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Abstract—Regularized iterative reconstruction algorithms for
imaging inverse problems require selection of appropriateregu-
larization parameter values. We focus on the challenging problem
of tuning regularization parameters for nonlinear algorit hms for
the case of additive (possibly complex) Gaussian noise. General-
ized cross-validation (GCV) and (weighted) mean-squared error
(MSE) approaches (based on Stein’s Unbiased Risk Estimate—
SURE) need the Jacobian matrix of the nonlinear reconstruction
operator (representative of the iterative algorithm) with respect
to the data. We derive the desired Jacobian matrix for two types
of nonlinear iterative algorithms: a fast variant of the standard
iterative reweighted least-squares method and the contemporary
split-Bregman algorithm, both of which can accommodate a
wide variety of analysis- and synthesis-type regularizers. The
proposed approach iteratively computes two weighted SURE-type
measures: Predicted-SURE and Projected-SURE (that require
knowledge of noise varianceσ2), and GCV (that does not needσ2)
for these algorithms. We apply the methods to image restoration
and to magnetic resonance image (MRI) reconstruction using
total variation (TV) and an analysis-type ℓ1-regularization. We
demonstrate through simulations and experiments with real
data that minimizing Predicted-SURE and Projected-SURE con-
sistently lead to near-MSE-optimal reconstructions. We also
observed that minimizing GCV yields reconstruction results that
are near-MSE-optimal for image restoration and slightly sub-
optimal for MRI. Theoretical derivations in this work relat ed
to Jacobian matrix evaluations can be extended, in principle, to
other types of regularizers and reconstruction algorithms.
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Index Terms—Regularization parameter, generalized cross-
validation (GCV), Stein’s unbiased risk estimate (SURE), image
restoration, MRI reconstruction

I. I NTRODUCTION

Inverse problems in imaging invariably need image recon-
struction algorithms to recover an underlying unknown object
of interestx from measured datay. Reconstruction algorithms
typically depend on a set of parameters that need to be
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adjusted properly for obtaining good image-quality. Choosing
suitable parameter values is a nontrivial, application-dependent
task and has motivated research on automated parameter
selection based on quantitative measures [1]–[31]. Quantitative
parameter optimization methods can be broadly classified as
those based on the discrepancy principle [1], the L-curve
method [2]–[5], generalized cross-validation (GCV) [6]–[17]
and estimation of (weighted) mean-squared error (MSE) [18]–
[30]. Recently, a new measure of image-quality (different from
GCV and MSE) was introduced in [31] but its applicability
has been demonstrated only for denoising applications [31].

In inverse problems, typically, image reconstruction is per-
formed by minimizing a cost function composed of data-
fidelity term and (one or more) regularization terms. Image
quality in such cases is governed by regularization parameters
that control the bias-variance trade-off (or equivalently, the
balance between image-smoothing and amplification of noise)
in the reconstruction. Using discrepancy principle requires
minimizing the difference between the data-fidelity term and
the noise variance [1] and can lead to over-smoothing [22]. In
the L-curve method, parameters are chosen so as to maximize
the curvature of a (L-shaped) parametric curve (constructed
from the components of the cost function) [2]–[4]. This
method can be computationally expensive and sensitive to
curvature evaluation [5], [25]. GCV is a popular criterion
used for parameter selection in a variety of inverse problems,
especially for linear reconstruction algorithms [7]–[16]. The
advantage of GCV is that it does not require knowledge of
noise variance and is known to yield regularization parameters
for linear algorithms that asymptotically minimize the true
MSE [7]. Some extensions of GCV are also available for
nonlinear algorithms [15]–[17] but they are computationally
more involved (see Section III-A) than for linear algorithms.

MSE-estimation-based methods can be attractive alterna-
tives to GCV since image quality is often quantified in terms
of MSE in image reconstruction problems. For Gaussian
noise, Stein’s unbiased risk estimate (SURE) [18] provides
a practical means of unbiasedly assessing MSE for denoising
problems. Unlike GCV, SURE requires knowledge of noise
statistics but is optimal even in the nonasymptotic regime.
SURE has been successfully employed for optimally adjusting
parameters of a variety of denoising algorithms [32]–[36].For
ill-posed inverse problems, it is not possible to estimate MSE
(except in some special instances [22]–[25]) sincey may only
contain partial information aboutx [24, Sec. IV]. In such
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cases, the principles underlying SURE may be extended to
estimate weighted variants of MSE (e.g., by evaluating the
error only on components ofx that are accessible fromy)
[19], [25], [26]. Several weighted SURE-type approaches have
been proposed and employed for (near) optimal parameter
tuning in ill-posed inverse problems, e.g., linear restoration
[19], nonlinear noniterative restoration [26], image recon-
struction using sparse priors [29], [30],noniterative parallel
magnetic resonance image (MRI) reconstruction [27], non-
linear restoration [25], [28] and nonlinear image upsampling
[25] using iterative shrinkage-thresholding type algorithms that
specifically apply to synthesis formulations [25], [28], [37],
[38] of image reconstruction problems. Synthesis formulations
preclude popular regularization criteria such as total variation
(TV) and smooth edge-preserving regularizers (e.g., Huber
[39], smoothed-Laplacian [40]) that belong to the class of
analysis formulations. Bayesian methods [41]–[45] have been
employed for parameter tuning in image restoration problems
involving analysis-type quadratic regularizers [41], [42] and
TV [43]–[45].

This paper focusses on computing the nonlinear version of
GCV (denoted by NGCV) [16], [17] and weighted SURE-
type measures [20], [24] for nonlinear iterative reconstruction
algorithms that can tackle a variety of nonquadratic regular-
ization criteria including synthesis- and analysis-type (e.g.,
TV) regularizers. Both NGCV and weighted SURE-measures
require the Jacobian matrix of the reconstruction operator(rep-
resentative of the iterative algorithm) evaluated with respect to
the data [16], [17], [24] (see Section III). We derive the desired
Jacobian matrix for two types of computationally efficient
algorithms: the contemporary split-Bregman (SB) algorithm
[46] and IRLS-MIL [47], [48] that uses the matrix inversion
lemma (MIL) to accelerate standard iterative reweighted least
squares (IRLS) [47], [48]. Our work can be interpreted as
an extension to previous research [25]–[30] that focussed on
applying weighted SURE-type measures to inverse problems
with noniterative algorithms [26], [27] and to iterative image
reconstruction based on sparsity priors [29], [30] and synthesis
formulations [25], [28].

In this paper, we compute Predicted-SURE [20], [21],
Projected-SURE [24] and NGCV [16], [17] for nonlinear
image restoration and MRI reconstruction (from partially sam-
pled Cartesian k-space data) using TV and an analysis-typeℓ1-
regularization. We also illustrate using simulations (forimage
restoration and MRI reconstruction) and experiments with real
data (for MRI reconstruction) that both Predicted-SURE and
Projected-SURE provide near-MSE-optimal selection of regu-
larization parameters in these applications. We also observed
that NGCV yielded near-MSE-optimal selections for image
restoration and slightly sub-optimal parameter values forMRI
reconstruction.

The paper is organized as follows. Section II describes
the problem mathematically and presents our notation and
mathematical requisites essential for theoretical derivations.
Section III briefly reviews (N)GCV and weighted SURE-
type measures. Section IV describes in detail the deriva-
tion of Jacobian matrices for the considered algorithms. We
present experimental results for image restoration and MRI

reconstruction in Section V and discuss reconstruction quality
and memory / computational requirements of the considered
algorithmsin Section VI. Finally, we draw our conclusions in
Section VII.

II. N OTATION AND PROBLEM DESCRIPTION

We use the following linear data model

y = Ax+ ξξξ, (1)

that is appropriate for many imaging inverse problems includ-
ing image restoration and MRI reconstruction from partially
sampled Cartesian k-space data. In (1),y ∈ ΩM is the
observed data,A ∈ ΩM×N is a known (rectangular) matrix
(typically M ≤ N ), and Ω is either R or C depending
on the application. We assumex ∈ ΩN is an unknown
deterministic quantity. For image restoration,Ω = R, M = N
and we assume thatA is circulant, while for MRI with partial
Cartesian k-space sampling,1 Ω = C andA = MQ, where
Q ∈ CN×N is the orthonormal DFT matrix,M is theM ×N
downsampling matrix that satisfiesMM⊤ = IM and IM is
the identity matrix of sizeM .

Throughout the paper,(·)⊤ denotes the transpose of a real
vector or matrix,(·)⋆ denotes the complex conjugate,(·)H is
the Hermitian-transpose,(·)

R
and (·)I indicate the real and

imaginary parts, respectively, of a complex vector or matrix.
Them-th element of any vectory is denoted byym and the
mn-th element of any matrixA is written as[A]mn.

For simplicity, we modelξξξ ∈ ΩM as an i.i.d. zero-
mean Gaussian random vector with covariance matrixΛΛΛ =
σ2IM and probability densitygΩ(ξξξ). For Ω = R, gR(ξξξ) =
(2πσ2)−

M
2 exp(−ξξξ⊤ξξξ/2σ2), while for Ω = C, we assume

ξξξ is an i.i.d. complex Gaussian random vector (which is
a reasonable model for MRI applications), sogC(ξξξ) =
(πσ2)−M exp(−ξξξHξξξ/σ2). SURE-type methods discussed in
this paper (see Section III-B) can be readily extended to
more general cases (such asξξξ with non-zero mean and
covarianceΛΛΛ 6= σ2IM ) using the generalized SURE (GSURE)
methodology developed in [24].

Given datay, we obtain an estimate of the unknown image
x by minimizing a cost function based on (1) composed of
a data-fidelity term and some regularization that is designed
using “smoothness” penalties or prior information aboutx:

uθθθ(y)
△
= argmin

u

{
J (u)

△
=

1

2
‖y −Au‖22 +Ψ(u)

}
, (2)

where ‖ · ‖2 represents the Euclidean norm,Ψ represents
a suitable regularizer that is (possibly nonsmooth, i.e., not
differentiable everywhere) convex anduθθθ : ΩM → ΩN may be
interpreted as a (possibly nonlinear) mapping or an algorithm,
representative of the minimization in (2), that acts ony to yield
the estimateuθθθ(y). In practice, the mappinguθθθ depends on
one or more parametersθθθ that need to be set appropriately
to obtain a meaningful estimateuθθθ(y). In problems such as
(2), typically, θθθ = λ is a scalar known as the regularization

1Partial k-space sampling on Cartesian grids is relevant foraccelerating
3-D MR acquisition in practice, where undersampling is typically applied in
the phase-encode plane [49].
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parameter that plays a crucial role in balancing the data-fidelity
and regularization terms: smallλ-values can lead to noisy
estimates while a largeλ results in over smoothing and loss
of details. Quantitative criteria such as GCV [6], [16], [17]
and (weighted) SURE-type measures [24], [25] can be used
for tuningθθθ of a nonlinearuθθθ, but they require the evaluation
of the Jacobian matrix [16], [17], [24],J(uθθθ ,y) ∈ ΩN×M

for Ω = R,C (see Sections III-A and III-B), consisting of
partial derivatives of the elements{uθθθ,n(y)}Nn=1 of uθθθ(y) with
respect to{ym}Mm=1.

Definition 1: Let uθθθ : RM → RN be differentiable (in the
weak sense of distributions [50, Ch. 6]). The Jacobian matrix
J(uθθθ,y) ∈ RN×M evaluated aty ∈ RM is specified using its
elements as

[J(uθθθ ,y)]nm
△
=

∂uθθθ,n(z)

∂zm

∣∣∣∣
z=y

. (3)

Definition 2: Let uθθθ : CM → ΩN (with Ω = R or C)
be individually analytic [51] with respect toy

R
and yI (in

the weak sense of distributions [50, Ch. 6]). The Jacobian
matricesJ(uθθθ,y), J(uθθθ,y

⋆) ∈ CN×M are specified using
their respective elements as [51, Eq. 13], [52]

[J(uθθθ,y)]nm
△
=

1

2

(
∂uθθθ,n(z)

∂zRm
− ı

∂uθθθ,n(z)

∂zIm

)∣∣∣∣
z=y

,(4)

[J(uθθθ,y
⋆)]nm

△
=

1

2

(
∂uθθθ,n(z)

∂zRm
+ ı

∂uθθθ,n(z)

∂zIm

)∣∣∣∣
z=y

.(5)

Remark 1:Whenuθθθ : CM → ΩN is prescribed in terms of
y andy⋆, J(uθθθ,y) is evaluated treatingy as a variable and
y⋆ as a constant [52], [53]. Similarly,J(uθθθ,y

⋆) is evaluated
treatingy as constant [52], [53].

For common (and some popular) instances ofJ in (2),
uθθθ satisfies the hypotheses in Definitions 1 and 2 and in
turn allows the computation of GCV and weighted SURE-
type measures for reliable tuning ofθθθ as illustrated in our
experiments.

III. G ENERALIZED CROSS-VALIDATION AND WEIGHTED

SURE-TYPE MEASURES

A. Generalized Cross-Validation (GCV)

GCV is based on the “leave-one-out” principle [7] that leads
to a simple expression in the case of linear algorithms: for
a generic linear mappinguθθθ(y) = Fθθθy, the GCV measure
(denoted by LGCV) is given by [7]

LGCV(θθθ)
△
=

M−1‖(IM −AFθθθ)y‖22
(1−M−1tr{AFθθθ}})2

. (6)

For nonlinear estimatorsuθθθ(y), we consider the following
GCV measure (denoted by NGCV)

NGCV(θθθ)
△
=

M−1‖y−Auθθθ(y)‖22
(1−M−1R{tr{AJ(uθθθ,y)}})2

, (7)

adapted from [17, Sec. 3] that was originally derived using
the standard “leave-one-out” principle for nonlinear algorithms
[16]. We take the real part,R{·}, in the denominator of (7)
specifically for the case ofΩ = C to avoid spurious complex
entries while evaluating NGCV(θθθ) numerically.

LGCV has been more widely used [7]–[11], [13], [14]
(for linear algorithms) than NGCV (for nonlinear algorithms),
perhaps because NGCV is computationally more involved than
LGCV. Recently, Liaoet al. proposed GCV-based automatic
nonlinear restoration methods using alternating minimization
in [54], [55]. Although their methods are nonlinear overall,
they rely on linear sub-problems arising out of alternatingmin-
imization and employ LGCV for parameter tuning. In contrast,
we propose to tackle NGCV (7) directly and demonstrate its
use in nonlinear image restoration and MRI reconstruction.

B. Weighted SURE-Type Measures

In the context of image reconstruction, the mean-squared
error (risk) measure,

MSE(θθθ)
△
= N−1‖x− uθθθ(y)‖22 (8)

is often used to assess image quality and is an attractive
option for optimizing θθθ. However, MSE(θθθ) cannot be di-
rectly computed since the cross-termxHuθθθ(y) depends on
the unknownx (‖x‖22 is an irrelevant constant independent
of θθθ) and needs to be estimated in practice. For denoising
applications, i.e.,A = IN in (1), the desired cross-term
can be manipulated asxHuθθθ(y) = (y − ξξξ)Huθθθ(y) and the
statistics ofξξξ may then be used to estimateξξξHuθθθ(y). In
the Gaussian setting,ξξξ ∼ N (0, σ2IN ), Stein’s result [18]
(for Ω = R) can be used for this purpose and leads to
Eξξξ{ξξξ⊤uθθθ(y)} = σ2Eξξξ{tr{J(uθθθ,y)}}, whereEξξξ{·} represents
expectation with respect toξξξ. Replacingξξξ⊤uθθθ(y) in MSE(θθθ)
with σ2 tr{J(uθθθ,y)} thus yields the so-called Stein’s unbiased
risk estimate (SURE) [18],

SURE(θθθ)
△
= N−1‖y − uθθθ(y)‖22 − σ2

+2σ2N−1tr{J(uθθθ,y)}, (9)

that is an unbiased estimator of MSE(θθθ), i.e.,Eξξξ{MSE(θθθ)} =
Eξξξ{SURE(θθθ)}. The accuracy of SURE(θθθ) generally increases
with N (law of large numbers), so it is appealing for
image-processing applications (whereN is large, typically
N ≥ 2562) [36]. Using SURE(θθθ) as a practical alternative
to MSE(θθθ) requires (in addition toσ2) the evaluation of
tr{J(uθθθ,y)} that can be performed analytically for some
special types ofdenoisingalgorithms [32]–[35] or numerically
using the Monte-Carlo method in [36, Th. 2] for a general
(iterative / noniterative)denoisingalgorithmuθθθ.

For inverse problems modeled by (1),xHuθθθ(y) can be ma-
nipulated in terms ofy (andξξξ and thus allows the estimation
of MSE(θθθ) using statistics ofξξξ) only in some special instances,
e.g., whenuθθθ(y) ∈ R{AH}, the range space ofAH [24, Sec.
IV], 2 or whenA has full column rank [25, Sec. 4].2 In many
applications,A has a nontrivial null-spaceN{A}: information
aboutx contained inN{A} is not accessible fromy (and
statistics ofξξξ) and it is impossible to estimate MSE(θθθ) [24] in
such cases. An alternative is to compute the error using only
the components ofx that lie in the orthogonal complement
of N(A): N(A)⊥ = R{AH} [24], [25]; these components

2If uθθθ ∈ R{AH}, we can writeuθθθ = AHgθθθ for some operatorgθθθ , so
thatxHuθθθ(y) = (y − ξξξ)Hgθθθ(y) [23, Sec. 3.1]. Alternatively, ifA has full
column rank, thenxHuθθθ(y) = (y − ξξξ)HA(AHA)−1uθθθ(y).
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are in turn accessible fromy (andξξξ). Such an error measure
corresponds to projecting3 the error(x−uθθθ(y)) on toR{AH}
and is given by [24], [25]

Projected-MSE(θθθ)
△
= M−1‖P(x− uθθθ(y))‖22, (10)

whereP = AH(AAH)†A is the projection operator and(·)†
represents pseudo-inverse.

Another quadratic error measure for inverse problems
that is amenable to estimation (using statistics ofξξξ)3 is
Predicted-MSE [20], [21] that corresponds to computing the
error in the data-domain:

Predicted-MSE(θθθ)
△
= M−1‖A(x− uθθθ(y))‖22. (11)

Both (10) and (11) can be interpreted as particular instances
of the following general weighted form:

WMSE(θθθ)
△
= M−1‖A(x− uθθθ(y))‖2W, (12)

where‖x‖2W
△
= xHWx, andW is a Hermitian-symmetric,

W = WH, positive definite,W ≻ 0, weighting matrix.
For (11), W = IM and the overall weighting is provided
by the eigenvalues ofAHA, while for (10) it is easy to see
that W = Winv

△
= (AAH)† sincePHP = P. For image

restoration with circulantA, Winv can be easily implemented
using FFTs. For MRI with partial Cartesian k-space sampling,
A = MQ (see Section II) leads toWinv = (MQQHMH)† =
IM , so Projected-MSE and Predicted-MSE are equivalent and
correspond to evaluating squared-error at the sample locations
in k-space.

Similar to SURE(θθθ), an estimator for WMSE(θθθ) can be
derived under the Gaussian assumption as summarized in the
following results.

Lemma 1:Let uθθθ : ΩM → ΩN be differentiable (forΩ =
R) or individually analytic (forΩ = C with respect to real
and imaginary parts of its argument), respectively, in the weak
sense of distributions [50, Ch. 6]. Then, for any deterministic
T ∈ ΩM×N satisfyingEξξξ{|[Tuθθθ(y)]m|} < ∞, m = 1 . . .M ,
we have that

Eξξξ{ξξξHTuθθθ(y)} = σ2Eξξξ{tr{TJ(uθθθ,y)}}. (13)

The proof is very similar to those in [34, Lemma 1] [24, Th.
1] for Ω = R, while it constitutes a straightforward extension
of [24, Th. 1] forΩ = C and is presented as supplementary
material (due to page limits).4

Theorem 1:Let uθθθ andT = WA satisfy the hypotheses
in Lemma 1 forA ∈ ΩM×N in (1) and for a Hermitian-
symmetric, positive definite matrixW ∈ ΩM×M . Then for
Ω = R or C, the random variable

WSURE(θθθ)
△
= M−1‖y −Auθθθ(y)‖2W − σ2

M
tr{W}

+
2σ2

M
R{tr{WAJ(uθθθ ,y)}} (14)

3SincePHP = P, the cross-termxHPHPuθθθ(y) in Projected-MSE(θθθ)
(10) is nothing butxHAH(AAH)†Auθθθ(y) = (y−ξξξ)H(AAH)†Auθθθ(y).
For Predicted-MSE(θθθ) (11), we have thatxHAHAuθθθ(y) = (y −
ξξξ)HAuθθθ(y).

4Supplementary material containing a proof of Lemma 1 and additional
illustrations for experimental results is available at http://tinyurl.com/supmat.

is an unbiased estimator of WMSE(θθθ) in (12), i.e.,
Eξξξ{WMSE(θθθ)} = Eξξξ{WSURE(θθθ)}.
The proof is straightforward and uses (13) to estimate
ξξξHWAuθθθ(y) in WMSE(θθθ). Similar to SURE(θθθ), WSURE(θθθ)
is independent ofx and depends purely on the noise variance
σ2, the data and the reconstruction algorithm. The Monte-
Carlo scheme [36, Th. 2] that uses numerical differentiation for
a general nonlinearuθθθ may be adapted to iteratively estimate
tr{WAJ(uθθθ,y)} in (14) for the case ofΩ = R by considering
WAuθθθ instead ofuθθθ in [36, Eq. 14]. In this paper, we
propose to evaluateJ(uθθθ,y) analytically forΩ = R andC.
This process depends on the choice of the estimatoruθθθ, the
regularizationΨ in (2) and the nature of application (e.g.,
Ω = R for restoration andΩ = C for MRI), and therefore
needs to be accomplished on a case-by-case basis.

IV. EVALUATION OF THE JACOBIAN MATRIX J(uθθθ ,y)

For nonquadratic regularizers, there is no closed-form ex-
pression for the estimatoruθθθ in (2), so it is not possible to
evaluateJ(uθθθ,y) in (14) directly. In this section, we show
how to computeJ(uθθθ,y) recursively for two types of iterative
algorithms used for minimizingJ in (2). Henceforth, we leave
implicit the dependence ofuθθθ(y) ony and drop the subscriptθθθ
when necessary, so thatu represents either the estimator or the
iteratively-reconstructed estimate depending on the context.

We focus on IRLS-MIL [47], [48] that is a fast variant of
the standard iterative reweighted least-squares (IRLS) and the
split-Bregman (SB) algorithm [46] that is based on variable
splitting. Both algorithms are computationally efficient,5 and
can be employed for image restoration and MRI reconstruction
[46]–[48], [56]. Furthermore, they can accommodatea general
class of regularization criteria of the form

Ψ(Ru) = λ

L∑

l=1

Φl

(
P∑

p=1

|[Rp u]l|q
)
, (15)

whereλ > 0 is the regularization parameter,Φl are potential
functions,R ∈ RR×N with R

△
= [R⊤

1 · · ·R⊤
P ]

⊤, Rp ∈ RL×N

are regularization operators (e.g., finite differences, frames,
etc.) andR = PL. We consider the following convex instances
of (15) that are popularly used for image restoration and MRI
reconstruction:

• Analysisℓ1-regularization (Φl(x) = x, q = 1):

Ψℓ1(Ru)
△
= λ‖Ru‖1 = λ

P∑

p=1

L∑

l=1

|[Rp u]l| , (16)

• Total variation (TV) (Φl(x) =
√
x, q = 2):

ΨTV(Ru)
△
= λ

L∑

l=1

√√√√
P∑

p=1

|[Rp u]l|2. (17)

We deriveJ(uθθθ,y) for image restoration with the IRLS-MIL
algorithm (see Sections IV-A–IV-B) and MRI reconstruction

5IRLS-MIL has been demonstrated to converge faster than conventional
methods (e.g., nonlinear conjugate gradient) [47], [48], while SB is more
versatile and computationally efficient than fixed-point continuation and
graph-cuts-based solvers [46].
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with the SB algorithm (see Sections IV-C–IV-D). Derivations
of J(uθθθ,y) for other combinations (i.e., image restoration with
the SB algorithm and MRI reconstruction with the IRLS-MIL
algorithm) can be accomplished in a similar manner and are
not considered for brevity.

The derivations in Sections IV-A–IV-D can also be ex-
tended, in principle, to other instances of (15) such as smooth
convex edge-preserving regularizers forq = 1, e.g., Huber
[39], Fair or smoothed-Laplacian [48] and synthesis forms,
e.g., by considering a variablew to be estimated such that
x = Sw andASw in (1) andΦ(w) in (15), for some potential
functionΦ and synthesis operatorS [25], [28], [37], [38].

A. Image Restoration with IRLS-MIL Algorithm

IRLS-MIL uses matrix-splitting [57, pp. 46-50] and the
matrix inversion lemma (MIL) for efficient preconditioning
and fast solving of iteration-dependent linear systems arising
in the standard IRLS scheme [47], [48]. We summarize the
IRLS-MIL iterations below (detailed derivation of IRLS-MIL
can be found in [47], [48]) for image restoration (Ω = R in
(1)): for any matrixC such thatC ≻ A⊤A, i.e.,

z⊤(C−A⊤A)z > 0, ∀ z ∈ RN , (18)

at outeri-iteration of IRLS-MIL, we perform innerj-iterations
involving the following two-steps:

u(i+1,j+1) = b(i+1,j) −C−1 R⊤ v(i+1,j),(19)

solve{G(i)v(i+1,j) = Rb(i+1,j)} for v(i+1,j), (20)

where

b(i+1,j) △
= C−1A⊤y + (IN −C−1A⊤A)u(i+1,j), (21)

G(i) △
= ΓΓΓ(i) + R C−1R⊤ and ΓΓΓ(i) △

= diag{γγγ(i)} is a
diagonal matrix constructed fromγγγ(i) ∈ RR with γγγ(i) △

=

[γγγ
(i)⊤
1 · · ·γγγ(i)⊤

P ]⊤. The l-th element ofγγγ(i)
p ∈ RL for (15) is

given byγ(i)
pl =

∣∣∣[Rp u
(i+1,0)]l

∣∣∣
2−q

[
qλΦ′

l

(
P∑

s=1

∣∣∣[Rs u
(i+1,0)]l

∣∣∣
q
)]−1

, (22)

whereΦ′ denotes the first derivative ofΦ. For instance,

γ
(i)
pl = λ−1|[Rp u

(i+1,0)]l|, (23)

for the ℓ1-regularization in (16), while for TV-regularization
(17),

γγγ(i) = 1P ⊗ γ̆γγ(i), (24)

where 1P = [1 · · · 1]⊤ is a P × 1 vector, ⊗ denotes the
Kronecker product and thel-th element of̆γγγ(i) ∈ RL is given

by γ̆
(i)
l = λ−1

√∑P
s=1

∣∣[Rs u(i+1,0)]l
∣∣2.

WhenR is composed of sparsifying operators (e.g., finite
differences, wavelets, frames, etc.),Rpu

(i,0) tends to become
sparse for sufficiently largei, so for practically appealing
instances ofΨ (e.g., when1 ≤ m < 2 and Φ is an edge-
preserving potential function or for nonsmooth instances such
as those based on theℓ1-norm or TV),ΓΓΓ(i) will become sparse
too. So in the standard IRLS scheme (which utilizes[ΓΓΓ(i)]−1

rather thanΓΓΓ(i) [47, Eqs. 3-6]), a small positive additive
constant is included inΓΓΓ(i) for maintaining numerical stability
of [ΓΓΓ(i)]−1—this is often referred to as corner-rounding [47].
However no such corner-rounding is required for the IRLS-
MIL scheme [47], [48] as it only utilizesΓΓΓ(i).

To solve (20), we apply a matrix-splitting strategy (similar
to [47, Eq. 7]) toG(i) that leads to an iterative scheme for
(20) (with iteration indexk) with the following update step:

v(i+1,j,k+1) = D−1
ΓΓΓ(i)(Rb(i+1,j) +Hρv

(i+1,j,k)), (25)

whereDΓΓΓ(i)
△
= ΓΓΓ(i) + ρIR is an invertible diagonal matrix,

Hρ
△
= ρIR −R C−1R⊤ and

ρ > max eigval{R C−1R⊤} (26)

depends only onA (via C) and R and can therefore be
precomputed. In practice, we performK iterations of (25)
and apply the final updatev(i+1,j,K) in place ofv(i+1,j) in
(19). We prefer (25) over a PCG-type solver for (20) as (25)
is linear in bothb(·) andv(·) and decouples the shift-variant
componentΓΓΓ(i) from the rest of terms inG(i): these features
simplify the analytical derivation ofJ(uθθθ,y) for IRLS-MIL
as demonstrated next.

B. Jacobian Matrix Derivation for IRLS-MIL Algorithm

Since b(·) and v(·) are functions ofy (via u(·)), using
linearity of (3), at the end ofK iterations of (25), we get
the Jacobian matrix update corresponding tou(i+1,j+1) from
(19) as

J(u(i+1,j+1),y) = J(b(i+1,j),y) −
C−1R⊤ J(v(i+1,j,K),y). (27)

From (21), we get thatJ(b(i+1,j),y) = C−1A⊤ + (IN −
C−1A⊤A) J(u(i+1,j),y). To obtain J(v(i+1,j,K),y), we
derive a recursive update forJ(v(i+1,j,k+1) ,y) from (25)
using a straightforward application of product rule for Jacobian
matrices and the fact that (25) involves only a diagonal matrix
D−1

ΓΓΓ(i) :

J(v(i+1,j,k+1) ,y) = D−1
ΓΓΓ(i)

(
R J(b(i+1,j),y)

+Hρ J(v(i+1,j,k),y)
)

−D−2
ΓΓΓ(i) Dv J(γγγ(i),y), (28)

whereDv
△
= diag{Rb(i+1,j) + Hρv

(i+1,j,k)}. Using chain
rule for Jacobian matrices [52], we have that

J(γγγ(i),y) = J(γγγ(i),u(i+1,0)) J(u(i+1,0),y), (29)

where J(γγγ(i),u(i+1,0)) ∈ RR×N constitutes derivatives of
{γ(i)

l }Rl=1 with respect to{un}Nn=1, evaluated atu(i+1,0) and
can be computed readily analytically for the regularizers in
(15) using (22). For theℓ1-regularization6 Ψℓ1 in (16),

J(γγγ(i),u(i+1,0)) = λ−1diag{τττ (i)}R, (30)

6The derivatives are interpreted in the weak sense of distributions [50, Ch.
6] whenever conventional differentiation does not apply.
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where the elements ofτττ (i) ∈ RR are τ
(i)
l

△
=

sign([Ru(i+1,0)]l).
For TV-regularizationΨTV in (17), we get (using tedious,

but elementary calculus) that

J(γγγ(i),u(i+1,0)) = 1P ⊗
(
λ−1

P∑

p=1

diag{ωωω(i)
p }Rp

)
, (31)

where the elements ofωωω(i)
p ∈ RL are given by

ω
(i)
pl

△
=

[Rpu
(i+1,0)]l√∑P

s=1 |[Rsu(i+1,0)]l|2
=

[Rpu
(i+1,0)]l

λγ̆
(i)
l

, (32)

with the assumption thatω(i)
pl = 0 whenever[Rpu

(i+1,0)]l =
0, p = 1 . . . P .

Thus, in addition to running (19), (25) for obtainingu(i,j),
we propose to run the sequence of iterations (27)-(28) using
(29)-(32) for iteratively evaluatingJ(u(i,j),y), (and thus,
NGCV(θθθ) and WSURE(θθθ)) at any stage of IRLS-MIL.

C. MRI Reconstruction with Split-Bregman Algorithm

The split-Bregman (SB) algorithm [46] for solving (2) is
based on a variable splitting strategy [46], [49], [56], where
an auxiliary variablev ∈ CR is used to artificially introduce
the constraintv = Ru and separateRu from Ψ leading to

min
u,v

1

2
‖y −Au‖22 +Ψ(v) subject tov = Ru (33)

that is equivalent to (2). The above constrained problem
is then solved using the so-called Bregman-iterations [46,
Eqs. (2.9)-(2.10)] that consists of alternating between the
minimization of an augmented Lagrangian (AL) function,7

L(u,v) △
= 1

2‖y −Au‖22 + Ψ(v) + µ
2 ‖v −Ru− ηηη‖22, jointly

with respect to(u,v) [46, Eq. (3.7)] and a simple update step
[46, Eq. (3.8)] for a Lagrange-multiplier-like vector,ηηη ∈ CR,
for the constraint in (33). The penalty parameterµ > 0
does not influence the final solution of (33) and (2), but
governs the convergence speed of the Bregman-iterations [46].
In practice, the joint-minimization step is often replacedby
alternating minimization [46, Sec. 3.1], i.e.,L is minimized
with respect tou andv one at a time, which decouples the
minimization step and simplifies optimization. We summarize
the SB algorithm below for solving (33) (and equivalently (2),
for MRI reconstruction):

u(i+1) = B−1
µ [AHy + µR⊤(v(i) − ηηη(i))], (34)

v(i+1) = dΨ(̺̺̺
(i))

△
= argmin

v

{
Ψ(v) +

µ

2
‖v − ̺̺̺(i)‖22

}
,

(35)

ηηη(i+1) = ̺̺̺(i) − v(i+1), (36)

where Bµ
△
= AHA + µR⊤R. Step (35) corresponds to a

denoising problem to which we associate a denoising operator
dΨ : CR → CR that acts on

̺̺̺(i) △
= Ru(i+1) + ηηη(i) (37)

7For (33),L is equivalent to the sum of the Bregman-distance [46] and a
quadratic penalty term for the constraint in (33) up to irrelevant constants.

to yield v(i+1). For a generalΨ such as (15), (35) can be
solved iteratively in which casedΨ is representative of the
iterative scheme used for (35). However, for several special
instances ofΨ [58, Sec. 4] including (16)-(17), one can
solve (35) exactly anddΨ admits an analytical closed-form
expression. Specifically for (16)-(17), it can be shown that
(35) further decouples in terms of the elements{vr}Rr=1 of v,
i.e., dΨ is a point-wise operator such thatv(i+1)

r = dΨ(̺
(i)
r ),

r = 1 . . . R.
Before proceeding, it is helpful to introduceβββ(i) △

= 1P ⊗
β̆ββ
(i)

, where thel-th element ofβ̆ββ
(i) ∈ RL is given byβ̆(i)

l
△
=√∑P

p=1 |̺
(i)
(p−1)L+l|2.ThendΨ for (16)-(17) can be obtained

as [46], [49]:

dℓ1(ρ
(i)
r ) = ̺(i)r

(
1− λ |µ ̺(i)r |−1

)
1(|̺(i)r | > λ/µ),(38)

dTV(ρ
(i)
r ) = ̺(i)r

(
1− λ (µβ(i)

r )−1
)
1(β(i)

r > λ/µ),(39)

where1(·) is an indicator function that takes the value1 when
the condition in its argument is satisfied and is0 otherwise.

D. Jacobian Matrix Derivation for Split-Bregman Algorithm

We note thatu(·), v(·), ηηη(·) and ̺̺̺(·) are implicit functions
of y and y⋆. Therefore, we evaluate8 J(u(i),y) using (34)
and the linearity of (4) to get that

J(u(i+1),y) = B−1
µ [AH + µR⊤(J(v(i),y) − J(ηηη(i),y) ) ]. (40)

For the complex-valued case (Ω = C), we also need to
evaluateJ(u(i+1),y⋆) as explained next. ForJ(u(i+1),y⋆),
we treaty as a constant in (34) (see Remark 1) so that

J(u(i+1),y⋆) = µB−1
µ R⊤(J(v(i),y⋆) − J(ηηη(i),y⋆) ). (41)

For brevity, henceforth we usez to represent eithery or y⋆

as required. From (35)-(36), we have that

J(v(i+1), z) = J(dΨ(̺̺̺
(i)), z), (42)

J(ηηη(i+1), z) = J(̺̺̺(i), z)− J(v(i+1), z). (43)

Using chain rule forJ(dΨ(̺̺̺
(i)), z) [53, Th. 1], we get that

J(dΨ(̺̺̺
(i)), z) = J(dΨ, ̺̺̺

(i)) J(̺̺̺(i), z)

+J(dΨ, ̺̺̺
(i)⋆) (J(̺̺̺(i), z⋆))⋆, (44)

whereJ(̺̺̺(i), z) = RJ(u(i+1), z)−J(ηηη(i), z) from (37). Thus,
due to (44), bothJ(u(·),y) and J(u(·),y⋆) are required as
mentioned earlier.

For the case ofℓ1-regularization (16),dℓ1 in (38) depends
only on̺(i)r and̺(i)⋆r , soJ(dℓ1 , ̺̺̺

(i)) andJ(dℓ1 , ̺̺̺
(i)⋆) become

diagonal matrices:

J(dℓ1 , ̺̺̺
(i)) = D

1,̺̺̺(i)

(
IR − λ

2µ
D−1

|̺̺̺(i)|

)
, (45)

J(dℓ1 , ̺̺̺
(i)⋆) =

λ

2µ
D1,̺̺̺(i) D2

̺̺̺(i)D
−3
|̺̺̺(i)|, (46)

8 The derivatives are interpreted in the weak sense of distributions [50, Ch.
6] whenever conventional differentiation does not apply.
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where

D1,̺̺̺(i)
△
= diag

{{
1(|̺(i)r | > λ/µ)

}R

r=1

}
, (47)

D̺̺̺(i)
△
= diag{̺̺̺(i)}, (48)

D|̺̺̺(i)|
△
= diag

{{
|̺(i)r |

}R

r=1

}
. (49)

For the case of TV-regularization (17), we apply (tedious,
but elementary) product rule to obtain

J(dTV, ̺̺̺
(i)) = D1,βββ(i)

[
IR − λ

µ
D−1

βββ(i)

+
λ

µ
D̺̺̺(i) D−2

βββ(i)

(
1P ⊗ J(β̆ββ

(i)
, ̺̺̺(i))

)]
,

(50)

J(dTV, ̺̺̺
(i)⋆) =

λ

µ
D1,βββ(i) D̺̺̺(i) D−2

βββ(i)

×
(
1P ⊗ (J(β̆ββ

(i)
, ̺̺̺(i)))⋆

)
, (51)

where

J(β̆ββ
(i)
, ̺̺̺(i)) =

1

2
(1⊤P ⊗D−1

β̆ββ
(i))D

⋆
̺̺̺(i) , (52)

Dβββ(i)
△
= diag{βββ(i)}, (53)

D1,βββ(i)
△
= diag

{{
1(β(i)

r > λ/µ)
}R

r=1

}
, (54)

D
β̆ββ

(i)
△
= diag{β̆ββ(i)}. (55)

Thus, similar to the case of IRLS-MIL, we propose to run (34)-
(36) for obtainingu(i) and (40)-(55) for iteratively evaluating
J(u(i),y) (and thus, NGCV(θθθ) and WSURE(θθθ)) at any stage
of the SB algorithm.

E. Monte-Carlo Trace Estimation

The Jacobian matricesJ(·, ·) in Sections IV-B and IV-D
have enormous sizes for typical reconstruction settings and
cannot be stored and manipulated directly to compute the
desired traces,tr{AJ(uθθθ,y)} in (7) and tr{WAJ(uθθθ,y)}
in (14). So we use a Monte-Carlo method to estimate
tr{AJ(uθθθ,y)} and tr{WAJ(uθθθ,y)} that is based on the
following well-established identity [12], [59]–[61].

Proposition 1: Let n ∈ RM be an i.i.d. zero-mean random
vector with unit variance andT ∈ ΩM×M (for Ω = R or C)
be deterministic with respect ton. Then

En{n⊤ Tn} = tr{T}. (56)

For practical applications,En{·} in (56) can be replaced
by sample mean,1/Nr

∑Nr

i=1 n
⊤
i Tni, with Nr independent

realizations{ni}Nr

i=1. In image-processing applications where,
typically, M is large andT has a sparse off-diagonal struc-
ture, t̂T

△
= n⊤ Tn (corresponding toNr = 1) provides

a reliable estimate oftr{T} [11], [12], [25], [28]. To use
this type of stochastic estimation fortr{AJ(uθθθ,y)} and
tr{WAJ(uθθθ,y)}, we adopt the procedure applied in [25],
[28]: we take products withn in (27)-(29), (40)-(44) and
store and update vectors of the formJ(u(·), ·)n, J(v(·), ·)n,

J(ηηη(·), ·)n in IRLS-MIL and SB algorithms, respectively. At
any point during the course of the algorithms, the desired
traces in (7) and (14) are stochastically approximated, respec-
tively, as

tr{AJ(uθθθ ,y)} ≈ t̂NGCV
△
= n⊤AJ(u(·),y)n, (57)

tr{WAJ(uθθθ,y)} ≈ t̂WSURE
△
= n⊤WAJ(u(·),y)n. (58)

To improve accuracy of (57)-(58),n can be designed to de-
crease the variance oft̂NGCV and t̂WSURE: it has been shown
[59], [61] that variance of a Monte-Carlo trace estimate (such
as t̂NGCV or t̂WSURE) is lower for a binary random vector
n±1 whose elements are either+1 or −1 with probability 0.5
than for a Gaussian random vectorn ∼ N (0, IM ) employed
in [25], [28]. So in our experiments, we used one realizationof
n±1 in (57)-(58). Figs. 1, 2 present outlines for implementing
IRLS-MIL and SB algorithms with recursions forJ(·, ·)n±1

to compute and monitor NGCV(θθθ) and WSURE(θθθ) as these
algorithms evolve.

F. Implementation of IRLS-MIL and Split-Bregman Algorithms

The convergence speed of IRLS-MIL (19), (25) depends
primarily on the “proximity” ofC toA⊤A while ensuring (18)
[47], [48]. Ideally, we would like to choose the circulant matrix
Copt = QHdiag{αααopt}Q, whereQ is the DFT matrix and
αααopt

△
= argmindiag{ααα}�QA⊤AQH |||diag{ααα} − QA⊤AQH|||

for some matrix norm||| · |||, e.g., the Frobenius norm.
However,αααopt can be both challenging and computationally
expensive to obtain for a generalA. For image restoration,
typically, A⊤A ∈ RN×N is circulant, soαααopt is simply the
eigenvalues ofA⊤A. In our experiments, we usedC = Cν

△
=

A⊤A+νIN and implementedC−1
ν using FFTs. The parameter

ν > 0 was chosen to achieve a prescribed condition number
of Cν , κ(Cν), that can be easily computed as a function
of ν. In general, settingκ(Cν) to a large value can lead to
numerical instabilities inC−1

ν and IRLS-MIL, while a small
κ(Cν) reduces convergence speed of IRLS-MIL [47], [48]. In
our experiments, we found thatν leading toκ(Cν) ∈ [20, 100]
yielded good convergence speeds for a fixed number of outer
(i.e., index byi) iterations of IRLS-MIL, so we simply setν
such thatκ(Cν) = 100.

For MRI reconstruction from partially sampled Cartesian
k-space data,AHA ∈ CN×N is circulant [49]. We chose
{Rp}Pp=1 in (16)-(17) to be shift-invariant with periodic
boundary extensions so thatR⊤R, and thusBµ in (34), are
circulant as well. Then we implementedB−1

µ in (34) using
FFTs. One way to select the penalty parameterµ for the
SB algorithm is to minimize the condition numberκ(Bµ) of
Bµ: µ = µmin

△
= argminµ κ(Bµ) [46]. We found in our

experiments that the empirical selectionµ = µmin × µfactor

with µfactor ∈ [10−5, 10−2] yielded favorable convergence
speeds of the SB algorithm for a fixed number of iterations
compared to usingµmin, so we setµfactor = 10−4 throughout.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In all our experiments, we focussed on tuning the regular-
ization parameterλ (16)-(17) for a fixed number of (outer)
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1) Initialization:u(0,0) △
= A⊤y, J(u(0,0),y)n

△
= A⊤n, i = 0

2) Repeat Steps 3-12 until Stop Criterion is met
3) If i = 0

u(i+1,0) = u(i,0), v(i+1,0,0) = Ru(i,0), J(u(i+1,0),y)n
△
= J(u(i,0),y)n, J(v(i+1,0,0),y)n

△
= RJ(u(i,0),y)n

Else
u(i+1,0) = u(i,J), v(i+1,0,0) = v(i,J−1,K), J(u(i+1,0),y)n

△
= J(u(i,J),y)n, J(v(i+1,0,0),y)n

△
= J(v(i,J−1,K),y)n

4) ComputeΓΓΓ(i) using (22); setj = 0
5) Run J iterations of Steps 6-10
6) Computeb(i+1,j) (21) andJ(b(i+1,j),y)n

7) If j > 0 setv(i+1,j,0) = v(i+1,j−1,K) andJ(v(i+1,j,0),y)n
△
= J(v(i+1,j−1,K),y)n

8) RunK iterations of (25) and (28) to getv(i+1,j,K) andJ(v(i+1,j,K),y)n
9) Computeu(i+1,j+1) (19) andJ(u(i+1,j+1),y)n (27)

10) Setj = j+1 and return to Step 5
11) Compute NGCV(θθθ) and / or WSURE(θθθ) at iterationi using (57)-(58), (7) and (14), respectively
12) Seti = i+ 1 and return to Step 2

Fig. 1. Iterative computation of WSURE(θθθ) and NGCV(θθθ) for image deblurring using IRLS-MIL algorithm (withJ iterations of (19)-(25) andK iterations
of (25)). We use a pregenerated binary random vectorn = n±1 for Monte-Carlo computation (57)-(58) of the required traces in (7) and (14), respectively.
Vectors of the formJ(·(·), ·)n are stored and manipulated in place of actual matricesJ(·(·), ·).

1) Initialization:u(0) △
= AHy, v(0) △

= Ru(0), ηηη(0) △
= 0, i = 0

J(u(0),y)n
△
= AHn, J(v(0),y)n

△
= RAHn, J(ηηη(0),y)n

△
= 0, J(u(0),y⋆)n

△
= 0, J(v(0),y⋆)n

△
= 0, J(ηηη(0),y⋆)n

△
= 0,

2) RepeatSteps 3-7 until Stop Criterion is met
3) Computeu(i+1), J(u(i+1),y)n, J(u(i+1),y⋆)n, respectively, using (34), (40), (41)
4) Computev(i+1) using (35), (38)-(39) andJ(v(i+1),y)n, J(v(i+1),y⋆)n, respectively, using (42), (44)-(55)
5) Computeηηη(i+1), J(ηηη(i+1),y)n, J(ηηη(i+1),y⋆)n, respectively, using (36) and (43)
6) Compute NGCV(θθθ) and / or WSURE(θθθ) at iterationi using (57)-(58), (7) and (14), respectively
7) Seti = i+ 1 and return to Step 2

Fig. 2. Iterative computation of WSURE(θθθ) and NGCV(θθθ) for MRI reconstruction with split-Bregman algorithm. We use a pregenerated binary random
vector n = n±1 for Monte-Carlo computation (57)-(58) of the required traces in (7), (14), respectively. Vectors of the formJ(·(·), ·)n are stored and
manipulated in place of actual matricesJ(·(·), ·).

iterations for both IRLS-MIL and SB algorithms, although in
principle, we can apply the greedy method9 of Giryes et al.
[25, Sec. 5.2] to minimize WSURE and NGCV as functions
of both the number of iterations andλ. For IRLS-MIL, we
usedJ = K = 1 (J iterations of (19)-(25) andK iterations
of (25), see Fig. 1) and set the maximum number of iterations
(indexed byi) to 100 for both algorithms. We used 2 levels
of the undecimated Haar wavelet transform (excluding the
approximation level) forR in Ψℓ1 (16) and horizontal and
vertical finite differences for{Rp}2p=1 in ΨTV (17), all with
periodic boundary extensions.

Both NGCV (7) and WSURE (14) require the evaluation
of J(uθθθ,y), therefore their computation costs are similar for
a given reconstruction algorithm.We evaluated NGCV(λ) in
(7) for image restoration and MRI reconstruction and the
(oracle) MSE using (8). We assumed thatσ2 (the variance
of noise in y) was known10 in all simulations to compute
the following WSURE-based measures: Predicted-SURE(λ)
with W = IM in (14) and Projected-SURE(λ) with W =
(AAH)† in (14) that correspond to Predicted-MSE(λ) (11)
and Projected-MSE(λ) (10), respectively. For image restora-
tion, we computedW = (AAH)† for Projected-SURE using
FFTs.11 For MRI reconstruction from partially sampled Carte-

9The Jacobian matrixJ(u(·),y) is updated at every (outer) iteration of
IRLS-MIL and SB algorithms (see Figs. 1, 2), so (57)-(58) canbe used to
monitor NGCV(θθθ) and WSURE(θθθ), respectively, during the course of the
algorithms as elucidated in Figs. 1, 2.

10In practice,σ can be estimated fairly reliably using, e.g., the techniques
proposed in [22, Sec. V].

11We set the eigenvalues ofAAH below a threshold of10−5 to zero for
numerical stability of(AAH)†.

sian k-space data, Predicted-SURE and Projected-SURE are
equivalent (sinceW = IM , see Section III-B) and correspond
to evaluating the error at sample locations in the k-space.

B. Results for Image Restoration

We performed three sets of experiments with simulated data
corresponding to the setups (with standard blur kernels [37])
summarized in Table I. In each simulation, data was generated
corresponding to a blur kernel and a prescribed BSNR (SNR of
blurred and noisy data) [43]. IRLS-MIL was then applied for
varyingλ and the quality of the deblurred images was assessed
by computing Projected-SURE(λ), Predicted-SURE(λ) and
NGCV(λ). We also included the following GCV-measure
adapted from [25, Eq. 11] in our tests:

RLGCV(λ)
△
=

M−1‖(y −Auλ(y)‖22
(1−M−1n⊤±Auλ(n±))2

. (59)

wheren± is the binary random vector specified in Section
IV-E. RLGCV in (59) is a randomized version of LGCV in
(6) that applies to linear algorithms but has been suggestedfor
use with nonlinear algorithms as well in [25]. We minimized
these measures overλ using golden-section search and calcu-
lated the improvement in SNR (ISNR) [43] of corresponding
deblurred images (after minimizing the various measures).

Tables II and III summarize the ISNR-results for Ex-
periments IR-A and IR-B, respectively, for varying BSNR.
Minimization of Projected-SURE(λ) yields deblurred images
with ISNR (reasonably) close to the corresponding minimum-
MSE (oracle) result in all cases. Surprisingly, data-domain
predicted-type measures Predicted-SURE and NGCV, which
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TABLE I
SETUP FOR IMAGE RESTORATION(IR) EXPERIMENTS

Experiment Test image (256× 256) Blur Regularization
IR-A Cameraman Uniform 9× 9 ΨTV

IR-B House (1 + x1 + x2)
−1, −7 ≤ x1, x2 ≤ 7 Ψℓ1

IR-C Cameraman Uniform (with varying sizes) ΨTV

TABLE II
ISNR† (IN dB) OF DEBLURRED IMAGES FOREXPERIMENT IR-A AND VARYING BSNR

BSNR σ2 MSE (oracle) Projected-SURE Predicted-SURE NGCV RLGCV in (59)
20 3.08e+01 3.85 3.73 3.84 3.84 2.45
30 3.08e+00 5.85 5.84 5.85 5.85 2.40
40 3.08e-01 8.50 8.50 8.49 8.49 2.41
50 3.08e-02 11.02 10.97 11.00 11.01 2.38

TABLE III
ISNR† (IN dB) OF DEBLURRED IMAGES FOREXPERIMENT IR-B AND VARYING BSNR

BSNR σ2 MSE (oracle) Projected-SURE Predicted-SURE NGCV RLGCV in (59)
20 1.65e+01 5.85 5.80 5.83 5.72 3.48
30 1.65e+00 8.49 8.49 8.49 8.49 2.94
40 1.65e-01 11.68 11.68 11.67 11.63 2.85
50 1.65e-02 16.00 15.76 15.76 15.76 2.85

TABLE IV
ISNR† (IN dB) OF DEBLURRED IMAGES FOREXPERIMENT IR-C: UNIFORM BLUR OF VARYING SIZES ANDBSNR= 40 dB

Blur size σ2 MSE (oracle) Projected-SURE Predicted-SURE NGCV RLGCV in (59)
5× 5 3.36e-01 9.82 9.82 9.74 9.74 2.67
9× 9 3.08e-01 8.50 8.50 8.48 8.48 2.41

15× 15 2.78e-01 7.42 7.38 7.42 7.42 2.22
21× 21 2.57e-01 6.86 6.78 6.82 6.82 2.33

† ISNR values within 0.1 dB of the oracle are indicated in bold in Tables II-IV.
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Fig. 3. Plot of ISNR(λ) as a function of regularization parameterλ. Left: Experiment IR-A corresponding to third row of Table II; Right: Experiment IR-B
corresponding to third row of Table III. The plots indicate that λ’s that minimize Projected-SURE, Predicted-SURE, NGCV andthe (oracle) MSE are very
close to each other. RLGCV-based selection (59) is far away from that of oracle MSE-based selection and leads to over-smoothing and loss of details, e.g.,
see Fig. 4g.

are known to undersmooth linear deblurring algorithms [22],
[24], also consistently yield ISNRs that are remarkably near
the corresponding oracle-ISNRs. These observations are also
substantiated by Fig. 3 where we plot ISNR(λ) versus
λ for specific instances of Experiments IR-A and IR-B:
ISNRs corresponding to the optima of Projected-SURE(λ),
Predicted-SURE(λ) and NGCV(λ) are close to the oracle-
ISNR. Accordingly, the deblurred images (corresponding to
an instance of Experiment IR-A) obtained by minimizing
Projected-SURE(λ) (Fig. 4d), Predicted-SURE(λ) (Fig. 4e)
and NGCV(λ) (Fig. 4f) closely resemble the corresponding
minimum-MSE result (Fig. 4c) in terms of visual appearance.

We present additional illustrations (for Experiments IR-A
and IR-B) that corroborate these inferences as supplementary
material.4

To further investigate the potential of Predicted-SURE and
NGCV, we generatedy corresponding to uniform blur of vary-
ing sizes (for a fixed BSNR of 40 dB: Experiment IR-C) and
minimized the various measures (using golden-section search)
in each case. The ISNR-results summarized in Table IV for this
experiment indicate that minimization of Predicted-SURE(λ)
and NGCV(λ) (and also Projected-SURE(λ)) lead to de-
blurred images with ISNRs close to that of the corresponding
MSE-optimal ones. We obtained similar promising results at
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(a) (b) (c)

(d) (e) (f)

(g) Fig. 4. Experiment IR-A corresponding to third row of Table II:
Zoomed images of (a) Noisefree Cameraman; (b) Blurred and noisy
data; and TV-deblurred images with regularization parameter λ se-
lected to minimize (c) (oracle) MSE (8.50 dB); (d) Projected-SURE
(8.50 dB); (e) Predicted-SURE (8.49 dB); (f) NGCV (8.49 dB);
(g) RLGCV in (59) (2.41 dB). Projected-SURE-, Predicted-SURE-
and NGCV-based results (d)-(f) visually resemble the oracle MSE-
based result (c) very closely, while the RLGCV-based (59) result
is considerably over-smoothed.

varying (BSNR = 20, 30 dB) levels of noise (results not
shown). These observations suggest that Predicted-SURE and
NGCV may be reasonable alternatives to Projected-SURE for
tuningλ for nonlinear restoration.

In all image-restoration experiments, the RLGCV-measure
(59) yieldedλ-values that were larger (by at least an order
of magnitude, e.g., see Fig. 3) than corresponding oracle-
optimum-λ, leading to over-smoothing and loss of details (e.g.,
see Fig. 4g), and thus reduced ISNR (see RLGCV-column
in Tables II-IV). These results are perhaps due to the fact
that RLGCV (based on LGCV in (6)) is primarily designed
for linear algorithms and is therefore unable to cope with
nonlinearity of (2) for the strongly nonquadratic regularizers
in (16)-(17). On the contrary, NGCV (7), which is specifically
designed to handle nonlinear algorithms [16], [17], provides a
reliable means of selectingλ for nonlinear restoration. We do
not show results for RLGCV hereafter.

C. Results for MRI Reconstruction

We conducted experiments with both synthetic and real MR
data (setups summarized in Table V) for MRI reconstruction.

In the synthetic case, we considered two test images (of size
256× 256): the Shepp-Logan phantom (Experiments MRI-A)
and a noisefreeT2-weighted MR image (Experiment MRI-
B, see Fig. 6a) from the Brainweb database [62]. Partial
sampling of k-space was simulated by applying a sampling
mask (confined to a Cartesian grid)12 on the Fourier transform
(FFT) of test images. We considered two types of masks
corresponding to a near uniform (less than Nyquist rate) but
random sampling of k-space with a8 × 8 fully sampled13

central portion (see Fig. 6b) and radial patterns that densely
sample the center13 but sparsely sample the outer k-space (e.g.,
see Fig. 7b). Complex (i.i.d., zero-mean) Gaussian noise of
appropriate variance was added at sample locations to simulate
noisy data of prescribed SNR in Experiments MRI-A and
MRI-B.

For experiments with real MR data, we acquired 10 in-

12Cartesian undersampling is more appropriate for 3-D MRI in practice and
is applied here retrospectively for 2-D MRI for illustration purposes.

13Partial k-space sampling schemes typically involve dense sampling of the
central portion (as that contains most of the signal energy)and undersampling
of outer portions of k-space [49], respectively.



11

TABLE V
SETUP FOR EXPERIMENTS WITH SIMULATED AND REALMR DATA

Experiment Test image / Real MR data (256× 256) Retrospective (Cartesian) undersamplingRegularization
MRI-A Shepp-Logan phantom Radial (30 lines, 89% undersampling) ΨTV

MRI-B NoisefreeT2-weighted MR image Random (60% undersampling) Ψℓ1

MRI-C Real GE-phantom dataset Radial (with varying number of lines) ΨTV

TABLE VI
PSNR† (IN dB) OF MRI RECONSTRUCTIONS FOREXPERIMENT MRI-A AND VARYING DATA SNR

Data SNR (in dB) σ2 MSE (oracle) Predicted-SURE NGCV
30 2.69e+01 13.69 13.66 12.72
40 2.69e+00 22.28 22.21 21.68
50 2.69e-01 31.90 31.86 30.74
60 2.69e-02 42.33 42.33 42.12

TABLE VII
PSNR† (IN dB) OF MRI RECONSTRUCTIONS FOREXPERIMENT MRI-B AND VARYING DATA SNR

Data SNR (in dB) σ2 MSE (oracle) Predicted-SURE NGCV
30 1.33e+01 7.77 7.33 7.33
40 1.33e+00 10.58 10.53 10.38
50 1.33e-01 11.62 11.62 11.58
60 1.33e-02 11.83 11.81 11.83

TABLE VIII
PSNR† (IN dB) OF MRI RECONSTRUCTIONS FOREXPERIMENT MRI-C AND VARYING UNDERSAMPLING RATES

Number of radial lines % undersampling MSE (oracle) Predicted-SURE NGCV
20 93 26.19 26.16 25.82
30 89 30.08 30.06 29.42
40 85 31.71 31.69 31.09
50 82 33.03 33.03 32.16
60 78 33.65 33.56 32.85

† PSNR values within 0.1 dB of the oracle are indicated in bold in Tables VI-VIII.
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Fig. 5. Plot of PSNR(λ) as a function of regularization parameterλ: (a) Experiment MRI-B corresponding to second row of Table VII; (b) Experiment
MRI-C corresponding to fourth row of Table VIII. The plots indicate thatλ’s that minimize Predicted-SURE and the (oracle) MSE are very close to each other
and lead to almost identical PSNRs. NGCV-based selection isaway from the MSE-based selection in both plots: in case of (a) it still yields a reconstruction
Fig. 6f that is agreeably close to the oracle in terms of PSNR and visual quality Fig. 6d, but in (b) it leads to a slight reduction in PSNR and correspondingly
the reconstruction Fig. 7f exhibits slightly more artifacts at the center and around the object.

dependent sets of fully-sampled 2-D data (256 × 256) of a
GE-phantom using a GE 3T scanner (gradient-echo sequence
with flip angle = 35◦, repetition time = 200 ms, echo time
= 7 ms, field of view (FOV) = 15 cm and voxel-size =
0.6 × 0.6 mm2). These fully-sampled datasets were used to
reconstruct (using iFFT) 2-D images that were then averaged
to obtain a reference image that served as the true “unknown”
x (see Fig. 7a) for computing the oracle MSE (8). We
separately acquired 2-D data from a dummy scan (with the
same scan setting) where no RF field was applied. We used

this dummy-data to estimateσ2 by the empirical variance.
We retrospectively undersampled data from one of the 10 sets
by applying radial sampling patterns (confined to a Cartesian
grid)13 with varying number of spokes in Experiment MRI-C.

We ran the SB algorithm and minimized
Predicted-SURE(λ) and NGCV(λ) using golden-section
search for each instance of Experiments MRI-A, MRI-B, and
MRI-C, respectively. Tables VI-VIII present PSNR (computed
as 20 log10(

√
N max{x}/‖x − uλ(y)‖2) of reconstructions

obtained after minimization of Predicted-SURE(λ) and
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(a) (b) (c)

(d) (e) (e)

Fig. 6. Simulations corresponding to Experiment MRI-B and second row of Table VII: (a) NoisefreeT2-weighted MR test image; (b) Retrospective
random undersampling (black dots indicate sample locations on a Cartesian grid, 60% undersampling); (c) Magnitude of zero-filled iFFT reconstruction from
undersampled data (-2.88 dB db); and magnitude of reconstructions obtained (using analysisℓ1-regularization with 2 levels of undecimated Haar wavelet)
with regularization parameterλ selected to minimize (d) (oracle) MSE (10.58 dB); (e) Predicted-SURE (10.53 dB); (f) NGCV (10.38 dB). Regularized
reconstructions (d)-(f) have reduced noise and artifacts compared to the zero-filled iFFT reconstruction (c). Both Predicted-SURE-based and NGCV-based
results (e) and (f) closely resemble the oracle MSE-based result (d) in this experiment.

NGCV(λ). In almost all experiments, NGCV-based selections
resulted in worse PSNRs than those corresponding to
Predicted-SURE-selections. This is also corroborated by
Fig. 5 where we plot PSNR(λ) as a function ofλ for specific
instances of Experiment MRI-B and MRI-C. NGCV-based
selections are away (approximately, by an order of magnitude)
from both Predicted-SURE- and oracle-selections. As the
PSNR-profile in Fig. 5a exhibits a plateau14 over a large range
of λ-values, NGCV-based reconstruction in Fig. 6d is visually
similar to the corresponding minimum-MSE reconstruction
in Fig. 6f. However, this is not the case with Fig. 5b and
correspondingly, the NGCV-based reconstruction in Fig. 7f
exhibits slightly more artifacts at the center and around
the object’s periphery compared to Predicted-SURE-based,
Fig. 7e, and minimum-MSE, Fig. 7d, reconstructions. These
results indicate that NGCV may not be as consistently robust
for MRI reconstruction from partially sampled Cartesian data
(which is a severely ill-posed problem whereAHA has a
lot of zero-eigenvalues) as for image restoration (where only
fewer eigenvalues ofAHA are zero, especially for the blurs
considered in Section V-B).

On the other hand, Predicted-SURE-based tuning consis-
tently yields PSNRs close to the corresponding (minimum-
MSE) oracle-PSNRs as seen from Tables VII-VIII and Fig. 5.

14This is perhaps because the problem is less ill-posed in Experiment MRI-
B as the k-space is sampled in a nearly uniform (but random) fashion (see
Fig. 6b) compared to other setups, MRI-A and MRI-C, respectively, that use
radial sampling (e.g., see Fig. 7b) where the corners of k-space are sparsely
sampled.

Predicted-SURE also leads to reconstructions (see Figs. 6e,
7e) that are visually similar to the respective minimum-MSE
reconstructions (see Figs. 6d, 7d). These results demonstrate
the potential of Predicted-SURE for selection ofλ for MRI
reconstruction.

VI. D ISCUSSION

A. Reconstruction Quality

Reconstruction quality in inverse problems of the form (1)-
(2) is mainly governed by (a) the cost criterionJ in (2), and
(b) the choice of associated regularization parameter(s). Inthis
work, we have only addressed the latter aspect, i.e., (b), for
specific (but popular) regularizers such as TV and those based
on theℓ1-norm. As we achieve near-MSE-optimal tuning of
the regularization parameter for these regularizers, our TV-
based image restoration results are comparable to those in [43],
[45], [54]. It should be noted that this optimality (achieved
by considering (b) alone) however is only over the set of
solutions prescribed by the minimization problem in (2) for
a given regularizer. It is possible to further improve quality
by considering more sophisticated regularizers, e.g., higher-
degree total variation [63], Hessian-based [64] and nonlocal
regularization [65]. Extending the applicability of our current
parameter selection techniques to these advanced regularizers
requires more investigation and is a possible direction for
future research.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Experiment MRI-C with real MR GE-phantom data (corresponding to fourth row of Table VIII): (a) Magnitude of reference image reconstructed (using
iFFT) and averaged over 10 fully-sampled acquisitions; (b)Retrospective sampling along radial lines (50 lines on a Cartesian grid with 82% undersampling,
black lines indicate sample locations); (c) Magnitude of zero-filled iFFT reconstruction from undersampled data (22.51 dB); and magnitude of TV-regularized
reconstructions with regularization parameterλ selected to minimize (d) (oracle) MSE (33.03 dB); (e) Predicted-SURE (33.03 dB); (f) NGCV (32.30 dB).
Regularized reconstructions (d)-(f) have reduced artifacts compared to the zero-filled iFFT reconstruction (c). Predicted-SURE-based result (e) closely resembles
the oracle MSE-based result (d), while NGCV-based result (f) exhibits slightly more artifacts at the center and around the object’s periphery.

B. IRLS-MIL and Split-Bregman Algorithms

Both IRLS-MIL and split-Bregman (SB) algorithms can
tackle general minimization problems of the form (2) with
arbitrary convex regularizers. However, the inner-steps of the
SB algorithm (34)-(35) may not admit exact updates for a
generalA and / or general regularizerΨ such as (15) or those
in [63], [64].In such cases, iterative schemes may be needed
for the updates in (34)-(35), and correspondingly, evaluation
of J(u(·),y) has to be performed on a case-by-case basis
depending on the type of iterative schemes used for (34)-
(35). In this respect, IRLS-MIL is slightly more general: as
it is based on the standard gradient-descent IRLS scheme
[47], [48], it may be more amenable to tackle sophisticated
regularizers [63], [64] and / or a data model involving a more
general15 A.

C. Memory and Computation Requirements

Evaluating reconstruction quality through quantitative mea-
sures generally involves additional memory and computa-
tional requirements [31]. In our case, it is clear from (27)-
(32) that storing and manipulatingJ(u(·),y)n, J(v(·),y)n,
J(γγγ(·),y)n and evaluating NGCV(λ), Predicted-SURE(λ)
and Projected-SURE(λ) for one instance of the parameter
vector λ demand similar memory and computational load
as the IRLS-MIL iterations (19), (25) themselves. These

15The matrixC needs to be chosen in accordance with (18), but since it
depends only onA (andAH), it can be predetermined for a given problem.

requirements are also comparable to those of the iterative
risk estimation techniques in [25], [28] and the Monte-Carlo
divergence estimator in [36, Th. 2] (that needs two algorithm
evaluations for one instance ofλ).The complex-valued case
(Ω = C) demands even more memory and computations
(compared to the real-valued caseΩ = R) as one has to
tackle Jacobian matrices evaluated with respect toy and
y⋆. This additional requirement is purely a consequence of
complex-calculus. In general, the exact amount of storage and
computation necessary for evaluating NGCV and WSURE
depends on how the reconstruction algorithm is implemented.

Furthermore, in our experiments, we optimize NGCV(λ),
Predicted-SURE(λ) and Projected-SURE(λ) using golden-
section search that necessitates multiple evaluations of these
performance measures for several instances ofλ. To save
computation time, it is desirable to optimizeλ simultaneously
during reconstruction. Designing such a scheme is not straight-
forward when the reconstruction problem is posed as (2) since
intermittently changingλ affects the cost functionJ and alters
the original problem (2).

To avoid this difficulty, image reconstruction can be for-
mulated as apenalty problemusing variable splitting and
penalty techniques [66]. Alternating minimization can then
be employed to decouple the originalpenalty probleminto
simpler linear and nonlinear subproblems [66]. The advantage
of this approach is that it provides the option for optimizing
parameters based on the subproblems, which can be achieved
relatively easily. Liaoet al. [54], [55] demonstrated the prac-
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ticability of this approach for TV-based image restoration,
but they optimized regularization parameters only based on
linear subproblems (using LGCV) and used continuation tech-
niques to adjust other parameters associated with nonlinear
subproblems. Since the techniques developed in this paper can
handle nonlinear algorithms, they may be adapted to optimize
parameters (e.g., using NGCV) associated with the nonlinear
subproblems in thepenalty formulation. As part of future
work, we plan to investigate thepenaltyapproach for biomed-
ical image reconstruction with simultaneous optimizationof
penalty parameters.

VII. SUMMARY & CONCLUSIONS

Proper selection of the regularization parameter (λ) is an
important part of regularized methods for inverse problems.
GCV and (weighted) MSE-estimation based on the principle of
Stein’s Unbiased Risk Estimate [18]—SURE (in the Gaussian
setting) can be used for selectingλ, but they require the trace
of a linear transformation of the Jacobian matrix,J(uθθθ,y),
associated with the nonlinear (possibly iterative) reconstruc-
tion algorithm represented by the mappinguθθθ. We derived
recursions forJ(uθθθ ,y) for two types of nonlinear iterative
algorithms: the iterative reweighted least squares methodwith
matrix inversion lemma (IRLS-MIL) [47] and the variable
splitting-based split-Bregman (SB) algorithm [46], both of
which are capable of handling (synthesis-type and) a variety
of analysis-type regularizers.

We estimated the desired trace for nonlinear image
restoration and MRI reconstruction (from partially sam-
pled Cartesian k-space data) by applying a Monte-Carlo
procedure similar to that in [25], [28]. We implemented
IRLS-MIL and SB along with computation of NGCV(λ),
Predicted-SURE(λ), and Projected-SURE(λ) for total varia-
tion and analysisℓ1-regularization. Through simulations, we
showed for image restoration that selectingλ by minimizing
NGCV(λ), Predicted-SURE(λ), and Projected-SURE(λ) con-
sistently yielded reconstructions that were close to correspond-
ing minimum-MSE reconstructions both in terms of visual
quality and SNR improvement. For MRI (with partial Carte-
sian k-space sampling), we conducted experiments with both
synthetic and real phantom data and found that NGCV-based
reconstructions were slightly sub-optimal in terms of SNR im-
provement, while minimizing Predicted-SURE(λ) (equivalent
to Projected-SURE(λ) in this case) consistently yielded near-
MSE-optimal reconstructions both in terms of SNR improve-
ment and visual quality. These results indicate the feasibility of
applying GCV- and weighted SURE-based selection ofλ for
iterative nonlinear reconstruction using analysis-type regular-
izers. The philosophy underlying theoretical developments in
this work can also be extended, in principle, to handle other
regularizers, reconstruction algorithms and inverse problems
involving Gaussian noise.
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We present a proof for Lemma 1 and show additional illustrations that we could not accommodate

in the paper due to space constraints. References to equations, figures, etc. are within this material only

unless specified otherwise.

I. L EMMA 1 IN THE PAPER

Lemma 1: Let fλλλ : ΩM → ΩN be differentiable (forΩ = R) or individually analytic (forΩ = C

with respect to real and imaginary parts of its argument), respectively, in the weak sense. Then, for any

deterministicT ∈ ΩM×N satisfyingEξξξ{|[Tfλλλ(y)]m|} < ∞, m = 1 . . .M , we have forΩ = R or C that

Eξξξ{ξξξHTfλλλ(y)} = σ2Eξξξ{tr{TJΩ
fλλλ(y)}}. � (1)

Proof: The proof forΩ = R is very similar to those in [1, Th. 1], [2, Lemma 1], so we focuson

the case ofΩ = C. The density functiongC(ξξξ) = (πσ2)−M exp(−ξξξHξξξ/σ2) is analytic with respect toξξξ

andξξξ⋆ individually and satisfies the identity

ξξξHgC(ξξξ) = −σ2

2
[∇ξξξ

R
− ι∇ξξξI

]gC(ξξξ), (2)

where ∇ξξξ
R

and ∇ξξξI
denote1 × M gradient operators consisting partial derivatives with respect to
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Fig. 1. Plot of Predicted-MSE(λ), Predicted-SURE(λ), Projected-MSE(λ) and Projected-SURE(λ) as functions of regularization
parameterλ. Left: Experiment IR-A corresponding to third row of Table II in the paper; Right: Experiment IR-B corresponding
to third row of Table III in the paper. The plots indicate thatthe SURE-curves closely capture the trends of the respective
MSE-curves and their minima (indicated by ’*’) are close to that of the (oracle) MSE indicated by the solid vertical line.

{ξRm}Mm=1, {ξIm}Mm=1. Expanding the LHS of (1) and using (2), we get that

Eξξξ{ξξξHTfλλλ(y)} =

∫
gC(ξξξ)ξξξ

HTfλλλ(y) dξξξRdξξξI = −σ2

2

∫ [(
∇ξξξ

R
− ι∇ξξξI

)
gC(ξξξ)

]
Tfλλλ(y) dξξξRdξξξI . (3)

Integrating-by-parts the term involving∇ξξξ
R

in (3) and using the fact that lim
|ξRm|→∞

gΩ(ξξξ) [Tfλλλ(y)]m = 0,

whenEξξξ{|[Tfλλλ(y)]m|} < +∞ [1], [2], we get that

∫
∇ξξξ

R
gC(ξξξ)Tfλλλ(y) dξξξR

dξξξI =

M∑

m=1

N∑

n=1

∫
∂gC(ξξξ)

∂ξRm
Tmnfλλλ,n(y) dξξξR

dξξξI

= −
M∑

m=1

N∑

n=1

∫
gC(ξξξ)Tmn

∂fλλλ,n(y)

∂ξRm
dξξξRdξξξI

= −
M∑

m=1

N∑

n=1

∫
gC(ξξξ)Tmn

∂fλλλ,n(y)

∂yRm
dξξξRdξξξI , (4)

where we have set∂/∂ξRm = ∂/∂yRm sinceAx (Eq. (1) in the paper) is a deterministic constant.

Going through a similar derivation for the integral involving −ι∇ξξξI
and using∂/∂ξIm = ∂/∂yIm, we

get that

− ι

∫
∇ξξξI

gC(ξξξ)Tfλλλ(y) dξξξRdξξξI = ι

M∑

m=1

N∑

n=1

∫
gC(ξξξ)Tmn

∂fλλλ,n(y)

∂yIm
dξξξRdξξξI . (5)

Combining (3)-(5) with the definition ofJΩ
fλλλ
(y) (Eq. (4) in the paper) yields the desired result (1).
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(a) (b) (c)

(d) (e) (f)

(g) Fig. 2. Experiment IR-B corresponding to third row of Table III in the
paper: Zoomed images of (a) Noisefree House; (b) Blurred andnoisy data;
and deblurred images obtained (using analysisℓ1-regularization with 2 levels
of undecimated Haar wavelet) with regularization parameter λ selected to
minimize (c) (oracle) MSE (11.68 dB); (d) Projected-SURE (11.68 dB); (e)
Predicted-SURE (11.63 dB); (f) NGCV (11.63 dB); (g) LGCV (2.87 dB).
Projected-SURE-, Predicted-SURE- and NGCV-based results(d)-(f) visually
resemble the oracle MSE-based result (c) very closely, while the LGCV-based
result is considerably over-smoothed.

II. A DDITIONAL ILLUSTRATIONS FORIMAGE RESTORATION

Fig. 1 plots Projected-MSE(λ), Projected-SURE(λ), Predicted-MSE(λ) and Predicted-SURE(λ) versus

λ for specific instances of Experiments IR-A and IR-B (corresponding to Cameraman and House test

images, respectively, see Table I in the paper). Projected-SURE- and Predicted-SURE-curves are accurate

in capturing the trends of Projected-MSE- and Predicted-MSE-curves and also exhibit minima (indicated

by *) close to that of MSE (solid vertical line). The deblurred images (corresponding to an instance of

Experiment IR-B) obtained by minimizing Projected-SURE(λ) (Fig. 2d), Predicted-SURE(λ) (Fig. 2e)

and NGCV(λ) (Fig. 2f) closely resemble the corresponding minimum-MSE result (Fig. 2c) in terms of
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Fig. 3. Experiment MRI-A with (Shepp-Logan phantom) corresponding to second row of Table VI in the paper: (a) Plot of
Predicted-MSE and Predicted-SURE as functions of regularization parameterλ indicates that Predicted-SURE closely captures
the trend of Predicted-MSE and their minima (indicated by ’*’) are close to that of the (oracle) MSE indicated by the solid
vertical line; (b) Plot of PSNR(λ) versusλ indicate thatλ’s that minimize Predicted-SURE and the (oracle) MSE are very close
to each other and lead to almost identical PSNRs and reconstructions (see Fig. 5). NGCV-based selection is away from the
MSE-based selection but it still yields a reconstruction Fig. 5f that is agreeably close to the oracle Fig. 5d in terms of visual
quality in this instance of Experiment MRI-A.
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Fig. 4. Plot of Predicted-MSE and Predicted-SURE as functions of regularization parameterλ: (a) Experiment MRI-B with
synthetic data corresponding to second row of Table VII in the paper; (b) Experiment MRI-C with real MR data corresponding
to fourth row of Table VIII in the paper. The plots indicate that Predicted-SURE closely captures the trend of Predicted-MSE
and their minima (indicated by ’*’) are close to that of the (oracle) MSE indicated by the solid vertical line.

visual appearance, while that obtained by minimizing LGCV(λ) is over-smoothed (see Fig. 2g). These

results are also consistent with what is reported in the paper (e.g., see Figs. 3 and 4 in the paper).

III. A DDITIONAL ILLUSTRATIONS FORMRI RECONSTRUCTION

We evaluated Predicted-MSE(λ), Predicted-SURE(λ) as functions ofλ and plotted them in Figs. 3a and

4 for specific instances of Experiments MRI-A (with synthetic data corresponding to noisefree Shepp-

Logan phantom), MRI-B (with synthetic data corresponding to a noisefreeT2-weighted MR image)
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Experiment MRI-A with Shepp-Logan phantom (corresponding to second row of Table VI: (a) Noisefree Shepp-Logan
(256×256) phantom; (b) Retrospective sampling along radial lines (30 lines on a Cartesian grid with 89% undersampling, black
lines indicate sample locations); (c) Magnitude of zero-filled iFFT reconstruction from undersampled data; and magnitude
of TV-regularized reconstructions with regularization parameterλ selected to minimize (d) (oracle) MSE (22.28 dB); (e)
Predicted-SURE (22.21 dB); (f) NGCV (21.68 dB). Regularized reconstructions (d)-(f) have reduced artifacts comparedto
the zero-filled iFFT reconstruction (c). Predicted-SURE-based and NGCV-based results (e), (f), respectively, closely resemble
the oracle MSE-based result (d) in this experiment.

and MRI-C (with real GE phantom data) in the paper. Predicted-SURE not only captures the trend of

Predicted-MSE in Figs. 3a and 4, but also exhibits minima (indicated by *) close to that of MSE (solid

vertical line).

We also plot PSNR(λ) versusλ in Fig. 3b and present reconstructions in Fig. 5 for the instance of

Experiment MRI-A considered in Figs. 3a: Although NGCV-selection is slightly away from the (oracle)

MSE-selection in Fig. 3b, the corresponding reconstruction Fig. 5f is visually similar to the MSE-based

one in Fig. 5d in this case. Predicted-SURE-selection is close to the (oracle) MSE-selection in Fig. 3b

and therefore naturally leads a reconstruction Fig. 5e thatresembles the MSE-based one in Fig. 5d.

These illustrations point to (the sub-optimality of NGCV and) the accuracy of Predicted-SURE(λ) for

MRI reconstruction from partially sampled Cartesiank-space data and are consistent with our results

portrayed in the paper.
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