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A Splitting-Based Iterative Algorithm for Accelerated
Statistical X-Ray CT Reconstruction
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Abstract—Statistical image reconstruction using penalized
weighted least-squares (PWLS) criteria can improve image-quality
in X-ray computed tomography (CT). However, the huge dynamic
range of the statistical weights leads to a highly shift-variant
inverse problem making it difficult to precondition and accel-
erate existing iterative algorithms that attack the statistical
model directly. We propose to alleviate the problem by using
a variable-splitting scheme that separates the shift-variant and
(“nearly”) invariant components of the statistical data model
and also decouples the regularization term. This leads to an
equivalent constrained problem that we tackle using the classical
method-of-multipliers framework with alternating minimization.
The specific form of our splitting yields an alternating direction
method of multipliers (ADMM) algorithm with an inner-step in-
volving a “nearly” shift-invariant linear system that is suitable for
FFT-based preconditioning using cone-type filters. The proposed
method can efficiently handle a variety of convex regularization
criteria including smooth edge-preserving regularizers and non-
smooth sparsity-promoting ones based on the -norm and total
variation. Numerical experiments with synthetic and real in vivo
human data illustrate that cone-filter preconditioners accelerate
the proposed ADMM resulting in fast convergence of ADMM
compared to conventional (nonlinear conjugate gradient, ordered
subsets) and state-of-the-art (MFISTA, split-Bregman) algorithms
that are applicable for CT.

Index Terms—Alternating minimization, iterative algorithm,
method of multipliers, regularization, statistical image reconstruc-
tion.

I. INTRODUCTION

S TATISTICAL image reconstruction methods in X-ray
computed tomography (CT) minimize a cost function

consisting of a data-fidelity term that accommodates the mea-
surement statistics and the geometry of the data-acquisition
process, and a regularization term that reduces noise. For ex-
ample, penalized weighted least-squares (PWLS) cost functions
for X-ray CT use a (statistically) weighted quadratic data-fi-
delity term [1], [2] and can provide improved image-quality
compared to filtered back-projection (FBP) [1], [2]. How-
ever, computation-intensive iterative methods are needed to
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minimize such cost functions. This paper describes a new
minimization algorithm that uses variable splitting to provide
accelerated convergence.
Several types of iterative algorithms have been proposed for

statistical image reconstruction in X-ray CT, including iterative
coordinate descent (ICD) methods [1], block-based coordinate
descent [3], ordered subsets (OS) algorithms based on separable
quadratic surrogates (SQS) [4], [5], and (preconditioned) non-
linear conjugate gradient (NCG) methods [6]. For fast computa-
tion onmultiprocessor computers, (P)NCG-typemethods appear
to be particularly amenable to efficient parallelization because
they update all voxels simultaneously using all measurements.
Developing suitable preconditioners for (P)NCG is chal-

lenging for X-ray CT because the enormous dynamic range
of the transmission data causes the Hessian of the statistical
data-fidelity term to be highly shift-variant [6]. Clinthorne et
al. [7] showed that for unweighted least-squares reconstruction,
one can precondition the problem effectively using FFTs with a
kind of conefilter. This conefilter amplifies high spatial frequen-
cies, helping to accelerate convergence. But that cone filter is
ineffective for (P)NCG in the PWLS case [6]. Delaney et al. [8]
considered a very special type of shift-invariant weighting and
also demonstrated accelerated convergence, but for low-dose
X-ray CT the appropriate statistical weighting does not satisfy
the assumptions in [8]. Shift-variant preconditioners based
on multiple FFTs were proposed in [6] for 2-D transmission
tomography, but never became popular due to their complexity
and were never investigated for 3-D problems. Another way
to introduce a cone filter is the iterative FBP approach [9],
[10]. Initially these algorithms “converge” rapidly compared to
(P)NCG methods, but typically they do not have any theoretical
convergence properties and “too many” iterations lead to unde-
sirably noisy images. Furthermore, it is unclear how to include
regularization while ensuring convergence.
The challenges described above apply regardless of the

form of the regularizer. Additional difficulties arise when
one uses nonsmooth regularizers such as total variation
(TV) [11] and sparsity-promoting ones based on the -norm
[12]. These regularizers are not differentiable everywhere
precluding optimization by conventional gradient-descent
methods (e.g., NCG). Differentiable approximations (e.g.,
using “corner-rounding” [12, Sec. VI-A], [13, App. A]) can
be employed, but even with such modifications the Hessian of
the regularizer can have very high curvature leading to slow
convergence of conventional gradient-descent methods [14].
While some state-of-the-art algorithms such as (M)FISTA
[15], [16] and split-Bregman-type schemes (that split only the
regularization term) [17], [18] are able to handle nonsmooth
regularizers exactly (i.e., without corner rounding), when
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applied to X-ray CT, they must minimize a cost function that
involves the original statistical data-fidelity term and are in turn
hindered by the shift-variance of its Hessian (see Sections II-B
and IV).
In this work, we propose to use a variable-splitting technique

that not only decouples the regularization term in the spirit
of [17], but also dissociates the statistical and geometrical
components in the data-fidelity term. This forms the key feature
of our approach that enables us to “isolate” the shift-variant
element in the statistical data-fidelity term thereby alleviating
the problem. Our splitting procedure uses auxiliary constraint
variables to transform the original PWLS problem into an
equivalent constrained optimization task that we solve using
the classical method-of-multipliers [19], [20] and alternating
direction optimization [21]–[23] frameworks. This leads to
an alternating direction method of multipliers (ADMM) al-
gorithm for solving the original PWLS problem that, apart
from requiring simple operations (such as inverting a diagonal
matrix, solving 1-D denoising problems), involves the solving
of a “nearly” shift-invariant linear system, which is amenable
to fast Fourier transform (FFT)-based preconditioning using
cone-type filters [7]. Experimental results with synthetic and
real in vivo human data indicate that the proposed ADMM
converges faster than conventional (NCG and ordered subsets)
and state-of-the-art (MFISTA and split-Bregman) methods,
illustrating the efficacy of our splitting scheme and the potential
of cone-filter preconditioners for accelerating the proposed
ADMM. The proposed ADMM can also be used with a variety
of convex regularization criteria (see Section VI-A) including
smooth edge-preserving regularizers and nonsmooth ones such
as TV and -regularization.
The paper is organized as follows. In Section II, we math-

ematically formulate X-ray CT reconstruction as a PWLS
problem and briefly discuss drawbacks of some existing al-
gorithms for X-ray CT. Section III discusses the proposed
splitting strategy and the development of the ADMM algorithm
in detail. In Section IV, we compare our ADMM algorithm with
the split-Bregman technique applied for CT, schematically.
Section V is dedicated to numerical experiments and results,
while Section VI discusses possible extensions of this work
to 3-D CT and other statistical models. Finally, we draw our
conclusions in Section VII.

II. STATISTICAL X-RAY CT RECONSTRUCTION

A. Problem Formulation

For CT, an accurate statistical model for the data is quite
complicated [24], [25] and is often replaced by a Gaussian ap-
proximation [1], [2] with a suitable diagonal weighting term
whose components are inversely proportional to the mea-
surement variances [1], [2]. We consider a penalized weighted
least-squares (PWLS) formulation of statistical CT reconstruc-
tion [1]

(1)

(2)

where is the data vector (log of transmission data),
is the system matrix, represents the forward

projection operation (e.g., line integrals), is a
diagonal matrix consisting of statistical weights1 , and

. We use a general family of regularizers of
the form [12]

(3)

where is the regularization parameter, are
user-provided weights that govern the spatial resolution in the
reconstructed output [26], are potential functions, the
matrix constitutes regularization operators

(e.g., finite differences, frames, etc.) of size , where
. We concentrate on values of and instances of

that result in a convex regularizer in (3).
The above general regularizer is in the “analysis” form [27],

i.e., is specified as a function of the reconstructed image .
The method proposed in this paper can also be easily extended
to handle “synthesis” forms [27], e.g., by writing and
considering in , for some
potential function and synthesis operator . We focus on the
analysis form (3) as it includes popular nonsmooth criteria such
as TV (for and ), analysis -wavelets (for

, ) and a variety of smooth convex edge-
preserving regularizers (e.g., Huber [28], [29], Fair [6], [30],
etc.).

B. Previous Approaches

Conventional gradient-descent methods, e.g., NCG, for
depend on the Hessian of : , which is
highly shift-variant in CT particularly due to the large dynamic
range of . As a result, it becomes difficult to precondition and
accelerate such methods [6]. Fessler et al. [6] directly attacked

using NCG and proposed a shift-variant preconditioner to
tackle . But their preconditioner is data-dependent and re-
quires at least one pair of FFT-iFFT operations per NCG-itera-
tion.
Iterative shrinkage-thresholding (IST) [31] and its variants

((M)FISTA [15], [16], and (M)TWIST [32]) that are applicable
to depend on the Lipschitz constant of

(4)

where represents the maximum eigenvalue. The conver-
gence speed of these algorithms is primarily determined by (4):
A large value of results in small gradient steps [15, Sec.
1.1] leading to slow convergence. Since has a large dynamic
range and due to the (approximately) -type decay of the el-
ements of , can be large for CT decreasing con-
vergence speed of IST-type algorithms. Optimization transfer-
based methods (e.g., [33, Sec. IV-B1]) face a similar issue in
that the surrogate functions end up having high curvature [5]
due to , which again leads to small update-steps and slow
convergence.

1For simplicity we used in our experiments.
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In summary, the weighting term , although crucial for
improving reconstruction quality, poses a challenge for op-
timization. Compared to , the term is “more”
shift-invariant and is appropriate for preconditioning using cone
filters. This property has been used to accelerate unweighted
least-squares reconstruction for tomographic image recon-
struction [7]. Therefore, our idea to mitigate the shift-variance
of is to untangle from thereby making the
resulting problem “more” shift-invariant and suitable to circu-
lant preconditioning. To do so, we adopt a variable-splitting
strategy.
Variable splitting (VS) refers to the process of introducing

auxiliary constraint variables to separate coupled components
in the cost function [12], [17], [18], [34]–[42]. This procedure
transforms the original minimization problem into an equivalent
constrained optimization problem that can be effectively solved
using classical constrained optimization schemes [19], [20]. The
VS approach is appealing as it renders the resulting constrained
problem tractable to alternating minimization schemes that de-
couple it in terms of the auxiliary variables and simplify opti-
mization [12], [17], [18], [34], [36], [37], [39]–[42].
The VS approach has become popular recently for solving

reconstruction problems in image processing [17], [34]–[37],
MRI [12], [39], [40] and CT [18], [41], [42]. Many authors
have focussed on splitting the regularization term [17], [18],
[34], [37], [39]–[41] as it is hard to tackle in inverse problems
(especially nonsmooth ones such as TV and -regularization).
Splitting the regularization term enables one to handle it exactly
(i.e., without the need for “corner-rounding” [12, Sec. VI-A],
[13, App. A] for nonsmooth criteria) via simple denoising prob-
lems [12], [17], [37], [42]. However, in PWLS problems for
CT, the data-term adds to the complexity (as it leads to a shift-
variant Hessian ) and therefore demands attention. So in
this work, besides splitting the regularization term, we also split
the data-term.

III. PROPOSED METHOD

A. Equivalent Constrained Optimization Problem

We introduce auxiliary constraint variables and
and write as the following equivalent constrained

problem:

(5)

where separates the effect of on and splits the reg-
ularization term as in [17]. Afonso et al. [36] and Figueiredo et
al. [38] have utilized data-term-splitting in the context of image
restoration [36], [38] and reconstruction from partial Fourier ob-
servations [36]. However, our emphasis here is on CT recon-
struction where plays an important role: It leads to a sub-
problem that is “nearly” shift-invariant and suitable to precon-
ditioning using cone filters [42] as explained in Section III-C.

In general, the proposed splitting strategy (5) can be applied
to any PWLS problem of the form so as to exploit shift-in-
variant features in the data-model, e.g., deconvolution of blurred
images corrupted with nonstationary noise.
Before proceeding, we rewrite (5) concisely as

(6)

where

(7)

Since is equivalent to , solving for yields the de-
sired reconstruction in (1).

B. Method of Multipliers

To solve , we use the classical framework of the method
of multipliers [19], [20] and construct an augmented Lagrangian
(AL) function [12], [19], [20], [42]

(8)

that combines a multiplier term with Lagrange

multiplier and a quadratic penalty term
, where is the AL penalty parameter and

is a symmetric weighting matrix. The multiplier term
can be absorbed into the penalty term in (8) (by completing the
square) for ease of manipulation leading to

(9)

where and is
a constant independent of and . Unlike standard approaches
[36], [38] that set , we propose to use

(10)

where . This is crucial in CT because the elements of
and can differ by several orders of magnitude and it is

imperative to balance them to avoid numerical instabilities in
the resulting algorithm and to achieve faster convergence [42].
The classical AL scheme for solving alternates between

a joint-minimization step and an update step [12, Sec. III]

(11)

(12)

respectively. Unlike pure penalty methods, remarkably, the AL
formalism does not require increasing to ensure con-
vergence of (11) and (12) to a solution of [19].

C. Alternating Direction Minimization

It is numerically appealing to replace the more difficult joint-
minimization step (11) by alternating direction optimization that
decouples (11) as [21]–[23]

(13)
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(14)

Thus, at the th iteration, instead of (11) and (12), we perform
(ignoring constant terms)

(15)

(16)

(17)

where we write to mean that , i.e.,
we allow for inexact updates in (15) and (16) in the spirit of
[43]. Although (15) and (16) is an approximation to (11), the
following theorem adapted from [43, Th. 8] to guarantees
convergence of (15)–(17) to a solution of (5) (and ).
Theorem 1: Consider in (6) where is closed, proper,

convex2 and has full column-rank. Let ,

(18)

If has a solution , then the sequence of updates
generated by (15)–(17) converges to .

If has no solution, then at least one of the sequences
or diverges.

The result of Eckstein et al. [43, Th. 8] uses an AL function
with , so we apply [43, Th. 8] to (9) with in (10) through
a simple change of variables.3 For CT, it can be readily ensured
that has full column-rank for a variety of regularization op-
erators . In the sequel, we explain how to perform the mini-
mizations in (15) and (16).
Firstly, we see that due to the structure of and , (16)

further dissociates into the following:

(19)

(20)

These subproblems are independent of each other and

can therefore be solved simultaneously, where

. Subproblem (19) is quadratic and has a
closed form solution

(21)

2A convex function is closed if and only if it is lower semi-continuous
(LSC) [44, pp. 51, 52] and is proper if for at least one and

[44, p. 24]. It can be shown that the convex functions ,
(for a variety of regularizers such as TV and -regularization), and their sum,
(5), are LSC and proper [38].
3Writing , , and , it is easy to see that

(15)–(17) solve the constrained problem
that is equivalent to using the AL function

with an unweighted penalty term.

where . Since is diagonal, can be
inverted exactly, so that in (19) .
Minimization with respect to (20) corresponds to a de-

noising problem that can be solved efficiently and/or exactly for
a variety of instances of (3) including TV: This has been eluci-
dated by many authors [12], [17], [36]–[40], [45], e.g., the tech-
niques developed in [12, Sec. IV-A2–IV-A6] can be directly
applied to (20). For brevity, we concentrate on two particular
instances of (3) and solve (20) exactly so that in (20)
.
• Analysis -regularization [ , in (3)]

(22)

with the shift-invariant Haar wavelet transform (excluding
the approximation level) for , which is a sparsity-pro-
moting criterion [12], [27], [36], [38].

• Smooth edge-preserving regularization [ ,
in (3)]

(23)

using the Fair potential with
[30] (also the smoothed Laplace function in [45,

Eq. 4.11]) and finite-differences for . This regularizer
ensures a unique solution to as is strictly convex.
It has also been successfully applied to PWLS problems in
tomography [6].

For these regularizers, (20) separates into 1-D minimization
problems in terms of the components of

(24)

where is the th component of . For
(22), the solution of (24) is given by the shrinkage rule4 [46]

(25)

For (23), (24) leads to a quadratic equation in [45, Eq. 4.13]
that yields

(26)

where .
Having addressed (16), we now consider (15) which can be

easily solved analytically

(27)
where represents the exact solution to (15) and

(28)

4An analytical update formula similar to (25) is available for the TV regular-
izer that is based on a vector shrinkage-rule, see e.g., [12, Sec. IV-A6].
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is nonsingular because and is chosen so that has full
column-rank. Although (27) is an exact analytical solution, the
enormous size of for CT makes it impossible to store and
“invert” exactly. So we propose to use the conjugate gra-
dient (CG) method for (27) and obtain an approximate update

. Since is nonsingular, we have that

(29)

where is the corresponding residue and is
the minimum eigenvalue of that depends only on and
and can be precomputed e.g., using stochastic techniques [47]
or the Power method.5 Therefore, using (29), one can monitor

in the CG-loop and design a suitable stopping rule to satisfy
(18).

D. Preconditioning Using Cone Filter

We see that contains , which is “nearly” shift-in-
variant, so for shift-invariant6 , is amenable to pre-
conditioning using suitable cone filters [6], [7]. We constructed
a circulant matrix from the central column of

(30)

and used its inverse, , as the preconditioner, where is a
standard basis vector of corresponding to the center pixel of
the image and represents the construction of a circulant
matrix from a vector . The proposed preconditioner cor-
responds to a cone-type filter that amplifies high spatial frequen-
cies and accelerates convergence of both the CG-loop for (27)
and the overall ADMM scheme as demonstrated in Section V.
Implementing requires only one FFT-iFFT per CG itera-
tion and its construction7 uses a product with and only
one forward–backward projection that can be performed offline
as is independent of . In our experiments, we applied
at most two preconditioned CG (PCG) iterations with warm
starting [12] and found that decreased sufficiently rapidly.
Based on (15) –(29), we present our algorithm in Fig. 1 for
solving (and thus ). In principle, Steps 4 and 5 of ADMM
may be executed in parallel as they are independent of each
other, but in our implementation, we chose to execute all the
steps sequentially for simplicity.

E. Selection of and

The parameters and do not affect the solution of , but
only regulate the convergence speed of the proposed ADMM
[12], [35, Sec. 4.4]. In general, choosing appropriate values for
AL penalty parameters (such as and ) is a nontrivial and
application-dependent task. Several empirical rules have been

5Since the Power method (PM) iteratively estimates the maximum eigenvalue
(in absolute magnitude) of a matrix [48, p. 488], an estimate of

is first computed by applying PM on . Next, applying PM on
yields (as

is the largest eigenvalue of in absolute magnitude) from which
can be easily obtained.

6The matrix is circulant when periodic boundary conditions are used
for in (22), (23).
7We only store the frequency response corresponding to to save

memory.

Fig. 1. ADMM for statistical X-ray CT reconstruction.

put forth by many authors for setting AL penalty parameters (to
obtain good convergence speeds for AL-based iterative recon-
struction schemes) in many applications, see e.g., [37], [38] for
image restoration, [17] for denoising and compressed-sensing
MRI, and [12], [39] for parallel MRI reconstruction.
In this paper, Step 3 is the only inexact step of the proposed

ADMM. So the computational speed of ADMM is primarily
determined by how efficiently (27) is solved, which in turn is
governed by . We use an empirical rule for selecting that
is based on [17]: Since balances and in
that have disjoint nontrivial null-spaces, the condition number

of exhibits a minimum for some
. It was suggested in [17] to use this property to

choose AL penalty parameters to ensure quick convergence of
the CG-algorithm for solving a linear system such as (27). For
implemented using the distance-driven (DD) projector [49]

and in (22), (23), , which yielded a very small
in (20) and subsequently resulted in slow convergence

of ADMM in our experiments. On the other extreme, setting
(corresponding to the standard case of ) yields

a poorly conditioned that was not favorable either.
Based on our experience with 2-D CT experiments, we found

the empirical rule8 to yield
good overall convergence speeds for ADMM, where is the
circulant matrix in (30). We also observed that ADMM was
slightly more robust to the choice of than . We selected

to avoid outliers in ; this yielded a well-condi-
tioned (with ) that improved the numer-
ical stability of ADMM.

IV. COMPARISON WITH THE SPLIT-BREGMAN APPROACH

The split-Bregman (SB) method [17] uses constraint vari-
ables to split the regularization term alone. For (1), this corre-
sponds to using only which leads to following equiv-
alent constrained problem:

(31)

(32)

This type of splitting has been investigated for CT reconstruc-
tion in [18], [41]. Applying the Bregman iterations [17, Eq.

8It would be ideal to consider instead of for selecting ,
but estimating (e.g., using the Power method) for a given for CT
is computationally expensive (ignoring the fact that it is independent of
and could be computed offline). But as is approximately shift-invariant,

, which leads to .
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3.7–3.8] with alternating minimization [17, Sec. 3.1] to (31)
yields the following SB scheme:9

(33)

(34)

(35)

The minimization in (34) is same as that in (20), so the tech-
niques described for (20) apply to (34) as well. The main dif-
ference between the proposed method (15)–(17) and the SB
scheme (33)–(35) is in the way is updated. The minimization
in (33) leads to

(36)

where represents the exact solution to (36) and

(37)

The matrix contains the shift-variant component that
makes standard preconditioners (including cone filters) less ef-
fective for CG-based solving of (36). Nevertheless, we used
PCG for (36) with a circulant preconditioner [obtained by
setting in (30)] in our implementation of the SB scheme
and found that it improved upon the standard CG method for
(36). We selected10 for SB 11

(see (4) for definitions of and ). This choice is moti-
vated by the discussion pertaining to in Section III-E.
In principle, it is possible to construct a shift-variant precon-

ditioner for in the spirit of [6], but such a preconditioner
would invariably be data-dependent and may be computation-
ally involved. Our approach (15)–(17) provides a simple and
effective alternative using an extra constraint variable in (5):
Compared to the SB scheme (33)–(35), our method requires
only an extra trivial operation of inverting a diagonal matrix
in (21).

V. EXPERIMENTAL RESULTS

We present numerical results for 2-D CT reconstruction from
simulated NCAT phantom data and in vivo human head data.
The proposed ADMM is also applicable, in principle, to 3-D
CT reconstruction (see Section VI-A). We implemented the fol-
lowing algorithms in Matlab and conducted the experiments
on a quad-core PC with 3.07-GHz Intel Xeon processors and
12-GB RAM.
• NCG- : unpreconditioned nonlinear conjugate gradient
algorithm with line-search iterations that monotonically
decrease the cost function [6],

9Theorem 1 may not be applicable to the SB scheme (33)–(35) as the con-
straint matrix, which is simply in this case, usually does not have full-column
rank. Convergence of SB-type schemes are studied in [17].
10Similar to , one could consider for

SB, but estimating is impractical mainly due to its dependence on .
We chose to use the above rational-form for , which yields a rough estimate
of .

TABLE I
COMPUTATION TIME AND NUMBER OF PROJECTIONS REQUIRED PER

ITERATION OF ALGORITHMS COMPARED IN Section V

• MFISTA- : Monotone Fast Iterative Shrinkage-Thresh-
olding Algorithm [16] with iterations for solving auxil-
iary denoising subproblems similar to [16, Eq. 3.13],

• OS- : Ordered subsets algorithm [5] with blocks,
• SB-(P)CG- : Split-Bregman scheme from Section IV
with (P)CG iterations for solving (36),

• ADMM-(P)CG- : Proposed ADMM with (P)CG iter-
ations for solving (27).

MFISTA is a state-of-the-art method developed by Beck et
al. [16] for image restoration that is readily applicable to
with the Lipschitz constant in (4). Beck et al. [15] also
proposed a backtracking strategy that does not require explicit
computation of , but we chose to estimate and use11

both for ease of implementation and because it is the smallest
possible value [15, Ex. 2.2] that yields the fastest convergence
for MFISTA. We applied the Chambolle-type method [50] for
the inner-step (i.e., computing the proximal map [16, Eq. 3.13])
of MFISTA as that does not require smoothing of (“corners” of)
-regularizers such as (22).
Since our task is to solve , we fixed the cost function

(that led to a visually appealing reconstruction) and focussed
on the convergence speed of the algorithms. We quantified the
convergence rate using the normalized -distance between
and

(38)

where is a solution to obtained numerically by running
one of the above algorithms as described next. Since the algo-
rithms have different computation load per (outer) iteration, we
evaluated as a function of algorithm runtime12 , i.e., the
time elapsed from start until iteration . We also plot as a
function of the iteration index for completeness. We used the
DD-projector [49] (with eight threads) for implementing ma-
trix-vector products such as , and initialized all the
algorithms with the image reconstructed using FBP (with the
ramp filter) in all experiments.

11We estimated using the Power method applied to . Since
is -dependent, its use is less appealing for practical applications in

CT.
12We excluded the computation time spent on estimating for MFISTA

in the plots. Even with this “unfair advantage” the ADMM method was much
faster than MFISTA.
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Fig. 2. Simulation with the NCAT phantom: (a) Noisefree NCAT phantom (in ), (b) FBP reconstruction with ramp filter, also the initial guess for all
iterative algorithms, (c) FBP reconstruction with Hanning filter, and (d) -regularized reconstruction, also the solution to . Images in (a)–(d) have been
normalized to the same color scale [as that of (a)] indicated beside (d). The -regularized reconstruction (d) is less noisy and has almost no streaky-artifacts
compared to both FBP results.

Products with and (corresponding to forward-and
back-projections, respectively) are computation intensive in
CT reconstruction problems and dominate the overall compu-
tation load of a reconstruction algorithm.13 NCG and MFISTA
both require only one product with and , respectively,
per iteration. The OS method breaks products with and

in terms of block-rows of and block-columns of ,
respectively, and cycles through each block once per every
iteration, so effectively, OS also requires only one product
with and , respectively, per iteration. However, for each
block, the OS method demands the evaluation of the gradient
of the regularization term that increases computation time
per iteration as indicated in Table I. For the SB scheme, we
employ (P)CG for “inverting” (that depends on )
in (36), so SB-(P)CG- requires products with and ,
respectively, per iteration of (33)–(35). In the case of ADMM,
we apply (P)CG at Step 3 (see Fig. 1) for “inverting” in
(27), but that step also requires a product with in the RHS
of (27), so overall ADMM-(P)CG- uses products with
and products with per iteration of Steps 3–7

in Fig. 1. Table I summarizes this discussion and also shows
the mean computation time per iteration (averaged over 10
iterations) of the above algorithms. Although the proposed
ADMM(-PCG) requires more forward- and back-projections
per iteration (and accordingly exhibits higher computation time
per iteration) compared to other algorithms (with the exception
of the OS method) in Table I, we demonstrate in the sequel that
it converges faster in terms of algorithm run-time.

13NCG, MFISTA, OS, and SB require the evaluation of (e.g., see
RHS of (36) for the SB scheme), but this quantity needs to be computed only
once, so we ignore this computation need for these schemes.

A. Simulation with the NCAT Phantom

We used a 1024 1024 2-D slice of the NCAT phantom [51]
and numerically generated a 888 984-view noisy sinogram
with GE LightSpeed fan-beam geometry [52] corresponding to
a monoenergetic source with incident photons per ray
and no background events. We used the -regularization in (22)
with , where
is based on [26]. We reconstructed 512 512 images over
a FOV of 65 cm; we obtained by running 5000 iterations
of MFISTA-25 as it does not require “corner-rounding” and
is therefore guaranteed to converge to a solution of . NCG
cannot directly handle nonsmooth criteria such as (22) without
smoothing it [13, App. A], so we used a smoothing value of

. The FBP reconstructions in Fig. 2(b) and (c) corre-
sponding to the ramp andHanning filters, respectively, are either
noisy or blurred and streaked with artifacts. The -regularized
reconstruction in Fig. 2(d) preserves image features and has
lower RMSE than both FBP outputs.
We plot for various algorithms as a function of time in

Fig. 3(a). The SB-CG scheme appears to converge the slowest,
while SB-PCG is faster indicating that the circulant precondi-
tioner provides a moderate acceleration of CG for (36).
MFISTA is slower than most of the algorithms for the reason ex-
plained in Section II. The CG-version of the proposed method,
ADMM-CG, is slightly faster than MFISTA and SB-(P)CG but
slower than NCG. The preconditioned version ADMM-PCG is
the fastest among all algorithms illustrating that the cone-filter
preconditioner is very effective in accelerating conver-
gence of CG applied to (27) and ADMM-PCG. This is also cor-
roborated by Fig. 3(c) where for a given number of iterations,
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Fig. 3. Simulation with the NCAT phantom: (a), (b) Plot of and , respectively, as a function of time and (c), (d) Plot of and ,
respectively, with respect to iterations, for various algorithms considered in this work. The unpreconditioned version of the proposed method, ADMM-CG, con-
verges slightly faster than MFISTA and the split-Bregman scheme SB-(P)CG but is slower than NCG as seen in (a) and (b). But the preconditioned version,
ADMM-PCG, converges rapidly both in terms of and RMSE indicating that the cone-filter-preconditioner ( in Section III-E) greatly accelerates con-
vergence of the proposed ADMM.

ADMM-PCG produces a reconstruction that is closest to in
terms of . Fig. 3(b) and (d) further substantiate the recon-
struction speed-up of ADMM-PCG over other methods, where
(both in terms of algorithm run-time and number of iterations)
it rapidly leads to a RMSE-value close to .

B. Experiments with a In Vivo Human Head Data-Set

In this experiment, we used a in vivo human head data-set ac-
quired with a GE scanner using 120 kVp source potential and
585 mA tube current with 0.6 s rotation. We reconstructed a
1024 1024 2-D slice with 50 cm FOV and 0.625 mm thick-
ness from a 888 984-view sinogram. For in (1), we used
the strictly convex regularizer (23) (with HU) that
guarantees a unique solution to . As NCG generally had
faster convergence than MFISTA in our experiments, we ob-
tained by running 5000 iterations of NCG-10. Fig. 4 shows
the reconstruction results for this experiment. The regularized
solution in Fig. 4(c) has reduced noise and better preserves

the anatomical features compared to the FBP reconstructions in
Fig. 4(a) and (b) obtained using the ramp and Hanning filters,
respectively.
Fig. 5(a)–(d) plots as a function of and iteration

index for all algorithms considered in this work. Here, we
additionally compare the standard OS algorithm (that is not
guaranteed to converge) in Fig. 5(b) and (d), where we used the
implementation from [53] available currently for regularization
criteria such as (23). The OS algorithm is faster than all algo-
rithms (including ADMM-PCG) for the first few iterations but
it does not converge to the minimizer as expected. In practice,
it may be advantageous to run a few iterations of OS and use
its output to initialize a more sophisticated iterative algorithm.
Fig. 5(a) and (b) indicates that the convergence trends for
MFISTA, NCG, SB-(P)CG and ADMM-CG are generally sim-
ilar to those in Fig. 3(a) and (b). ADMM-PCG again provides
notable reconstruction speed-up compared to all algorithms.
This substantiates the potential of the cone-filter preconditioner
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Fig. 4. Experiment with the in vivo human head data-set: (a) FBP reconstruction with the ramp filter, also the initial guess for all iterative algorithms, (b) RBP
reconstruction with Hanning filter, and (c) PWLS reconstruction with the strictly convex regularizer (23), also the unique solution to . Images in (a)–(c) are
displayed in Hounsfield units indicated beside (c). The regularized reconstruction (c) is less noisy and preserves anatomical features compared to both FBP results.

(30) for the proposed ADMM and also demonstrates the benefit
of our splitting scheme (5).

VI. DISCUSSION

A. Memory Requirements

Splitting-based algorithms simplify optimization at the ex-
pense of manipulating and storing auxiliary constraint variables
(and corresponding Lagrange multipliers in the AL formalism)
and therefore have additional memory requirements compared
to conventional algorithms such as NCG. Although this does not
pose much concern for 2-D reconstruction problems, it can rep-
resent a significant memory overhead for 3-D problems. Specif-
ically, the SB ( Section IV) and the proposed ADMM14 (in
Fig. 1) schemes use the constraint that requires the
storage of vectors ( and ) of size . For instance,
typically, the size of an image-volume in 3-D CT is

( 1 GB of memory when stored in double-precision
format in Matlab). Then, for finite-differences with
(there are 13 nearest-neighbors on one side of any voxel), this
corresponds to storing at least 26 image-volumes ( 26 GB of
memory) that might set a practical limitation on these methods
from an implementation perspective.
A quick remedy is to consider the TV regularizer with

finite-differences only along the three orthogonal directions
( corresponds to six image-volumes) which consider-
ably reduces the memory load. Alternatively, one could also
consider using an orthonormal transform (such as orthonormal
wavelets15 ) for , so and . The SB and ADMM14

schemes would then require storing only two image-volumes
(corresponding to and ). Moreover, an orthonormal
satisfies that facilitates ADMM: in (28)

14For ADMM, we have to additionally store two vectors, and the
associated multiplier . This additional memory requirement is moderate for
2-D CT and can be high for 3-D CT depending on the size of the data.
15Quality-wise, shift-invariant wavelets are preferable to orthonormal ones

[54], but due to their over-complete nature, they require significantly more
memory (similar to finite differences) than orthonormal wavelets.

becomes that is still “nearly” shift-in-
variant and can be effectively preconditioned using circulant
preconditioners. With orthonormal wavelets, one also has the
option of excluding the approximation coefficients from the
regularization (as they are not sparse) by using scale dependent
regularization parameters [50] and setting those parameters
corresponding to the approximation level to zero.

B. Inclusion of Nonnegativity Constraint

In CT, a nonnegativity constraint is often imposed [1, Eq. 18],
[11, Sec. 2.2] to model the positivity of the attenuation coeffi-
cient that is being reconstructed. Although we have not consid-
ered such a constraint in , it can be easily accommodated
[38] as follows. We start with

(39)

where is an indicator function

if
otherwise

(40)

that imposes the nonnegativity constraint, , taken com-
ponent-wise in (40). We then consider the following equivalent
constrained version [38] that has an additional constraint com-
pared to (5)

(41)

Writing , and using
in (9), we can design an ADMM-type

algorithm similar to (15)–(17) for solving (41). It can be shown
that the updates for and in this algorithm will be similar to
(19) and (20), respectively, while the update of would involve
the “inversion” of and that
of would require a simple projection onto the positive or-
thant [38, Eq. 32]. Since is also “nearly” shift-invariant,
a cone-filter-type preconditioner similar to [see (30)] can
be used for effective preconditioning of . Moreover, the
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Fig. 5. Experiment with the in vivo human head data-set: (a), (b) Plot of as a function of time and (c), (d) Plot of with respect to iterations, for
various algorithms considered in this work. MFISTA and SB-CG appear to be the slowest. The proposed ADMM-(P)CG is generally faster than the split-Bregman
scheme SB-(P)CG as seen in (a). Although ADMM-CG converges slower than NCG as seen in (b), the preconditioned version ADMM-PCG is the fastest among
the considered algorithms, illustrating the benefit of the cone-filter-based preconditioner ( in Section III-E) for the proposed ADMM.

above has full column-rank, so this algorithm also satisfies
Theorem 1 and is guaranteed to converge to a solution of (41)
and (39).

C. Poisson-Likelihood Model for X-ray CT Reconstruction

The proposed strategy of splitting the data-term [i.e., the use
of in (5) and (41)] is also applicable for X-ray CT reconstruc-
tion using the Poisson-likelihood (PL) statistical model [5, Eq.
1] that may be more suitable for low-dose acquisitions. It can
be shown that splitting the PL data-term yields separable 1-D
problems in that can be solved simultaneously similar
to [38, Eq. 30]. However, the PL model for X-ray CT may pre-
clude exact updates like (21) for . Moreover, the general
PL model [5, Eq. 1] includes background events and can be
(“mildly”) nonconvex, so Theorem 1 cannot be directly applied
to an ADMM-type algorithm developed for this problem. We
plan to explore cost functions involving the PL model [5, Eq. 1]
for transmission tomography reconstruction as part of future ex-
tensions to this work.

VII. SUMMARY AND CONCLUSION

Statistical X-ray CT reconstruction using penalized weighted
least-squares (PWLS) criteria involve a diagonal weighting ma-
trix that poses a hindrance to several optimization methods
due to its huge dynamic range and highly shift-variant nature.
In this work, we employed a variable-splitting technique that, in
addition to separating the regularization term like [17], also dis-
sociates the statistical and the system components in
the data term to decouple and mitigate the effect of . We ap-
plied the method of multipliers [19] with alternating minimiza-
tion [21]–[23] for the resulting equivalent constrained problem
and developed an alternating direction method of multipliers
(ADMM) algorithm that chiefly involves three simple opera-
tions at each iteration: i) inverting a diagonal matrix that de-
pends on , ii) minimizing a set of 1-D auxiliary denoising-
cost-functions that can be performed efficiently and/or exactly
for a variety of regularizers, and iii) solving a “nearly” shift-in-
variant linear system (involving ) using FFT-based pre-
conditioning with cone-type filters [7].
The proposed ADMM algorithm is guaranteed to converge to

a solution of the original PWLS problem under a mild condition



RAMANI AND FESSLER: A SPLITTING-BASED ITERATIVE ALGORITHM FOR ACCELERATED STATISTICAL X-RAY CT RECONSTRUCTION 687

on the accuracy of operation iii) above. We demonstrated using
simulations and experiments with real in vivo human data that
cone-filter-type preconditioners are very effective for solving
the linear system in iii) and that the preconditioned version of
the proposed ADMM converges faster than conventional (NCG
and ordered subsets) and state-of-the-art (MFISTA and split-
Bregman) algorithms for CT. The proposed ADMM can handle
a variety of regularization criteria for 2-D CT reconstruction and
is also applicable to 3-D CT reconstruction, perhaps by using
certain memory-conserving regularizers.
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