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Separate Magnitude and Phase Regularization
via Compressed Sensing
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Abstract—Compressed sensing (CS) has been used for acceler-
ating magnetic resonance imaging acquisitions, but its use in ap-
plications with rapid spatial phase variations is challenging, e.g.,
proton resonance frequency shift (PRF-shift) thermometry and ve-
locity mapping. Previously, an iterative MRI reconstruction with
separate magnitude and phase regularization was proposed for ap-
plications where magnitude and phase maps are both of interest,
but it requires fully sampled data and unwrapped phase maps.
In this paper, CS is combined into this framework to reconstruct
magnitude and phase images accurately from undersampled data.
Moreover, new phase regularization terms are proposed to accom-
modate phase wrapping and to reconstruct images with encoded
phase variations, e.g., PRF-shift thermometry and velocity map-
ping. The proposed method is demonstrated with simulated ther-
mometry data and in vivo velocity mapping data and compared to
conventional phase corrected CS.

Index Terms—Compressed sensing (CS), image reconstruction,
magnetic resonance imaging (MRI), regularization.

I. INTRODUCTION

I N MOST magnetic resonance imaging (MRI) applications,
only the voxel magnitudes are of interest. However, in

applications like field map estimation [1] and phase contrast
imaging [2], [3], phase maps also contain important infor-
mation and need to be accurately estimated. Therefore, we
want to reconstruct images with both accurate magnitude and
phase components from raw k-space data. Regularized iterative
algorithms can reconstruct complex images with certain regu-
larization terms for complex unknowns (the unknown image)
based on certain priors, e.g., piece-wise smoothness (Total
Variation [4]). Such priors, however, are usually based on
properties of the magnitude component of medical images, and
may be less suitable when variation of the phase component
over space is not negligible. Meanwhile, such reconstructions
may not exploit prior knowledge of the phase image which is
often different from that of the magnitude image, causing the
signal-to-noise ratio (SNR) of phase image in low magnitude
areas to be extremely low. To solve this problem, Fessler et al.
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proposed an iterative reconstruction method [5] in which the
phase and the magnitude images are regularized for their own
features separately, preserving both smoothness of the phase
image and resolution of the magnitude image. However, this
method cannot handle big jumps in wrapped phase maps, due
to nonconvexity of the cost function for the phase. Moreover,
we have found that when k-space data are undersampled,
compressed sensing (CS) methods [6] are more effectivethan
the simpler smoothness or edge-preserving regularizers for the
magnitude component considered in [5].
Undersampling k-space data is one of the main ways to accel-

erate MRI acquisitions, e.g., in parallel imaging and in CS. CS
has shown good performance in reducing k-space samples by
exploiting sparsity of medical images in certain transform do-
mains, e.g., finite differences and wavelet transforms. However,
typically the assumption of sparsity is based on the properties
of the magnitude component, and CS may not work well when
rapid spatial phase variations exist. To mitigate this problem,
CS reconstruction methods often use phase estimation [6] to
make phase corrected images so that the phase variations are
reduced, making images sparser; such estimation is done by ac-
quiring low frequency regions of k-space. A similar idea was
introduced in the partial Fourier partially parallel imaging tech-
nique [7] which is based on conjugate symmetry in k-space for
real images [8]. In that method, the phase corrected image is
supposed to be almost real, so its imaginary component’s en-
ergy is constrained to be very low. The performance of both
methods relies on a phase map estimation that may require addi-
tional acquisition and may not be accurate enough. Meanwhile,
such estimation is based on the fact that phase map is spatially
smooth, which might not be true in certain applications, e.g., in
PRF-shift thermometry [2] and in phase-contrast velocity map-
ping [3]. In fact, it is contradictory that in the cases when phase
correction is most necessary, i.e., rapid spatial phase variation,
it is most difficult to estimate phase accurately from low fre-
quency k-space data. Thus, phase correction may not greatly
benefit magnitude reconstruction when phase variation is se-
vere. Furthermore, since only low frequency k-space measure-
ments are used, neither of those methods can reconstruct details
in phase images, such as hot spots in thermometry and high ve-
locity arteries in velocity mapping.
Therefore, it is tempting to extend the idea of using separate

regularization of the magnitude and phase components by using
CS, to improve the reconstruction of both magnitude and phase
images while accelerating data acquisitions by undersampling
k-space data. This combination theoretically takes advantages
of these two techniques by exploiting sparsity of magnitude
component and smoothness (or some other features) of phase
component. Thus, Zibetti et al. proposed new regularization
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terms to approximate CS regularizer ( norm) for magnitude
and first-order roughness penalty for phase in [9], which showed
better results than before. This method, however, has several
limitations: first, it is only applicable for first-order differences
operator in CS regularization, which is usually not the optimal
one; second, the phase regularization term is still weighted by
its corresponding magnitude, which may cause low SNR in low
magnitude areas, in other words, phase is still not regularized
independently from magnitude; last, the penalty function for
phase is concave when neighboring phase difference is large,
e.g., , which requires a good initialization for phase.
We propose a reconstruction method that combines CS with

separate regularizations for magnitude and phase for more gen-
eral MRI reconstruction applications. In the framework of the
separate regularization in [5], we apply CS regularization for the
magnitude image but use a new phase regularizer that is appli-
cable for wrapped phase maps, and we randomly undersample
k-space data. Since this framework is general enough to design
different regularizers for specific types of phase maps, we de-
veloped another type of phase regularizer for applications that
have distinct areas on top of smooth background in the phase
map, e.g., hot spots in temperature maps and arteries in velocity
maps.
In this paper, we start with the basic MRI signal model. Then

the reconstruction cost functions are discussed in detail by com-
paring conventional CS method with our proposed method and
introducing new phase regularizers with their properties. Next,
we discuss the respective optimization algorithms for magni-
tude and phase. Finally, the proposed method was tested by
comparing with conventional phase-corrected CS in both sim-
ulation studies and in vivo data reconstructions; in the simula-
tion studies, we simulated an abdomen thermometry data with
hot spots in the phase map; in the in vivo data reconstruction,
we acquired velocity mapping data of the abdominal aorta by a
phase-contrast bSSFP sequence on 3T GE scanner.

II. THEORY

A. Signal Model

In this paper, we only discuss single coil reconstruction, but
the algorithms easily generalize to parallel imaging using sen-
sitivity encoding (SENSE) [11]. The baseband signal equation
of MRI is the following:

(1)

where is the coordinate in spatial domain, is the object
“magnitude,” is the phase map, and is the k-space tra-
jectory. We allow to take negative values to avoid any
jumps aborbed into the phase . We assume a short data

acquisition time so that the off-resonance induced phase is con-
tained in . In MRI scanning, complex Gaussian modeled
random noise is involved in the detected signal, which is

(2)

where is the detected signal. For computation, we discretize
the signal equation as follows:

(3)

where , are the measured data;
is the system matrix of MRI, e.g., the discrete

Fourier transform (DFT) matrix,

is the magnitude image,
is the phase image, and is the
complex noise. (We write as shorthand for element-wise
multiplication of these two vectors.) In this paper, our goal is to
reconstruct and simultaneously from undersampled k-space
data .

B. Cost Functions

In conventional CS [6], applying a regularized approach for
(3) yields the cost function

(4)

where , denotes randomly undersampled data in
k-space, denotes norm, is the scalar regularization pa-
rameter, and is the CS regularizer; usually, is the
or norm of finite differences or a wavelet transform. The

estimated magnitude and phase, i.e., and are then com-
puted from the reconstructed complex image , where

.
To reduce phase variation of , phase-correction is often ap-

plied to better sparsify the image in the sparse transform do-
main [6]

(5)

where is the estimated phase map from low frequency
k-space, denotes a diagonal matrix whose diagonal entries
are exponentials of in the same order. The unknown
should then be closer than in (4) to the magnitude image
which is sparser. The final reconstructed image for conven-
tional CS is

(6)

where .
In this paper, this method is used for comparison, and we

choose to be norm of wavelet transform; then the cost
function becomes

(7)

where is the wavelet transform matrix and denotes
norm.
In contrast, we propose a cost function with separate regular-

izations for magnitude and phase components as follows:

(8)
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where and denote the regularizers for and ,
and denote the scalar regularization parameters. For the

magnitude component , we exploit the sparsity of the mag-
nitude in wavelet domain by regularizing the norm of the
wavelet coefficients of . For the phase component , we se-
lect the regularizer according to features of the phase map. For a
smooth phase map, we use a typical first-order finite differences
regularizer (called “regularizer 1” hereafter) to enforce spatial
smoothness [5]. The cost function then becomes

(9)

where is finite differencing matrix that penalizes roughness.
Note that the arguments of the cost function are real valued.
Because the phase appears in an exponential in the data fit

term, the cost function is nonconvex; indeed, it is periodic.
When this term is combined with regularizer 1, it can be difficult
for a descent algorithm to find a desirable local minimum, par-
ticularly if the range of the true phase map values exceeds a
interval. We observed empirically that descent algorithms fre-
quently converged to undesirable local minimizers in this situa-
tion. To address this problem, we investigated a different phase
regularizer that is also periodic, by regularizing the exponential
of the phase instead of the phase itself. This regularizer (called
“regularizer 2” hereafter) is described as

(10)

Note that the unit of has to be radians here. This regularizer ac-
commodates phase wrapping, because the wrapped phase values
will be equivalent to the unwrapped ones when exponentiated
[9]. However, this choice introduces some nonlinearity to the
regularization term, which requires examination. To explore it,
we consider an arbitrary pair of neighboring pixels that
are penalized in regularizer 2

(11)

where corresponds to and in regularizer 2, and is the
finite difference . In contrast, regularizer 1 has this cor-
responding formula

(12)

Fig. 1 compares with , and ,
showing that regularizer 2 approximates regularizer 1 in every
period and therefore allows phase wrapping without changing
the roughness penalty. As can be seen, the new regularizer is
a very good approximation to the old one in intervals between

with , which are sufficiently wide
intervals for most MRI phase maps. Therefore, in principle,
this regularizer will not only handle the phase wrap but also
preserve smoothness of the phase map. Note that is con-
cave for large phase differences ,
which is the same problem in [9]. Fortunately, such problem
can be avoided in most cases by choosing a sufficiently good
initial phase map for the reconstruction (discussed later in

Fig. 1. Comparison between the two regularizers (regularizer 1: ; regularizer
2: .).

the paper). Therefore, if no extremely sharp edges exist in
the true phase map, the value of in our reconstruction will
often be within the convex domain of the regularization term,
i.e., . To sum up, the proposed cost
function for typical cases with smooth phase maps is

(13)

Some applications have more complicated phase maps, so
only enforcing phase smoothness may be suboptimal. Fortu-
nately, the proposed cost function is general enough to introduce
other regularizers that are designed for specific applications. For
example, in PRF-shift temperature mapping, phase maps may
have hot spots in thermal ablation therapy [2]; in phase con-
trast velocity mapping, phase maps may have velocity informa-
tion of arteries which are in systole. In both cases, the phase
map will have relatively small distinct areas on top of a smooth
background. To estimate such phase maps more accurately, we
propose to apply edge-preserving phase regularizers to preserve
hot spots or contracting arteries while still smoothing the back-
ground.
Although we ultimately want to extend regularizer 2 in this

application so that wrapped phase maps could be properly reg-
ularized, we start with a conventional edge-preserving regular-
izer for nonwrapping phase maps, because it can be used in the
initialization step which will be discussed later. This edge-pre-
serving regularizer for nonwrapping phase (called “regularizer
3” hereafter) is

(14)

where denotes an edge-preserving potential function,
is the row index, and is the number of rows of . For

edge preservation, should be nonquadratic and satisfy:
is nonincreasing and
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TABLE I
SUMMARY OF THE FOUR REGULARIZERS

[10, Ch.2]. There are many typical edge-preserving potential
functions, e.g., hyperbola, Cauchy, Geman, McClure, etc.,
[10, Ch.2]. Since they are all nonquadratic, it complicates the
optimization (shown in Appendix). Obviously, this regularizer
cannot handle wrapped phase, because it will treat phase wraps
as edges instead of enforcing smoothness.
Thus, we designed a new regularizer, trying to regularize

wrapped phase maps while preserving edges. Incorporated with
the edge-preserving potential function in the regularizer, the
new cost function becomes

(15)

(This phase regularizer is called “regularizer 4” hereafter). Sim-
ilar to regularizer 3, there are many choices for potential func-
tions. To illustrate this regularizer, we consider the hyperbola
function, which is

(16)

where is the parameter to tune how much edge-preserving we
need. Note that the unit of has to be radians, but is unitless
for regularizer 4. Similar to (11), the corresponding formula for
regularizer 4 is

(17)
where . Fig. 2 compares of regularizer
1 and regularizer 4. As can be seen in this plot, regularizer 4
does have edge-preserving properties compared to regularizer 1;
here , which was chosen for velocity mapping recon-
struction in Section III Similar to regularizer 2, the exponential
terms in regularizer 4 makes the cost function nonconvex, but
we have mitigated this problem by certain strategies that will be
discussed in Section III.

C. Optimization Algorithms

Our goal is to estimate and from data by minimizing
the cost function

(18)

Fig. 2. comparison of regularizer 1: , regularizer 2: , and reg-
ularizer 4: .

where , 2, 3, or 4, and is the number of pixels in
each image. We jointly estimate the phase and magnitude by
alternately updating each of them in each iteration

(19)

(20)

There are many optimization algorithms for CS, and we
choose to use the iterative soft thresholding (IST) algorithm
[10, Ch.12] to update in (20). Specifically, we firstly design
a separable quadratic surrogate function for the data fit term
according to the optimization transfer principle [10, Ch.12], and
then use the IST algorithm to minimize the surrogate function.
The update formula was derived for real unknowns

(21)

where , is the

real part the complex number , ,

and , which is the spectral radius of and e.g.,
when we use Cartesian sampling.

It is more challenging to update , because the cost function
for is nonlinear and nonconvex. One way to approach this
problem is to use optimization transfer as in [5]. We have inves-
tigated this approach for the cost function with regularizer 1 by
using De Pierro’s trick [12] to design a quadratic surrogate func-
tion. However, it turned out to converge very slowly. Although
this algorithm may work well for images that are sparse in the
image domain, e.g., angiography images, we prefer to mini-
mize the cost function in a more generally practical way. There-
fore, we apply preconditioned conjugate gradient with back-
tracking line search (PCG-BLS) algorithm [10, Ch.11] to miti-
gate such problem. The updating formula is derived as follows
(see Appendix for details):

(22)



ZHAO et al.: SEPARATE MAGNITUDE AND PHASE REGULARIZATION VIA COMPRESSED SENSING 1717

where is the search direction derived by PCG algorithm
[10, Ch.11], is the step size at the th iteration which
is chosen by Newton–Raphson algorithm with backtracking
strategy to guarantee monotonicity [10, Ch.11]. The formula of
the Newton–Raphson algorithm for updating the step size is

(23)

where . These step size
optimization formulas for the four regularizers are shown in
the Appendix, respectively. Since this algorithm alone does
not guarantee monotonicity, we need to use the backtracking
strategy [13, p.131] to ensure monotonic decrease of .
As one would expect, this nonlinear optimization algorithm

has higher computational complexity than conventional CS
optimization. For conventional CS by IST, the operations that
dominate in each iteration are 2 A-operations, i.e., fast Fourier
transforms, and 2 U-operations, i.e., wavelet transforms. For
the proposed method, updating takes slightly shorter time
than conventional CS, because although there are also 2 A-op-
erations and 2 U-operations in each iteration, parts of them are
real number operations instead of complex number operations
in conventional CS optimization. However, the nonlinear
optimization for in the proposed method is much slower:
in each iteration, there are 3 Ns A operations C-opera-
tions, i.e., taking finite difference transform, for computing the
gradients, A-operations C-operations for
the Newton–Raphson updating, and A-operations

C-operations for the backtracking part, where
Ns is the number of sub-iterations in each iteration, Na is
the number of iterations for the line search and Nb-1 is the
number of backtracking steps. Empirically, we choose ,
and on average Na is 2.5 and Nb is about 1.1 on average;
therefore, in each iteration, there are about 27 A-operations
and 25 C-operations. A-operation is , U-oper-
ation and C-operation are both , where represents
, , or . Since we use first order finite difference and

three-level wavelet transform, C-operation is much faster than
U-operation. Thus, the proposed method is roughly 10 times
slower than conventional CS. However, we still achieve an
acceptable computation time by the implementation shown
in the Appendix; for example, it takes about 55 s to run the
proposed method with 120 iterations for the 2-D data in the
in vivo experiments of Section III-C on a computer with Intel
Core2 Quad CPU Q9400 @ 2.66 GHz, 4 GB RAM and Matlab
7.8. For 3D data, a more efficient implementation in C++ may
be necessary, but we believe that the computation time can be
made acceptable.
As mentioned before, monotonically decreasing a nonconvex

cost function cannot guarantee finding a global minimizer for
for an arbitrary initial guess; therefore a good initial estimate
for the phase image is important. In this study, since the cost
function of conventional CS is convex, we set the initial guess
for and by using the phase and magnitude of the result of
conventional CS reconstruction method for complex voxels by
IST [the cost function is like (4)]. During this setup, we set the
unknowns to be , and the initial guess of is the

Fig. 3. Sampling pattern in k-space.

inverse DFT of zero-padded k-space data; then we use a similar
algorithm to (21) with some modifications

(24)

Then we set and for or 2
usually. Such initialization for phase and magnitude turns out
to be very good for most cases except for regularizer 4 which
has a narrower convex domain. To solve this problem, we take
one more step to form the initial guess, which is to use regu-
larizer 2 or 3 for a few iterations, because both of them have
wider convex domains than regularizer 4. Then we believe we
get the phase map closer to the desired phase map, which can
help lead reconstructions using regularizer 4 to a desirable local
minimum.
Like all the other regularized reconstructionmethods, the reg-

ularization parameters should be carefully selected. For the pa-
rameter of the roughness penalty term, i.e., , the value can be
selected according to the desired spatial resolution of the phase
image [1]. However, it is still an open problem for selecting pa-
rameters of the norm term. In this study, we choose the pa-
rameter empirically.

III. EXPERIMENTS

A. Experiments Setup

In our experiments, we compared the performance of the
proposed methods with conventional phase-corrected CS that
uses the IST algorithm (24) for optimization. All the data were
sampled in the 2-D Cartesian grid of k-space. The center of
the k-space was fully sampled according to Nyquist sampling
theorem, which preserves low frequency information and also
allows for phase correction in conventional CS. The rest of
k-space was randomly undersampled (as shown in Fig. 3).
Three different image masks are used in the experiments: for
reconstruction, we used a “loose” mask that was obtained from
the inverse DFT of the raw undersampled data; in the results
comparison, we use the true mask that is taken from the true
image for a fair evaluation; for evaluation of the regions of
interest (ROI), we use the ROI mask that is taken manually
from the true phase image and only covers the ROIs. Regular-
ization parameters were empirically chosen to be “the best” for
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Fig. 4. Top row: true magnitude, magnitude by CS, magnitude by the proposed method, phase error map by CS; bottom row: true phase, phase by CS, phase by
the proposed method, phase error map by the proposed. (0.4 sampling rate, background is masked out, and the units of the phase are radians.).

each method, in terms of normalized root mean square error
(NRMSE) or root mean square error (RMSE) which were used
for magnitude images and phase images, respectively. NRMSE
and RMSE are defined as below

(25)

(26)

where and denote the reconstructed and true magnitude
images, respectively, and denote the reconstructed and
true phase images, respectively, and is the number of pixels
in each image. Moreover, we ran the algorithm until the cost
function appeared to reach a minimum. In both methods, the
sparse transform matrix was set to be a three-level Haar
wavelet transform matrix which is unitary.

B. Experiments With Simulated Data

We simulated a thermometry scan using an abdomen T2
weighted magnitude image (upper left most in Fig. 4). We used
the corresponding field map, scaled into the interval ,
as the background of the true phase map. The true complex
image was cropped to be a matrix (
FOV). To reduce the discretization effects that might happen
in the synthesized data, we simulated the data from a higher
resolution “true image.” Since there is not an analytical expres-
sion or a higher resolution version of this simulated object, we
synthesized the higher resolution “true image” by linearly inter-
polating the original true image to be . In addition, we
added four “Gaussian hot spots,” the peak values of which are
from 3.5 to 4 radians, onto the interpolated background phase
map to simulate thermal ablation (lower left most in Fig. 4).
We chose this wide range of phase values to test performance
of the proposed algorithm for wrapped phase maps. This “true

complex image” is used as an approximation of the continuous
phantom. Then we synthesized the fully sampled single-coil
k-space data by taking DFT of the “true complex image,”
and took the k-space data in a matrix with sampling
intervals corresponding to FOV. Then we added
Gaussian distributed complex noise to mimic MRI scanner
noise, and the noise level was fixed through all these simulation
experiments such that the signal-to-noise-ratio (SNR) was
approximately 24 dB. The SNR is defined in k-space, which is

(27)

where denotes the noise-free k-space data, denotes the
noisy k-space data, and both are fully sampled in k-space. After-
wards, the final simulated data were formed by randomly sam-
pling the Cartesian grid, with the center (3%) of the k-space
fully sampled, as shown in Fig. 3.
In the experiments, the proposed method and conventional

CS approach were tested at different sampling rates ranging
from 20% to 60%. Since some referenceless PRF-shift temper-
ature mapping methods [14], [15] have been proposed in lit-
erature, it is realistic to just reconstruct a certain frame without
considering the reference frame in this simulation study. The re-
construction results are compared by visual inspection as well
as NRMSE and RMSE of the reconstructed images with respect
to the “low resolution true image.” This “low resolution true
image” is obtained from the fully sampled noiseless
k-space data by an inverse DFT.
For conventional CS, we estimated the slow-varying refer-

ence phase map by taking the inverse DFT of the fully sampled
k-space center. The proposed method used the regularizer 4 for
the phase map, where we chose hyperbola function as the edge-

preserving potential function, i.e.,
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Fig. 5. The regions masked for evaluating hot spots (left), NRMSE of the magnitude image (middle), RMSE of the entire phase image and RMSE of the phase
masked for ROI, i.e., the hot spots, (right).

TABLE II
REGULARIZATION PARAMETERS IN THE SIMULATIONS

with (radians) chosen empirically. The regulariza-
tion parameters chosen for the simulation studies are shown in
Table II.
Fig. 5 compares NRMSE of magnitude maps with the true

mask (called “entire magnitude” hereafter) and RMSE of phase
maps with the true mask (called “entire phase” hereafter) at
different sampling rates of conventional CS and the proposed
method.We also compared the RMSE of the phase with the ROI
masks, as shown in Fig. 5 (left), to evaluate the performance of
the two methods for the regions around the hot spots, which are
more important than other regions. The proposed method re-
duced NRMSE of the entire magnitude images by 10%–20%,
while reduced the RMSE of the entire phase images by about
60%–70%; for the phase in the hot spots, the proposed method
achieved about 50%–60% lower RMSE. Fig. 4 illustrates the re-
sults at 40% sampling rate; the regions outside the object have
been masked out. Compared to conventional CS, the proposed
method produces a much cleaner background phase map while
preserving the hot spots information, especially for the hot spots
in the low intensity regions where the important hot spots infor-
mation is corrupted by noise in the results by conventional CS.
However, the reduced NRMSE in the magnitude images is not
very visible, which will be discussed in Section IV.
To demonstrate the importance of using regularizer 4, we

replaced the regularizer 4 by regularizer 1–3 in the proposed
method and reconstructed the data with 40% sampling rate. The
regularization parameters are shown in Table III, and is set to
0.0005 radians for regularizer 3. Fig. 6 shows the phase maps
and phase error maps of the reconstructed results. Regularizer 1
and regularizer 3 cannot handle the phase wrapped regions
and tend to enhance the phase wrapping boundaries due to the

TABLE III
REGULARIZATION PARAMETERS IN THE SIMULATIONS

Fig. 6. Reconstructed phase or phase error map by regularizer 1–3, the units
are in radians.

smoothing within different convex domains; therefore, it is
reasonable that regularizer 3 makes less “jumps” over the phase
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wrapping boundaries than regularizer 1 does. As expected,
regularizer 2 tends to over-smooth the hot spots, especially
the one pointed by the arrow; however, as shown in Fig. 1,
regularizer 2 still has some edge-preserving effect, so the result
by regularizer 2 was not far from the true phase; but it still not
as good as the result by regularizer 4 (shown in Fig. 4). Table III
also shows the RMSEs of ROI in the phase maps by regularizer
1–4. For initializing the proposed method, we believe that the
results obtained by regularizer 2 or 3 tend to be in the convex
domain that contains desired local minimum of the ultimate
cost function with regularizer 4.

C. Experiments With In Vivo Data

We acquired in vivo velocity mapping data around human
abdominal aorta using a phase-contrast bSSFP sequence in 3T
GE scanner (Signa Excite HD) with an 8-channel cardiac sur-
face coil array. These multi-coil Cartesian sampled data contain
10 temporal frames as well as the reference frame (no velocity
encoding). In each frame, the Cartesian grid is which
covers a FOV of . For demonstrating the 2-D re-
construction algorithm for single coil, we used the reference
frame and the sixth frame (capturing the peak velocity of the
aorta) in coil 2 where the aorta signal is strong. Since the orig-
inal data are fully sampled, we randomly undersampled them in
the manner as in Fig. 3 to mimic the compressed sensing sam-
pling; in particular, the sampling rate was chosen to be 1/3 of
fully sampling, including 4% of fully sampled center.
Due to the reference frame, the reconstruction procedure was

slightly different from the simulation experiment. Instead of re-
constructing from one set of 2-D data, we first reconstructed the
reference frame by each method, and then we reconstructed the
velocity encoded image with background phase removed by in-
corporating the reconstructed reference frame into the system
matrix, which is a similar strategy to phase correction in CS,
as shown in (7). The cost functions of the two methods for the
second step are shown below

(28)

(29)

where (28) and (29) are for CS and the proposed method re-
spectively, is the reference phase which contains no velocity
information. denotes a diagonal matrix whose diagonal en-
tries are exponentials of in the same order, should contain
only velocity information in its phase, and should contain
only velocity information. In (28), the CS method also has low
frequency phase correction. In the proposed method, we used
regularizer 2 to reconstruct the reference image, a smooth phase
map, as it has no velocity encoding; we used the regularizer 4 to
reconstruct the velocity map. Furthermore, we also investigated
the performance of the proposed method with regularizer 1–3.
The potential function for regularizer 4 (regularizer 3) was the
hyperbola function with (radians). The regulariza-
tion parameters for all the experiments are shown in Table IV.
The results are shown in Fig. 7. In this experiment, since there

is no “true” image for comparison, the reconstruction results

TABLE IV
REGULARIZATION PARAMETERS IN THE IN VIVO EXPERIMENTS

Fig. 7. From the first row to the third row: results by inverse DFT, conven-
tional CS and the propose method; from the first column to the third column:
the magnitude, the reference phase and the velocity map. (The units of second
and third columns are radians and cm/s, respectively).

from the fully sampled data by inverse DFT are shown in the
first row of Fig. 7 for comparison; the second and the third row
are the results by CS and the proposed method respectively. In
the figure, the first, second, and third column are the magnitude
images, the reference phase maps and the velocity maps, respec-
tively. Similar to the simulation experiment, both of themethods
(CS and the proposed) can reconstruct a comparably good mag-
nitude image from undersampled data. In the second column
of Fig. 7, the reference phase map produced by the proposed
method is much smoother than that by conventional CS. In the
last column, the proposed method gives us a velocity map that
clearly shows a bifurcated aorta on top of a reasonably smooth
background, which is much less noisy than the noisy velocity
map produced by conventional CS.
In the right upper corner of the velocity map by the proposed

method (Fig. 7), there is an area that is not smooth; this is due to
the inconsistency between the reference frame and the velocity
encoded frame, which appears to be caused by the unreliable
reference phase in that low intensity area.
Fig. 8 shows the phase maps reconstructed by the proposed

method with regularizer 1, 2, and 3. Similar to the results in the
simulation studies, while regularizer 2 smooths the background
(except for the phase wraps), it also tends to over-smooth the
arteries, which is undesirable. Since this particular problem has
no phase wraps if initialized properly, the result by regularizer 1
just has some over-smoothed arteries and the one by regularizer
3 is as good as the one by regularizer 4 (shown in Fig. 7); both of
them do not have phase wrapping problem. Then for this case,
regularizer 3 provides better initialization than regularizer 2.

fessler
Highlight
femoral artery
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Fig. 8. “R” denotes “regularizer;” left: phase map by the proposed method with
R1; middle: phase map by the proposed method with R2; right: phase map by
the proposed method with R3.

IV. DISCUSSION

We have proposed two cost functions (13) and (15) and iter-
ative algorithms (21)–(23) for reconstruction of magnitude and
phase from undersampled k-space data. The key property of the
proposed method is that one can adapt the regularizer for the
magnitude and phase images individually.
The cost function is nonconvex, so we cannot guarantee that

the algorithm will converge to a global minimum. To mitigate
this drawback, we introduced some suitable strategies for ini-
tialization. According to the simulation studies and real data ex-
periments, it suffices to initialize by inverse DFT of zero-padded
k-space and a few CS iterations for complex images when we
apply regularizer 1, 2, or 3 appropriately. Since the cost function
with regularizer 4 has a narrower convex domain, such two-step
initialization does not alwayswork; so a third step is added to the
initialization as mentioned in the theory section. The logic be-
hind these sequential initialization strategies is: optimizing the
cost function with a wider convex domain is likely to “push” the
initial guess towards the relatively narrower convex domain of
the cost function that is optimized in the following step, when
these two cost functions have similar optimization solutions. For
initialization of the cost function with regularizer 4, the first step
by inverse DFT sets the initial guess in the convex domain of
the non-concave conventional CS cost function, then optimizing
CS cost function pushes the initial guess to the convex domain
(around a desired local minimum) of the proposed cost func-
tion with regularizer 2 or 3, and finally optimization in the third
step make the initial guess reach the convex domain (around
a desired local minimum) of the proposed cost function with
regularizer 4. In a word, the initial guess is gradually “pushed”
towards the convex domain of the final cost function by such
sequential initialization steps. However, these strategies cannot
theoretically guarantee finding a desirable minimum and are
only successful empirically. Refining the initialization for this
type of nonconvex cost function is still an open problem for fu-
ture research.
When using regularizer 4, we choose among various edge-

preserving potential functions. We have investigated all the po-
tential functions listed in [10, Ch.2] that have a bounded and
most of them work well; finally we chose the hyperbola func-
tion because it has the widest convex domain and can match the
quadratic function very well when neighboring pixels have
similar phase values. The parameter determines the transition
between smoothing and edge-preserving, hence it should be se-
lected according to the features of the specific true phase map.
In our experiments, we empirically discovered that the peaks of

the hot spots or arteries tend to be over-smoothed if is selected
according to , i.e., the amount of jumps that happen in the
“edge” regions. Alternatively, we chose to be much smaller
than , in which case the regularizer 2 or 4 is approximately
a Total Variation (TV) regularizer [4], as the hyperbola poten-
tial function becomes approximately taking norm. Since TV
still functions as edge-preserving regularization, it is still rea-
sonable to use small for the proposed method. As long as is
sufficiently small, we do not want it to be too small, because that
will slower the convergence of the algorithm. Since the edges
in the in vivo data are sharper than the ones in the simulation
data, in the in vivo data was chosen to be larger than the one
for the simulation data, but both of them are sufficiently smaller
than . In a word, we empirically chose such that it is suffi-
ciently small and also preserves an acceptable convergence rate.
The fully sampled k-space center is necessary for both con-

ventional CS and the proposed method. For conventional CS,
this part of the data is used to perform a rough phase-correction.
In the proposed method, this low frequency part of the k-space
contains most information of the phase map which has a smooth
background. Empirically, 2%–5% of the k-space center is suffi-
cient to preserve the low frequency information of phase maps.
As can be seen in the simulation results, magnitude maps pro-

duced by the proposed method merely have a 10%–20% lower
NRMSE than the CS method in the simulation study and pre-
serve a few more details if one carefully inspects, but this is not
a significant improvement. Similar results were also observed
in the in vivo data experiments. In fact, this relatively small im-
provement is expected, because conventional phase-corrected
CS has already removed most of the phase component of the
true image before the CS reconstruction procedure. Therefore,
the magnitude image in the proposed method is not significantly
sparser than the phase corrected complex images in wavelet do-
main, which means the proposed method does not have much
potential to significantly improve the magnitude image quality.
In the in vivo experiment, although the phase map of con-

ventional CS reconstruction looks closer to the fully sampled
reconstruction, it does not indicate that it is closer to the true
image; because the phase of the fully sampled reconstruction in
the low intensity regions is dominated by noise. According to
the physics, the true phase map should be smooth except for the
distinct regions, e.g., arteries, so we believe that the smoothed
background of the phase maps reconstructed by the proposed
method are closer to the true phase map. Similarly, the refer-
ence frame of the velocity mapping reconstructed by the pro-
posed method with regularizer 2 should be more accurate than
the noisy map estimated by conventional CS, which is one of
the reasons why the velocity map reconstructed by the proposed
method is better.
Our method can potentially be used for field map estimation.

In [1], the method is based on the reconstructed image, but it
is ultimately better to estimate phase changes based on the raw
k-space data, because the image itself may suffer from some
undesirable artifacts. Our method not only estimates the phase
based on the k-space data, but also could accelerate the acquisi-
tion by undersampling, which is useful for 3D and/or high res-
olution field map estimation.



1722 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 9, SEPTEMBER 2012

In this paper, we only discussed the reconstruction problem
for data from single coil acquisitions. However, all the pro-
posed cost functions can also be easily generalized for parallel
imaging, e.g., SENSE [11], to achieve an even lower sampling
rate in k-space. Though we only studied 2-D data, any higher
dimensional data are applicable in the proposed method. The
random sampling we used in the experiments simulates the
random phase encode sampling in 3D data acquisition. Further-
more, this method is also applicable for non-Cartesian sampling
by using nonuniform fast Fourier transform [16] as the system
matrix.
The proposed method provides a more flexible and more

controllable algorithm for phase map reconstruction than con-
ventional phase corrected CS approach. The proposed method
is flexible enough to allow customizing regularizers for phase
component according to its own features, and regularizer 1–4
are concrete examples suitable for some applications; other
sophisticated regularizers can be developed for other types
of phase maps in this reconstruction framework. In addition,
even though in some cases the results of phase corrected CS
are acceptable, it is not as flexible for tuning the smoothness
or resolution of the phase map as the proposed method. If one
wants to increase the resolution of a nonsmooth phase map
when using phase corrected CS, another scan with different
sampling rate may be required; in contrast, within a certain
range, the proposed method can handle this by simply adjusting
regularization parameters in reconstruction for the same data.

V. CONCLUSION

By using the CS regularization terms for magnitude, the pro-
posed method allows for undersampling in data acquisitions.
In the framework of separate regularization reconstruction, the
proposed method achieves a substantial improvement, e.g.,
50%–70%, in phase reconstruction and a minor improvement,
e.g., 10%–20%, in magnitude reconstruction, compared to the
phase corrected CS reconstruction. RMSE of ROI in phase
maps were compared in the simulation studies to show that
the proposed method can improve both ROI and background
phase. Regularizer 1–4 were investigated for the simulated data
and the in vivo data, demonstrating that with initialization by
using regularizer 2 or 3, the proposed method with regularizer
4 is able to handle phase wrapping and also reconstructs good
phase maps and magnitude maps for applications like PRF-shift
temperature mapping and phase contrast velocity mapping.
The proposed method has more computational complexity,
e.g., about ten times, than conventional CS, but we believe the
computation speed can be made acceptable.

APPENDIX

PCG-BLS for updating .
1) The cost function for

(30)

where represents any possible regularizer for the
phase map, including the four regularizers discussed in this
paper.

2) The general formula for the Newton–Raphson algorithm in
the line search for PCG.
Let define a 1D cost function for the optimized step size

(31)

where is the search direction for by PCG algo-
rithm. Using (8)

(32)

where .
Then we update as the following:

(33)

where denotes the optimized step size and it is up-
dated as follows:

(34)

where

(35)

(36)

3) Gradients and Hessian matrices (real unknowns).
a) The data fit term

(37)

(38)

where , “ ” means entry-by-
entry multiplication,

. Note that since is only used in (36),
the (38), which is very expensive, does not need to be
computed explicitly. Combining (36)–(38) yields an
efficient expression for

(39)

where , ,
and .

b) The regularizer :
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Regularizer 1:

(40)

(41)

(42)

In (39), can be simplified as:
.

Regularizer 2:

(43)

(44)

(45)

where .
In (39),

, where .
Regularizer 3:

(46)

(47)

(48)

In (39), , where
.

Regularizer 4:

(49)

(50)

(51)

where ,
and .
In (39),

, where

,
denotes the conjugate of , and

.
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