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Abstract—Regularized iterative reconstruction algorithms for adjusted properly for obtaining good image-quality. Cliogs
imaging inverse problems require selection of appropriateregu-  suitable parameter values is a nontrivial, applicatiopeshelent
larization parameter values. We focus on the challenging pblem task and has motivated research on automated parameter

of tuning regularization parameters for nonlinear algorithms for - N -
the case of additive (possibly complex) Gaussian noise. Geal- selection based on quantitative measures [1]-[31]. Quzane

ized cross-validation (GCV) and (weighted) mean-squaredreor ~ Parameter optimization methods can be broadly classified as
(MSE) approaches (based on Stein’s Unbiased Risk Estimate—those based on the discrepancy principle [1], the L-curve
SURE) need the Jacobian matrix of the nonlinear reconstrudbn  method [2]-[5], generalized cross-validation (GCV) [@]7]
operator (representative of the iterative algorithm) with respect and estimation of (weighted) mean-squared error (MSE)}{18]

to the data. We derive the desired Jacobian matrix for two types 301 R " fi litv (diff of
of nonlinear iterative algorithms: a fast variant of the standard [30]. Recently, a new measure of image-quality (differea

iterative reweighted least-squares method and the contenggary GCV and MSE) was introduced in [31] but its applicability
split-Bregman algorithm, both of which can accommodate a has been demonstrated only for denoising applications [31]
wide variety of analysis- and synthesis-type regularizetsThe In inverse problems, typically, image reconstruction is-pe
proposed approach iteratively computes two weighted SUREype formed by minimizing a cost function composed of data-

measures: Predicted-SURE and Projected-SURE (that reque ., . .
knowledge of naise variancer2), and GCV (that does not need-2) fidelity term and (one or more) regularization terms. Image

for these algorithms. We apply the methods to image restoraan ~ quality in such cases is governed by regularization pararset
and to magnetic resonance image (MRI) reconstruction using that control the bias-variance trade-off (or equivalgnthe

total variation (TV) and an analysis-type ¢;-regularization. We  palance between image-smoothing and amplification of hoise
demonstrate through simulations and experiments with real in the reconstruction. Using discrepancy principle reesir

data that minimizing Predicted-SURE and Projected-SURE co- L . .
sistently lead to near-MSE-optimal reconstructions. We ao Minimizing the difference between the data-fidelity ternd an

observed that minimizing GCV yields reconstruction resuls that  the noise variance [1] and can lead to over-smoothing [22]. |
are near-MSE-optimal for image restoration and slightly stb- the L-curve method, parameters are chosen so as to maximize

optimal f_or MRI._TheoretigaI derivations in this v_vork_rel_at ed the curvature of a (L-shaped) parametric curve (constducte
to Jacobian matrix evaluations can be extended, in princig, t0  fom the components of the cost function) [2]-[4]. This
other types of regularizers and reconstruction algorithms . . .
method can be computationally expensive and sensitive to
EDICS curvature evaluation [5], [25]. GCV is a popular criterion
TEC-RST, COI-MRI used for parameter selection in a variety of inverse problem
especially for linear reconstruction algorithms [7]-[18he
Index Terms—Regularization parameter, generalized cross- gdvantage of GCV is that it does not require knowledge of
validation (GCV), Stein’s unbiased risk estimate (SURE),mage gise variance and is known to yield regularization paranset
restoration, MRI reconstruction ) i . o
for linear algorithms that asymptotically minimize the dru
MSE [7]. Some extensions of GCV are also available for
|. INTRODUCTION nonlinear algorithms [15]-[17] but they are computatidyal
more involved (see Section IlI-A) than for linear algoritem

Inverse problems in imaging invariably need image recon- - ;
; prob ging v 9 .~ MSE-estimation-based methods can be attractive alterna-
struction algorithms to recover an underlying unknown obje,. ) . o e
. . : tives to GCV since image quality is often quantified in terms
of interestx from measured datp. Reconstruction algorithms o . :
f MSE in image reconstruction problems. For Gaussian

typically depend on a set of parameters that need to ﬁgise, Stein’s unbiased risk estimate (SURE) [18] provides
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cases, the principles underlying SURE may be extended rexonstruction in Section V and discuss reconstructioritgua
estimate weighted variants of MSE (e.g., by evaluating tled memory / computational requirements of the considered
error only on components aof that are accessible from) algorithmsin Section VI. Finally, we draw our conclusions i
[19], [25], [26]. Several weighted SURE-type approachashaSection VII.

been proposed and employed for (near) optimal parameter

tuning in ill-posed inverse problems, e.g., linear rediora Il. NOTATION AND PROBLEM DESCRIPTION

[19], nonlinear noniterative restoration [26], image neco
struction using sparse priors [29], [30],noniterative ghiat
magnetic resonance image (MRI) reconstruction [27], non- y =Ax+€, (1)
linear restoration [25], [28] and nonlinear image upsangli . . . o .

[25] using iterative shrinkage-thresholding type aldunis that that is appropriate for many imaging inverse problems igclu
specifically apply to synthesis formulations [25], [28]7]3 N9 image restoration and MRI reconstruction from paiall
[38] of image reconstruction problems. Synthesis formotet Sampled Cartesian k-space data. In (¥),€ Q' is the
preclude popular regularization criteria such as totalatian Observed dataA € Q"™ is a known (rectangular) matrix
(TV) and smooth edge-preserving regularizers (e.g., Hud&fpically M < N), and 2 is either R or C depending
[39], smoothed-Laplacian [40]) that belong to the class O the application. We assume € Q7 is an unknown
analysis formulations. Bayesian methods [41]-[45] havenbed€terministic quantity. For image restoratiéh= R, M = N
employed for parameter tuning in image restoration problerdnd we assume that is circulant, while for MRI with partial
involving analysis-type quadratic regularizers [41], J[4md Cartesian k-space sampliig) = C and A = MQ, where
TV [43]-[45]. Q € C¥*¥ is the orthonormal DFT matrixM is the M x N

This paper focusses on computing the nonlinear version @Wnsampling matrix that satisfi@sIM'™ = I, and Ly is
GCV (denoted by NGCV) [16], [17] and weighted SURELhe identity matrix of sizel/.
type measures [20], [24] for nonlinear iterative recortion  Throughout the papet;)" denotes the transpose of a real
algorithms that can tackle a variety of nonquadratic regul@/€ctor or matrix,(-)* denotes the complex conjugate)” is
ization criteria including synthesis- and analysis-typeg(, the Hermitian-transposg;),, and (-), indicate the real and
TV) regularizers. Both NGCV and weighted SURE-measurd@aginary parts, respectively, of a complex vector or matri
require the Jacobian matrix of the reconstruction opefagp- 1€ mm-th element of any vectoy is denoted by,, and the
resentative of the iterative algorithm) evaluated witrpess to  77-th element of any matri is written as[A],.,.
the data [16], [17], [24] (see Section IIl). We derive theiges ~ FOr simplicity, we model{ < .QM as an iid. zero-
Jacobian matrix for two types of computationally efficienf’®@n Gaussian random vector with covariance makrix-
algorithms: the contemporary split-Bregman (SB) alganith -1y and probability densityo(€). For @ = R, gr(§) =
[46] and IRLS-MIL [47], [48] that uses the matrix inversion(270°)~ 2 exp(—¢'€/20?), while for & = C, we assume
lemma (MIL) to accelerate standard iterative reweightestie & iS an i.i.d. complex Gaussian random vector (which is
squares (IRLS) [47], [48]. Our work can be interpreted && reasonable model for MRI applications), 3@(5) =
an extension to previous research [25]-[30] that focussed Go°) " exp(—£"¢/c?). SURE-type methods discussed in
applying weighted SURE-type measures to inverse problefhés Paper (see Section IlI-B) can be readily extended to
with noniterative algorithms [26], [27] and to iterative age More general cases (such gswith non-zero mean and
reconstruction based on sparsity priors [29], [30] andlsgsis covariance\ # I ) using the generalized SURE (GSURE)
formulations [25], [28]. methodology developed in [24].

In this paper, we compute Predicted-SURE [20], [21], Given datay, we obtain an estimate of the unknown image
Projected-SURE [24] and NGCV [16], [17] for nonlinea’ by minimizing a cost function based on (1) composed of
image restoration and MRI reconstruction (from partiatiys @ data-fidelity term and some regularization that is designe
pled Cartesian k-space data) using TV and an analysiséiype using “smoothness” penalties or prior information absut
regularization. We also illustrate using simulations (foage N _ Al )
restoration and MRI reconstruction) and experiments vetil r U (y) = argmin {j(u) = 5lly — Aulz + ‘I’(U)} . (2
data (for MRI reconstruction) that both Predicted-SURE and
Projected-SURE provide near-MSE-optimal selection ofiregWhere || - [|2 represents the Euclidean norn, represents
larization parameters in these applications. We also bger@ Suitable regularizer that is (possibly nonsmooth, i.et, n
that NGCV yielded near-MSE-optimal selections for imaggifferentiable everywhere) convex ang : 0" — O~ may be
restoration and slightly sub-optimal parameter valuegvigi  interpreted as a (possibly nonlinear) mapping or an algarit
reconstruction. representative of the minimization in (2), that actsyoto yield

The paper is organized as follows. Section Il describdde estimateug(y). In practice, the mappingy depends on
the problem mathematically and presents our notation afiié or more parametefsthat need to be set appropriately
mathematical requisites essential for theoretical décua. (0 obtain a meaningful estimaigy(y). In problems such as
Section 11l briefly reviews (N)GCV and weighted SURE{2), typically,@ = X is a scalar known as the regularization
type measures. Section IV describes in detail the deriva;_ ) ) o )
tion of Jacobian matrices for the considered algorithms. vgqmga;cﬁ‘jg?tffnS{;‘”;?QQECQ “Wizﬁfﬂﬁge?gf;;ﬁng"gﬁt;‘g"ggﬁfg'?ﬁ
present experimental results for image restoration and MRé phase-encode plane [49].

We use the following linear data model



parameter that plays a crucial role in balancing the datifj]d = LGCV has been more widely used [7]-[11], [13], [14]

and regularization terms: smaMl-values can lead to noisy (for linear algorithms) than NGCV (for nonlinear algoritejn

estimates while a larga results in over smoothing and lossperhaps because NGCV is computationally more involved than

of details. Quantitative criteria such as GCV [6], [16], [L7LGCV. Recently, Liacet al. proposed GCV-based automatic

and (weighted) SURE-type measures [24], [25] can be usednlinear restoration methods using alternating minitioza

for tuning @ of a nonlineanyy, but they require the evaluationin [54], [55]. Although their methods are nonlinear overall

of the Jacobian matrix [16], [17], [24(ug,y) € QV*M  they rely on linear sub-problems arising out of alternatirig-

for Q = R,C (see Sections llI-A and 1l1I-B), consisting ofimization and employ LGCV for parameter tuning. In contrast

partial derivatives of the elemensy ,,(y)}2_, of ug(y) with we propose to tackle NGCV (7) directly and demonstrate its

respect tofy,, }M_,. use in nonlinear image restoration and MRI reconstruction.
Definition 1: Let up : RM — RY be differentiable (in the

weak sense of distributions [50, Ch. 6]). The Jacobian matB, \Weighted SURE-Type Measures

J(ug,y) € RV*M evaluated ay € RM is specified using its

In the context of image reconstruction, the mean-squared
elements as

error (risk) measure,
(3) MSE(8) = N~ ||x — ug(v)]3 (8)

is often used to assess image quality and is an attractive
option for optimizing#. However, MSKEf) cannot be di-
r%ctly computed since the cross-temuy(y) depends on
e unknownx (/Ix||3 is an irrelevant constant independent
of #) and needs to be estimated in practice. For denoising
applications, i.e.,,A = Iy in (1), the desired cross-term

A Oug ,(2)
Ozm | yey

Definition 2: Let ug : CM — QY (with Q = R or C)
be individually analytic [51] with respect tg,, andy, (in
the weak sense of distributions [50, Ch. 6]). The Jacobi
matricesJ(ug,y), J(ug,y*) € CV*M are specified using
their respective elements as [51, Eq. 13], [52]

[J(uav y)]’ﬂm

3 (ug.y)] s 1 <5Uo,n(z) B Zaua,n(z)> (4) ©an be manipulated aslug(y) = (y — &)Hug(y) and the
P 2\ Ozoim 02zm ) |my’ statistics of¢ may then be used to estimaglug(y). In
s 1 [Ougn(z)  Ougn(z) the Gaussian setting ~ N(0,0%Iy), Stein’'s result [18]

[J(ag, y")]wm = 5( Do T 05y ) .(5) (for @ = R) can be used for this purpose and leads to

=y Ee{€ up(y)} = 0E¢{tr{J(ug,y)}}, whereE¢{-} represents
Remark 1:Whenug : CM — QY is prescribed in terms of expectation with respect . Replacingt' uy(y) in MSE(6)
y andy*, J(uy,y) is evaluated treating as a variable and with o2 tr{J(ug,y)} thus yields the so-called Stein’s unbiased
y* as a constant [52], [563]. Similariy(ug,y*) is evaluated risk estimate (SURE) [18],
treatingy as constant [52], [53]. A 1 9 9
For common (and some popular) instancesfin (2), SURHP) = N7ly —us(y)llz —o
uy satisfies the hypotheses in Definitions 1 and 2 and in +20° N~ tr{J(ug,y)}, 9)

turn allows the computation of GCV and weighted SURB 5t is an unbiased estimator of M@K, i.e., E¢{MSE(6)} =
type measures for reliable tuning 6éf as illustrated in our E{SURE®)}. The accuracy of SUR@) generally increases
experiments. with N (law of large numbers), so it is appealing for
image-processing applications (whehé is large, typically
IIl. GENERALIZED CROSSVALIDATION AND WEIGHTED N > 2562) [36]. Using SURES) as a practical alternative
SURE-TYPE MEASURES to MSE() requires (in addition tos2) the evaluation of
A. Generalized Cross-Validation (GCV) tr{J(ug,y)} that can be performed analytically for some
GCV is based on the “leave-one-out” principle [7] that leadd€cial types olenaisingalgorithms [32]-[35] or numerically
to a simple expression in the case of linear algorithms: f§Fing the Monte-Carlo method in [36, Th. 2] for a general
a generic linear mappinge(y) = Foy, the GCV measure (iterative / noniterativeylenoisingalgorithmuy.

(denoted by LGCV) is given by [7] _ For inve_rse problems modeled by (Xfluy(y) can b_e ma-
. ) nipulated in terms of (and¢ and thus allows the estimation
LGCV(8) A M~|(In — AF)yll3 (6) of MSE(#) using statistics of) only in some special instances,

(1-M-"r{AFg}})?’ e.g., whenug(y) € R{A!}, the range space a&" [24, Sec.

For nonlinear estimatorsiy(y), we consider the following IV],2 or when A has full column rank [25, Sec. 4]in many

GCV measure (denoted by NGCV) applications A has a nontrivial null-spadg{A }: information

. ) aboutx contained inN{A} is not accessible frony (and

NGCV(6) 2 M~ |ly — Au(y)ll3 (7) statistics o) and it is impossible to estimate M&E [24] in
(1= M~ R{tr{A J(ug,y)}})*’ such cases. An alternative is to compute the error using only

adapted from [17, Sec. 3] that was originally derived usiri§€e components ok that lie in the orthogonal complement
the standard “leave-one-out” principle for nonlinear aigoms  of N(A): N(A)* = R{A™} [24], [25]; these components
[16]. We take the real parfR{-}, in the denominator of (7) _

- . . 2If ug € R{AH}, we can writeuy = AHgy for some operatogy, so
speqflcally for the case ah =Cto av0|q spurious complex at xHy, (y) = (y — €)Hg(y) [23, Sec. 3.1]. Alternatively, ifA has ful
entries while evaluating NGCW) numerically. column rank, therxHug (y) = (y — &)FAAHA)~Lug(y).
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are in turn accessible from (and&). Such an error measureis an unbiased estimator of WM®&B in (12), i.e.,
corresponds to projectifghe error(x—ug(y)) on toR{AH} E{WMSE(#)} = E{WSURE®)}.
and is given by [24], [25] The proof is straightforward and uses (13) to estimate
) A L1 ) ETWAuy(y) in WMSE(#). Similar to SURES), WSURES®)
Projected-MSE) = M™7[|P(x — ug(y))[[2, (10) s independent ok and depends purely on the noise variance
whereP = A¥(AAH)TA is the projection operator and)? o2, the data and the reconstruction algorithm. The Monte-
represents pseudo-inverse. Carlo scheme [36, Th. 2] that uses numerical differentsfiow
Another quadratic error measure for inverse problenfsgeneral nonIingane may be adapted to iteratively.esti.mate
that is amenable to estimation (using statistics &F is (T{WAJ(ug,y)} in (14) for the case of2 = R by considering
Predicted-MSE [20], [21] that corresponds to computing th&VAug instead ofug in [36, Eq. 14]. In this paper, we

error in the data-domain: propose to evaluatd(uy,y) analytically forQ2 = R andC.
_ R ) ) This process depends on the choice of the estimagorthe
Predicted-MSE) = M~ '[|A(x — ug(y))|l2- (11) regularization? in (2) and the nature of application (e.g.,

C% = R for restoration and2 = C for MRI), and therefore

Both (10) and (11) can be interpreted as particular ins&n : .
(10) (11) b P needs to be accomplished on a case-by-case basis.

of the following general weighted form:

WMSE®) £ M~ 1|A(x — ug(y))|3v. (12) IV. EVALUATION OF THE JACOBIAN MATRIX J(ug,y)

where || x|/, L HWx, and W is a Hermitian-symmetric, For_ nonquadratic _regulariz_ers, there_ is_ no closed_—form ex-
W = WH, positive definite, W = 0, weighting matrix. pression for the (_astlmatcmg in (2), so _|t is no_t possible to
For (11), W = I,; and the overall weighting is prOvidedevaluate.](ug,y) in (14) dwec?ly. In this section, we sh_ow
by the eigenvalues oA A, while for (10) it is easy to see how t.o compute](ue,y).re.cgrswlely for two types of iterative
that W = W, 2 (AA")' since PYP = P. For image glgo_rlt_hms used for minimizing in (2). Henceforth, we Igave
dlmp|ICIt the dependence afy(y) ony and drop the subscrigt
ﬁ/hen necessary, so thatrepresents either the estimator or the
eratively-reconstructed estimate depending on theesant

restoration with circulanfA, Wj,,,, can be easily implemente
using FFTs. For MRI with partial Cartesian k-space samplin
A = MQ (see Section Il) leads W;,, = (MQQ"M")t = . X

I, so Projected-MSE and Predicted-MSE are equivalent and’€ focus on IRLS-MIL [47], [48] that is a fast variant of

correspond to evaluating squared-error at the sampleidosat the- standard iterative rewe ighted Ieast-s_quares URLS){@
in k-space. split-Bregman (SB) algorithm [46] that is based on variable

Similar to SURE®), an estimator for WMSE) can be splitting. Both algorithms are computationally efficiénand

derived under the Gaussian assumption as summarized in (ff% be employed for image restoration and MRI reconstractio
following results. [46]-[48], [56]. Furthermore, they can accommodatea ganer

Lemma 1:Let ug : @M — QN be differentiable (for2 = class of regularization criteria of the form
R) or individually analytic (forQ2 = C with respect to real L P
and imaginary parts of its argument), respectively, in tieakv U(Ru) =AY & (> [[Ryuls|? |, (15)
sense of distributions [50, Ch. 6]. Then, for any deterntiis =1 p=1

T € Q"N satisfyingE¢{[[T ug(y)]m|} <oo,m =1...M, where) > 0 is the regularization paramete¥, are potential
we have that functions,R € R®*N with R £ [R] ---RL]T, R, € RL*N
H _ 2 are regularization operators (e.g., finite differenceamies,

Ee{¢ " Tug(y)} = o Ee{tr{T J(up,y)}}. (13) etc.) andR = PL. We consider the following convex instances
The proof is very similar to those in [34, Lemma 1] [24, Thof (15) that are popularly used for image restoration and MRI
1] for Q = R, while it constitutes a straightforward extensiomeconstruction:
of [24, Th. 1] forQ = C and is presented as supplementary , Analysis ¢;-regularization ¢;(z)
material (due to page limit$). .

Theorem 1:Let uy and T = WA satisfy the hypotheses A

in Lemma 1 forA € QM>*N in (1) and for a Hermitian- T, (Ru) = A[Rull; = )‘ZZ Ry ulif,  (16)
symmetric, positive definite matri’sv ¢ QM>M_ Then for -
Q =R or C, the random variable

=z, q=1):

0_2
WSURES) = M|y — Aug(y)|y — 5;tr{W} 17)

2 2
+R{{W AT,y (14)
We deriveJ(ug,y) for image restoration with the IRLS-MIL

3since PHP = P, the cross-termxH PHPug (y) in Projected-MSg)  algorithm (see Sections IV-A-IV-B) and MRI reconstruction
(10) is nothing butkFAT(A ATt Aug(y) = (y —&)T(AAT)T Aug (y).
For Predicted-MSH) (11), we have thatxPAHAus(y) = (y — 5IRLS-MIL has been demonstrated to converge faster than ectional
T Aug(y). methods (e.g., nonlinear conjugate gradient) [47], [48hilevSB is more
4Supplementary material containing a proof of Lemma 1 andtiaddl versatile and computationally efficient than fixed-pointntimuation and
illustrations for experimental results is available aphttinyurl.com/supmat. graph-cuts-based solvers [46].



with the SB algorithm (see Sections IV-C—IV-D). Derivationrather thanI'® [47, Eqgs. 3-6]), a small positive additive
of J(ug, y) for other combinations (i.e., image restoration witltonstant is included ilr” for maintaining numerical stability
the SB algorithm and MRI reconstruction with the IRLS-MILof [['(Y)]~'—this is often referred to as corner-rounding [47].
algorithm) can be accomplished in a similar manner and at®wever no such corner-rounding is required for the IRLS-
not considered for brevity. MIL scheme [47], [48] as it only utilizeF®.

The derivations in Sections IV-A-IV-D can also be ex- To solve (20), we apply a matrix-splitting strategy (simila
tended, in principle, to other instances of (15) such as $modo [47, Eq. 7]) toG(® that leads to an iterative scheme for
convex edge-preserving regularizers fpr= 1, e.g., Huber (20) (with iteration indext) with the following update step:
[39], Fair or smoothed-Laplacian [48] and synthesis forms, o B o o
e.g., by considering a variable to be estimated such that vIHLID = DL (RBUHD) 4 H v (L), (25)

x = Sw andASw in (1) and®(w) in (15), for some potential

function ® and synthesis operat& [25], [28], [37], [38]. whereDpey = T + plg is an invertible diagonal matrix,

H, = plz - R C'R' and
A. Image Restoration with IRLS-MIL Algorithm p > max eigval{R C'R'} (26)

IRLS-MIL uses matrix-splitting [57, pp. 46-50] and thedepends only onA (via C) and R and can therefore be
matrix inversion lemma (MIL) for efficient preconditioningprecomputed. In practice, we perford iterations of (25)
fand fast solving of iteration-dependent linear system.ragi and apply the final update(i+17-%) in place ofv(i+1J) in
in the standard IRLS scheme [47], [48]. We summarize theqg) \ne prefer (25) over a PCG-type solver for (20) as (25)
IRLS-MIL iterations below (detailed derivation of IRLS-MI ¢ jinear in bothb() andv() and decouples the shift-variant
can be found in [47], [48]) for image restoratioft & R i ;omponent from the rest of terms ifG(*); these features

. H T i
(1)): for any matrixC such thatC - A" A, i.e., simplify the analytical derivation ofi(ug,y) for IRLS-MIL

2 (C—ATA)z>0, VzeRY, (18) as demonstrated next.
at outeri-iteration of IRLS-MIL, we perform innej-iterations ) ) o ]
involving the following two-steps: B. Jacobian Matrix Derivation for IRLS-MIL Algorithm
oy o oy Since b() and v() are functions ofy (via ul)), usin
(i+1,5+1) _ (i+1,5) _ —1RT (i+1,5) y ' g
l(t) (+1.4) = b (+1.7) C R(i:l N (19) linearity of (3), at the end ofK iterations of (25), we get
solve{G"/v"T/) = RbUT} for v (20)  the Jacobian matrix update correspondingatoi+1) from
where (19) as

b)) £ 1Ay + (Iy — CrATA)ulH9), (21) JOFIHD y) = I y) -

. . , . C'R" J(vUHIK) vy (27
GO 2 TO 4y R CTIRT andTO £ diagfy) is a TR v @9
diagonal matrix constructed from® € RF with y() £ From (21), we get tha@(b(+!7),y) = C'AT + (Iy —
T4 DTIT Thei-th element ofy!) € RE for (15) is C'ATA) J(ul™9) y). To obtain J(v(+17K) y), we
given byvp? _ derive a recursive update faF(v(+t1L3k+1) y) from (25)

using a straightforward application of product rule foralsian
matrices and the fact that (25) involves only a diagonal atr

p -1
. 2—q ) q

‘[Rp u(z+1,0)]l‘ g\ ) (z:l ‘[Rs u(z+1,0)]l‘ )] , (22) D;(ﬁ):
s=

where®’ denotes the first derivative d@. For instance, J(vEFLIED vy = DL (R J(bOFLI) vy
71(]? _ A—l‘[Rp u(H—l,O)]l" (23) +Hp J(V(i+1,j,k)’y))

for the ¢;-regularization in (16), while for TV-regularization —D;(%) D, Jv%,y), (28)

() < (0) where D, = diag{R b(+19) 4 H,v(i+1.3k) 1}, Using chain

v =lrey, (24)  rule for Jacobian matrices [52], we have that
— T ) ) ) ‘

wherelp = [1---1]" is a P x 1 vect(u)(rz,_)@) dezn_otes the I D, y) = J(y®, w10y Juli+10) ) (29)
Kronecker product and thieth element ofy*” € R* is given
by 5 = A~ \/25:1 IR, u(i+1,0)]l‘2' where J(y), u(+1.9) ¢ RExXN constitutes derivatives of

WhenR. is composed of sparsifying operators (e.g., finité” HL, with respect tq{un}’r]y:h. evaluated a0 and
differences, wavelets, frames, et®,u*? tends to become €an be computed readily analytically for the regularizers i
sparse for sufficiently large, so for practically appealing (15) using (22). For thé;-regularizatiofi ¥, in (16),
instances ofl (e.g., whenl < m < 2 and ® is an edge- (1) (i+1,0) 1 (i)

) o = : J , P =X"d R, 30
preserving potential function or for nonsmooth instanceshs (", u ) iag{r"} (30)
as thosg based on tide-norm or TV)’P(Z) W'". beco'me sparse 6The derivatives are interpreted in the weak sense of diginibs [50, Ch.
too. So in the standard IRLS scheme (which utiliZB€)]~! 6] whenever conventional differentiation does not apply.
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where the elements ofr®) ¢ RE are /7 £ to yield v(it1). For a generall such as (15), (35) can be

sign([Rul+1.9)]). solved iteratively in which casey is representative of the
For TV-regularization¥ v in (17), we get (using tedious, iterative scheme used for (35). However, for several specia
but elementary calculus) that instances of¥ [58, Sec. 4] including (16)-(17), one can

P solve (35) exactly andly admits an analytical closed-form
J(yD w10y — 1, @ [ A1 diag{w IR, |, (31 expression. Specifically for (16)-(17), it can be shown that
¢ ) d Z slwy’ IRy 1) (35) further decouples in terms of the eIemeﬁvﬁs}ﬁ 1 of v
i.e.,dy is a point-wise operator such that ™

where the elements mi(i) € R” are given by r=1...R.
" [R u(+10)] R, ul+10)], V(Before proceeding, it is helpful to introdug¥?) = lp ®
wpl \/ L) 2 = W(i) (32 B Where thel th element of,B € RL is given byﬂl £
Yo [[Rou » el : Zp L |g (r—1)r|?-Thendy for (16)-(17) can be obtained
with the assumption thabz(jl’) = 0 whenever[R,u(i+1.0)], = as [46], [49]:
0,p=1...P. Gy () _ 1 i)

Thus, in addition to running (19), (25) for obtainimg>?), dur(py”) - = (1 Aluer|” )MQ’" > A/1X38)
we propose to run the sequence of iterations (27)-(28) using, @Dy = o@D (1= A(uB)™1)1(BD > \/u)(39)
(29)-(32) for iteratively evaluatingl(u®?),y), (and thus, rvier) " ( (b :) ) (Br /)
NGCV(#) and WSURE®)) at any stage of IRLS-MIL. wherell(-) is an indicator function that takes the valughen

the condition in its argument is satisfied and)istherwise.
C. MRI Reconstruction with Split-Bregman Algorithm
The split-Bregman (SB) algorithm [46] for solving (2) isD. Jacobian Matrix Derivation for Split-Bregman Algorithm
based on a variable splitting strategy [46], [49], [56], e

an auxiliary variablev € C¥ is used to artificially introduce
the constrainy = Ru and separat®u from ¥ leading to

We note thatu), v(), () and (") are implicit functions
of y andy*. Therefore, we evalugtel(u”,y) using (34)
and the linearity of (4) to get that

. 1 2 . _
Ial,l\{l EHy - AU.HQ + \IJ(V) SUb]eCt tov = Ru (33) J( (z-i-l) ) B [AH +[LRT(J( ) ) - J( (4) ))] (40)

that is equivalent to (2). The above constrained problepbr the complex-valued casé)(= C), we also need to
is then solved using the so-called Bregman-iterations [4§valuateJ(u(t!) y*) as explained next. Faf(u(+1) y*),

Egs. (2.9)-(2.10)] that consists of alternating betweee thye treaty as a constant in (34) (see Remark 1) so that
m|n|m|zat|on of an augmented Lagrangian (AL) function, ‘ ) )

Lu,v) 2 Ly — Aul2+ ¥(v) + &]v — Ru—n|2, jointy IV, y") =B ' RI(IVD,y") — I@W,y7)). (41)
with respect to(u, v) [46, Eq. (3.7)] and a simple update ste
[46, Eq. (3.8)] for a Lagrange-multiplier-like vectay,c C%,
for the constraint in (33). The penalty parameger> 0
does not influence the final solution of (33) and (2), but IV z) = J(de(e™),2), (42)
governs the convergence speed of the Bregman-iteratiéhs [4 J(n(+D — Jo® g) — J(v D (43)
In practice, the joint-minimization step is often repladey ( z) = Je",2) (v 2)-

alternating minimization [46, Sec. 3.1], i.€, is minimized ysing chain rule forJ (dy (), z) [53, Th. 1], we get that
with respect tou andv one at a time, which decouples the

Fiior brevity, henceforth we use to represent eithey or y
as required. From (35)-(36), we have that

minimization step and simplifies optimization. We summeriz Jdyg(0¥),z) = JI(dy,0?) I(e?,2)
the SB algorithm below for solving (33) (and equivalently, (2 +J(dg, 0*) (I( g( D z))*, (44)
for MRI reconstruction): . .
_ . . whereJ(p'V, z) = RJ( il z)—.]( '), z) from (37). Thus,
i+1 -1 H T ) i ’
ult = B Ay + uRT (v )], (34)  due to (44), bothT(u®),y) and J(u(),y*) are required as
vt =y (e?) £ arg mm {q;(v) + g”‘, _ Q(z‘)n%} ., mentioned earlier.

For the case of;-regularization (16)d,, in (38) depends

(1) © (4 (35) only ono!” ando'”*, s0J(dy,, o) andJ(d,, , 0*) become
n = e v (36) ' diagonal matrices:
where B, = AYA + uR'R. Step (35) corresponds to a o Ay
denoising problem to which we associate a denoising operato J(de,0") = Dypo <IR D@( >|) (45)
dy : C — CF that acts on “ A\
)% _
o) £ Rul+D) | p (37) T(de, o) = 5 Dage Do D, (46)

"For (33), £ is equivalent to the sum of the Bregman-distance [46] and a 8 The derivatives are interpreted in the weak sense of digipibs [50, Ch.
guadratic penalty term for the constraint in (33) up to @veht constants. 6] whenever conventional differentiation does not apply.



where
Digo 2 dag{{a0e01> 3w} | @)
D, = diag{e"}, (48)
Dy = diag{{@£i>}f_l}- (49)

J(n®),)n in IRLS-MIL and SB algorithms, respectively. At
any point during the course of the algorithms, the desired
traces in (7) and (14) are stochastically approximategees
tively, as
tr{AJ(ug,y)} ~ tncov £nTA J(u®), y)m, (57)
tr{WAJ(ug,y)} ~ twsure =n' WA J(u"), y)n.(58)

For the case of TV-regularization (17), we apply (tedioud© improve accuracy of (57)-(58) can be designed to de-

but elementary) product rule to obtain

A

J(drv,0™) Dy g |:IR - ;DE}”

A _ 2
+;Dg<i) D,g(%-) <1P ® J(B 0! ))>] )

(50)
A A B
J(drv,0"*) = ﬁDn,ﬂm Dy D,B(%)
5 (%) 7 *
(1o @@"0)). e
where
(@) 1 _
J(ﬂ ,Q(’)) = 5(1—JFD®DB(1¢))DZU)7 (52)
Dgoy = diag{B"}, (53)
. R
Dygi = diag{{nwfﬁ”w/u)}r_l}, (54)
. - (1)
DE@ diag{B "}. (55)

Thus, similar to the case of IRLS-MIL, we propose to run (34)
(36) for obtainingu(® and (40)-(55) for iteratively evaluating
J(u®,y) (and thus, NGCW¥) and WSURE#)) at any stage

of the SB algorithm.

E. Monte-Carlo Trace Estimation

crease the variance oficcv andiwsurs: it has been shown
[59], [61] that variance of a Monte-Carlo trace estimatecfsu
as txgov or twsurg) IS lower for a binary random vector
ny; whose elements are eitherl or —1 with probability 0.5
than for a Gaussian random vector~ A/(0,1,,) employed

in [25], [28]. So in our experiments, we used one realizatibn
ny; in (57)-(58). Figs. 1, 2 present outlines for implementing
IRLS-MIL and SB algorithms with recursions fak(-, -)ny;

to compute and monitor NGQ¥) and WSURES) as these
algorithms evolve.

F. Implementation of IRLS-MIL and Split-Bregman Algorithm

The convergence speed of IRLS-MIL (19), (25) depends
primarily on the “proximity” of C to AT A while ensuring (18)
[47], [48]. Ideally, we would like to choose the circulant tma
Copt = QMdiag{aop:}Q, WhereQ is the DFT matrix and
Qopy = arg mingi,g(a}=qar aqn |||diag{a} — QAT AQH|||
for some matrix norm||| - |||, e.g., the Frobenius norm.
However,a,p; can be both challenging and computationally
expensive to obtain for a general. For image restoration,
typically, AT A € R¥*¥ is circulant, soa,y; is simply the
eigenvalues oA" A. In our experiments, we uséd = C,, £
AT A+4v1y and implemente@ ;! using FFTs. The parameter
v > 0 was chosen to achieve a prescribed condition humber
of C,, k(C,), that can be easily computed as a function
of v. In general, setting:(C,) to a large value can lead to
numerical instabilities inC, ! and IRLS-MIL, while a small

The Jacobian matrice3(-,-) in Sections IV-B and IV-D x(C,) reduces convergence speed of IRLS-MIL [47], [48]. In
have enormous sizes for typical reconstruction settings aour experiments, we found thatieading tox(C,) € [20, 100]
cannot be stored and manipulated directly to compute thielded good convergence speeds for a fixed number of outer

desired tracestr{AJ(ug,y)} in (7) and tr{WAJ(ug,y)}

(i.e., index bysi) iterations of IRLS-MIL, so we simply set

in (14). So we use a Monte-Carlo method to estimasuch that<(C,) = 100.

tr{AJ(ug,y)} and tr{WAJ(uy,y)} that is based on the

following well-established identity [12], [59]-[61].

For MRI reconstruction from partially sampled Cartesian
k-space dataA®A € CN*V is circulant [49]. We chose

Proposition 1: Let n € RM be an i.i.d. zero-mean random{R,}/_, in (16)-(17) to be shift-invariant with periodic

vector with unit variance an@ € QM*M (for Q = R or C)
be deterministic with respect . Then

En{n' Tn} = tr{T}. (56)

boundary extensions so thR' R, and thusB,, in (34), are
circulant as well. Then we impIement@l;1 in (34) using
FFTs. One way to select the penalty parametefor the
SB algorithm is to minimize the condition numbe(B,,) of

For practical applicationsE,{-} in (56) can be replaced B,: ¢ = fimin 2 arg min, x(B,) [46]. We found in our
by sample mean] /N, >>X" nl Tn;, with N, independent experiments that the empirical selectipn=fimin X fifactor
realizations{ni}f\’:"l. In image-processing applications whereWith piactor € [10~°, 1072] yielded favorable convergence
typically, M is large andT has a sparse off-diagonal strucspeeds of the SB algorithm for a fixed number of iterations
ture, ir 2 w' Tn (corresponding toN, = 1) provides compared to Usinguyin, SO We Sefifactor = 10~ throughout.

a reliable estimate ofr{T} [11], [12], [25], [28]. To use
this type of stochastic estimation far{AJ(uy,y)} and .
tr{WAJ(ug,y)}, we adopt the procedure applied in [25]A- Experimental Setup

[28]: we take products withn in (27)-(29), (40)-(44) and In all our experiments, we focussed on tuning the regular-
store and update vectors of the fothu(), )n, J(v(),.)n, ization parameten (16)-(17) for a fixed number of (outer)

V. EXPERIMENTAL RESULTS
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1) Initialization: u®® £ ATy, J(u©®?, y)n £ ATn, i =0
2) Repeat Steps 3-12 until Stop Criterion is met
3) Ifi=0

ult1L0) — u(i,O)’ v (i1+1,0,0) _ Ru(i,o)’ J(u““‘o),y)n 2 J(u(i’m,y)n, J(V(i+1’0’0),y)n 2 RJ(u“’m,y)n

Else

u(i+1,0) : u(i,J), v(i+1,0,0) — v(i,.f—l,K)’ J(u(i+1,0)7y)n é J(u(i,.l)7y)n’ J(V<i+1’0’0>,y)n é J(v(i,J—l,K)yy)n
4) Computel’® using (22); setj = 0
5) Run J iterations of Steps 6-10
6) Computeb"*19) (21) andJ (b9 y)n

7)1 > 0 sety(HLI0) = y(Lim1E) gng J(y (a0 yn & J(yFILE) g
8) Run K iterations of (25) and (28) to gat'"*7%) and J(v(*+17:5) y)n
9) Computeu**17+1 (19) andJ (u 19+ y)n (27)

10) Setj = j+1 and return to Step 5

11) Compute NGCW) and / or WSURE®) at iteration: using (57)-(58), (7) and (14), respectively
12) Seti =i+ 1 and return to Step 2
Fig. 1. Iterative computation of WSUR&) and NGC\(#) for image deblurring using IRLS-MIL algorithm (withi iterations of (19)-(25) ands iterations
of (25)). We use a pregenerated binary random vestet ny; for Monte-Carlo computation (57)-(58) of the required &sdn (7) and (14), respectively.
Vectors of the formJ(-("), -)n are stored and manipulated in place of actual matribge$), -).

1) Initialization:u® £ Ay, v(© £ Ru® 5@ £0,;=0
I,y = A, IV, y)n = RAM, I3, y)n =0, I,y ) 20, Iv,y )n =0, 3@, y*)n =0,

2) RepeatStePs 3-7 until Stop Criterion is met

3) Computeu’™*, J(u* y)n, J(u*Y, y*)n, respectively, using (34), (40), (41)

4) Computev 1) using (35), (38)-(39) and (v*) y)n, J(vUTD, y*)n, respectively, using (42), (44)-(55)

5) Computen*, I+ y)n, I, y*)n, respectively, using (36) and (43)

6) Compute NGCVP) and / or WSURH)) at iteration: using (57)-(58), (7) and (14), respectively

7) Seti =i+ 1 and return to Step 2
Fig. 2. Iterative computation of WSURE&) and NGC\(#) for MRI reconstruction with split-Bregman algorithm. Weeua pregenerated binary random
vectorn = n.; for Monte-Carlo computation (57)-(58) of the required &mdn (7), (14), respectively. Vectors of the fordi{-(),-)n are stored and
manipulated in place of actual matricd$-("), ).

iterations for both IRLS-MIL and SB algorithms, although irsian k-space data, Predicted-SURE and Projected-SURE are
principle, we can apply the greedy metfoaf Giryeset al. equivalent (sinc@V = I,,, see Section I1I-B) and correspond
[25, Sec. 5.2] to minimize WSURE and NGCV as function® evaluating the error at sample locations in the k-space.

of both the number of iterations and For IRLS-MIL, we

usedJ = K =1 (J iterations of (19)-(25) and( iterations B. Results for Image Restoration

of (25), see Fig. 1) and set the maximum number of lterationsy performed three sets of experiments with simulated data

(indexed bys) to 100 for both algorithms. We used 2 IeveI%orresponding to the setups (with standard blur kernel§ [37

of the _und_emmated Haar _Wavelet transform (_excludlng ﬂ%‘ﬁmmarized in Table I. In each simulation, data was gengtrate
approximation level) forR in ¥,, (16) and horizontal and

. o . X ) corresponding to a blur kernel and a prescribed BSNR (SNR of
vert_|ca_l finite differences TO'{RP}127=1 in Uy (17), all with blurred and noisy data) [43]. IRLS-MIL was then applied for
periodic boundary extensions.

varying A and the quality of the deblurred images was assessed

Both NGCV (7) and WSURE (14) require the evaluatio%y computing Projected-SURE), Predicted-SURB\) and

of J(u,,y), therefore their computation costs are similar fONGCV(A). We also included the following GCV-measure
a given reconstruction algorithm.We evaluated NGEVin adapted from [25, Eq. 11] in our tests:

(7) for image restoration and MRI reconstruction and the . )
(oracle) MSE using (8). We assumed thet (the variance RLGCV(\) £ M H(}l’ —TAUA(Y)Hz N (59)
of noise iny) was known? in all simulations to compute (1-M-nlAus(ny))

the following WSURE-based measures: Predicted-SORE \yheren . is the binary random vector specified in Section
with IYVT = Iy in (14) and Projected-SURE) with W = \,F RLGCV in (59) is a randomized version of LGCV in
(AAT)" in (14) that correspond to Predicted-MSE (11) (g) that applies to linear algorithms but has been suggésted
and Projected-MS@) (10), r%s?ectlvely._ For image restorayse with nonlinear algorithms as well in [25]. We minimized
tion, \i\/le computedW = (AA™)' for Projected-SURE USING these measures ovarusing golden-section search and calcu-
FFTs:* For MRI reconstruction from partially sampled Cartejated the improvement in SNR (ISNR) [43] of corresponding
SThe Jacobi (a0, y) is updated at (outer) iterat fdeblurred images (after minimizing the various measures).
e Jacoblan matrixf(u'’/,y) IS upaated at every (outer) iteration o -
IRLS-MIL and SB algorithms (see Figs. 1, 2), 50 (57)-(58) dmmused to Tables Il and lll summarize the ISNR-resuI'ts for Ex-
monitor NGCM@) and WSURES®), respectively, during the course of theperiments IR-A and IR-B, respectively, for varying BSNR.
algorithms as elucidated in Figs. 1, 2. . ~ Minimization of Projected-SURR) yields deblurred images
I Practice.o can b\‘/e estimated fairly reliably using, e.g., the techriqueyith |SNR (reasonably) close to the corresponding minimum-
propased In [22, Sec. V], MSE (oracle) result in all cases. Surprisingly, data-demai

1we set the eigenvalues &AM below a threshold ol0~5 to zero for : . '
numerical stability of( AAH)t, predicted-type measures Predicted-SURE and NGCV, which




TABLE |
SETUP FOR IMAGE RESTORATIONIR) EXPERIMENTS

Experiment| Test image 456 x 256) | Blur | Regularization
IR-A Cameraman Uniform 9 x 9 Uy
IR-B House (1+l’1 +1’2)71, —7<x1,22 <7 \I/gl
IR-C Cameraman Uniform (with varying sizes) Yy
TABLE Il
ISNR' (IN dB) OF DEBLURRED IMAGES FOREXPERIMENTIR-A AND VARYING BSNR
BSNR| o° | MSE (oracle)| Projected-SURE Predicted-SURE| NGCV | RLGCV in (59)
20 3.08e+01 3.85 3.73 3.84 3.84 2.45
30 3.08e+00 5.85 5.84 5.85 5.85 2.40
40 3.08e-01 8.50 8.50 8.49 8.49 2.41
50 3.08e-02 11.02 10.97 11.00 11.01 2.38
TABLE Il

ISNR' (IN dB) OF DEBLURRED IMAGES FOREXPERIMENT IR-B AND VARYING BSNR
BSNR| ¢°> | MSE (oracle)| Projected-SURE Predicted-SURE| NGCV | RLGCV in (59)

20 1.65e+01 5.85 5.80 5.83 5.72 3.48

30 1.65e+00 8.49 8.49 8.49 8.49 2.94

40 1.65e-01 11.68 11.68 11.67 11.63 2.85

50 1.65e-02 16.00 15.76 15.76 15.76 2.85
TABLE IV

ISNR' (IN dB) OF DEBLURRED IMAGES FOREXPERIMENTIR-C: UNIFORM BLUR OF VARYING SIZES ANDBSNR = 40 dB
Blur size| o° | MSE (oracle)| Projected-SURE Predicted-SURE| NGCV | RLGCV in (59)

5X5 3.36e-01 9.82 9.82 9.74 9.74 2.67
9x9 3.08e-01 8.50 8.50 8.48 8.48 241
15 x 15 | 2.78e-01 7.42 7.38 7.42 7.42 2.22
21 x 21 | 2.57e-01 6.86 6.78 6.82 6.82 2.33

T ISNR values within 0.1 dB of the oracle are indicated in baidTables II-IV.

9.0 : : : : : : : : : 12.9
843 m------mm-----------o 1 11.52
10.12
8.72
7.32
5.91)
4.5
T A
1.74)
0.31
-1.09
Y L LTt A 1 -2.49
-3.89
-5.29
-6.69
-8.09

: :
—ISNR

MSE-optimal
Projected-SURE-basgd
Predicted—-SURE-basgd
NGCV-based
LGCV-based

<{<CO0 %

——ISNR

MSE-optimal
Projected-SURE-based
Predicted-SURE-basged
NGCV-based
LGCV-based

ISNR (in dB)
IS
N
W
ISNR (in dB)

w

(o2

iy
<I<SOO*

-0.56 L L L L L i L L Ll -9.4! L L L
26,26 -5.56 -4.86 —4.16 —3.%\6 -2.76 -2.06 -1.36 -0.66 0.04 0.74 -44 -38 -32 -26 —/% -14 -08 -02 04 1 1.6
(|09w scale) (|0910 scale;

Fig. 3. Plot of ISNRX) as a function of regularization parameterLeft: Experiment IR-A corresponding to third row of Table Right: Experiment IR-B
corresponding to third row of Table Ill. The plots indicateat \’s that minimize Projected-SURE, Predicted-SURE, NGCV #rel (oracle) MSE are very
close to each other. RLGCV-based selection (59) is far away that of oracle MSE-based selection and leads to oveo#iimg and loss of details, e.g.,
see Fig. 4g.

are known to undersmooth linear deblurring algorithms [22}Ve present additional illustrations (for Experiments IR-A
[24], also consistently yield ISNRs that are remarkablyrneand IR-B) that corroborate these inferences as supplenyenta
the corresponding oracle-ISNRs. These observations ace ahaterial*

substantiated by Fig. 3 where we plot ISNR versus  To further investigate the potential of Predicted-SURE and
A for specific instances of Experiments IR-A and IR-BNGCV, we generategt corresponding to uniform blur of vary-
ISNRs corresponding to the optima of Projected-SURE ing sizes (for a fixed BSNR of 40 dB: Experiment IR-C) and
Predicted-SURR\) and NGC\\) are close to the oracle- minimized the various measures (using golden-sectiorchgar
ISNR. Accordingly, the deblurred images (corresponding i@ each case. The ISNR-results summarized in Table IV fer thi
an instance of Experiment IR-A) obtained by minimizingxperiment indicate that minimization of Predicted-SURE
Projected-SURR\) (Fig. 4d), Predicted-SURE) (Fig. 4¢) and NGCV\) (and also Projected-SURE)) lead to de-
and NGCV ) (Fig. 4f) closely resemble the correspondinglurred images with ISNRs close to that of the corresponding
minimum-MSE result (Fig. 4c) in terms of visual appearanc&SE-optimal ones. We obtained similar promising results at
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(€)

Fig. 4. Experiment IR-A corresponding to third row of Table |
Zoomed images of (a) Noisefree Cameraman; (b) Blurred aisy no
data; and TV-deblurred images with regularization paremetse-
lected to minimize (c) (oracle) MSE (8.50 dB); (d) Projec®dRE
(8.50 dB); (e) Predicted-SURE (8.49 dB); (f) NGCV (8.49 dB);
(g) RLGCV in (59) (2.41 dB). Projected-SURE-, Predictedr&t}
and NGCV-based results (d)-(f) visually resemble the er®dEE-
based result (c) very closely, while the RLGCV-based (53)ite
is considerably over-smoothed.

varying (BSNR = 20, 30 dB) levels of noise (results nolin the synthetic case, we considered two test images (of size
shown). These observations suggest that Predicted-SURE 256 x 256): the Shepp-Logan phantom (Experiments MRI-A)
NGCV may be reasonable alternatives to Projected-SURE fomd a noisefreel;>-weighted MR image (Experiment MRI-
tuning A for nonlinear restoration. B, see Fig. 6a) from the Brainweb database [62]. Partial

In all image-restoration experiments, the RLGCV-measusampling of k-space was simulated by applying a sampling
(59) yielded \-values that were larger (by at least an ordeanask (confined to a Cartesian gfitlpn the Fourier transform
of magnitude, e.g., see Fig. 3) than corresponding orac{&FT) of test images. We considered two types of masks
optimum-\, leading to over-smoothing and loss of details (e.gcprresponding to a near uniform (less than Nyquist rate) but
see Fig. 4g), and thus reduced ISNR (see RLGCV-columandom sampling of k-space with & x 8 fully sampled?®
in Tables II-IV). These results are perhaps due to the famtntral portion (see Fig. 6b) and radial patterns that dgnse
that RLGCV (based on LGCV in (6)) is primarily designedsample the cent&tbut sparsely sample the outer k-space (e.g.,
for linear algorithms and is therefore unable to cope witkee Fig. 7b). Complex (i.i.d., zero-mean) Gaussian noise of
nonlinearity of (2) for the strongly nonquadratic regutars appropriate variance was added at sample locations toatenul
in (16)-(17). On the contrary, NGCV (7), which is specifigall noisy data of prescribed SNR in Experiments MRI-A and
designed to handle nonlinear algorithms [16], [17], pregi@& MRI-B.
reliable means of selecting for nonlinear restoration. We do  For experiments with real MR data, we acquired 10 in-
not show results for RLGCV hereafter.

12Cartesian undersampling is more appropriate for 3-D MRIracfice and

C. Results for MRI Reconstruction is applied here retrospectively for 2-D MRI for illustratigpurposes.

. . . 13partial k-space sampling schemes typically involve deasepting of the
We conducted experiments with both synthetic and real Mrgntral portion (as that contains most of the signal eneagg) undersampling

data (setups summarized in Table V) for MRI reconstructiost. outer portions of k-space [49], respectively.
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TABLE V
SETUP FOR EXPERIMENTS WITH SIMULATED AND REALMR DATA

Experiment| Test image / Real MR dat2%6 x 256) | Retrospective (Cartesian) undersamplingRegularization

MRI-A Shepp-Logan phantom Radial (30 lines, 89% undersampling) Wy
MRI-B NoisefreeT>-weighted MR image Random (60% undersampling) Wy,
MRI-C Real GE-phantom dataset Radial (with varying number of lines) Uy

TABLE VI
PSNR (IN dB) OF MRl RECONSTRUCTIONS FOFEXPERIMENTMRI-A AND VARYING DATA SNR

Data SNR (indB)| o> | MSE (oracle)| Predicted-SURE NGCV

30 2.69e+01 13.69 13.66 12.72

40 2.69e+00 22.28 22.21 21.68

50 2.69e-01 31.90 31.86 30.74

60 2.69e-02 42.33 42.33 42.12
TABLE VI

PSNR (IN dB) OF MRl RECONSTRUCTIONS FOFEXPERIMENTMRI-B AND VARYING DATA SNR
Data SNR (indB)| o°> | MSE (oracle)| Predicted-SURE| NGCV

30 1.33e+01 7.77 7.33 7.33

40 1.33e+00 10.58 10.53 10.38

50 1.33e-01 11.62 11.62 11.58

60 1.33e-02 11.83 11.81 11.83
TABLE VI

PSNR (IN dB) OF MRI RECONSTRUCTIONS FOFEEXPERIMENTMRI-C AND VARYING UNDERSAMPLING RATES
Number of radial lines| % undersampling MSE (oracle)| Predicted-SURE] NGCV

20 93 26.19 26.16 25.82
30 89 30.08 30.06 29.42
40 85 31.71 31.69 31.09
50 82 33.03 33.03 32.16
60 78 33.65 33.56 32.85
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Fig. 5. Plot of PSNR)) as a function of regularization parameter (a) Experiment MRI-B corresponding to second row of Tablé b) Experiment
MRI-C corresponding to fourth row of Table VIII. The plotsdicate that\'s that minimize Predicted-SURE and the (oracle) MSE arg etrse to each other
and lead to almost identical PSNRs. NGCV-based selectieméy from the MSE-based selection in both plots: in case Joit &till yields a reconstruction
Fig. 6f that is agreeably close to the oracle in terms of PSN@Rwasual quality Fig. 6d, but in (b) it leads to a slight retioe in PSNR and correspondingly
the reconstruction Fig. 7f exhibits slightly more artifactt the center and around the object.

dependent sets of fully-sampled 2-D dags x 256) of a this dummy-data to estimate? by the empirical variance.
GE-phantom using a GE 3T scanner (gradient-echo sequelé retrospectively undersampled data from one of the 10 sets
with flip angle = 33, repetition time = 200 ms, echo timeby applying radial sampling patterns (confined to a Cartesia
= 7 ms, field of view (FOV) = 15 cm and voxel-size =grid)*® with varying number of spokes in Experiment MRI-C.
0.6 x 0.6 mm?). These fully-sampled datasets were used to

reconstruct (using iFFT) 2-D images that were then averaged® ran the  SB  algorithm and  minimized
to obtain a reference image that served as the true “unknowffredicted-SURRB\) and NGCWA) using golden-section

x (see Fig. 7a) for computing the oracle MSE (8). weearch for each instance of Experiments MRI-A, MRI-B, and
separately acquired 2-D data from a dummy scan (with tMRI-C, respectively. Tables VI-VIII present PSNR (compite

same scan setting) where no RF field was applied. We ug&i2010g1o(vV'N max{x}/[x — ux(y)||2) of reconstructions
obtained after minimization of Predicted-SURE and
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Fig. 6. Simulations corresponding to Experiment MRI-B amt¢and row of Table VII: (a) Noisefre@>-weighted MR test image; (b) Retrospective
random undersampling (black dots indicate sample locat@mna Cartesian grid, 60% undersampling); (c) Magnitudeeod-filled iFFT reconstruction from
undersampled data (-2.88 dB db); and magnitude of recantns obtained (using analysis -regularization with 2 levels of undecimated Haar wavelet)
with regularization parametek selected to minimize (d) (oracle) MSE (10.58 dB); (e) PriedieSURE (10.53 dB); (f) NGCV (10.38 dB). Regularized
reconstructions (d)-(f) have reduced noise and artifaotepared to the zero-filled iFFT reconstruction (c). Bothdiieed-SURE-based and NGCV-based
results (e) and (f) closely resemble the oracle MSE-bassdltréd) in this experiment.

NGCV()). In almost all experiments, NGCV-based selectiorBredicted-SURE also leads to reconstructions (see Figs. 6e
resulted in worse PSNRs than those corresponding %e) that are visually similar to the respective minimum-MSE
Predicted-SURE-selections. This is also corroborated bgconstructions (see Figs. 6d, 7d). These results denadastr
Fig. 5 where we plot PSNR) as a function of\ for specific the potential of Predicted-SURE for selection offor MRI
instances of Experiment MRI-B and MRI-C. NGCV-basedeconstruction.

selections are away (approximately, by an order of magejtud

from both Predicted-SURE- and oracle-selections. As the

PSNR-profile in Fig. 5a exhibits a platédwver a large range VI. DISCUSSION

of A-values, NGCV-based reconstruction in Fig. 6d is visually

similar to the corresponding minimum-MSE reconstructioA. Reconstruction Quality

in Fig. 6f. However, this is not the case with Fig. 5b and ) o

correspondingly, the NGCV-based reconstruction in Fig. 7f Réconstruction quality in inverse problems of the form (1)-
exhibits slightly more artifacts at the center and arourd) IS mainly governed bya) the cost criterion7 in (2), and
the object’'s periphery compared to Predicted—SURE-basé@ the choice of associated regularization parametgr(sm|$n
Fig. 7e, and minimum-MSE, Fig. 7d, reconstructions. Thed¥"k, we have only addressed the latter aspect, i, fér
results indicate that NGCV may not be as consistently robit€cific (but popular) regularizers such as TV and thosedbase
for MRI reconstruction from partially sampled Cartesiariada®n thefi-norm. As we achieve near-MSE-optimal tuning of
(which is a severely ill-posed problem where'A has a the regularization parameter for these regularizers, o T

lot of zero-eigenvalues) as for image restoration (wherlg orP2S€d image restoration results are comparable to thodg]in |
fewer eigenvalues oAP A are zero, especially for the blursl45], [54]. It should be noted that this optimality (achieive
considered in Section V-B). by considering If) alone) however is only over the set of

On the other hand, Predicted-SURE-based tuning consi9lutions prescribed by the minimization problem in (2) for
tently yields PSNRs close to the corresponding (minimurf- 9\Ven regularizer. It is possible to further improve quall

MSE) oracle-PSNRs as seen from Tables VII-VIIl and Fig. 8 considering more sophisticated regularizers, e.ghdrig
degree total variation [63], Hessian-based [64] and nailoc
14This is perhaps because the problem is less ill-posed inriEmpet MRI-  regularization [65]. Extending the applicability of ourrcent
B as the k-space is sampled in a nearly uniform (but randost)ida (see parameter selection techniques to these advanced rm&ari
Fig. 6b) compared to other setups, MRI-A and MRI-C, respebtj that use . . . . di ible di f f
radial sampling (e.g., see Fig. 7b) where the corners ofdcs@re sparsely requires more investigation and Is a possible direction for
sampled. future research.
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Fig. 7. Experiment MRI-C with real MR GE-phantom data (cepending to fourth row of Table VIIlI): (a) Magnitude of reégrce image reconstructed (using
iFFT) and averaged over 10 fully-sampled acquisitions;Rbjrospective sampling along radial lines (50 lines on &e&S&m grid with 82% undersampling,
black lines indicate sample locations); (c) Magnitude abziled iFFT reconstruction from undersampled data (2208); and magnitude of TV-regularized
reconstructions with regularization parameleselected to minimize (d) (oracle) MSE (33.03 dB); (e) PriedieSURE (33.03 dB); (f) NGCV (32.30 dB).
Regularized reconstructions (d)-(f) have reduced atsfaompared to the zero-filled iFFT reconstruction (c). Rted-SURE-based result (e) closely resembles
the oracle MSE-based result (d), while NGCV-based resykexhibits slightly more artifacts at the center and aroumal dbject’s periphery.

B. IRLS-MIL and Split-Bregman Algorithms requirements are also comparable to those of the iterative

Both IRLS-MIL and split-Bregman (SB) algorithms canri.Sk estimation.technigues in [25], [28] and the Monte—@grl
tackle general minimization problems of the form (2) wittflivergence estimator in [36, Th. 2] (that needs two algatith
arbitrary convex regularizers. However, the inner-stepthe  €valuations for one instance 6f.The complex-valued case
SB algorithm (34)-(35) may not admit exact updates for § = C) demands even more memory and computations
generalA and / or general regularizer such as (15) or those (compared to the real-valued case = R) as one has to
in [63], [64].In such cases, iterative schemes may be need@gkle Jacobian matrices evaluated with respectytand

for the updates in (34)-(35), and correspondingly, eviduat y*. This additional requirement is purely a consequence of
of J(u®),y) has to be performed on a case-by-case ba§@Mmplex-calculus. In general, the exact amount of storage a

depending on the type of iterative schemes used for (3#RMPutation necessary for evaluating NGCV and WSURE
(35). In this respect, IRLS-MIL is slightly more general: a epends on how the reconstruction algorithm is implemented

it is based on the standard gradient-descent IRLS schem&urthermore, in our experiments, we optimize NGQY,
[47], [48], it may be more amenable to tackle sophisticatderedicted-SURE\) and Projected-SURBR) using golden-
regularizers [63], [64] and / or a data model involving a morgection search that necessitates multiple evaluationhesfet
general® A. performance measures for several instances\.offo save
computation time, it is desirable to optimi2esimultaneously
during reconstruction. Designing such a scheme is nogstrai
forward when the reconstruction problem is posed as (2psinc

Evaluating reconstruction quality through quantitativeam intermittently changing affects the cost functiory and alters
sures generally involves additional memory and computge original problem (2).

tional requirements [31]. In our case, it is clear from (27)-
(32) that storing and manipulatin(u’, y)n, J(v), y)n,
J(v),y)n and evaluating NGCYA), Predicted-SURR\)

C. Memory and Computation Requirements

To avoid this difficulty, image reconstruction can be for-
mulated as apenalty problemusing variable splitting and
and Projected-SURRB) for one instance of the parametelpenalty techniques [66]. Alternat!ng minimization can rthe

7 . e employed to decouple the originpénalty probleminto
vector A demand similar memory and computational Ioag. . :

. ) simpler linear and nonlinear subproblems [66]. The adgmta
as the IRLS-MIL iterations (19), (25) themselves. Thesg, . . . ; . . AR

of this approach is that it provides the option for optimgin

15The matrix C needs to be chosen in accordance with (18), but since p(arameters based on the SprrOblemS’ which can be achieved

depends only omA (and AH), it can be predetermined for a given problem.relatively easily. Liacet al. [54], [55] demonstrated the prac-
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ticability of this approach for TV-based image restoration[2]
but they optimized regularization parameters only based on
linear subproblems (using LGCV) and used continuation-tect’
niques to adjust other parameters associated with nomlinea
subproblems. Since the techniques developed in this paper d4l
handle nonlinear algorithms, they may be adapted to opgimiz,
parameters (e.g., using NGCV) associated with the nonlinea
subproblems in thepenalty formulation. As part of future I[6]
work, we plan to investigate thegenaltyapproach for biomed- 71
ical image reconstruction with simultaneous optimizatafn

penalty parameters. (8]

VIl. SUMMARY & CONCLUSIONS [

Proper selection of the regularization parameterié an
important part of regularized methods for inverse problemd®
GCV and (weighted) MSE-estimation based on the principle g_fl]
Stein’s Unbiased Risk Estimate [18]—SURE (in the Gaussian
setting) can be used for selecting but they require the trace
of a linear transformation of the Jacobian matiduy,y), [z
associated with the nonlinear (possibly iterative) retmus
tion algorithm represented by the mapping. We derived [13]
recursions forJ(ug,y) for two types of nonlinear iterative
algorithms: the iterative reweighted least squares mettitid
matrix inversion lemma (IRLS-MIL) [47] and the variable
splitting-based split-Bregman (SB) algorithm [46], both On15)
which are capable of handling (synthesis-type and) a wariet
of analysis-type regularizers.

We estimated the desired trace for nonlinear imaéke]
restoration and MRI reconstruction (from partially sam-
pled Cartesian k-space data) by applying a Monte-Carlo
procedure similar to that in [25], [28]. We implemente(ﬂﬂ]
IRLS-MIL and SB along with computation of NGGX),
Predicted-SURR\), and Projected-SURR) for total varia- [18]
tion and analysig;-regularization. Through simulations, we[lg]
showed for image restoration that selectihdpy minimizing
NGCV()), Predicted-SURR\), and Projected-SURE) con-
sistently yielded reconstructions that were close to apoed-
ing minimum-MSE reconstructions both in terms of visudf™!
quality and SNR improvement. For MRI (with partial Cartef21]
sian k-space sampling), we conducted experiments with both
synthetic and real phantom data and found that NGCV-based
reconstructions were slightly sub-optimal in terms of SNR i [22]
provement, while minimizing Predicted-SURE (equivalent
to Projected-SURR) in this case) consistently yielded near-
MSE-optimal reconstructions both in terms of SNR improvgs3s)
ment and visual quality. These results indicate the felitgibif
applying GCV- and weighted SURE-based selection\ dbr
iterative nonlinear reconstruction using analysis-typgutar-
izers. The philosophy underlying theoretical developragnt
this work can also be extended, in principle, to handle othip!
regularizers, reconstruction algorithms and inverse lprob
involving Gaussian noise.
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We present a proof for Lemma 1 and show additional illusireti that we could not accommodate
in the paper due to space constraints. References to eqsiafigures, etc. are within this material only

unless specified otherwise.

. LEMMA 1IN THE PAPER

Lemma 1: Let fy : QM — QF be differentiable (for2 = R) or individually analytic (forQ = C
with respect to real and imaginary parts of its argumengpeetively, in the weak sense. Then, for any

deterministicT € Q>N satisfying&{|[T £ (y)]m|} < 0o, m =1... M, we have for2 =R or C that

EENTH(y)} = A *E{tr{TIE (v)}}. W (1)

Proof: The proof for2 = R is very similar to those in [1, Th. 1], [2, Lemma 1], so we foaus
the case of) = C. The density functionyc (€) = (7m0?) M exp(—€&1¢/0?) is analytic with respect tg§
and&* individually and satisfies the identity

2

€9c(6) = ~ 5 Ve, — Ve, loc(©). (2)

where Ve —and V¢ denotel x M gradient operators consisting partial derivatives withpest to
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Fig. 1. Plot of Predicted-MS®), Predicted-SURR\), Projected-MSE\) and Projected-SURRB) as functions of regularization
parameter\. Left: Experiment IR-A corresponding to third row of Tablein the paper; Right: Experiment IR-B corresponding
to third row of Table Il in the paper. The plots indicate thhe SURE-curves closely capture the trends of the resgectiv

MSE-curves and their minima (indicated by ") are close batt of the (oracle) MSE indicated by the solid vertical line.

{€pm M_, {&2,,}M_,. Expanding the LHS of (1) and using (2), we get that

EETOO)) = [ 9c(©EMTH(Y) e, -2 [ (Ve - %¢,) 5c()] THO) e @)

Integrating-by-parts the term involving,_ in (3) and using the fact th?gt lirln 90(&) [TH(y)]m =0,
Rm |00
when&H{|[T £ (y)lm|} < +oo [1], [2], we get that

/V B XL [ 9ge(€)
e, 9c(€) TH(y) d€,db, = Y D Dnfan(y) dEnde

m=1n=1

ALl 0 frn(y)
= - Z Z/QC(é)Tmna)\Tm:’ dgmdgz

m=1n=1

M N
=33 [oc@Tun 22 e e, @

m=1n=1 Ynm

where we have set/0¢m,, = 9/0ymm Since Ax (Eq. (1) in the paper) is a deterministic constant.
Going through a similar derivation for the integral invaﬂgi—Ngz and usingd/d¢zy, = 0/0yzm, we

get that

L 3 frny)
[ Ve gcl€) T e, = 30D [ (@) Tn 5 e . (5)

m=1n=1

Combining (3)-(5) with the definition aﬂg (y) (Eq. (4) in the paper) yields the desired result (1)m



Fig. 2. Experiment IR-B corresponding to third row of Tablé ih the
paper: Zoomed images of (a) Noisefree House; (b) Blurredraisly data;
and deblurred images obtained (using analysisegularization with 2 levels
of undecimated Haar wavelet) with regularization parameteselected to
minimize (c) (oracle) MSE (11.68 dB); (d) Projected-SURHE.GB dB); (e)
Predicted-SURE (11.63 dB); (f) NGCV (11.63 dB); (g) LGCV §2.dB).
Projected-SURE-, Predicted-SURE- and NGCV-based re@Hf) visually
resemble the oracle MSE-based result (c) very closely,enhé LGCV-based
result is considerably over-smoothed.

Il. ADDITIONAL ILLUSTRATIONS FORIMAGE RESTORATION

Fig. 1 plots Projected-MSR ), Projected-SURR\), Predicted-MSE\) and Predicted-SURR) versus
A for specific instances of Experiments IR-A and IR-B (cormgting to Cameraman and House test
images, respectively, see Table | in the paper). ProjeStéRE- and Predicted-SURE-curves are accurate
in capturing the trends of Projected-MSE- and Predicted=MS8rves and also exhibit minima (indicated
by *) close to that of MSE (solid vertical line). The deblutranages (corresponding to an instance of
Experiment IR-B) obtained by minimizing Projected-SURE (Fig. 2d), Predicted-SURRBR) (Fig. 2e)
and NGC\VY\) (Fig. 2f) closely resemble the corresponding minimum-M®Buit (Fig. 2c) in terms of
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Experiment MRI-A with (Shepp-Logan phantom) cop@sding to second row of Table VI in the paper: (a) Plot of

Predicted-MSE and Predicted-SURE as functions of re@atian parameteh indicates that Predicted-SURE closely captures
the trend of Predicted-MSE and their minima (indicated by &re close to that of the (oracle) MSE indicated by the solid
vertical line; (b) Plot of PSNR)) versus) indicate that\’s that minimize Predicted-SURE and the (oracle) MSE arg etse
to each other and lead to almost identical PSNRs and recatisins (see Fig. 5). NGCV-based selection is away from the
MSE-based selection but it still yields a reconstructiog. Ff that is agreeably close to the oracle Fig. 5d in termsisfal

quality in this instance of Experiment MRI-A.
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Plot of Predicted-MSE and Predicted-SURE as funetiof regularization parametex. (a) Experiment MRI-B with

synthetic data corresponding to second row of Table VII e phaper; (b) Experiment MRI-C with real MR data correspogdin
to fourth row of Table VIII in the paper. The plots indicateattPredicted-SURE closely captures the trend of Predigt8&-
and their minima (indicated by '*') are close to that of thegde) MSE indicated by the solid vertical line.

visual appearance, while that obtained by minimizing LG&Vis over-smoothed (see Fig. 2g). These

results are also consistent with what is reported in the pégg., see Figs. 3 and 4 in the paper).

IIl. ADDITIONAL ILLUSTRATIONS FORMRI RECONSTRUCTION

We evaluated Predicted-M$kE), Predicted-SURR\) as functions of and plotted them in Figs. 3a and

4 for specific instances of Experiments MRI-A (with syntheatiata corresponding to noisefree Shepp-

Logan phantom), MRI-B (with synthetic data correspondingat noisefreel;-weighted MR image)



Fig. 5. Experiment MRI-A with Shepp-Logan phantom (coresging to second row of Table VI: (a) Noisefree Shepp-Logan
(256 x 256) phantom; (b) Retrospective sampling along radial linéslif@es on a Cartesian grid with 89% undersampling, black
lines indicate sample locations); (c) Magnitude of zerediliFFT reconstruction from undersampled data; and madeit
of TV-regularized reconstructions with regularizationrgraeter A selected to minimize (d) (oracle) MSE (22.28 dB); (e)
Predicted-SURE (22.21 dB); (f) NGCV (21.68 dB). Reguladizeconstructions (d)-(f) have reduced artifacts compaced
the zero-filled iFFT reconstruction (c). Predicted-SURESdd and NGCV-based results (e), (f), respectively, glosdemble
the oracle MSE-based result (d) in this experiment.

and MRI-C (with real GE phantom data) in the paper. Predi@B&RE not only captures the trend of
Predicted-MSE in Figs. 3a and 4, but also exhibits minimdiated by *) close to that of MSE (solid
vertical line).

We also plot PSNR)\) versus\ in Fig. 3b and present reconstructions in Fig. 5 for the mstaof
Experiment MRI-A considered in Figs. 3a: Although NGCVes#ion is slightly away from the (oracle)
MSE-selection in Fig. 3b, the corresponding reconstrack@. 5f is visually similar to the MSE-based
one in Fig. 5d in this case. Predicted-SURE-selection isecko the (oracle) MSE-selection in Fig. 3b
and therefore naturally leads a reconstruction Fig. 5e ths¢mbles the MSE-based one in Fig. 5d.
These illustrations point to (the sub-optimality of NGCVdarthe accuracy of Predicted-SURE for
MRI reconstruction from partially sampled Cartesiasspace data and are consistent with our results

portrayed in the paper.
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