image (not

shown). We selected λ = 27 as its corresponding reconstructed

image had minimal artifacts and matched closely to the body

coil image.
We estimated the coil sensitivities using our proposed AL

methods and the two CG methods. We ran 20 000 iterations

of each algorithm to ensure that convergence was achieved.

Again, the resulting estimates all converged to a normalized

ℓ2-distance of less than -200 dB from the Cholesky based

solution ŝ. Fig. 9(b) presents the estimated coil sensitivities.

The convergence rates of the algorithms were similar for all

four coils so we present the results for one representative coil.

Fig. 10 plots D(s(j)) with respect to both iteration and time

for the bottom left coil in Fig. 9. ADMM–Circ–IU was again

the fastest algorithm, converging within D(s(j)) = 0.1% in

approximately 50 seconds. Unlike in the brain data experiment,

ADMM–Circ had a similar convergence rate to PCG–Circ

with both algorithms requiring approximately 100 seconds.

Conventional CG again took the longest time at 445 seconds.

IV. DISCUSSION

The sensitivity estimates generated by minimizing the cost

function in (1) are smooth like true coil sensitivity profiles. As

further discussed in the supplementary material, the sensitivity

estimates of the brain data are highly accurate over the object

and surrounding pixels. The largest errors are at the extreme

corners of the image where there is no information about the

true sensitivities. The flexibility of the regularized estimation

method is highlighted in the breast phantom experiment by its

ability to simultaneously estimate the sensitivity within both

breasts and smoothly extrapolate over the regions in-between.

This is particularly evident for the coils that have near uniform

sensitivity over a single breast (the top right and bottom left

coils in Fig. 9). As illustrated in the supplementary material,

SENSE reconstructions performed with these sensitivity pro-

files were artifact free unlike those created using low-pass filter

techniques.
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Fig. 5. The magnitudes of the (a) simulated sensitivity profiles and the (b) simulated surface coil images for the brain data.
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Fig. 6. The magnitudes of the (a) estimated sensitivity profiles and (b) their percentage difference to the true sensitivities for the simulated brain data.

ADMM–Circ–IU was the fastest method in all experiments

requiring as little as half the time of PCG–Circ and a ninth

the time of conventional CG. ADMM–Circ, although much

faster than the CG based methods over the first few iterations,

had similar convergence times to PCG–Circ in our breast

experiment and was slower in our simulated brain experiment.

Thus, using intermediate updating significantly accelerated our

ADMM algorithm. The CG algorithm remained the slowest

method in all experiments. Interestingly, the relative conver-

gence rate of the PCG–Circ algorithm depended on the exper-

imental data. This behavior is partly a result of the varying

accuracy of the preconditioner used in the PCG algorithm.

Specifically, the circulant preconditioner used an identity ma-

trix in place of the weighted body coil image voxel intensities

(i.e., I+ λRHR for DHWD+ λRHR). This approximation

works best for images that have few low signal voxels as is

apparent from the decreased performance of the PCG–Circ

algorithm on the breast data compared to the simulated brain

data which has a higher percentage of voxels with significant

signal. In contrast, our proposed ADMM algorithms do not

require such approximations and their convergence speeds are

therefore more robust to differences in the data.

Table I presents the approximate number of complex mul-

tiplication and addition operations required by an iteration

of each algorithm. For typical finite differencing matrices,

ADMM–Circ–IU, ADMM–Circ, and PCG–Circ require a sim-

ilar number of operations, whereas traditional CG requires the

fewest number of operations per iteration. The effect of these

varying costs per iteration is highlighted by contrasting the

convergence rates of each algorithm in terms of iteration and

time as seen in Figs. 7 and 10. As with time, ADMM–Circ–IU

needed approximately half as many iterations as PCG–Circ

and ADMM–Circ. CG required significantly more iterations

to converge than the other algorithms, offsetting any savings

in cost per iteration.

The convergence curves for our ADMM methods exhibited

non-monotonic behavior with respect to D(s(j)). We found

that the degree of non-monotonicity was influenced by the

choice of AL penalty parameters, ν0 and ν1. In fact, the

parameter settings that provided the fastest convergence rates

typically resulted in non-monotonicity in the D(s(j)) plots.

All of our proposed algorithms converged to the solution

of (1) in every experiment. As discussed after (12), our

ADMM–Circ algorithm is equivalent to an ADMM algorithm

with exact update steps. We can therefore conclude that this

algorithm converges to the solution of (1) as per [28, Th.

8]. Our intermediate updating variant, ADMM–Circ–IU, does

not have the exact formulation outlined in the hypotheses

of [28, Th. 8]. However, a guarantee of convergence exists for

similar ADMM variants with symmetric Lagrange multiplier
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Fig. 7. Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)),
with respect to iteration (top) and time (bottom) for the bottom left brain data
surface coil image in Fig. 5.
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updating [29]. We are currently investigating an extension of

this proof to ADMM–Circ–IU.

The convergence rates of our proposed algorithms were

robust to the particular choice of condition numbers used to de-

termine the AL penalty parameters ν0 and ν1. In fact, we used

the same condition numbers for our two very different exper-

iments. Furthermore, our fastest algorithm, ADMM–Circ–IU,

remained faster than PCG–Circ for κ(B2) values nearly two

times larger and smaller than the optimal value and for κ(Φ2)
values three times larger or smaller than optimal. We also

explored varying the λ value in our experiments and found

TABLE I
APPROXIMATE NUMBER OF COMPLEX ARITHMETIC OPERATIONS PER

ITERATION FOR THE CASE OF SECOND-ORDER FINITE DIFFERENCES

Estimator Number of Operations

ADMM–Circ–IU 19N + 13M a+ 2 · OFFT
b

ADMM–Circ 17N + 11M + 2 · OFFT

PCG–Circ 23N + 11M + 2 · OFFT

CG 22N + 11M
a M ≈ 4N for 2D problems.
b OFFT denotes the cost of the FFT operations
(O(N log(N))).

that this set of condition numbers consistently worked well.

The choice of the best condition numbers does not depend

on the surface coil image. Therefore, if one wanted to fine-

tune the convergence rate of the algorithms, a single coil of a

multi-coil array would suffice.

It is a common practice in medical imaging to restrict esti-

mates and reconstructions to within masked regions to improve

both their computation time and quality over the region. If

this is done for simple problems like our simulated brain data,

which requires minimal interpolation within the object support,

then the PCG–Circ algorithm estimating within a masked

region will converge faster than our ADMM–Circ methods

estimating over the entire FOV. However, this is not the case

for more complicated problems like our breast phantom data.

In particular, we found that our ADMM–Circ–IU algorithm,

estimating over a full FOV, converged to D(s(j)) = 0.1% at

the same speed or faster than a PCG–Circ algorithm estimating

within a masked region consisting of a convex hull3 surround-

ing the object support, Fig. 11. Furthermore, the quality of

the unmasked ADMM–Circ–IU estimates was similar to that

of the masked PCG estimates over the masked region. This

is partially because the weighting matrix W minimizes the

impact of noisy voxels outside of the object support. A major

disadvantage of masking is that the lack of an estimate outside

the mask can lead to significant SENSE reconstruction artifacts

if the object moves into this region during acquisition [6].

Thus, the mask would have to be carefully selected with this

in mind. We therefore followed existing work [5] and focused

on algorithms without support masks.

In addition to the algorithms presented in this work and

the supplementary material, we also explored AL algorithms

that incorporated simpler variable splittings. For instance,

we introduced the single splitting variable u0 = Rs to

(1) and similarly, u0 = Cs to (2). The AL formulations

used to minimize the resulting cost functions had only two

update equations. However, one of these equations required an

approximate iterative solution and the resulting AL algorithms

were highly sensitive to inaccuracies in the approximation. In

fact, when using PCG for the approximate update step, the

optimal number of inner PCG iterations was so large that the

overall algorithms were slower than regular CG. Curiously,

this is the type of splitting that is used in the popular split

Bregman approaches [19], although there it is used in cases

where RHR is circulant.

If the body coil data y is not available, one could use the

square-root of the sum-of-squares of the surface coil images in

its place [8], [35], [36]. Our algorithms would remain the same

and only the elements of D would change. However, it may be

more desirable in this situation to perform joint estimation of

the final image and the sensitivity profiles (e.g., [8]). Such

algorithms are more complicated to compute than (1) and

might also benefit from an ADMM reformulation.

3See the supplementary material for an illustration of why a convex hull is
required.
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Fig. 9. The magnitudes of the (a) breast phantom surface coil images and the (b) corresponding estimated sensitivity profiles.
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Fig. 10. Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)),
with respect to iteration (top) and time (bottom) for the bottom left breast
data surface coil image in Fig. 9.

V. CONCLUSIONS

We developed a new iterative method, ADMM–Circ, us-

ing variable splitting and AL strategies that accelerates the

regularized estimation of MR coil sensitivities. By separating

the finite differencing matrix for the case of non-periodic

boundary conditions into a finite differencing matrix for the

case of periodic boundary conditions and a diagonal masking

matrix, we were able to find a variable splitting strategy that

resulted in an algorithm with exact update steps. Additionally,

we demonstrated that intermediate updating of the Lagrange

multipliers significantly accelerated our proposed AL algo-

rithm. Our fastest method, ADMM–Circ–IU, had convergence
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Fig. 11. Plots of D(s(j)) with respect to time for ADMM–Circ–IU and
PCG–Circ without masks, as well as PCG–Circ using masks with various
degrees of dilation (5, 10, 20 pixels), applied to the bottom left breast data
surface coil image in Fig. 9. For each case, the ŝ used in D(s(j)) is the
regularized solution for the appropriate mask.

speeds up to twice those of the PCG method with a circulant

preconditioner.

More generally, this work illustrates how AL methods can

be used to accelerate convergence for imaging problems with

certain classes of quadratic cost functions. There are many

areas in MR imaging where similar cost functions are used.

For instance, B0 and B1 map estimation can be performed

by minimizing cost functions over the image domain with

quadratic regularization terms [37]–[39]. The application of

similar acceleration techniques to these problems is currently

being investigated [40].
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This document contains additional information related to the

algorithms presented in [1]. In particular, Section S-I presents

a second ADMM algorithm for sensitivity profile estimation.

Section S-II presents an alternate formulation that leads to

additional AL estimation algorithms with similar performance.

Section S-III illustrates the improved SENSE reconstruction

quality resulting from using regularized sensitivity estimates

over traditional ratio based estimates. Section S-IV demon-

strates why, when performing masked sensitivity estimation

on breast data, a convex hull of the object voxels should

be used for the estimation mask. Section S-V illustrates the

importance of using a finite differencing matrix for the case

of non-periodic boundary conditions in our cost function (1).

S-I. ADMM–CG: ADMM SENSITIVITY ESTIMATION

ALGORITHM WITH CONJUGATE GRADIENT SUBSTEPS

In this section we present and evaluate a second AL

algorithm, ADMM–CG, which does not use the reformulation

of the finite differencing matrix as discussed in Section II-B of

the manuscript. We begin with the derivation of the algorithm

which uses the same techniques as in the manuscript. We then

compare this new algorithm to the methods presented in the

manuscript using the same data sets and briefly discuss its

properties.

A. Method Derivation

We begin our derivation by introducing two new variables,

u0 ∈ CM and u1 ∈ CN , to the initial cost function in

(1). The purpose of these variables is to isolate the finite

differencing matrix R from the diagonal matrix D. The

resulting constrained optimization problem is

ŝ , arg min
s,u0,u1

1

2
‖z−Du1‖2W +

λ

2
‖u0‖22

s.t. u1 = s and u0 = Rs.

(S-1)

Solving this constrained optimization problem is exactly

equivalent to solving the unconstrained problem (1).
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As in (4), we can express (S-1) in the more concise notation:

ŝ = arg min
s,u

1

2
‖h−Ku‖22 s.t. u = Gs, (S-2)

where u and h were defined in (4),

G ,
[
I
R

]
, and K ,

[
W

1
2D 0

0
√
λI

]
.

We then tackle (S-2) using the previously described AL

formalism and obtain the following AL function-based mini-

mization problem:

arg min
s,u

1

2
‖h−Ku‖22 +

1

2
‖u−Gs− η‖2V, (S-3)

where η and V were defined in (5).

Due to the complexity of jointly minimizing (S-3) over s
and u, we again consider an alternating minimization scheme.

In particular, we sequentially solve the following set of equa-

tions:

s(j+1) = arg min
s

1

2
‖u(j) −Gs− η(j)‖2V, (S-4)

u(j+1) = arg min
u

1

2
‖h−Ku‖22+

1

2
‖u−Gs(j+1) − η(j)‖2V.

(S-5)

As with ADMM–Circ, the update equation for u, (S-5), has
a simple closed-form solution which can be decoupled into

two parallel updates in terms of u1 and u0 due to the block

diagonal structures of K and V:

u
(j+1)
1 = D−1

2

[
DHWz+ ν1(s

(j+1) + η
(j)
1 )

]
, (S-6)

u
(j+1)
0 =

ν0
ν0 + λ

(
Rs(j+1) + η

(j)
0

)
. (S-7)

where D2 , DHWD+ ν1I is a diagonal matrix.

Equation (S-4) does not have an efficient closed-form

solution due to the size and complexity of R. Instead, we

approximately solve (S-4) using several iterations of the

preconditioned conjugate gradient (PCG) method with warm

starting, the optimal number of which is determined empiri-

cally. We design the specific preconditioner, P, by considering

the closed-form solution of (S-4):

G2s
(j+1) = GHV

(
u(j) − η(j)

)
, (S-8)

where G2 = GHVG = ν1I + ν0R
HR. Our goal is to create

an easily invertible P that preconditions G2 to obtain fast
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convergence for this subproblem. For typical finite differencing

matrices with non-periodic boundaries, RHR has a near block

circulant with circulant blocks structure. We therefore approx-

imate RHR in our preconditioner as QHΩQ where Q is a

(multidimensional) discrete Fourier transform (DFT) matrix

and Ω is a diagonal matrix containing the spectrum of the

convolution kernel of RHR [2]. Our resulting preconditioner

is

P = QH (ν1I+ ν0Ω)Q. (S-9)

Fig. S-1 summarizes the resulting estimation algorithm com-

posed of these update steps and the corresponding Lagrange

multiplier updates, ADMM–CG. Note that the minimization in

Step 1 is inexact, requiring an iterative solution; however, the

optimal number of iterations is typically small. Furthermore,

it can be shown that this algorithm is equivalent to an ADMM

algorithm with an approximate update step for which the errors

at each outer iteration can be made absolutely summable by

using enough PCG iterations. We can therefore conclude that

this algorithm converges to the solution of (1) as per [3, Th.

8].

ADMM–CG

Initialize: u
(0)
1 = s(0), u

(0)
0 = Rs(0), η

(0)
0 = 0, η

(0)
1 = 0

and j = 0.
Set D−1

2 =
[
DHWD+ ν1I

]−1
and z2 = DHWz.

Repeat until stop criterion is achieved:

1) s(j+1) from PCG solution of (S-4) using (S-9).

2) u
(j+1)
1 = D−1

2

[
z2 + ν1(s

(j+1) + η
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0 −Rs(j+1)),

4) j = j + 1.

Fig. S-1. Overview of the ADMM–CG algorithm. Note that Rs(j+1) only
needs to be computed once per iteration.

B. Alternating Minimization with Intermediate Updating

We also explored updating the Lagrange multipliers be-

tween each alternating minimization step. The resulting vari-

ation, ADMM–CG–IU, is presented in Fig. S-2. As with the

ADMM–Circ–IU algorithm, this algorithm lacks a guarantee

of convergence although such guarantees exist for similar

intermediate updating algorithms [4].

C. Parameter Selection

The parameter selection strategy for our ADMM–CG based

algorithms is similar to the strategy for ADMM–Circ because

of the analogous structures of the alternating minimization

steps. The major difference is that the update of u0 in (S-7)

does not require the inversion of a matrix but rather a scalar

term. In fact, this scalar term has the same form as κ(B2) in
the manuscript. Subsequently, we found that setting ν0 such

ADMM–CG–IU

Initialize: u
(0)
1 = s(0), u

(0)
0 = Rs(0), η

(0)
0 = 0, η

(0)
1 = 0

and j = 0.
Set D−1

2 =
[
DHWD+ ν1I

]−1
and z2 = DHWz.

Repeat until stop criterion is achieved:

1) s(j+1) from PCG solution of (S-4) using (S-9).

2) η
(j+1/2)
1 = η

(j)
1 − (u

(j)
1 − s(j+1)),

η
(j+1/2)
0 = η

(j)
0 − (u

(j)
0 −Rs(j+1)),

3) u
(j+1)
1 = D−1

2

[
z2 + ν1(s

(j+1) + η
(j+1/2)
1 )

]
,

u
(j+1)
0 = ν0

ν0+λ

(
Rs(j+1) + η

(j+1/2)
0

)
,

4) η
(j+1)
1 = η

(j+1/2)
1 − (u

(j+1)
1 − s(j+1)),

η
(j+1)
0 = η

(j+1/2)
0 − (u

(j+1)
0 −Rs(j+1)),

5) j = j + 1.

Fig. S-2. The ADMM–CG algorithm with intermediate Lagrange multiplier
updating (ADMM–CG–IU). Note that Rs(j+1) only needs to be computed
once per iteration.

that the scalar ν0+λ
ν0

∈ [200, 400] and then setting ν1 such that

κ(G2) ∈ [200, 1000] provided reasonable convergence rates.

D. Results

To evaluate our proposed ADMM–CG based algorithms,

we performed the same experiments as in Section III of

the manuscript. The cost function was setup as described in

Section III-A and the same ratio based estimate was used

to initialize the algorithms. We used a single PCG iteration

for the approximate update to s in the ADMM–CG based

algorithms as this provided the fastest convergence rates with

respect to time. We selected the AL penalty parameters ν0 and

ν1 for ADMM–CG such that ν0+λ
ν0

= 225 and κ(G2) = 600.
As further discussed in Section S-I-E, the optimal condition

numbers for ADMM–CG–IU depended on the data and are

therefore mentioned in the appropriate subsections.

1) Simulated Brain Data: We ran 20 000 iterations of

the ADMM–CG based algorithms on the simulated brain

data described in Section III-B of the manuscript. For the

ADMM–CG–IU algorithm, we selected ν0 and ν1 such that
ν0+λ
ν0

= 375 and κ(G2) = 600. Our proposed ADMM–CG

and ADMM–CG–IU algorithms converged to a normalized ℓ2-
distance of less than -200 dB from the Cholesky based solution

to (1) and appeared nearly identical to Fig. 6. The convergence

rates of the algorithms were similar for all four coils and thus

we present the results for the same coil that was presented in

Section III-B. Fig. S-3 plots D(s(j)) with respect to both itera-

tion and time for the ADMM–CG based algorithms as well as

the algorithms evaluated in the manuscript. ADMM–CG–IU

and ADMM–CG were both slower than PCG–Circ, but faster

than conventional CG, reaching D(s(j)) = 0.1% in approxi-

mately 145 and 185 seconds, respectively.

2) Breast Phantom Data: We also ran 20 000 iterations

of the ADMM–CG based algorithms on the breast phantom

data described in Section III-C of the manuscript. For the
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Fig. S-3. Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)),
with respect to iteration (top) and time (bottom) for the bottom left brain data
surface coil image in Fig. 5.

ADMM–CG–IU algorithm, we selected ν0 and ν1 such that
ν0+λ
ν0

= 250 and κ(G2) = 600. Again, both of our proposed

algorithms converged to a normalized ℓ2-distance of less than

-200 dB from the Cholesky based solution to (1) and appeared

nearly identical to Fig. 9(b). The convergence rates of the

algorithms were similar for all four coils and thus we present

the results for the same coil that was presented in Section

III-C. Fig. S-4 plots D(s(j)) with respect to both iteration

and time for the ADMM–CG based algorithms as well as the

algorithms evaluated in the manuscript. ADMM–CG–IU was

faster than both PCG–Circ and regular CG converging within

D(s(j)) = 0.1% in approximately 80 seconds. ADMM–CG

was slower than its intermediate updating counterpart and

PCG–Circ with a convergence time of nearly 120 seconds.

E. Discussion

The convergence rates with respect to iteration of

the ADMM–CG based algorithms were close to their

ADMM–Circ counterparts. However, the ADMM–CG based

algorithms were much slower in time due to the added

overhead of the PCG solution used to approximate Step 1.

In fact, even when using only one iteration of PCG for this

approximation, the per iteration costs of the ADMM–CG

algorithms are much higher than those of the ADMM–Circ

algorithms, Table S-1.

The convergence curves of the ADMM–CG based algo-

rithms exhibit a higher rate of non-monotonic behavior than

the ADMM–Circ algorithms. This is partly caused by the
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Fig. S-4. Plots of the normalized ℓ2-distance between s(j) and ŝ, D(s(j)),
with respect to iteration (top) and time (bottom) for the bottom left breast
data surface coil image in Fig. 9.

approximate update in Step 1. If we run several more PCG

sub-iterations in Step 1, the convergence curves with respect

to iteration of the ADMM–CG algorithms appear similar to

their ADMM–Circ counterparts (although much slower with

respect to time). As with ADMM–Circ, the parameter settings

that provided the fastest convergence rates typically resulted

in non-monotonicity in the D(s(j)) plots.

The proposed ADMM–CG–IU algorithm was faster than

PCG–Circ in the breast phantom experiment, but slower in

the simulated brain experiment. As discussed in Section IV of

the manuscript, the relative speed of the PCG–Circ algorithm

depends on the accuracy of the preconditioner in (13) and

thus on the data. Contrarily, the preconditioning used for

the approximation of Step 1 in the ADMM–CG algorithms

does not depend on the data; thus, these algorithms are less

sensitive to such differences. The ADMM–CG algorithm,

although initially faster, converged slower than PCG–Circ in

both experiments. Therefore, using intermediate updating also

significantly accelerated the convergence rates of this ADMM

algorithm. All of our proposed algorithms were significantly

faster than traditional CG.

The convergence rates of our proposed ADMM–CG algo-

rithms were robust to the choice of condition numbers used to

determine the AL penalty parameters ν0 and ν1. We found that

the convergence rates remained similar for condition numbers

that differed from the optimal values by up to fifty percent. The

chosen condition numbers also worked well for a wide range

of regularization parameter values λ. However, we found that
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TABLE S-1
APPROXIMATE NUMBER OF COMPLEX ARITHMETIC OPERATIONS PER

ITERATION FOR THE CASE OF SECOND-ORDER FINITE DIFFERENCES

Estimator Number of Operations

ADMM–CG–IU a 28N + 18M + 2 · OFFT
b

ADMM–CG a 26N + 16M + 2 · OFFT

a Step 1 uses a single PCG iteration.
b OFFT denotes the cost of the FFT operations
(O(N log(N))).

the optimal condition numbers for ADMM–CG–IU depended

on the data unlike for ADMM–CG and the ADMM–Circ based

algorithms. Still, like the ADMM–Circ algorithms, the choice

of the optimal condition numbers does not depend on the

surface coil image. Therefore, if one wanted to fine-tune the

convergence rate of the algorithms, a single coil of a multi-coil

array would suffice.

S-II. SIMILAR SPLITTING

In formulating our proposed ADMM–Circ algorithm, we

originally explored a different variable splitting strategy in-

volving a double splitting within the regularization term of

(1) [5], [6]:

arg min
s,u0

1

2
‖z−Ds‖2W+

λ

2
‖Bu0‖22 s.t. u0 = Cu1 and u1 = s.

(S-10)

This variable splitting led to update equations with nearly

identical structures to those of ADMM–Circ. Furthermore, the

resulting AL algorithm and its intermediate updating variation

had similar convergence rates to their ADMM counterparts.

However, analyzing the convergence properties of these algo-

rithms was more complicated as they did not have ADMM

structures. Thus, we focused on the ADMM formulations.

S-III. IMPROVED SENSE RECONSTRUCTION QUALITY

The advantages and accuracy of similar regularized sensitiv-

ity profile estimators have been discussed in previous papers

[7], [8]; however, there has been limited investigation into

their effects on SENSE reconstruction quality. We therefore

compare the quality of the SENSE reconstructions created with

the coil sensitivities estimated using the regularized method in

(1) to those estimated using the commonplace ratio and ratio

of low resolution images methods.

A. Simulated Brain Data

Our first experiment was performed using the simulated

brain data outlined in Section III-B of the manuscript. We

began by simulating a full resolution calibration scan using the

same parameters as Figs. 4 and 5. Next, we estimated the coil

sensitivities from the resulting body and surface coil images

using our regularized method, the ratio of low resolution

images method, and the ratio method.

We implemented the regularized method using our

ADMM–Circ–IU algorithm with the same parameters as in

Section III of the manuscript. The ratio of low resolution

images method was implemented by taking a set number
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Fig. S-5. Example sensitivity profile estimates for the brain data using (a)
the regularized method (b) the ratio of low resolution images method with the
center 51 × 38 samples, (c) the ratio of low resolution images method with
the center 13× 9 samples, and (d) the conventional ratio method.

of samples from the center of k-space of each coil, zero

padding to get 256× 192 element matrices (corresponding to

a 256mm× 192mm FOV), and reconstructing low resolution

body coil and surface coil images using inverse DFTs. Smooth

sensitivity estimates were then obtained by taking the ratio

of these low resolution images. We present the results for

two different amounts of sampling. The first uses the center

13 × 9 k-space samples resulting in sensitivity estimates that

extend smoothly to the image edges. The second uses the

center 51 × 38 samples which was found to provide the best

SENSE reconstruction quality for this method. In both cases

we applied a Hamming window to the selected k-space data

to reduce any Gibbs ringing artifacts. The conventional ratio

estimate (ŝi = zi/yi) was masked to remove the highly corrupt

estimates of the non-object pixels using a binary mask created

by thresholding the body coil image. The resulting sensitivity

profile estimates for a single, representative coil are presented

in Fig. S-5.

As seen in Fig. 6 of the manuscript, the regularized estimate

is very close to the true sensitivity, differing only at the corners

of the image. The minor discrepancies at the corners of the

estimates are in part due to selecting a regularization parameter

that emphasized accuracy over the object pixels and their

immediate surrounding area as well as from the fact that there

is no information about the true sensitivity in this region of

the image. The conventional ratio estimate is much noisier

over the object pixels and has no extrapolation. Both low

resolution ratio estimates are smooth over the object support

with varying degrees of extrapolation into the surrounding
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TABLE S-2
NRMSES BETWEEN THE TRUE BRAIN IMAGES (STATIONARY AND

SHIFTED) AND THE SENSE RECONSTRUCTIONS

Regularized Low Res. Ratio Ratio

51× 38 13× 9

Shift = 0 0.06 0.07 0.16 0.12

Shift = 2 pixels 0.06 0.07 0.16 0.16

regions. However, the implicit smoothing of these methods

creates inaccuracies in the estimates near object edges and

in areas with predominantly low signal. Furthermore, any

voxels significantly beyond the extrapolated regions exhibit

large estimation errors. The typical errors that result from

Gibbs ringing artifacts [7] have been reduced by the additional

windowing.

Data from the four surface coils were then simulated for

every other vertical line in k-space. SENSE reconstructions [9]

were performed using this undersampled data set and the

various sensitivity profile estimates. We restricted the recon-

struction to a masked region found by dilating the threshholded

body coil image by two pixels. These reconstructions and their

differences to the truth are presented in Fig. S-6.

The resulting normalized root-mean-square errors (NRMSE)

between the SENSE reconstructions and the truth are presented

in Table S-2. The regularized method led to the most accurate

SENSE reconstruction in terms of NRMSE as well as the one

with the fewest structural artifacts (beyond the amplified noise

inherent to SENSE reconstruction). The low resolution ratio

method with the center 13×9 samples led to the least accurate

SENSE reconstruction. It is clear from the artifacts in the

difference image that oversmoothing led to large inaccuracies

in the sensitivity profile estimates at the object edges. The

low resolution ratio method with the center 51 × 38 samples

led to the second most accurate reconstruction. Although the

effects are less severe than for the 13 × 9 case, there are

again structural artifacts in the reconstructions due to inac-

curate sensitivity estimates at the object boundaries and low

signal regions within the brain. The conventional ratio method

also led to significant artifacts in the SENSE reconstruction.

Specifically, the lack of smoothing in the sensitivity estimates

led to high noise in the SENSE reconstruction, while the lack

of extrapolation resulted in aliased object edges within the

final reconstruction.

B. Shifted Simulated Brain Data

One possible complication when performing SENSE imag-

ing is if the patient moves between the calibration and ac-

quisition scans. In such cases, poorly extrapolated sensitivity

profile estimates will introduce significant artifacts into the

reconstruction [10]. To evaluate the different sensitivity esti-

mators under such circumstances, we simulated a set of two

times undersampled surface coil images in which the brain

was moved two pixels to the right with respect to the coil

sensitivities and the field-of-view. We then reconstructed the

image using the previously estimated coil sensitivities over an

equally shifted masked region. These reconstructions and their

differences to the shifted truth are presented in Fig. S-7.

The resulting NRMSEs between the SENSE reconstructions

and the true shifted brain are presented in Table S-2. The

regularized method again led to the most accurate SENSE

reconstruction with similar NRMSE and a lack of structural

artifacts. The low resolution ratio method with the center

51 × 38 samples led to the second most accurate SENSE

reconstruction; however, the inaccuracies in the sensitivity

estimates at the object edges resulted in larger artifacts due

to the shift, particularly at the far right side of the brain. The

low resolution ratio method with the center 13 × 9 samples

again resulted in the worst SENSE reconstruction. The shift

of two pixels to the right emphasized the inaccuracies in the

estimates near the object edges by introducing even larger

artifacts (not visible with the current contrast windowing). The

SENSE reconstruction based on the conventional ratio method

was significantly affected by the shift. In particular, the lack of

any extrapolation in the estimated sensitivity profiles resulted

in large artifacts within the object support.

C. High SNR Simulated Brain Data

To better illustrate the typical inaccuracies produced by the

ratio of low resolution images estimation method, we repeated

the previous SENSE reconstruction experiments using simu-

lated brain data with a higher SNR of 20. The specific body

coil and four surface coil images are presented in Fig. S-8. We

performed sensitivity estimation using the regularized method

and the ratio of low resolution images method with 51 × 38
samples. The resulting estimates for a representative coil are

presented in Fig. S-9.

The sensitivity profile estimates are similar to those for

the case of lower SNR brain data found in Fig. S-5. The

regularized estimate is again very close to the true sensitivity

differing only at the corners of the image. The ratio of low

resolution images estimate is smooth over the object support

and exhibits some extrapolation. However, there are noticeable

inaccuracies in areas corresponding to regions of low signal

within the brain.

We performed two-fold accelerated SENSE reconstructions

with the higher SNR brain data and these sensitivity profile

estimates. The results for both the case of no shift between

calibration and scan, as well as a two pixel shift, are presented

in Fig. S-10. As with the case of low SNR brain data,

the reconstructions created using the regularized sensitivity

estimate have very low error and no major structural artifacts.

Furthermore, the two pixel shift had little effect on the

reconstruction quality indicating accurate extrapolation within

the estimate. In contrast, the reconstruction created using

the low resolution ratio estimates had several large structural

artifacts (indicated with a yellow arrow) that were a result of

the inaccurate sensitivity profile estimates in regions of low

signal. The two pixel shift increased these artifacts indicating

inaccurate extrapolation within the sensitivity estimates.

D. Breast Phantom Data

We also compared the sensitivity estimation methods using

our breast phantom data from Section III-C of the manuscript.

In this case, we estimated the sensitivities of the breast
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Fig. S-6. Resulting two-fold accelerated SENSE reconstructions for the brain data using (a) the regularized method (b) the ratio of low resolution images
method with the center 51× 38 samples, (c) the ratio of low resolution images method with the center 13× 9 samples, and (d) the conventional ratio method
sensitivity profile estimates. The corresponding differences to the truth are presented below in (e – h). The yellow arrow specifies an artifact in the SENSE
reconstruction caused by inaccurate sensitivity estimates in a low signal region.

phantom images presented in Fig. 9 using the same four

methods as before: the regularized method with λ = 27, the
ratio method, and the low resolution ratio method with both

the center 77× 19 and center 19× 5 samples zero padded to

384×96 elements. The resulting estimates for a representative

coil are presented in Fig. S-11.

The regularized estimate is smooth over the entire field-

of-view and closely matches the general trend in the ratio

estimate. The low resolution ratio estimate with the center

77× 19 samples is reasonably smooth over the object support

with some extrapolation into the surrounding pixels. There

are inaccuracies in the estimate near regions of low signal

such as at the object edges and over the far right breast.

The low resolution ratio estimate with the center 19 × 5
samples is smoother than the case of 77 × 19 samples and

exhibits greater extrapolation. However, this estimate suffers

from oversmoothing and is highly inaccurate at the object

edges. Both of the low resolution ratio methods benefited

from using a Hamming window to reduce the Gibbs ringing

artifacts. The ratio estimate is very noisy over the object pixels

and has no extrapolation.

To simulate the minor changes in the data that would

occur between a calibration scan and an acquisition scan,

we performed a SENSE reconstruction on a neighboring two-

dimensional slice of our breast phantom data. The fully sam-

pled body and surface coil images of this slice are presented

in Fig. S-12. First, we undersampled the surface coil images

by selecting every other vertical line in k-space. As was

done for the simulated brain data, we then performed SENSE

reconstructions over a masked region using the previously es-

timated coil sensitivities. These reconstructions are presented

in Fig. S-13.

The SENSE reconstruction resulting from the regularized

estimate has very high quality and few visible artifacts when

compared to the body coil image in Fig. S-12(a). The recon-

struction resulting from the low resolution ratio estimate with

the center 77 × 19 samples appears similar to that of the

regularized estimate; however, the inner parts of the breasts

are darker than in the body coil and surface coil images.

This is largely a result of inaccurate sensitivity estimation in

these low signal regions. In addition to the darkening artifact

in the low signal regions of the image, the reconstruction

resulting from the low resolution ratio estimate with the center

19 × 5 samples also has aliased edges of the breasts within

the object support (indicated by a yellow arrow). These are

a result of inaccurate sensitivity estimates at the object edges

caused by oversmoothing. The reconstruction resulting from

the conventional ratio estimate is very noisy and has several

bright artifacts. This is due to inaccurate sensitivity estimation

over the low signal pixels within the object support and a lack

of extrapolation.

E. Discussion

From these experiments, we conclude that the regularized

sensitivity estimation method outlined in (1), although more

computationally expensive, provides improved sensitivity es-

timates for use in SENSE reconstructions compared to other

commonly used non-parametric methods. Using a ratio of low
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Fig. S-7. Resulting two-fold accelerated SENSE reconstructions of a brain shifted two pixels to the right with respect to Fig. S-6 using the previous (a)
regularized method (b) the ratio of low resolution images method with the center 51 × 38 samples, (c) the ratio of low resolution images method with the
center 13 × 9 samples, and (d) the conventional ratio method sensitivity profile estimates. The corresponding differences to the shifted truth are presented
below in (e – h). The yellow arrow indicates an area with increased artifacts due to inaccuracies in the sensitivity estimates at the object edges.

resolution images provides reasonable estimates if the correct

number of samples is selected. However, even after windowing

to reduce the Gibbs ringing artifacts, these estimates are

typically inaccurate at object edges and in areas of low signal.

This results in artifacts in the SENSE reconstructions. The

lack of smoothing and extrapolation in the conventional ratio

method results in SENSE reconstructions that are very noisy

and prone to large artifacts due to motion.

S-IV. ESTIMATION OVER A CONVEX HULL MASK

If estimating over a masked region in order to reduce com-

putation time, the mask must be carefully selected to ensure

accurate estimates. For data sets with spatially-contiguous

support, such as the simulated brain in our manuscript, this

is relatively trivial; however, this is not the case for more

complicated data sets such as our breast phantom data whose

field-of-view (FOV) contains several spatially distinct objects.

Due to the underlying physics, the typical coil sensitivity

profile should smoothly vary across the entire FOV and

generally decrease with distance from the coil. However, using

a tight mask isolates the estimate over each object and this can

result in large errors for objects that have low signal or only

a few pixels. This can be avoided by using a mask consisting

of a convex hull containing the spatially distinct objects.

To illustrate this phenomenon, we considered another slice

of our breast phantom data, Fig. S-14. This image has a small

object to the left of the right breast (indicated by an arrow).

We perform regularized estimation over a masked region

consisting of spatially distinct objects as well as a masked

region consisting of a convex hull of these points. Fig. S-15

contains the two different masks and their corresponding

sensitivity estimates. Fig. S-16 presents line profiles of the

absolute value of the sensitivity estimates taken horizontally

through the center of the FOV for both estimates.

Comparing the two estimates, it is clear that they are similar

for regions with relatively high SNR; however, they differ

greatly over the small object next to the right breast. When

using a tight mask, the estimated sensitivity in this region is

very high in comparison to the nearby breast which does not

match the underlying physics. This inaccuracy is a result of

the estimate in this region being based on only a few low

signal pixels. In contrast, the convex hull estimate is smooth

over the entire masked region and the estimate over the small

object is more realistic. This is because such a mask enforces

smoothness both within and between all of the objects in the

FOV. Thus, a convex hull should be used for the estimation

mask to avoid inaccuracies in the final estimates.

S-V. CIRCULANT VERSUS NON-CIRCULANT FINITE

DIFFERENCING MATRICES

In this section we demonstrate the importance of using a

finite differencing matrix for the case of non-periodic boundary

conditions (R or BC) rather than a finite differencing matrix

for the case of periodic boundary conditions (C) in our cost

function. Since CHC is block circulant with circulant blocks,

we will refer to the matrix for the case of periodic boundary

conditions as the “circulant matrix”. In contrast, we will refer
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Fig. S-8. The magnitude of the fully sampled (a) body coil and (b) surface
coil images for our high SNR simulated brain data.
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Fig. S-9. Example sensitivity profile estimates found for the high SNR
brain data using (a) the regularized method and (b) the ratio of low resolution
images method with the center 51× 38 samples.

to the matrix for the case of non-periodic boundary conditions

as the “non-circulant matrix”.

The receive coil is usually placed at or just beyond the

boundary of the field-of-view. Since coil sensitivity is a

physical phenomenon, its intensity will typically decrease with

increased distance from the coil. However, if we use a circulant

finite differencing matrix, we will be penalizing differences in

the estimated sensitivities at opposing boundaries of the vol-

ume. Since there is often little information about the sensitivity

at the edges of the volume, this penalization will result in a

sensitivity estimate that dips near the coil and rises at the

opposite side of the field-of-view. This is a clear mismatch

with the underlying physics of the problem. Furthermore,

because of the lack of meaningful information outside of the

object voxels, this error will propagate to the estimate at the

edges of the object. These errors within (and just outside)

the object support can generate significant artifacts in SENSE

reconstructions (see Section S-III). Padding the image with

zeros will not sufficiently remove this propagated estimation

error. Thus, one must use a more realistic modeling assumption

and select a non-circulant finite differencing matrix that avoids

penalizing between opposite boundaries at the expense of

increased complexity. To illustrate these claims, we recreated

the estimates found in Section III of our manuscript using both

the existing non-circulant finite differencing matrix (R) and a

circulant finite differencing matrix (C).

A. Simulated Brain Data

We present the results for one coil of the simulated brain

data. Fig. S-17 presents the body coil image, true sensitivity,

and resulting surface coil image used in this experiment.

Fig. S-18 presents the resulting estimates using both the non-

circulant and circulant finite differencing matrices, as well as

the percentage difference image for each estimate compared

to the truth.

As stated before, the estimate using the circulant finite

differencing matrix dips before the boundary near the coil

and rises at the opposite edge of the field-of-view. This

results in significant inaccuracies in the estimate at the image

boundaries. In contrast, the estimate using the non-circulant

matrix increases smoothly towards the image boundary closest

to the coil. The overall estimation error is therefore much

smaller and is confined to the outer corners of the image.

Fig. S-19 presents the same estimates as Fig. S-18, but

masked in the spatial domain to highlight the error over the

object support. In these images, we see that the error in the

estimates from the non-circulant matrix has propagated to

within the object support. This highly structured inaccuracy

will cause large artifacts in SENSE reconstructions. In con-

trast, the error in the estimate from the circulant matrix is much

lower over the entire object support and contains significantly

less structure.

B. Padded Simulated Brain Data

We also padded the brain data in Fig. S-17 with zeros to

get a 256 × 256 image (an addition of 32 pixels to both

the left and right sides of the image). Fig. S-20 presents the

resulting estimates, masked to highlight the error over the

object support. Similar inaccuracies to before are present in

the circulant matrix estimate, while the estimate using the

non-circulant matrix continues to have low error. Thus, the

zero padding did not sufficiently mitigate the corruption of

the estimate caused by using a circulant matrix.
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Fig. S-10. Resulting two-fold accelerated SENSE reconstructions of the high SNR simulated brain data. For the case of no shift, (a) and (b) are
the reconstructions corresponding to the regularized method and ratio of low resolution images method, respectively. (c) and (d) are the corresponding
reconstructions for the case of a two pixel shift. The difference to the truth or shifted truth for each reconstruction is presented below in (e – h).

C. Breast Phantom Data

We performed similar experiments on one coil of our

breast phantom data found in Section III-C of the manuscript.

Fig. S-21 presents the body coil and surface coil images used

in this experiment.

Fig. S-22 presents the resulting estimates using both the

non-circulant and circulant finite differencing matrices. As

with the brain data, there is an unrealistic dip in the estimate

near the coil and a rise at the opposing boundary when

using the circulant finite differencing matrix, Fig. S-22(a).

The estimate using the non-circulant matrix is more realistic,

Fig. S-22(b).

Fig. S-23(a – b) presents the same estimates as Fig. S-22,

but masked in the spatial domain to highlight the error over

the object support. Fig. S-23(c) shows the difference between

these two estimates. From these images, we see that the

inaccuracies in the estimate at the boundaries of the image

caused by the circulant finite differencing matrix propagated

to within the object support. Thus, the need for a non-circulant

finite differencing matrix is also evident for the case of real

data.

D. Discussion

Using a finite differencing matrix for the case of periodic

boundary conditions in our experiments caused substantial er-

rors at the boundaries of the field-of-view and these propagated

to within the object support. Furthermore, padding the images

did not entirely mitigate the error. As seen in Section S-III,

these types of errors can cause significant artifacts in SENSE

reconstructions. However, using a finite differencing matrix

for the case of non-periodic boundary conditions avoided these

errors. Thus, these experiments illustrate the need to use a non-

circulant finite differencing matrix in the regularized estimator

of (1).
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Fig. S-11. Example sensitivity profile estimates found for the breast phantom
data using (a) the regularized method (b) the ratio of low resolution images
method with the center 77× 19 samples, and (c) the ratio of low resolution
images method with the center 19×5 samples, and (d) the conventional ratio
method.
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Fig. S-12. The magnitude of the fully sampled (a) body coil and (b) surface
coil images for the neighboring two-dimensional slice of our breast phantom
data.

 

 

0

0.1

0.2

0.3

0.4

(a)

 

 

0

0.1

0.2

0.3

0.4

❅❅■

(b)

 

 

0

0.1

0.2

0.3

0.4

��✠

(c)

 

 

0

0.1

0.2

0.3

0.4

(d)

Fig. S-13. Resulting two-fold accelerated SENSE reconstructions of the
neighboring slice of breast phantom data (Fig. S-12) using the previous (a)
regularized method (b) ratio of low resolution images method with the center
77 × 19 samples, (c) ratio of low resolution images method with the center
19×5 samples, and (d) conventional ratio method sensitivity profile estimates.
The arrow in (b) points to a dark region in the reconstruction, while the
arrow in (c) points to a reconstruction artifact caused by inaccurate sensitivity
estimation at object edges.
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Fig. S-14. The magnitude of the (a) body coil and (b) surface coil image
for an additional slice of our breast phantom data. The yellow arrow points
to a small object within the FOV.
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Fig. S-15. The masks for the cases of a (a) convex hull and (b) independent objects. The corresponding regularized estimates over the masked regions for
the (c) convex hull and (d) independent objects.
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Fig. S-16. Horizontal line profiles taken through the center of the sensitivity
estimates presented in Fig. S-15.
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Fig. S-17. The (a) body coil, (b) true coil sensitivity, and (c) resulting surface
coil magnitude images for the simulated brain data.
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Fig. S-18. The resulting sensitivity estimates for the brain data using a (a)
circulant matrix and a (b) non-circulant matrix. The percentage difference
between the truth and the estimates from the (c) circulant matrix and the (d)
non-circulant matrix are shown below.
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Fig. S-19. The same sensitivity estimates for the brain data as in Fig. S-18
but masked to highlight the error over the object support. (a) and (c) are the
resulting estimate and percentage difference to the truth, respectively, resulting
from a circulant matrix. (b) and (d) are the same but resulting from a non-
circulant matrix.
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Fig. S-20. The masked sensitivity estimates for padded brain data generated
using a (a) circulant matrix and a (b) non-circulant matrix. The masked
percentage difference between the truth and the estimates from the (c) circulant
matrix and the (d) non-circulant matrix are shown below.
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Fig. S-21. The (a) body coil and (c) surface coil magnitude images for the
breast phantom data.
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Fig. S-22. The sensitivity estimates for the breast phantom data generated
using a (a) circulant matrix and a (b) non-circulant matrix.
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Fig. S-23. The same sensitivity estimates for the breast data as in Fig. S-22
but masked to highlight the error over the object support. The difference
between the estimates in (a) and (b) is presented in (c).




