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Abstract---Compressed sensing (CS) has been used for 

accelerating magnetic resonance imaging (MRI) acquisitions, but 
its use in applications with rapid spatial phase variations is 
challenging, e.g., proton resonance frequency shift (PRF-shift) 
thermometry and velocity mapping. Previously, an iterative MRI 
reconstruction with separate magnitude and phase regularization 
was proposed for applications where magnitude and phase maps 
are both of interest, but it requires fully sampled data and 
unwrapped phase maps. In this paper, CS is combined into this 
framework to reconstruct magnitude and phase images 
accurately from undersampled data. Moreover, new phase 
regularization terms are proposed to accommodate phase 
wrapping and to reconstruct images with encoded phase 
variations, e.g., PRF-shift thermometry and velocity mapping. 
The proposed method is demonstrated with simulated 
thermometry data and in-vivo velocity mapping data and 
compared to conventional phase corrected CS. 
 

Index Terms—Compressed sensing, regularization, image 
reconstruction, magnetic resonance imaging  
 

I. INTRODUCTION 

N most MRI applications, only the voxel magnitudes are of 
interest. However, in applications like field map estimation 

[1] and phase contrast imaging [2] [3], phase maps also 
contain important information and need to be accurately 
estimated. Therefore, we want to reconstruct images with both 
accurate magnitude and phase components from raw k-space 
data. Regularized iterative algorithms can reconstruct complex 
images with certain regularization terms for complex 
unknowns (the unknown image) based on certain priors, e.g., 
piece-wise smoothness (Total Variation [4]). Such priors, 
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however, are usually based on properties of the magnitude 
component of medical images, and may be less suitable when 
variation of the phase component over space is not negligible. 
Meanwhile, such reconstructions may not exploit prior 
knowledge of the phase image which is often different from 
that of the magnitude image, causing the Signal to Noise Ratio 
(SNR) of phase image in low magnitude areas to be extremely 
low. To solve this problem, Fessler et al. proposed an iterative 
reconstruction method [5] in which the phase and the 
magnitude images are regularized for their own features 
separately, preserving both smoothness of the phase image and 
resolution of the magnitude image. However, this method 
cannot handle big jumps in wrapped phase maps, due to non-
convexity of the cost function for the phase. Moreover, 
we have found that when k-space data are undersampled, 
Compressed Sensing (CS) methods [6] are more effective 
than the simpler smoothness or edge-preserving regularizers 
for the magnitude component considered in [5]. 

Undersampling k-space data is one of the main ways to 
accelerate MRI acquisitions, e.g., in parallel imaging and in 
CS. CS has shown good performance in reducing k-space 
samples by exploiting sparsity of medical images in certain 
transform domains, e.g., finite differences and wavelet 
transforms. However, typically the assumption of sparsity is 
based on the properties of the magnitude component, and CS 
may not work well when rapid spatial phase variations exist. 
To mitigate this problem, CS reconstruction methods often use 
phase estimation [6] to make phase corrected images so that 
the phase variations are reduced, making images sparser; such 
estimation is done by acquiring low frequency regions of k-
space. A similar idea was introduced in the partial Fourier 
partially parallel imaging technique [7] which is based on 
conjugate symmetry in k-space for real images [8]. In that 
method, the phase corrected image is supposed to be almost 
real, so its imaginary component’s energy is constrained to be 
very low. The performance of both methods relies on a phase 
map estimation that may require additional acquisition and 
may not be accurate enough. Meanwhile, such estimation is 
based on the fact that phase map is spatially smooth, which 
might not be true in certain applications, e.g., in PRF-shift 
thermometry [2] and in phase-contrast velocity mapping [3]. 
In fact, it is contradictory that in the cases when phase 
correction is most necessary, i.e., rapid spatial phase variation, 
it is most difficult to estimate phase accurately from low 
frequency k-space data. Thus, phase correction may not 
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greatly benefit magnitude reconstruction when phase variation 
is severe. Furthermore, since only low frequency k-space 
measurements are used, neither of those methods can 
reconstruct details in phase images, such as hot spots in 
thermometry and high velocity arteries in velocity mapping.  

Therefore, it is tempting to extend the idea of using separate 
regularization of the magnitude and phase components by 
using CS, to improve the reconstruction of both magnitude 
and phase images while accelerating data acquisitions by 
undersampling k-space data. This combination theoretically 
takes advantages of these two techniques by exploiting 
sparsity of magnitude component and smoothness (or some 
other features) of phase component. Thus, Zibetti et al. 
proposed new regularization terms to approximate CS 
regularizer (݈ଵ norm) for magnitude and first-order roughness 
penalty for phase in [9], which showed better results than 
before. This method, however, has several limitations: first, it 
is only applicable for first-order differences operator in CS 
regularization, which is usually not the optimal one; second, 
the phase regularization term is still weighted by its 
corresponding magnitude, which may cause low SNR in low 
magnitude areas, in other words, phase is still not regularized 
independently from magnitude; last, the penalty function for 
phase is concave when neighboring phase difference is large, 

e.g., ሾ
గ

ଶ
,
ଷగ

ଶ
ሿ, which requires a good initialization for phase.  

We propose a reconstruction method that combines CS with 
separate regularizations for magnitude and phase for more 
general MRI reconstruction applications. In the framework of 
the separate regularization in [5], we apply CS regularization 
for the magnitude image but use a new phase regularizer that 
is applicable for wrapped phase maps, and we randomly 
undersample k-space data. Since this framework is general 
enough to design different regularizers for specific types of 
phase maps, we developed another type of phase regularizer 
for applications that have distinct areas on top of smooth 
background in the phase map, e.g., hot spots in temperature 
maps and arteries in velocity maps.  

In this paper, we start with the basic MRI signal model. 
Then the reconstruction cost functions are discussed in detail 
by comparing conventional CS method with our proposed 
method and introducing new phase regularizers with their 
properties. Next, we discuss the respective optimization 
algorithms for magnitude and phase. Finally, the proposed 
method was tested by comparing with conventional phase-
corrected CS in both simulation studies and in-vivo data 
reconstructions; in the simulation studies, we simulated an 
abdomen thermometry data with hot spots in the phase map; in 
the in-vivo data reconstruction, we acquired velocity mapping 
data of the abdominal aorta by a phase-contrast bSSFP 
sequence on 3T GE scanner. 

  

II. THEORY 

A. Signal Model 

In this paper, we only discuss single coil reconstruction, but 
the algorithms easily generalize to parallel imaging using 

sensitivity encoding (SENSE) [11]. The baseband signal 
equation of MRI is the following: 

ሻݐሺݏ ൌ න݉ሺݎԦሻ݁ି௫ሺԦሻ݁ିଶగሬԦሺ௧ሻ∙Ԧ݀ݎԦ 															ሺ1ሻ 

where	ݎԦ is the coordinate in spatial domain,	݉ሺݎԦሻ is the object 

“magnitude”,	ݔሺݎԦሻ is the phase map, and	 ሬ݇Ԧሺݐሻ is the k-space 
trajectory. We allow	݉ሺݎԦሻ to take negative values to avoid 
any	ߨ jumps aborbed into the phase	ݔሺݎԦሻ. We assume a short 
data acquisition time so that the off-resonance induced phase 
is contained in	ݔሺݎԦሻ. In MRI scanning, complex Gaussian 
modeled random noise	߳ሺݐሻ is involved in the detected signal, 
which is: 

ሻݐሺݕ ൌ ሻݐሺݏ  ߳ሺݐሻ																	ሺ2ሻ 
where	ݕሺݐሻ is the detected signal. For computation, we 
discretize the signal equation as follows: 

࢟			 ൌ ሻ࢞݁ሺܣ  ࣕ																					ሺ3ሻ 

where	࢟ ൌ ,ଵݕൣ ,ଶݕ … , ே൧ݕ
்
∈ ԧே, are the measured data; 

ܣ ∈ ԧே∗ே is the system matrix of MRI, e.g., the discrete 

Fourier transform (DFT) matrix,	 ൌ ቂ݉ଵ,݉ଶ,… ,݉ேቃ
்
∈ 

Թே is the magnitude image, ࢞ ൌ ቂݔଵ, ,ଶݔ … , ேቃݔ
்
∈ Թே  is 

the phase image, and	ࣕ ൌ ൣ߳ଵ, ߳ଶ, … , ߳ே൧ ∈ ԧ
ே is the 

complex noise. (We write	݁࢞ as as shorthand for element-
wise multiplication of these two vectors.) In this paper, our 
goal is to reconstruct	 and	࢞ simultaneously from 
undersampled k-space data	࢟.  

B. Cost Functions 

In conventional CS [6], applying a regularized approach for 
(3) yields the cost function: 

										Ψሺࢌሻ ൌ ࢟‖ െ ଶ‖ࢌܣ   ሺ4ሻ																								ሻࢌሺܴߚ
where	ࢌ ൌ -denotes randomly undersampled data in k ࢟	,࢞݁
space,	‖∙‖ denotes ݈ଶ norm,	ߚ is the scalar regularization 
parameter, and	ܴሺ∙ሻ is the CS regularizer; usually, ܴሺ∙ሻ is the 
݈ଵ or ݈ norm of finite differences or a wavelet transform. The 
estimated magnitude and phase, i.e., ෝ  and	࢞ෝ are then 
computed from the reconstructed complex image	ࢌ , where	ࢌ ൌ
argminࢌ	શሺࢌሻ. 

To reduce phase variation of f, phase-correction is often 
applied to better sparsify the image	ࢌ in the sparse transform 
domain [6]: 

							Ψଵሺࢌଵሻ ൌ ฮ࢟ െ ଵฮࢌࡼ݁ܣ
ଶ
  ሺ5ሻ													ଵሻࢌሺܴߚ

where P is the estimated phase map from low frequency k-
space, ݁ࡼ denotes a diagonal matrix whose diagonal entries 
are exponentials of	ࡼ in the same order. The unknown ࢌଵ 
should then be closer than ࢌ in (4) to the magnitude image m 
which is sparser. The final reconstructed image for 
conventional CS is:  

ࢌ							 ൌ ݁ࢌࡼଵ,			ෝ ൌ หࢌห, ෝ࢞ ൌ  ሺ6ሻ																			ࢌ∠
where ࢌଵ ൌ argminࢌభ	શଵሺࢌଵሻ. 
In this paper, this method is used for comparison, and we 
choose ܴሺ∙ሻ to be ݈ଵ norm of wavelet transform; then the cost 
function becomes:   

     										Ψଵሺࢌଵሻ ൌ ฮ࢟ െ ଵฮࢌࡼ݁ܣ
ଶ
  ሺ7ሻ									ଵ‖ଵࢌ′ܷ‖ߚ
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Fig.1: Comparison between the two regularizers (regularizer 1:  ;ଶݐ
regularizer 2: 2(1-cos(t)).) 
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where U is the wavelet transform matrix and	‖∙‖ଵ denotes ݈ଵ 
norm. 

In contrast, we propose a cost function with separate 
regularizations for magnitude and phase components as 
follows: 

	Ψሺ,࢞ሻ ൌ ฮ࢟ െ ฮ࢞݁ܣ
ଶ
 ሻ࢞ଵܴ௫ሺߚ   ሺ8ሻ				ሻଶܴሺߚ

where	ܴ௫ሺ࢞ሻ	and	ܴሺሻ denote the regularizers for ࢞ and 
 ଶ denote the scalar regularization parameters. Forߚ	ଵ andߚ	,
the magnitude component	, we exploit the sparsity of the 
magnitude in wavelet domain by regularizing the ݈ଵ norm of 
the wavelet coefficients of	. For the phase component	࢞, we 
select the regularizer according to features of the phase map. 
For a smooth phase map, we use a typical first-order finite 
differences regularizer (called “regularizer 1” hereafter) to 
enforce spatial smoothness [5]. The cost function then 
becomes: 	

	Ψଵሺ,࢞ሻ ൌ ฮ࢟ െ ฮ࢞݁ܣ
ଶ
 ଶ‖࢞ܥ‖ଵߚ

  ሺ9ሻ			1ሻ	ሺregularizer													ଵ‖′ܷ‖ଶߚ
where	ܥ is finite differencing matrix that penalizes roughness. 
Note that the arguments of the cost function are real valued.  

Because the phase	࢞ appears in an exponential in the data fit 
term, the cost function is non-convex; indeed, it is	2ߨ 
periodic. When this term is combined with regularizer 1, it can 
be difficult for a descent algorithm to find a desirable local 
minimum, particularly if the range of the true phase map 
values exceeds a	2ߨ interval. We observed empirically that 
descent algorithms frequently converged to undesirable local 
minimizers in this situation. To address this problem, we 
investigated a different phase regularizer that is also periodic, 
by regularizing the exponential of the phase instead of the 
phase itself. This regularizer (called “regularizer 2” hereafter) 
is described as: 

																							ܴଶሺ࢞ሻ ൌ ฮ݁ܥ࢞ฮ
ଶ
								ሺregularizer	2ሻ				ሺ10ሻ 

Note that the unit of	ݔ has to be radians here. This regularizer 
accommodates phase wrapping, because the wrapped phase 
values will be equivalent to the unwrapped ones when 
exponentiated [9]. However, this choice introduces some non-
linearity to the regularization term, which requires 
examination. To explore it, we consider an arbitrary pair of 
neighboring pixels (ݔଵ, ݔଶ) that are penalized in regularizer 2: 

													หሾ݁ܥ࢞ሿห
ଶ
ൌ ห݁௫భ െ ݁௫మห

ଶ
ൌ 2ሺ1 െ cosሺݔଵ െ ଶሻሻݔ

ൌ 2ሺ1 െ cosሺݐሻሻ																																	ሺ11ሻ 
where k corresponds to	ݔଵ and	ݔଶ in regularizer 2, and t is the 
finite difference ݔଵ െ  ଶ. In contrast, regularizer 1 has thisݔ
corresponding formula:  

													|ሾ࢞ܥሿ|ଶ ൌ ሺݔଵ െ ଶሻଶݔ ൌ  ሺ12ሻ														ଶݐ
Fig.1 compares	2ሺ1 െ ݐሺ	ଶ,ݐ	ሻሻ withݐሺ	ݏܿ െ ݐሺ	ሻଶ andߨ2 
 ሻଶ, showing that regularizer 2 approximates regularizer 1 inߨ2
every period and therefore allows phase wrapping without 
changing the roughness penalty. As can be seen, the new 
regularizer is a very good approximation to the old one in 
intervals between	2݊ߨ േ 1.5 with n = all integers, which are 
sufficiently wide intervals for most MRI phase maps. 
Therefore, in principle, this regularizer will not only handle 
the phase wrap but also preserve smoothness of the phase 

map. Note that ܴ௫ሺݔሻ is concave for large phase differences 

(∈ ሺ2݊ߨ  గ

ଶ
, ߨ2݊  ଷగ

ଶ
ሻ), which is the same problem in [9]. 

Fortunately, such problem can be avoided in most cases by 
choosing a sufficiently good initial phase map for the 
reconstruction (discussed later in the paper). Therefore, if no 
extremely sharp edges exist in the true phase map, the value of 
t in our reconstruction will often be within the convex domain 
of the regularization term, i.e.,	ሺ2݊ߨ െ గ

ଶ
, ߨ2݊  గ

ଶ
ሻ. To sum 

up, the proposed cost function for typical cases with smooth 
phase maps is: 

	Ψଶሺ,࢞ሻ ൌ ฮ࢟ െ ฮ࢞݁ܣ
ଶ
 ฮ࢞݁ܥଵฮߚ

ଶ

  ሺ13ሻ			2ሻ	ሺregularizer											ଵ‖′ܷ‖ଶߚ
Some applications have more complicated phase maps, so 

only enforcing phase smoothness may be suboptimal. 
Fortunately, the proposed cost function is general enough to 
introduce other regularizers that are designed for specific 
applications. For example, in PRF-shift temperature mapping, 
phase maps may have hot spots in thermal ablation therapy 
[2]; in phase contrast velocity mapping, phase maps may have 
velocity information of arteries which are in systole. In both 
cases, the phase map will have relatively small distinct areas 
on top of a smooth background. To estimate such phase maps 
more accurately, we propose to apply edge-preserving phase 
regularizers to preserve hot spots or contracting arteries while 
still smoothing the background.  

Although we ultimately want to extend regularizer 2 in this 
application so that wrapped phase maps could be properly 
regularized, we start with a conventional edge-preserving 
regularizer for non-wrapping phase maps, because it can be 
used in the initialization step which will be discussed later. 
This edge-preserving regularizer for non-wrapping phase 
(called “regularizer 3” hereafter) is: 

																ܴଷሺ࢞ሻ ൌ߰ሺሾ࢞ܥሿሻ



ୀଵ

						ሺregularizer	3ሻ						ሺ14ሻ 
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where ߰ሺ∙ሻ denotes an edge-preserving potential function, k is 
the row index, and K is the number of rows of ܥ. For edge 
preservation, ߰ሺ∙ሻ should be non-quadratic and satisfy: 
߱టሺݐሻ ൌ ሶ߰ ሺݐሻ/ݐ	is non-increasing and	݈݅݉௧→ஶ ሶ߰ሺݐሻ ∈ ሺ0,∞ሻ 
[10, Ch.2]. There are many typical edge-preserving potential 
functions, e.g., hyperbola, Cauchy, Geman &McClure, etc. 
[10, Ch.2]. Since they are all non-quadratic, it complicates the 
optimization (shown in appendix). Obviously, this regularizer 
cannot handle wrapped phase, because it will treat phase 
wraps as edges instead of enforcing smoothness.  

Thus, we designed a new regularizer, trying to regularize 
wrapped phase maps while preserving edges. Incorporated 
with the edge-preserving potential function in the regularizer, 
the new cost function becomes: 

	Ψସሺ,࢞ሻ ൌ ฮ࢟ െ ฮ࢞݁ܣ
ଶ
 ሿ|ሻ࢞݁ܥଵ߰ሺ|ሾߚ



ୀଵ
  ሺ15ሻ						4ሻ	ሺregularizer				ଵ‖′ܷ‖ଶߚ

(This phase regularizer is called “regularizer 4” hereafter). 
Similar to regularizer 3, there are many choices for potential 
functions. To illustrate this regularizer, we consider the 
hyperbola function, which is 

															߰ሺݏሻ ൌ ଶߜ ቌඨ1  ቚ
ݏ
ߜ
ቚ
ଶ
െ 1ቍ																	ሺ16ሻ 

where ߜ is the parameter to tune how much edge-preserving 
we need. Note that the unit of	ݔ has to be radians, but ߜ is 
unitless for regularizer 4. Similar to (11), the corresponding 
formula for regularizer 4 is:  

		߰ሺ|ሾ݁ܥ࢞ሿ|ሻ ൌ ߰ሺ|݁௫భ െ ݁௫మ|ሻ ൌ ߰ ቀඥ2 െ 2 cosሺݐሻቁ	ሺ17ሻ 

where	ݐ ൌ ଵݔ െ  ሻሿ of regularizer 1࢞ଶ. Fig. 2 compares ሾܴሺݔ
and regularizer 4. As can be seen in this plot, regularizer 4 
does have edge-preserving properties compared to regularizer 
1; here	ߜ ൌ 0.005, which was chosen for velocity mapping 
reconstruction in the next section Similar to regularizer 2, the 
exponential terms in regularizer 4 makes the cost function 
non-convex, but we have mitigated this problem by certain 
strategies that will be discussed in the next section. 

 

C. Optimization Algorithms 

Our goal is to estimate ࢞	and	 from data	࢟ by minimizing 
the cost function: 

												ሺ࢞ෝ,ෝ ሻ ൌ argmin
Թಿ∋,࢞

Ψሺ,࢞ሻ																	ሺ18ሻ 

where	݈ = 1, 2, 3 or 4, and ܰ is the number of pixels in each 
image. We jointly estimate the phase and magnitude by 
alternately updating each of them in each iteration: 

ሺାଵሻ࢞									 ൌ argmin࢞∈Թಿ Ψ൫,࢞ሺሻ൯																				ሺ19ሻ 
ሺାଵሻ										 ൌ argmin

Թಿ∋
Ψ൫࢞ሺାଵሻ,൯										ሺ20ሻ 

There are many optimization algorithms for CS, and we 
choose to use the iterative soft thresholding (IST) algorithm 
[10, Ch.12] to update	 in (20). Specifically, we firstly design 
a separable quadratic surrogate function for the data fit term 
according to the optimization transfer principle [10, Ch.12], 
and then use the IST algorithm to minimize the surrogate 
function. The update formula was derived for real unknowns: 

ሺାଵሻ ൌ ܷ ∗ ݐ݂ݏ ൜ܷᇱ ∗ ሺሻ


1
ܿ̌
ܴ݁൛ܷᇱܣ௫ᇱ ൫࢟ െ ௫ܣ

ሺሻ൯ൟ,
ଶߚ
2ܿ̌
ൠ							ሺ21ሻ 

where	ݐ݂ݏሼݐ; ሽߙ ൌ ቀݐ െ ߙ ∗ ௧

|௧|
ቁ ∗ 1ሼ|ݐ|   ሽ is theݐܴ݁ሼ	ሽ,ߙ

real part the complex number t,	ܣ௫ ≜ ܣ	 ∗ ݀݅ܽ݃ ൜݁௫ೕ
ሺశభሻ

ൠ, 

and	ܿ̌ ≜  ,.and e.g ܣ′ܣ	ሻ, which is the spectral radius ofܣᇱܣሺߩ
	ܿ̌ ൌ ܰ when we use Cartesian sampling.  

It is more challenging to update	࢞, because the cost function 
for	࢞ is nonlinear and non-convex. One way to approach this 
problem is to use optimization transfer as in [5]. We have 
investigated this approach for the cost function with 
regularizer 1 by using De Pierro’s trick [12] to design a 
quadratic surrogate function. However, it turned out to 
converge very slowly. Although this algorithm may work well 
for images that are sparse in the image domain, e.g., 
angiography images, we prefer to minimize the cost function 
in a more generally practical way. Therefore, we apply 
preconditioned conjugate gradient with backtracking line 
search (PCG-BLS) algorithm [10, Ch.11] to mitigate such 
problem. The updating formula is derived as follows (see 
appendix for details): 

ሺାଵሻ࢞												 ൌ ሺሻ࢞  ࢊොߙ
ሺሻ																							ሺ22ሻ 

Table I: summary of the four regularizers 

Regularizer 1  ܴଵሺݔሻ ൌ 	ଶ‖ݔܥ‖

Regularizer 2  ܴଶሺݔሻ ൌ ฮ݁ܥ௫ฮ
ଶ
	

Regularizer 3  ܴଷሺ࢞ሻ ൌ ߰ሺሾ࢞ܥሿሻ


ୀଵ
 

Regularizer 4  ܴସሺݔሻ ൌ ߰ሺ|ሾ݁ܥ௫ሿ|ሻ


ୀଵ

   
Fig. 2: comparison of regularizer 1: ݐଶ, regularizer 2:	2ሺ1 െ  ሻሻ, andݐሺݏܿ

regularizer 4: 	߰ ቀඥ2 െ 2  .ሻቁݐሺݏܿ
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where	ࢊሺሻ is the search direction derived by PCG algorithm 
[10, Ch.11],	ߙො is the step size	ߙ at the nth iteration which is 
chosen by Newton-Raphson algorithm with backtracking 
strategy to guarantee monotonicity [10, Ch.11]. The formula 
of the Newton-Raphson algorithm for updating the step size is: 

ሺାଵሻߙ											 ൌ ሺሻߙ െ
fሶ୬൫α

ሺ୩ሻ൯

fሷ୬ሺαሺ୩ሻሻ
																		ሺ23ሻ 

where	 ݂ሺߙሻ ൌ ࢞൫ߖ
ሺሻ   ሺሻ൯. These step size,ሺሻࢊߙ

optimization formulas for the four regularizers are shown in 
the appendix respectively. Since this algorithm alone does not 
guarantee monotonicity, we need to use the backtracking 
strategy [13, p131] to ensure monotonic decrease of શ. 

As one would expect, this nonlinear optimization algorithm 
has higher computational complexity than conventional CS 
optimization. For conventional CS by IST, the operations that 
dominate in each iteration are 2 A-operations, i.e., Fast Fourier 
transforms, and 2 U-operations, i.e., wavelet transforms. For 
the proposed method, updating ݉ takes slightly shorter time 
than conventional CS, because although there are also 2 A-
operations and 2 U-operations in each iteration, parts of them 
are real number operations instead of complex number 
operations in conventional CS optimization. However, the 
nonlinear optimization for	ݔ in the proposed method is much 
slower: in each iteration, there are 3Ns A-operations + 2Ns C-
operations, i.e., taking finite difference transform, for 
computing the gradients, 3Ns*Na A-operations + 3 Ns*Na C-
operations for the Newton-Raphson updating, and Ns*Na*Nb 
A-operations + Ns*Na*Nb C-operations for the backtracking 
part, where Ns is the number of sub-iterations in each 
iteration, Na is the number of iterations for the line search and 
Nb-1 is the number of backtracking steps. Empirically, we 
choose Ns = 2, and on average Na is 2.5 and Nb is about 1.1 
on average; therefore, in each iteration, there are about 27 A-
operations and 25 C-operations. A-operation is O(݈ܰ݃ଶܰ), 
U-operation and C-operation are both O(ܰ), where N 
represents	 ௗܰ , ܰ or	ܭ. Since we use first order finite 
difference and 3-level wavelet transform, C-operation is much 
faster than U-operation. Thus, the proposed method is roughly 
10 times slower than conventional CS. However, we still 
achieve an acceptable computation time by the 
implementation shown in the appendix; for example, it takes 
about 55s to run the proposed method with 120 iterations for 
the 2D data in the in-vivo experiments of section III-C on a 
computer with Intel (R) Core (TM)2 Quad CPU Q9400 @ 
2.66GHz, 4GB RAM and Matlab 7.8. For 3D data, a more 
efficient implementation in C++ may be necessary, but we 
believe that the computation time can be made acceptable.  

As mentioned before, monotonically decreasing a non-
convex cost function cannot guarantee finding a global 
minimizer for	࢞ for an arbitrary initial guess; therefore a good 
initial estimate for the phase image is important. In this study, 
since the cost function of conventional CS is convex, we set 
the initial guess for	࢞ and  by using the phase and magnitude 
of the result of conventional CS reconstruction method for 
complex voxels by IST (the cost function is like (4)). During 
this setup, we set the unknowns to be	ࢌ ൌ  and the initial ,࢞݁

guess of	ࢌ is the inverse DFT of zero-padded k-space data; 
then we use a similar algorithm to (21) with some 
modifications: 

ሺାଵሻࢌ ൌ ܷ ∗ ݐ݂ݏ ቊܷᇱ ቆࢌሺሻ 
1
ܿ̌
࢟ᇱ൫ܣ െ ሺሻ൯ቇࢌܣ ,

ଶߚ
ܿ̌
ቋ			ሺ24ሻ 

Then we set	࢞ሺሻ ൌ ሺሻ	and	ሺሻࢌ∠ ൌ หࢌሺሻห for	݊ ൌ 1 or 2 
usually. Such initialization for phase and magnitude turns out 
to be very good for most cases except for regularizer 4 which 
has a narrower convex domain. To solve this problem, we take 
one more step to form the initial guess, which is to use 
regularizer 2 or 3 for a few iterations, because both of them 
have wider convex domains than regularizer 4. Then we 
believe we get the phase map closer to the desired phase map, 
which can help lead reconstructions using regularizer 4 to a 
desirable local minimum. 

Like all the other regularized reconstruction methods, the 
regularization parameters should be carefully selected. For the 
parameter of the roughness penalty term, i.e.,	ߚଵ, the value can 
be selected according to the desired spatial resolution of the 
phase image [1]. However, it is still an open problem for 
selecting parameters of the	݈ଵ norm term. In this study, we 
choose the parameter	ߚଶ empirically.   
 

III. EXPERIMENTS 

A. Experiments Setup 

In our experiments, we compared the performance of the 
proposed methods with conventional phase-corrected CS that 
uses the IST algorithm (24) for optimization. All the data were 
sampled in the 2D Cartesian grid of k-space. The center of the 
k-space was fully sampled according to Nyquist sampling 
theorem, which preserves low frequency information and also 
allows for phase correction in conventional CS. The rest of k-
space was randomly undersampled (as shown in Fig. 3). Three 
different image masks are used in the experiments: for 
reconstruction, we used a “loose” mask that was obtained 
from the inverse DFT of the raw undersampled data; in the 
results comparison, we use the true mask that is taken from the 
true image for a fair evaluation; for evaluation of the regions 
of interest (ROI), we use the ROI mask that is taken manually 
from the true phase image and only covers the ROIs. 
Regularization parameters were empirically chosen to be “the 
best” for each method, in terms of Normalized Root Mean 
Square Error (NRMSE) or Root Mean Square Error (RMSE) 
which were used for magnitude images and phase images 
respectively. NRMSE and RMSE are defined as below: 

ܧܵܯܴܰ																	 ൌ
‖ െ௧‖

‖௧‖
														ሺ25ሻ 

ܧܵܯܴ																	 ൌ
࢞‖ െ ‖௧࢞

ඥ ܰ
																				ሺ26ሻ 

where	 and	௧ denote the reconstructed and true 
magnitude images respectively,	࢞ and	࢞௧ denote the 
reconstructed and true phase images respectively, and	 ܰ is 
the number of pixels in each image. Moreover, we ran the 
algorithm until the cost function appeared to reach a 
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Fig. 4: Top row: true magnitude, magnitude by CS, magnitude by the proposed method, phase error map by CS; bottom row: true phase, 
phase by CS, phase by the proposed method, phase error map by the proposed. (0.4 sampling rate, background is masked out, and the 

units of the phase are radians.)  

minimum. In both methods, the sparse transform matrix (ܷ) 
was set to be a 3-level Haar wavelet transform matrix which is 
unitary. 

B. Experiments with simulated data 

We simulated a thermometry scan using an abdomen T2 
weighted magnitude image (upper left most in Fig. 4). We 
used the corresponding field map, scaled into the 
interval	ሺെ2ߨ,  .ሻ, as the background of the true phase mapߨ2
The true complex image was cropped to be a 320*208 matrix 
(40cm *26cm FOV). To reduce the discretization effects that 
might happen in the synthesized data, we simulated the data 
from a higher resolution “true image”. Since there is not an 
analytical expression or a higher resolution version of this 
simulated object, we synthesized the higher resolution “true 
image” by linearly interpolating the original true image to be 
960*624. In addition, we added four “Gaussian hot spots”, the 

peak values of which are from 3.5 
to 4 radians, onto the interpolated 
background phase map to simulate 
thermal ablation (lower left most in 
Fig. 4). We chose this wide range 
of phase values to test performance 
of the proposed algorithm for 
wrapped phase maps. This “true 
complex image” is used as an 
approximation of the continuous 
phantom. Then we synthesized the 
fully sampled single-coil k-space 
data by taking DFT of the “true 
complex image”, and took the k-

space data in a 320*208 matrix with sampling intervals 
corresponding to 40cm*26cm FOV. Then we added Gaussian 
distributed complex noise to mimic MRI scanner noise, and 
the noise level was fixed through all these simulation 
experiments such that the Signal-to-Noise-Ratio (SNR) was 
approximately 24 dB. The SNR is defined in k-space, which is  

								ܴܵܰ ൌ 20 log ቆ
‖࢚࢟‖

࢚࢟‖ െ ‖࢟
ቇ									ሺ27ሻ 

where	࢟௧ denotes the noise-free k-space data,	࢟ denotes the 
noisy k-space data, and both are fully sampled in k-space. 
Afterwards, the final simulated data were formed by randomly 
sampling the Cartesian grid, with the center (3%) of the k-
space fully sampled, as shown in Fig. 3. 

In the experiments, the proposed method and conventional 
CS approach were tested at different sampling rates ranging 
from 20% to 60%. Since some referenceless PRF-shift 
temperature mapping methods [14] [15] have been proposed 
in literature, it is realistic to just reconstruct a certain frame 
without considering the reference frame in this simulation 
study. The reconstruction results are compared by visual 
inspection as well as NRMSE and RMSE of the reconstructed 
images with respect to the “low resolution true image”. This 
“low resolution true image” is obtained from the 320*208 
fully sampled noiseless k-space data by an inverse DFT. 

For conventional CS, we estimated the slow-varying 
reference phase map by taking the inverse DFT of the fully 
sampled k-space center. The proposed method used the 
regularizer 4 for the phase map, where we chose hyperbola 
function as the edge-preserving potential function, i.e.,	߰ሺݐሻ ൌ
ଶሺඥ1ߜ  ଶ|ߜ/ݐ| െ 1ሻ with	ߜ ൌ 0.0005 (radians) chosen 

Fig. 3: The sampling pattern 
in k-space 
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Fig. 6: The reconstructed phase or phase error map by regularizer 1-3, 

the units are in radians 

Fig. 5: The regions masked for evaluating hot spots (left), NRMSE of the magnitude image (middle), RMSE of the entire phase image 
and RMSE of the phase masked for ROI, i.e., the hot spots, (right). 

Table III: regularization parameters in the simulations 

 Reg. 1 Reg. 2 Reg. 3 Reg. 4 

 ଵ/10ସ 1 1 800 500ߚ

 ଶ 2912 2912 2912 1248ߚ

RMSE of 
ROI (radians) 

0.930 0.087 0.282 0.081 

empirically. The regularization parameters chosen for the 
simulation studies are shown in Table II.  

 

Fig. 5 compares NRMSE of magnitude maps with the true 

mask (called “entire magnitude” hereafter) and RMSE of 
phase maps with the true mask (called “entire phase” 
hereafter) at different sampling rates of conventional CS and 
the proposed method. We also compared the RMSE of the 
phase with the ROI masks, as shown in Fig. 5 (left), to 
evaluate the performance of the two methods for the regions 
around the hot spots, which are more important than other 
regions. The proposed method reduced NRMSE of the entire 
magnitude images by 10%~20%, while reduced the RMSE of 
the entire phase images by about 60%~70%; for the phase in 
the hot spots, the proposed method achieved about 50%~60% 
lower RMSE. Fig. 4 illustrates the results at 40% sampling 
rate; the regions outside the object have been masked out. 
Compared to conventional CS, the proposed method produces 
a much cleaner background phase map while preserving the 
hot spots information, especially for the hot spots in the low 
intensity regions where the important hot spots information is 
corrupted by noise in the results by conventional CS. 
However, the reduced NRMSE in the magnitude images is not 
very visible, which will be discussed in the next section.  

To demonstrate the importance of using regularizer 4, we 
replaced the regularizer 4 by regularizer 1-3 in the proposed 
method and reconstructed the data with 40% sampling rate. 
The regularization parameters are shown in Table III, and ߜ is 
set to 0.0005 radians for regularizer 3. Fig. 6 shows the phase 
maps and phase error maps of the reconstructed results. 
Regularizer 1 and regularizer 3 cannot handle the phase 
wrapped regions and tend to enhance the phase wrapping 

Table II: regularization parameters in the simulations 

 0.2 0.3 0.4 0.5 0.6 

 4576 2912 2912 3744 1248 ߚ

 ଵ/10 10 8 5 7 7ߚ

 ଶ 832 1248 1248 2080 2080ߚ
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Table IV: regularization parameters in the in‐vivo experiments 

 CS Reg. 4 Reg. 1 Reg. 2 Reg. 3 
 ଵ/10ଷ  60 5 5 50ߚ
ߚ ݎ  ଶ 800 800 800 800 800ߚ

Fig. 7: From the 1st row to the 3rd row: results by inverse DFT, 
conventional CS and the propose method; from the 1st column to the 3rd 
column: the magnitude, the reference phase and the velocity map. (The 

units of 2nd and 3rd columns are radians and cm/s respectively) 

Fig. 8: “R” denotes “regularizer”; left: phase map by the proposed 
method with R1; middle: phase map by the proposed method with R2; 

right: phase map by the proposed method with R3 

boundaries due to the smoothing within different convex 
domains; therefore, it is reasonable that regularizer 3 makes 
less “jumps” over the phase wrapping boundaries than 
regularizer 1 does. As expected, regularizer 2 tends to over-
smooth the hot spots, especially the one pointed by the arrow; 
however, as shown in Fig. 1, regularizer 2 still has some edge-
preserving effect, so the result by regularizer 2 was not far 
from the true phase; but it still not as good as the result by 
regularizer 4 (shown in Fig. 4). Table III also shows the 
RMSEs of ROI in the phase maps by regularizer 1-4. For 
initializing the proposed method, we believe that the results 
obtained by regularizer 2 or 3 tend to be in the convex domain 
that contains desired local minimum of the ultimate cost 
function with regularizer 4. 

C. Experiments with In-vivo Data 

We acquired in-vivo velocity mapping data around human 
abdominal aorta using a phase-contrast bSSFP sequence in 3T 
GE scanner (Signa Excite HD) with an 8-channel cardiac 
surface coil array. These multi-coil Cartesian sampled data 
contain 10 temporal frames as well as the reference frame (no 
velocity encoding). In each frame, the Cartesian grid is 
160*160 which covers a FOV of 16cm*16cm. For 
demonstrating the 2D reconstruction algorithm for single coil, 
we used the reference frame and the 6th frame (capturing the 
peak velocity of the aorta) in coil 2 where the aorta signal is 
strong. Since the original data are fully sampled, we randomly 
undersampled them in the manner as in Fig. 3 to mimic the 
compressed sensing sampling; in particular, the sampling rate 
was chosen to be 1/3 of fully sampling, including 4% of fully 
sampled center.  

Due to the reference frame, the reconstruction procedure 
was slightly different from the simulation experiment. Instead 
of reconstructing from one set of 2D data, we first 
reconstructed the reference frame by each method, and then 
we reconstructed the velocity encoded image with background 
phase removed by incorporating the reconstructed reference 
frame into the system matrix, which is a similar strategy to 
phase correction in CS as shown in (7). The cost functions of 
the two methods for the second step are shown below: 

		Ψሺࢌଵሻ ൌ ฮ࢟ െ ∗.ࡼሺ݁ܣ ݁ࡾ.∗ ଵሻฮࢌ
ଶ
  ሺ28ሻ							ଵሻࢌሺܴߚ

	Ψሺ࢞ଵ,ሻ ൌ ฮ࢟ െ ∗.ࡾሺ݁ܣ ∗. ݁࢞భሻฮ
ଶ
 ଵሻ࢞ଵܴ௫ሺߚ

  ሺ29ሻ																											ሻଶܴሺߚ
where (28) and (29) are for CS and the proposed method 
respectively,	ࡾ is the reference phase which contains no 
velocity information,	ࢌଵ should contain only velocity 
information in its phase, and	࢞ଵ should contain only velocity 
information. In (28), the CS method also has low frequency 
phase correction. In the proposed method, we used regularizer 
2 to reconstruct the reference image, a smooth phase map, as it 
has no velocity encoding; we used the regularizer 4 to 
reconstruct the velocity map. Furthermore, we also 
investigated the performance of the proposed method with 
regularizer 1-3. The potential function for regularizer 4 
(regularizer 3) was the hyperbola function with	ߜ ൌ 0.005 

(radians). The regularization parameters for all the 
experiments are shown in Table IV. 

The results are shown in Fig. 7. In this experiment, since 
there is no “true” image for comparison, the reconstruction 
results from the fully sampled data by inverse DFT are shown 
in the first row of Fig. 7 for comparison; the second and the 
third row are the results by CS and the proposed method 
respectively. In the figure, the first, second and third column 
are the magnitude images, the reference phase maps and the 
velocity maps respectively. Similar to the simulation 
experiment, both of the methods (CS and the proposed) can 
reconstruct a comparably good magnitude image from 
undersampled data. In the second column of Fig. 7, the 
reference phase map produced by the proposed method is 
much smoother than that by conventional CS. In the last 
column, the proposed method gives us a velocity map that 
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clearly shows a bifurcated aorta on top of a reasonably smooth 
background, which is much less noisy than the noisy velocity 
map produced by conventional CS. 

In the right upper corner of the velocity map by the 
proposed method (Fig. 7), there is an area that is not smooth; 
this is due to the inconsistency between the reference frame 
and the velocity encoded frame, which appears to be caused 
by the unreliable reference phase in that low intensity area. 

 Fig. 8 shows the phase maps reconstructed by the proposed 
method with regularizer 1, 2 and 3. Similar to the results in the 
simulation studies, while regularizer 2 smooths the 
background (except for the phase wraps), it also tends to over-
smooth the arteries, which is undesirable. Since this particular 
problem has no phase wraps if initialized properly, the result 
by regularizer 1 just has some over-smoothed arteries and the 
one by regularizer 3 is as good as the one by regularizer 4 
(shown in Fig. 7); both of them do not have phase wrapping 
problem. Then for this case, regularizer 3 provides better 
initialization than regularizer 2. 

 

IV. DISCUSSION 

We have proposed two cost functions (13) & (15) and 
iterative algorithms (21)-(23) for reconstruction of magnitude 
and phase from undersampled k-space data. The key property 
of the proposed method is that one can adapt the regularizer 
for the magnitude and phase images individually.  

The cost function is non-convex, so we cannot guarantee 
that the algorithm will converge to a global minimum. To 
mitigate this drawback, we introduced some suitable strategies 
for initialization. According to the simulation studies and real 
data experiments, it suffices to initialize by inverse DFT of 
zero-padded k-space and a few CS iterations for complex 
images when we apply regularizer 1, 2 or 3 appropriately. 
Since the cost function with regularizer 4 has a narrower 
convex domain, such two-step initialization does not always 
work; so a third step is added to the initialization as mentioned 
in the theory section. The logic behind these sequential 
initialization strategies is: optimizing the cost function with a 
wider convex domain is likely to “push” the initial guess 
towards the relatively narrower convex domain of the cost 
function that is optimized in the following step, when these 
two cost functions have similar optimization solutions. For 
initialization of the cost function with regularizer 4, the first 
step by inverse DFT sets the initial guess in the convex 
domain of the non-concave conventional CS cost function, 
then optimizing CS cost function pushes the initial guess to 
the convex domain (around a desired local minimum) of the 
proposed cost function with regularizer 2 or 3, and finally 
optimization in the third step make the initial guess reach the 
convex domain (around a desired local minimum) of the 
proposed cost function with regularizer 4. In a word, the initial 
guess is gradually “pushed” towards the convex domain of the 
final cost function by such sequential initialization steps. 
However, these strategies cannot theoretically guarantee 
finding a desirable minimum and are only successful 
empirically. Refining the initialization for this type of non-

convex cost function is still an open problem for future 
research. 

When using regularizer 4, we choose among various edge-
preserving potential functions. We have investigated all the 
potential functions listed in [10, Ch.2] that have a bounded	 ሶ߱ ట 
and most of them work well; finally we chose the hyperbola 
function because it has the widest convex domain and can 
match the quadratic function (ݐଶ) very well when neighboring 
pixels have similar phase values. The parameter	ߜ determines 
the transition between smoothing and edge-preserving, hence 
it should be selected according to the features of the specific 
true phase map. In our experiments, we empirically discovered 
that the peaks of the hot spots or arteries tend to be over-
smoothed if	ߜ is selected according to	ݐௗ, i.e., the amount 
of jumps that happen in the “edge” regions. Alternatively, we 
chose	ߜ to be much smaller than	ݐௗ, in which case the 
regularizer 2 or 4 is approximately a Total Variation (TV) 
regularizer [4], as the hyperbola potential function becomes 
approximately taking ݈ଵ	norm. Since TV still functions as 
edge-preserving regularization, it is still reasonable to use 
small	ߜ for the proposed method. As long as ߜ is sufficiently 
small, we do not want it to be too small, because that will 
slower the convergence of the algorithm. Since the edges in 
the in-vivo data are sharper than the ones in the simulation 
data, ߜ in the in-vivo data was chosen to be larger than the one 
for the simulation data, but both of them are sufficiently 
smaller than	ݐௗ. In a word, we empirically chose ߜ such 
that it is sufficiently small and also preserves an acceptable 
convergence rate.  

The fully sampled k-space center is necessary for both 
conventional CS and the proposed method. For conventional 
CS, this part of the data is used to perform a rough phase-
correction. In the proposed method, this low frequency part of 
the k-space contains most information of the phase map which 
has a smooth background. Empirically, 2~5% of the k-space 
center is sufficient to preserve the low frequency information 
of phase maps. 

As can be seen in the simulation results, magnitude maps 
produced by the proposed method merely have a 10-20% 
lower NRMSE than the CS method in the simulation study 
and preserve a few more details if one carefully inspects, but 
this is not a significant improvement. Similar results were also 
observed in the in-vivo data experiments. In fact, this 
relatively small improvement is expected, because 
conventional phase-corrected CS has already removed most of 
the phase component of the true image before the CS 
reconstruction procedure. Therefore, the magnitude image in 
the proposed method is not significantly sparser than the phase 
corrected complex images in wavelet domain, which means 
the proposed method does not have much potential to 
significantly improve the magnitude image quality. 

In the in-vivo experiment, although the phase map of 
conventional CS reconstruction looks closer to the fully 
sampled reconstruction, it does not indicate that it is closer to 
the true image; because the phase of the fully sampled 
reconstruction in the low intensity regions is dominated by 
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noise. According to the physics, the true phase map should be 
smooth except for the distinct regions, e.g., arteries, so we 
believe that the smoothed background of the phase maps 
reconstructed by the proposed method are closer to the true 
phase map. Similarly, the reference frame of the velocity 
mapping reconstructed by the proposed method with 
regularizer 2 should be more accurate than the noisy map 
estimated by conventional CS, which is one of the reasons 
why the velocity map reconstructed by the proposed method is 
better. 

Our method can potentially be used for field map 
estimation. In [1], the method is based on the reconstructed 
image, but it is ultimately better to estimate phase changes 
based on the raw k-space data, because the image itself may 
suffer from some undesirable artifacts. Our method not only 
estimates the phase based on the k-space data, but also could 
accelerate the acquisition by undersampling, which is useful 
for 3D and/or high resolution field map estimation.  

In this paper, we only discussed the reconstruction problem 
for data from single coil acquisitions. However, all the 
proposed cost functions can also be easily generalized for 
parallel imaging, e.g. SENSE [11], to achieve an even lower 
sampling rate in k-space. Though we only studied 2D data, 
any higher dimensional data are applicable in the proposed 
method. The random sampling we used in the experiments 
simulates the random phase encode sampling in 3D data 
acquisition. Furthermore, this method is also applicable for 
non-Cartesian sampling by using non-uniform fast Fourier 
transform [16] as the system matrix. 

The proposed method provides a more flexible and more 
controllable algorithm for phase map reconstruction than 
conventional phase corrected CS approach. The proposed 
method is flexible enough to allow customizing regularizers 
for phase component according to its own features, and 
regularizer 1-4 are concrete examples suitable for some 
applications; other sophisticated regularizers can be developed 
for other types of phase maps in this reconstruction 
framework. In addition, even though in some cases the results 
of phase corrected CS are acceptable, it is not as flexible for 
tuning the smoothness or resolution of the phase map as the 
proposed method. If one wants to increase the resolution of a 
non-smooth phase map when using phase corrected CS, 
another scan with different sampling rate may be required; in 
contrast, within a certain range, the proposed method can 
handle this by simply adjusting regularization parameters in 
reconstruction for the same data. 

 

V. CONCLUSION 

By using the CS regularization terms for magnitude, the 
proposed method allows for undersampling in data 
acquisitions. In the framework of separate regularization 
reconstruction, the proposed method achieves a substantial 
improvement, e.g., 50%-70%, in phase reconstruction and a 
minor improvement, e.g., 10%-20%, in magnitude 
reconstruction, compared to the phase corrected CS 
reconstruction. RMSE of ROI in phase maps were compared 

in the simulation studies to show that the proposed method can 
improve both ROI and background phase. Regularizer 1-4 
were investigated for the simulated data and the in-vivo data, 
demonstrating that with initialization by using regularizer 2 or 
3, the proposed method with regularizer 4 is able to handle 
phase wrapping and also reconstructs good phase maps and 
magnitude maps for applications like PRF-shift temperature 
mapping and phase contrast velocity mapping. The proposed 
method has more computational complexity, e.g., about ten 
times, than conventional CS, but we believe the computation 
speed can be made acceptable. 

 

APPENDIX 

PCG-BLS for updating x: 
1) The cost function for	࢞: 

	Ψ൫,࢞ሺሻ൯ ൌ ฮ࢟ െ ฮ࢞ሺሻ݁ܣ
ଶ
 ሻ࢞ଵܴ௫ሺߚ

 ′ଶฮܷߚ
ሺሻฮ

ଵ
																								ሺ30ሻ 

where ܴ௫ሺ࢞ሻ represents any possible regularizer for the 
phase map, including the 4 regularizers discussed in this 
paper. 

2) The general formula for the Newton-Raphson algorithm 
in the line search for PCG: 
Let define a 1D cost function for the optimized step 
size	α: 

				 ݂ሺߙሻ ൌ Ψ൫࢞
ሺሻ   ሺ31ሻ								ሺሻ൯,ሺሻࢊߙ

where	dሺ୬ሻ is the search direction for	࢞ሺାଵሻ by PCG 
algorithm. Using (8), 

				 ݂ሺߙሻ ൌ ሺሻ࢞൫ܮ  ሺሻ൯ࢊߙ  ࢞ଵܴ൫ߚ
ሺሻ   ሺ32ሻ						ሺሻ൯ࢊߙ

where	ܮሺ࢞ሻ ≜ ฮ࢟ െ ฮ࢞ሺሻ݁ܣ
ଶ
. 

Then we update	࢞ as the following: 
ሺାଵሻ࢞			 ൌ ሺሻ࢞  ࢊොߙ

ሺሻ								ሺ33ሻ 
where	ߙො denotes the optimized step size	ߙ and it is 
updated as follows: 

		∴ ሺାଵሻߙ ൌ ሺሻߙ െ
fሶ୬൫α

ሺ୩ሻ൯

fሷ୬ሺαሺ୩ሻሻ
					ሺ34ሻ 

where 

		fሶ୬ሺαሻ ൌ ሺሻࢊ
ᇱ
ൣસܮ൫࢞ሺሻ  ሺሻ൯ࢊߙ
 ࢞ଵસܴ൫ߚ

ሺሻ   ሺ35ሻ			ሺሻ൯൧ࢊߙ

	fሷ୬ሺαሻ ൌ ሺሻࢊ
ᇱ
ൣસܮ൫࢞ሺሻ  ሺሻ൯ࢊߙ

 ࢞ଵસܴ൫ߚ
ሺሻ   ሺ36ሻ			ሺሻࢊሺሻ൯൧ࢊߙ

3) Gradients and Hessian matrices (real unknowns): 
a) The data fit term	ܮሺ࢞ሻ: 

		સܮሺ࢞ሻ ൌ 2ܴ݁ሼ݀݅ܽ݃ሼ݅݁ି࢞ሽሾܣᇱ ሺ࢟ െ ሻሿሽ࢞݁ܣ
ൌ 2ܴ݁ሼࢍሺ࢞ሻሽ																				ሺ37ሻ 

					સܮሺ࢞ሻ ൌ 2ܴ݁ ቄ݀݅ܽ݃ሼ݁ି࢞.∗ ᇱܣ ሺ࢟ െ ሻሽ࢞݁ܣ

 ݀݅ܽ݃ሼ݁ି࢞ሽܣᇱ  ሺ38ሻ					ሽቅ࢞݀݅ܽ݃ሼ݁ܣ

where ܣ ≜ ܣ ∗ ݀݅ܽ݃൛ሺሻൟ, ".*"  means entry-by-
entry multiplication, ࢍሺ࢞ሻ ≜ ݀݅ܽ݃ሼ݅݁ି࢞ሽሾܣᇱ ሺ࢟ െ
 ,ሻ is only used in (36)࢞ሺܮሻሿ. Note that since સ࢞݁ܣ
the equation (38), which is very expensive, does not 
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need to be computed explicitly. Combining (36)-(38) 
yields an efficient expression for	fሷ୬ሺαሻ:  

fሷ୬ሺαሻ ൌ 2 ቀܴ݁ቄࢊሺሻ
ᇱ
ൣሺെࢍሺࢊ_࢞ሻሻ.∗ ࢊ

ሺሻ൧ቅ  ࢈
ᇱ࢈ቁ

 fሷୖ,୬ሺαሻ													ሺ39ሻ 
where	ࢊ_࢞ ≜ ሺሻ࢞  ࢈	,ሺሻࢊߙ ≜ ࢊൟࢊ_࢞ࢋ൛݃ܽ݅݀

ሺሻ, 

and	fሷୖ,୬ሺαሻ ≜ ࢊଵߚ
ሺሻ′સܴ௫ሺࢊ_࢞ሻࢊ

ሺሻ. 
b) The regularizer	ܴଵሺ࢞ሻ: 

(I) Regularizer 1: 
			ܴଵሺ࢞ሻ ൌ  ሺ40ሻ															ଶ‖࢞ܥ‖

							સܴଵሺ࢞ሻ ൌ  ሺ41ሻ															࢞ܥᇱܥ2
					સܴଵሺ࢞ሻ ൌ  ሺ42ሻ														ܥᇱܥ2

In (39),  fሷୖ,୬ሺαሻ  can be simplified as:  fሷୖ,୬ሺαሻ ൌ

ࢊଵฮߚ2
ሺሻฮ


. 

(II) Regularizer 2: 

									ܴଶሺ࢞ሻ ൌ ฮ݁ܥ࢞ฮ
ଶ
									ሺ43ሻ 

																સܴଶሺ࢞ሻ ൌ െ2ܴ݁ሼ݅݁ି࢞.∗ ሾܥᇱ݁ܥ࢞ሿሽ
ൌ െ2ܴ݁ሼࢍሺ࢞ሻሽ																		ሺ44ሻ 

					સܴଶሺ࢞ሻ ൌ 2ܴ݁ ቄ݀݅ܽ݃ሼ݁ି࢞ሽܥᇱ݃ܽ݅݀ܥሼ݁࢞ሽ

െ ݀݅ܽ݃ሼ݁ି࢞.∗ ሺܥᇱ݁ܥ࢞ሻሽቅ										ሺ45ሻ 

where	ࢍሺ࢞ሻ ≜ ݅݁ି࢞.∗ ሾܥᇱ݁ܥ࢞ሿ.  

In  (39),  fሷୖ,୬ሺαሻ ൌ ଵߚ2 ቀܴ݁ቄࢊ
ሺሻᇱൣሺെࢍሺࢊ_࢞ሻሻ.∗

ሺሻ൧ቅࢊ  ࢈
ᇱ࢈ቁ, where	࢈ ≜  .ሺሻࢊൟࢊ_࢞൛݁݃ܽ݅݀ܥ

 (III) Regularizer 3: 

							ܴଷሺ࢞ሻ ൌ߰ሺሾ࢞ܥሿሻ



ୀଵ

							ሺ46ሻ 

		સܴଷሺ࢞ሻ ൌ  ሺ47ሻ						࢞ܥሻൟ࢞ܥᇱ݀݅ܽ݃൛߱టሺܥ
		સܴଷሺ࢞ሻ ൌ ᇱ݀݅ܽ݃൛ܥ ሷ߰ሺ࢞ܥሻൟܥ							ሺ48ሻ 

In (39),  fሷୖ,୬ሺαሻ ൌ ᇱ݀݅ܽ݃൛ଵߚ2 ሷ߰ሺࢊ_࢞ܥሻൟ, where 
 ≜  .ሺሻࢊܥ

 (IV) Regularizer 4: 

			ܴସሺ࢞ሻ ൌ߰ሺ|ሾ݁ܥ࢞ሿ|ሻ



ୀଵ

							ሺ49ሻ 

	સܴସሺ࢞ሻ ൌ െܴ݁൛݅݁ି࢞.∗  ሺ50ሻ				൧ൟ࢞݁ܥ௫ห൯ൟ݁ܥᇱ݀݅ܽ݃൛߱ట൫หܥൣ

સܴସሺ࢞ሻ ൌ െܴ݁ ቄ݀݅ܽ݃൛݁ି࢞.∗  ൧ൟቅ࢞݁ܥ௫|ሻൟ݁ܥ|ᇱ݀݅ܽ݃൛߱టሺܥൣ

ܴ݁ ቄ݀݅ܽ݃ሼ݁ି࢞ሽܥᇱ݀݅ܽ݃൛߱టሺ|݁ܥ௫|ሻൟ݃ܽ݅݀ܥሼ݁࢞ሽቅ  

ܴ݁൛݅ ∗ ݀݅ܽ݃ሼ݁ି࢞ሽܥ′݀݅ܽ݃ሼ ሶ߱ టሺ|݁ܥ௫|ሻ.∗ ሺ݁ܥ௫ሻ./

௫|ሽൟ݁ܥ| ∗ ܴ݁ ቄ݅ ∗ ݀݅ܽ݃ሼ݁ܥ࢞ሽ݃ܽ݅݀ܥሼ݁ି࢞ሽቅ													ሺ51ሻ                    

where	ࢍሺ࢞ሻ ≜ ݅݁ି࢞.∗  ,ሻ൧࢞ሺࢎ௫ห൯ൟ݁ܥᇱ݀݅ܽ݃൛߱ట൫หܥൣ
and	ࢎሺ࢞ሻ ≜  .࢞݁ܥ

In  (39),  fሷୖ,୬ሺαሻ ൌ ଵߚ2 ቀܴ݁ቄࢊ
ሺሻᇱൣሺെࢍሺࢊ_࢞ሻሻ.∗

ሺሻ൧ቅࢊ  ࢈
ᇱ ݀݅ܽ݃൛߱టሺ|ࢎሺࢊ_࢞ሻ|ሻൟ࢈   ,ቁ࢈࢈

where	࢈ ≜ ܴ݁൛݅ ∗ ′݀݅ܽ݃ሼ࢈ ሶ߱ టሺ|ࢎሺࢊ_࢞ሻ|ሻ.∗
൫ࢎሺࢊ_࢞ሻ൯./|ࢎሺࢊ_࢞ሻ|ሽൟ, ̅ݔ denotes the conjugate of	ݔ, 

and ࢈ ≜ ܴ݁൛݅ ∗ ݀݅ܽ݃ሼࢎሺࢊ_࢞ሻሽ࢈തതതൟ. 
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