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Spatial resolution properties of motion-compensated
tomographic image reconstruction methods
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Abstract—Many motion-compensated image reconstruction have shown promising results for reducing noise and motion
(MCIR) methods have been proposed to correct for subject artifacts. MCIR methods have great potential for improving

motion in medical imaging. MCIR methods incorporate motion  jmage quality and benefiting the tasks used in medical ingagin

models to improve image quality by reducing motion artifacs o S

and noise. (e.g, better quantitative accuracy for PET or lower radiation
This paper analyzes the spatial resolution properties of M@R ~ dose for CT).

methods and shows that nonrigid local motion can lead to

non-uniform and anisotropic spatial resolution for convertional TABLE |

quadratic regularizers. This undesirable property is akin to ACRONYMS

the known effects of interactions between heteroscedastiog-

likelihoods (e.g., Poisson likelihood) and quadratic regularizers. Agg?ém E
This effect may lead to quantification errors in small or narrow LIR local impulsg response g
structures (such as small lesions or rings) of reconstructe -
images. Acronym R_econstructlon method _
This paper proposes novel spatial regularization design nt- Psl\(ig smg:le gatecti regonsnu?'o” i

ds for three different MCIR methods that account for known pos-reconsTction moton correcion
0ds fol i e ) MTR motion-compensated temporal regularization
nonrigid motion. We develop MCIR regularization designs that PMM  the parametric motion model

provide approximately uniform and isotropic spatial resolution Acronym _Regularization method

and that match a user-specified target spatial resolution. ES standard quadratic regularizer
PET simulations demonstrate the performance and benefits of C certainty-based regularizer
the proposed spatial regularization design methods. -P proposed regularizer

Index Terms—motion-compensated image reconstruction,
quadratic regularization, nonrigid motion, isotropic and uniform The interactions between heteroscedastic log-likelihood
spatial resolution, regularization design models €.g, Poisson measurements) and conventional static
guadratic regularizers lead to non-uniform and anisotropi
I. INTRODUCTION spatial resolution [21]. In this paper, we show analytig#tat
OTION can degrade image quality in medical imaginghese undesired properties can become worse in regularized
Often medical |mag|ng systems cannot capture |deMC|R methods due to local motion, may cause non-uniform
quality images due to their innate acquisition speeds aAfd anisotropic spatial resolution, and produce quantifioa
patient motion. Gating methods have been investigated &tfors in small or narrow structures such as small lesions or
reduce motion artifacts [1], [2], but can suffer from insciiint fings of reconstructed images. For example, Fig. 1 shows
measurements that result in low signal-to-noise ratio (BNfe contours of local impulse response (LIR) functions of
images. Motion-compensated image reconstruction (MCIR§rget (desired LIR), SGR-S (single gated reconstructigh w
methods have been studied for various imaging modalities @nventional spatial regularizer using one frame), and P81C
improve image quality by using all collected data and motio®®MC with conventional static spatial regularizer usingirfo
information so that high SNR images are reconstructed withdrames) in a 2D PET simulation (see Table | for acronyms).
motion artifacts [3]-[16]. Each LIR was generated by subtracting the reconstructed
MCIR methods differ in terms of how they incorporatdmage of the noiseless projection data of the original image
motion information. We focus here on three common MCIffom the reconstructed image of the noiseless projection of
methods: post-reconstruction motion correction (PMC)-[3]the original image with a Kronecker impulse at one point.
[5]’ motion-compensated tempora| regu|arization (MTR:D, [GThe Target has iSOtrOpiC contours, but SGR-S has a skewed
[7], and the parametric motion model (PMM) [8]-[16] (sed-IR due to the interaction between the log-likelihood ane th
Table 1). These models have also been used in non-mediggfdratic regularizer. This skewness became worse forfiRe L
super-resolution applications [17]-[20]. These MCIR noeth ©0f PMC-S due to affine motion between image frames.
There have been many studies of the spatial resolution prop-
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Local impulse response functions at (101,61)

o related to the object linearly as follows:
66 Ym = Amfm + €m, m = 17-~-7M7 (1)

64
gg where A,,, denotes the system model for theth frame,e,,

58 denotes noise, andl/ is the number of gates or frames. We
% allow the system model,, to possibly differ for each frame
_ _ to accommodate systems that rotate such as gated SPECT
T ot e e sy e iponed o, O CT of that can otherwise change sampiing propertes
uniform and anisotropic spatial resolution to the statiseca dynamically such as MRI. In some cases, we assume that
A,, = D,, Ay, Ym where D,,, is a diagonal matrix €.g,
PET scan, gated MRI scan with fixed k-space sampling, or a
and isotropic spatial resolution have been developed faideo sequence).
PET [24], [25] and 2D fan-beam CT [27]. However, there
has been little such research for regularized MCIR methodg. Basic warp model
This paper investigates the spatial resolution propedfes £, 5 given spatial transformatiaf, ,, : R? — R<, we can
three popular MCIR methods (PMC, PMM, and MTR). Baseggfine a warp operatdf,, ,, as foIIowé:
on this analysis, we propose quadratic regularizers that ca w
achieve approximately isotropic and uniform spatial reioh @ tm) = (T )& t0) £ f(Tnn(@),t,),  (2)
even in the presence of nonrigid motion and for heterosct'mﬁa%vheref belongs to an image domai! at timet,, andd is
log-likelihoods. For regularizer design, we extend thedigit: usually 2 or 3. We can discretize the wafp, ,, to define a

ical approach” [27], [29] to MCIR methods [30] for the Cas‘?nap from the imagef,, to the imagef,, as follows:
of known nonrigid motion. The known motion assumption can

be suitable for some multi-modal medical imaging app|magi Jm =Tmnfn, n,m=1--- M. )

such as PET-CT [9], [10], [12] and PET-MR systems [16].
This paper is organized as follows. Section Il presen

measurement and motion/warp models for MCIR metho

Target SGR-S PMC-S

For applications with periodic motion, we can additionally
BsefinefMH 2 fy andTa 1.0 = Th - The N x N matrix

; X , m,n Can be implemented with any interpolation method; we
Section Il introduces three different MCIR methods angc.y 4 B-spline based image warp [31] for our empirical

their LIRs. ‘Section IV investigates how to design SPalighg s, LetVT,, ,(Z)| denote the determinant of the Jacobian
regularizers for MCIR methods that provide apprommate%atrix of a transformil’ (&) for a warpT, Throughout

uniform and isotropic spatial resolution for nonrigid nuoti :
. ) . . we assume the warfig,, ,, (or equivalentl or 7, are
by extending analytical approach. Section V illustrates th - m (Oreq YEm.n OF Tmin)

proposed spatial regularizers by 2D PET simulations with '

nonrigid motion. o .
g C. Total activity-preserving warp model

In many medical imaging applications, total activity (oteto
mass) is preserved during the scan [32], [33] and this ptgper
A. Measurement model has been used in some MCIR methods [34]. To enforce this

Most medical imaging systems cannot capture an entgenstraint, the operatdF,, ,, must not change the total activity
dataset instantaneously, but rather record a sequence @f ntd an image. To preserve total activity (or mass), one camdefi
surements over some time interval. For example, X-ray GX modification of the operato¥,,, that uses the Jacobian
scanners acquire about 1000 projection views during a suteterminant ofl;,, ,,:
second rotation around the object. MCIR methods are needed - o o
when the time-varyi ject(r - igi - 1@ tm) (T ) (@, 1)

ying objecf(#,t) has non-negligible mo
tion during such an acquisition interval. Often one can use VT ()P f (Lo (D), ) 4)
gating or temporal binning to group the measurements o \here ) = 1. To verify that total activity is preserved, note
sets, called “frames” here, such that object motion is gége hat
within each frame, and then one can focus on the object

II. MCIR MODELS

(> 1l

motion betweenframes. This type of discrete approximation / f(@ tm)dd = / VT i (D) f (T, (5), t0)dT

to continuous object motion is ubiquitous in MCIR models “** Rt

and we adopt it here as well. Let,, denote the vector of = / fy, tn)dy (5)
R4

measurements associated with th¢h frame, e.g, a frame

in a gated scan. We assume the time varying objéet t) wherey = T;, (). Similarly, we can define a discrete-space
is approximately motionless during the acquisition of eaaharp corresponding to (4) that approximately preservesl tot
ym. Let t,, denote the time associated with theth frame, activity:
and let f,, = (f(Z1,tm),..., f(ZN,tn)) denote a spatial
discretization of the objectf(-,t¢,,) where Z; denotes the

center of thejth voxel for j = 1,..., N, and N denotes where )
the number of voxels. We assume that the measurements are T £ D(IVT 0 (Z) ) Trnn (7)

fm: Om,n.fna n,m:17~-~,JW, (6)
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and D(|VT,,,(%;)|?) is a N x N diagonal matrix with f,,b(g,,b(fm)), “/" denotes matrix transpose, and the Fisher
elements{|VT,, ,(%;)[P} ,j=1,---,N andp = 1. We use information matrix is

(4) and (6) for the analyses in this paper, but one can simply

let p = 0 if a total activity-preserving model is not needed. F, %A W,A,,.

The warp operator7,,, in (2) acts pointwise, so its ) o ) o
discretized version in (3) also acts approximately poipewi EQuation (14) implies that the LIR of (1) for a Poisson likeli
Therefore, the diagonal matrix in (7) that is applied to thB00d can be approximated with the LIR of (1) for a penalized
left hand side ofI,, ,, can be replaced (approximately) by ay\/e|ghted least square _(PWLS) likelihood. Thus, the anegS|
closely related diagonal matrix on the right hand sidepf, " the paper also applies to any PWLS model. Sometimes,

by simply adjusting the spatial coordinates as follows: a regularizer depends on the noiseless projecgor fm),
which is unavailable. However, as shown in [21]pkg-in

D(VTn(@)P) Trnn =~ TonD(|VTmn(Thm(Z;))|?) approach that replaces,,(f.) by y. (or smoothedy,,)
~ TpnD(VTm(7)]77)  (8) works well for the regularization design sincé,, contains
blurring operator. In the simulation, we will show that thés
where|VTo, ,(Tn,m(Z))||[VThm(Z;)] = 1 by the chain rule. also the case for MCIRs.
In some cases, we assume that invertibility, symmetry, and
transitivity properties hold foflo“m,n, ie.,
B. Post-reconstruction motion correction (PMC)

|VTm,n > 07 v n,m, (9) ~ ~
o o Once the frameg, ..., far are reconstructed individually
T, ! = T ms v 5 11ty 10 ! ' H
mn e nom (10) from (12) for all m, one way to improve the SNR would be
Tonpn = Tomm—1-"Tat1,n, Ym>n. (11) to average all of them. However, the resulting image would

These assumptions are reasonable for usual patient moigncontafrl_nat?g by mtptlo_n Plur d;J_e t?{ the m|smar':c_h between
such as respiratory or cardiac motion. In practice, one ¢ gmes. Lising theé motion Information 1o map €ac Imgtge

estimate motion models that satisfy these conditions [38], to_a single image’s co_ordmates can reduce motlon. artifacts
Without loss of generality, we chogg as our reference image.

Using (6) and (12), a natural definition for the PMC estimator
. L ocAL IMPULSERESPONSE FORMCIR is the following motion-compensated average:

We consider three MCIR methods: PMC [3]-[5], PMM [8]-
[14], [17], [19], and MTR [6], [7], [20], [37]. Here we treat
the nonrigid motion information as predetermined (known).
In this section, we derive the LIRs for regularized versiofis
these MCIR methods. Using (14), (10), and (6), one can derive the LIR for the PMC

estimator (15) at thgth pixel of the first frame as follows:

M
. 1 .
frumc £ i Z T mfm- (15)

m=1

A. Single gated reconstruction (SGR) ' M
Often one can reconstruct each imafie from the corre- by = i > Ty m[Fr+nRy) ' F T e
sponding measuremegpt,, based on the model (1) and some mj\jl
prior knowledge €.g, a smoothness prior). A single gated 1 . o 1
(frame) reconstruction (SGR) can be obtained as follows: ~ M Zl[F m +NRu] " Fae; (16)
m=

frn 2 argminL (Yo, Ay Fin) + 7R(Fim) (12)

m

where F,, £ T

usedT,, ,e; instead ofe; as an impulse for thenth frame,
which corresponds to an impulse in the first frame.

L71mei—'m’1 and IDZm = f/,,,lij—'m,l- We

m

whereL is a likelihood function derived from (1R is a spatial
regularizer, and is a spatial regularization parameter.

For any single-frame estimatgft,, (y,.), one can define the
LIR for the jth pixel as C. Parametric motion model (PMM)
A lim T (Ym(fm +0€5)) = Fon (Ym (fin)) (13)  To derive the LIR of the PMM approach, we first must

B g choose a reference image frame amdifg, - - - , far}. With-

where y,,, is the mean ofy,, ande; is a unit vector with out loss of generality, we assume tlfatis our reference image
one at thejth element. IfLL in (12) is a negative Poisson log-frame. Then, combining the measurement model (1) with the
likelihood function (.e., L(y,u) £ >, [uli—[ylilog[ul;), then warp (6) yields a new measurement model that depends only
one can show that the LIR in (13) can be approximated [21dn the imagef; instead of the all imageg,,:

lfﬁ [A;nWmAm + an]ilA;nWmAmej Ym = Am’fm_ylfl +€n, m=1,... M.

[F, +nR,] ' Fe; (14)

Q

Q

Stacking up these models yields the overall model
where W,, £ D (1/[gm(fn)]:) is a diagonal matrix, the )
Hessian of the regularizer iR,, 2 V2R(fn), fim = Yo = AqTc f1 + e, (17)



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, ACCEPTED FOR PUBLICHON

where the components are each stacked accordingly: We may also modifyTi;,,. for periodic (or pseudo-periodic)
N , ;o 18 image sequences by adding a row corresponding to the term
ye = byl (18) | 7, = Ty furll2. Note that unlike the PMM method that
Aq = diag{Ay, -+, An}, estimates one frame, MTR estimates all image frames.
T. & [I,T3,, - Ty, For the MTR estimator (25) with a negative Poisson log-

€], €. likelihood functionL, one can derive the LIR of the MTR
estimator at theth pixel as follows:

The PMM estimator for the measurement model (17) with a ; i

spatial regularizer is Lirr ® [Fa + nRa + (Riime] " Fael (27)

(1>

€c

~ o A . A
fPMM N argmin L(yC7 Achfl) + nR(fl) (19) where -Rd = dlag {Rla T ,RM}, Riime = Tt/imeTtimC’ and
f1 we define an impulse vector for all frames;jah voxel of the

whereL is a negative likelihood function arH is a spatial first frame as

regularlzer.' . ' ei A [697 (r_,‘amej)/’ o ,(TM,lej)’]’ (28)
For the linear measurement model (17) with a negative ] )

Poisson log-likelihood functiorl, similar to (14) one can Which is the same as the impulse for the PMC in (16). We

approximate the LIR (as defined in (13)) for the Pmngan interpret the LIR of MTR (27) as follows. Far = 0,
estimator (19) at theth pixel as follows: the LIR of MTR at thejth pixel would be the same as the

, L. e LIRs of SGR (14) for alm. For ¢ > 0, ¢||Tiime f-||3 term in
Uiy = [Te FaT. +nRevv] Te FaTee;  (20)  (25) encourages each LIR of theth frame to be the same
where Fy 2 A\W4Aq = diag {F\, -, Fy} is a block- as one another, which can result in different spatial re&oiu
C - C - b )

diagonal matrixW, £ D (1/[g.(f1)];) is a diagonal matrix, for differentc,

g is the mean ofy., Rpyim £ V2R(Fevm), and fea =

prM(Qc(ﬁ))- Note that E. Local impulse response (LIR) summary
M M The main results of this section are the LIR expressions
j"C'Fdfc - Z T 117’mgi‘m71 - Z F,. (21) (16), (22), and (27) for the PMC, PMM, and MTR methods for
1 m—1 MCIR respectively. Readers familiar with [21] will recogei
Using (20) and (21), we can rewrite the LIR of the pmmMbat these LIR expressions reflect non-uniform and anipatro
estimator at thejth pixel as spatial resolution, both due to heteroscedastic noise aed d
L to nonrigid motion for standard regularizers. The next sec-
p Mo Mo tion presents regularization design methods that can geovi
Lo & Z Fr +nRevu Z Fre;. (22) approximately uniform and isotropic spatial resolution.
m=1 m=1

D. Motion-compensated temporal regularization (MTR) IV. SPATIAL REGULARIZER DESIGNS FORMCIR

The MTR method incorporates the motion information that In this section, we present ways to design spatial regulariz

matches two adjacent images into a temporal regularizatiSFF’ of MClR methods t(.) provide approximately uniform e}nd
term [6], [7]: Isotropic spatial resolution that does not depend on object

| Fmt1 — T tm Fn|12- (23) Specific measurement statistics and given object-spefie n
’ e rigid motion. We extend the so-callethalytical approactfor
form = 1,---,M — 1. This penalty is added to the costregularizer design [29] to MCIR cases.
function in (12) for allm to define the MTR cost function. For the analysis in this section, we focus on 2D PET. We
Equations (12) for alln and (23) can be represented in @onsider an ideal tomography systeine,, we ignore detector
simpler vector-matrix notation. First, stack up (1) forallas blur; nevertheless we conjecture that the regularizatesighs
follows: are also useful in the presence of detector blur. We assuate th

[ A c c 24
Yo = Aafete (24 A, =D, Ay, m—=1,--- M, (29)
where f. = [fi,---, fi,;) and Aq4, €. were defined in (18).

Then, the MTR estimator based on (23), (24), and a spathﬁ‘ere Dm denotes a dlagc_)n_al matrix for patient-dependent
regularizer is attenuation and detector efficiency for theh frame, andA,

N is a system geometry. We assume known and well-aligned
furr £ argmin L(ye, Aafe) + nR(fe) + (| Tiime fel|3 (25)  attenuation mapi.., D., is given), which can be the case for
fe PET-CT [38] or PET-MR [39]. We still allow the warf},, ;
wherelL is a negative likelihood function from the noise modelo differ for eachm.

of (24),R is a spatial regularizeg, is a temporal regularization  For nonrigid motion, we assume that given nonrigid motion

parameter, and the temporal differencing matrix is is locally affine [40]. This can be viewed as a first order
Ty, T Taylor expansion of general nonrigid motion, which can be a
_ ’ (26) good approximation locally for smooth motion. We limit our
time = e . .

analysis to 2D cases and focus on using a first-order diféeren
—Tym—1 I matrix as a spatial regularizer.
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A. Single gated reconstruction (SGR) in frequency space, we writd), A, = | B(p)|* /p to indicate

We first briefly review the “conventional” analytical ap_that ApApis a IocaIIyQShift-invariant operator with local fre-
proach for designing a regularizer that provides approifya AUency response(p)|” /p whereB(.) denotes the frequency
uniform and isotropic spatial resolution fetaticimage recon- '¢Sponse of a typical radial blur functidrr) (€.g, the blur
struction [27], [29]. This SGR method is also suitable whefit the center of a single projection view). For a standard
reconstructing an individual frame,g, £, from the corre- duadratic penalty functio, (i.e. [ ||V f[|*), one can show
sponding measuremegt,.. However, the empirical results in that o = (2mp)?, and the quadratic function (30) becomes
Section V show that this conventional regularizer does ntm =211 Tz{m(QTFl?)Q 0082(80—?1), whereyp; = ;. One
provide the intended spatial resolution for any of the MCIRan also show by using the Fourier slice theorem and assuming
methods described above, so we provide new regularizati®i¢ local shift invariance oA\, W, Ao (slowly varying W,,)
designs for MCIR methods in subsequent subsections.  that [41]

We focus on quadratic regularization methods using first- ) B (01 ;) ]Bj (p)]z
order finite differences as follows: F,=AW, A= V1% , (36)

p
/ _ 2
FrnBonfm = (|Con foml where B (-) denotes the (local) frequency response of the

L .
i ~ detector responsé’ at angley local to where thejth
2 3OS (s e fa))% (30) ponsé; (r) at angley; )
=1

pixel projects onto the detector at that angle, and the angul

J dependent weighting,,, (¢; ;) for the jth pixel is

wheresx denotes 2D convolutiorf,,, [7i;] denotes the 2D array

corresponding to the lexicographically ordered vecfor, j - A Zidw a%ju?m’i
is the lexicographic index of the pixel & and Wi (p; T5) = ezl (37)
) @ 1]
_ 1 _ S
ali;] = \\ﬁzl\\z(éQ[nj] — [ty = ul), (31) whereZ,, is the set of rays at the angle, a;; 2 [Ao];,

. . L and @, ; £ [W,,]i:. We simplify (35) to the following cost
where{m;} denote the spatial offsets of thith pixel's neigh function with respect to(r7,, } for eachm and

bors andd,[7i;] denotes the 2D Kronecker impulse. For our

empirical results, we used the usual 8-pixel 2D neighbodhoo . P -

. . U (7! m (©; T 38
with {7} = {(1,0), (0,1), (1,1), (1, -1)}. {T?rg}r?n;) (mmw (¢ 333)) (38)

For the single-frame estimatgf,,, (y,,) in (12) with (29), =
one can rewrite the LIR (14) for SGR as where

; 2
U ~|[F,, + 1Ry 'Fe; (32) . w L
R . | ~] . ! . v (rfml,w) é/ w— Zr{)m cos*(¢ — 1) | de. (39)

where F,, £ AW, Ay and W,, = D, W, D,, is a 0 —

diagonal matrix. We would like to design the regulariZey, , , i i
(i.e. to select(r{,, } in (30)) so that the LIR closely matcheswe can solve (38) analytically using Karush-Kuhn-Tucker

L . conditions or iteratively using an iterative non-negatigast
some target point spread function (PSF). A reasonablettarg(qauares method. This summarizes [27], [29] for static 2D
for the jth pixel is X ’

imaging. We extend these methods to MCIR next.
1y = [AGAo +1Ro] ™' AjAoe; (33)

which is the (often shift-invariant) LIR of a penalized unB. Post-reconstruction motion correction (PMC)

weighted least square (PULS) estimator, digl denotes the  We would like to design regularize®,,, that can approx-
Hessian of a standard shift-invariant quadratic reguéauif imatel},,. ~ I for all j. Equations (16) and (33) show that
we assume slowly varying weights W, at the jth pixel, if we design a regularizeR,,, such that

then A{W,, A, becomes approximately a locally circulant . . .

matrix. One can show thai#, ~ I?” approximately reduces [Fo + 1Ry~ Frnej = [Fy +1Ro] ' Foe;  (40)

o for all m whereF, £ A} Ao, then, we can achievé, . ~ Ij.

/'YX o~ / )
Ro AW Ave; = R ApAoe;. (34) Equivalently, we want to desigi,, (or r/ ) such that

Therefore, our regularization design becomes an optiioizat

. e PR ‘
problem with respect tdz,, (or {r/,.}) for all j andm: (Fon + 1R Frnej ~ T [Fo +nRo] ™ FoTime; (41)
. - , 2 for all m. For smally, [Fy +nRo]~* Fy will be approximately
?jlrgl?m HROAonAoej —RonAOejH2 (39) diagonal, so by (7) and (8), we can cancel the diagonal
i }ia 20 matrices inT,, ; andT ,, so that (41) becomes

:/xhérg)Rm is the function of{r/, } for all I andj as given [Fyy + nRn) " Frue; ~ Th1[Fo + R0 " FoTy me;. (42)
An analytical formulation can simplify (35) by using aBy assuming the warp is locally affine arijn’lFoflym is
frequency domain representation. For polar coordingteg) approximately circulant locally, (42) becomes the follogi
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optimization problem for each: andj: for all 7 whereW was defined in (39) and
argmin ”T'm,lROTl,’mF'rnej - RmTrrL,lFOTl,’rnej”g . M ‘VTm.l(fj)/|2p71wm(¢; Tr;11 (f]))
(7] Her 20 Toaa(¢i ) = Y, —or = i)
’ (43) = VT (@) (cos o, sing)’ |2

We need to determine an analytical form By, 1 RyT ., L ]
and T, , FyT:. to solve (43) efficiently. With the results of The  t€rm w,,.(¢; T, (#;)) accounts  for  displacement
Appendices A and B (assuming locally affine transfoffys; ~ ©f theq activity due _fo motion and the term
and T ,,), one can show the equivalent continuous forms OV L 1 () 1771 /I VT 1 (%) (cos o, sin )|l accounts

T, FoT.,m andT,, 1 RoT: . at thejth pixel are as follows: for activity changes due to local volume change. Unlike
" " " " PMC, for PMM, the non-uniformity and anisotropy of spatial

|B(p)[? resolution due to motion and due to the interaction between
=AY o) (44) " jikelihood and regulari losely related. Note th

PIVT1,m(75) (cos p,sin)'[|2 ikelihood and regularizer are closely related. Note that
the non-uniformity and anisotropy of the spatial resolntio

T 1 RoT 1 = (270) 2| VT (7)) (cos @, sin¢)'[|3 (45) due to motion can be more severe when the warp is not
total activity-preservingi(e, p = 0). One can solve the

where we ignore detector blutg. b(r) ~ 3(r) or B(p) ~ 1) optimization problem (49) analytically or iteratively [R7
in (45). Thus, using a procedure similar to Section IV-A, we

perform (43) by minimizing the following cost function with ] o
respect to{r? 1 for eachm and j: D. Motion-compensated temporal regularization (MTR)

For MTR, we would like to desigiR,,, for all m to achieve

Tm,lFOTl,m =

J
l,m

argmin \Il(rj ms WPMC,m (5 T ) (46) - g e . .
oo Y T e (1) Bom = 1 (Toal))s - (Tual})) (50)

l=1=
where the angular-dependent weighting for jite pixel is which means that we want to approximately match the LIR of
the “first” frame at thejth pixel to ) and the LIRs of other

2 Dy (03 77) || VT1,m (7)) (cos p, sin ) ||3 framgs should satisfy the given motion relationships eeldo
the first frame.
and w,,(p; ;) is defined in (37).w,,(¢;Z;) describes  We can simplify this design problem (50) as follows. For
the non-uniformity and anisotropy of the spatial resolu: = 0 in (25), equation (50) is equivalent to (41) for all. In
tion due to the interaction between the likelihood an8ection IV-B, we designed the regularizer (46) for each rlam
the regularizer, which is also observed in (38) for SGRu to approximately match the spatial resolution to the PULS
|VT1.m(Z;) (cos ¢, sin ) ||3 is an additional term to explain estimator (uniform and isotropic),e., satisfying (41). After
the non-uniformity and anisotropy due to motion. As merwe designR,, for all m using (46), then the || Tiime f-||3
tioned in Section IV-A, one can solve optimization problemtrm in (25) is approximately zero due to the transitivityL Y1
of the form (46) analytically or iteratively [27], [29]. Therefore, as we increasge > 0, we can still satisfy (50)
with the regularizersR,,, from (46) without affecting the cost
function in (25). The temporal regularizer only increases t
correlation between image frames af\R;;,,. does not affect
For uniform and isotropic spatial resolution, we would likehe LIR of all frames in MTR under the assumption (40).
to designRpyiv (Which is of the form (30) with/) to satisfy  Therefore, we can approximately match the spatial resmiuti
W ~ 1) from (22) and (33). By assuming a locally affineof MTR with our target spatial resolution of PULS estimator
transform,F,, in (22) will be a locally circulant matrix at the using the proposed PMC regularizer design (46).
jth voxel, which reduces),;,, ~ I} to the following simpler
optimization problem: V. SIMULATION RESULTS

M
R, g F,,e; — Rpym Foe;

m=1

WpMC,m (¢; Tj)

C. Parametric motion model (PMM)

The general analyses provided in the previous section apply
(47) to nonrigid motions that are approximately locally affinee W
2 performed two simulations with digital phantoms: one is a

for all j. Ignoring detector blur, one can use Appendix B téimp'e phanto_m with global affine moti(_)n between ffaf“?s
show that the analytical form foF,, is and the other is a XCAT phantom [42] with general nonrigid

motion that is modeled using B-Splines [35]
B (3; T2 (T ) [V T 1 (2;) 2P~
( m,l( ]))| ,1( 7)| (18)

PV T 1(Z5) (cos p,sin ) |2 A. Simulation setting
whereg £ /VT,, 1(Z;) (cos g, sin ¢)’. With the similar pro- We used two digital phantoms, each with four frames of 160
cedure as in Section IV-A, one can reduce (47) to minimizin 160 pixels with3.4mm pixel width. We forward-projected

argmin
JL
{ri}iz,20

m

the following cost function with respect tg of Rpy: these original images using a PET scanner geometry_with
240 detector samples, 3.4 mm spacing, 220 angular views,
argmin U (r?,prM(w; fj)> (49) and 3.4 mm strip width. We used 400K, 200K, 300K, 300K

{ri}E >0 mean true coincidences for each frame (1.2M total) with 10%
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random coincidences. We used simple uniform attenuationiform and isotropic spatial resolution that matches wueth

maps for the first simulation and ignored attenuation for thaur target resolution (PULS estimator) for each MCIR method

second simulation. We scaled the image intensities to prese(PMC-P, PMM-P, and MTR-P with a wide range ¢f With

the total activity as described in Section 1I-C. the proposed regularizer designs, PMC, MTR, and PMM can
We investigated various reconstruction methods as followsave approximately the same spatial resolution.

Target refers to a PULS estimator (33) that shows our target

spatial resolution withy = 10*. SGR-S refers to a standard Local impulse responise functions at (101,61)

gated (single frame) reconstruction method (12). PMC-S, 65

PMC-C, and PMC-P refer to PMC estimation results using

a conventional static regularizer, a certainty-based legger

[21], and our proposed regularizer designed using (46) re-

spectively. PMM-S, PMM-C, and PMM-P also refer to PMM Contours

reconstructed images using a conventional static regégri S8 Target PMC-S PMC-C PMC—P ]
a certainty-based spatial regularizer, and our proposgd re 64 ]
ularizer from (49) respectively. Lastly, MTR-S and MTR-P Eé @ @ ]
refers to MTR results using a conventional static reguéariz 56

and our proposed spatial regularizer (46) respectivelyCPM

and PMM were reconstructed using a regularized expectation (a) PMC

maximization (EM) algorithm with Poisson likelihood [43].
PULS and MTR were reconstructed by using preconditioned
conjugate gradient with PWLS for simplicity.

Local impulse response functions at (101,61)

65

60

B. Simple phantom with affine motion 55
In this simulation, we used a simple digital phantom with Contours
known affine motion (anisotropic scaling between frame 1 and 6 Target VM-S PN NP ]

N

2, rotation between frame 2 and 3, and translation between o 1
frame 3 and 4) as shown in Fig. 2. 5 @ @ .
58 4

56

Four images with known affine motion

(b) PMM

Fig. 3. LIRs (images and contours) at pixel (101, 61) foreddght MCIR
5 methods. Our proposed spatial regularization designs enmwell with the
uniform and isotropic target LIR.

4 The skewed LIRs for conventional regularizers can cause
non-uniform estimation bias in small or narrow structurests
as small lesions or rings as shown in Fig. 5. These mean
images were obtained from the noiseless projections [22].
1 Fig. 5 (a) shows profiles of the relative image intensity abu
o the right ring of the PMC reconstructed images. Our proposed
PMC-P is very close to the target compared to the other
regularization methods (PMC-S and PMC-C). The profile
Fig. 2. Four true images with anisotropic scale, rotatiod translation. of Fig. 5 (b) shows that our proposed regularizer obtained
approximately the same quantitative result as that of trgeta
We put an impulse at (101,61) and generated two noiseldss PMM. Fig. 5 (c) shows that our proposed spatial regular-
projections with original and impulse-added images. We oizer (46) approximately achieved the same spatial resmiuti
tained LIRs by subtracting a reconstructed original imagenf regardless of, while the spatial resolution of MTR-S changes
a reconstructed impulse-added image as defined in (13). Figsver ¢.
and 4 show contour plots of the LIRs of the different MCIR We obtained the LIRs and the mean images of differ-
methods and different regularization schemes. Using cstatint MCIR methods by reconstructing images from noiseless
spatial regularizers usually led to skewed LIRs (for PMC-$irojection data. We also performed 100 noise realizations
PMM-S, and MTR-S) due to the spatial-variant noise stassti(regularizer were obtained from each realization) and stbw
andthe motion. Certainty-based spatial regularizer desigths dhat (result not shown in here) the image from one noiseless
not alleviate the skewness of LIRs for each MCIR methagarojection and the mean image from 100 noise realizations
(PMC-C and PMM-C) and the LIRs of PMC-C and PMM-Qmatched very well. They confirm that we can also use the
do not match the target well. However, our proposed spatsdmeplug-in technique for MCIR method as that for static
regularization designs of (46) and (49) achieve approxfyat case [22] to predict spatial resolution properties.
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Local impulse response functions at (101,61)
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65
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Fig. 4. LIRs (images and contours) at pixel (101, 61) for MTRir proposed g
spatial regularization designs can match well with theatildgR regardless £
of ¢ while LIRs of MTR-S depend strongly on thgvalues. §

-3 -2 -1 0 1 2 3
C. XCAT phantom with nonrigid motion Angle (radians)
(c) Ring profile of MTR

In this simulation, we used XCAT digital phantom [42] with
resplratory and cardiac motion to generate 4 volumes WIH}; 5. Profiles around the ring on the right of the recons&dcimages
nonrigid motion and selected one slice per each volume (sagigemMc, PMM, and MTR (with different¢ values) with different spatial
location) for the 2D simulation. We estimated the motiordféel regularizers from the noiseless projection data. Nonurifand/or anisotropic
from frame 1 to 2, from frame 110 3, and from frame 1 to 42 €84 1o nomunfor estiaton bias i smal o naracres st
(for PMM) by using B-spline nonrigid motion estimation [35sigures.
and used them as the true motion, leading to the images
fi1, -+, f+ shown in Fig. 6. Then, we obtained the other Four images with given nonrigid motion
related warps€.g, motion from frame 4 to 1 for PMC and
from 3 to 4 for MTR) by using (54) and the composition
of transformations€.g, T4 3 = T4 1T1 :3). Thus, there is no
motion model mismatch in this experiment, so that we can
focus on the spatial resolution properties.

To measure LIRs, we put 9 impulses as indicated in Fig. 6
(+ marks). Fig. 7 shows the LIRs of PMC at the 9 locations.
Fig. 7 (@) and (b) show that conventional and certainty-
based spatial regularizers lead to skewed LIRs as compared t
the Target LIR. However, our proposed regularizer for PMC
yielded a good match to the Target LIR as shown in Fig. 7 (c).
Fig. 7 (d) and (e) confirm that regularizers that do not stfiore
isotropic spatial resolution lead to skewed LIRs as congpare
to the Target LIR. However, our proposed regularizer for PMM
shows a good match to the Target LIR as shown in Fig. 7 (f).
Fig. 8 shows LIRs of MTR at 9 locations. Fig. 8 (a) and (bﬁig. 6. Four XCAT phantom images with nonrigid motion.
show that conventional regularizer can not achieve the meatc
spatial resolution to the Target for any value, while our
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matches with Target despite general nonrigid motion aniraifit .

DIFF( PMC-S, Target)

DIFF( PMM-S, Target )

(b) MTR-S with ¢ = 1

(d) MTR-P with ¢ = 1

160

Fig. 7. Contours of LIRs for PMC and PMM. Our proposed PMC-®@ an 1 160

PMM-P approaches approximately match with Target spaéablution for _

general nonrigid motion. (a) |PMC S— Target
DIFF( PMC-C, Target )

(d) |PMM-S — Target

DIFF( PMM-C, Target )

proposed regularizer for MTR produced nearly uniform ani
isotropic LIRs as in Fig. 8 (¢) and (d) for a wide range(of
values.

Fig. 9 shows absolute difference images between the me
image for each method and Target. PMC-S differs the mo
from the Target especially for edges and relatively sma
structures (near myocardium in our example) in Fig. 9 (a). (b) [PMC-C — Target
PMC-C matches somewhat better due to nearly uniform spatial
resolution as seen in Fig. 9 (b). Fig. 9 (c) shows that PMC- 1
best matches the Target. Fig. 9 (d-f) shows similar resolts f
PMM. Similarly, the agreement of PMM from the Target meat
image improves as the spatial regularizer encourages ramifo
and isotropic spatal resolution. Likewise, Fig. 10 showet th
our proposed spatial regularizer for MTR vyielded the mea
images closest to the Target mean image for a wide ran s
of ¢ values as shown in Fig. 10 (c), (d), as compared to the
results of conventional regularizers in Fig. 10 (a), (b).

(e) |IPMM-C — Target

DIFF( PMC-P, Target ) DIFF( PMM-P, Target )

(c) [PMC-P— Target (f) [PMM-P — Target

VI. DISCUSSION Fig. 9. Absolute difference images between PMC/PMM and étarg
PMC-S/PMM-S show severe non-uniform bias near edges ativella small

The analysis in this paper shows that MCIR for nonrigigfructures. PMC-C/PMM-C alleviate this bias using nearjfarm spatial
(even affine) motion leads to non-uniform and anisotropL%Sa?:gf'?QSSBSOEMC'P/PMM'P performed best by nearly umifgsotropic
spatial resolution properties when one uses conventidatt s
regularizers. We proposed quadratic spatial regularizieas

approximately achieve isotropic and uniform spatial regoh
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DIFF( MTR-S, Target ), { = 0.01 DIFF( MTR-S, Target ), { = 1
0 1

05 When the motion estimation error was small (1.7 mm), the
s maximum absolute errors between the reconstructed imagje an
the target image for PULS, PMC-S, and PMC-P were 0.7, 1.9,
and 1.1. In this case, the non-uniformity and anisotropyhef t
bias due to the interaction between Poisson likelihood and
01 regularizers was still significant. However, when the motio
b estimation error was large (3.4 mm), the maximum absolute
errors for PULS, PMC-S, and PMC-P were 1.4, 2.2, and 1.7.
(a) [IMTR-S— Target, ¢ = 0.01 (b) [MTR-S—Targef, ( =1  The non-uniformity anisotropy of the bias due to the motion
DIFF( MTR-P, Target), = 0.01 DIFF( MTR-P, Target) £ =1 error started to become a dominating factor for large motion
' error. PMM also showed similar tendency. For small motion
errors, our proposed regularizers can still reduce the non-
03 uniformity and anisotropy of the bias as expected becauyse
02 is slowly varying and we assumed local affine motidme.(
smooth motion). For large motion errors, MCIR itself may
fail to yield images with good quantification accuracy &y
regularization method. There is much effort on improving th
(c) IMTR-P— Target, ¢ = 0.01 (d) [MTR-P— Target, ¢ = 1 accuracy of motion estimation by us_in_g simL_JItan_eous a_ld:quis
tion such as PET-MR, or by using joint estimation of image
Fig. 10. Absolute difference images between MTR and Talg&RR-S with and .motlon. The IS-Sue of the- non_ur-"form- and anisotropic
any-g vélues show significant non-uniform bias in small or narrdmaﬂures spatial resolution will become increasingly important &e t
such as small lesions or rings, but MTR-P reduces this biaa foide range accuracy of the motion estimation in MCIR models continues
of ¢ values. to improve.
The spatial resolution analysis and regularizer designs in
this paper can provide the basis for interesting future work
for three different MCIR methods for the case of knowRych as analyzing the noise properties of MCIR methods [46]
nonrigid motion. Our proposed regularizers (46) and (4Qnd extending regularization design to 3D PET / CT and to
yielded LIRs that match well with the Target LIR which isnonquadratic regularizers. It is straightforward to extehis
isotropic and uniform. work to 3D cylindrical PET with 6-voxel 3D regularizer [47],
The assumption that the motion is locally affine should bghich is relevent for 3D PET rebinning methods [48]. Ex-
reasonable for any smooth organ motion such as heart asflding this analysis to fully 3D PET or fan-beam CT will
lungs when the time resolution is sufficierg.q§, see [44], be more challenging, just as [23], [27] extended [21], [29],
[45] for local affine models to approximate cardiac motionyespectively. This analysis can also provide insights i@
Mathematically, the Taylor approximation of smooth noittig methods of joint image reconstruction and motion estinmatio
motion becomes more accurate as the region of interest (RQlhknown motion) [7], [8], [11], [13]-[15]. One may use the
shrinks. In our analysis, the effective ROI is very smalbroposed regularizers in the joint estimation framework by
(usually about 2 pixels in each direction) because we focusing currently estimated motion instead of using true oroti
on each LIR individually. Thus, even for non-affine nonrigidHowever, the effect of the proposed regularizer in this case
motion, our proposed methods still produced LIRs that matehould be further analyzed.
fairly well with the Target LIR. However, this assumption
may break for sliding motion such as the motion near the APPENDIXA
interface between diaphragm and rib cage. For lower reisolut ADJOINT OPERATOR OF A WARF]™

modalities like PET or SPECT, this type of motion can still be _ . . _
: : . P . This appendix analyzes the properties of the transpose war
approximated by smooth motion. For high resolution Imagmr%atrix TF/JP by consi)(/jering its cgntinuous space a%alogue P

modalities, treating this sharp sliding motion should betHer Let T ."ﬁd Re denot tal t ; i h
investigated along with non-quadratic spatial regulasze € : N enote a spatial transtormation wi

. . ) a p
Our analysis assumed ‘known true motion’, but obtainingozggeog E(igo:;g ﬁ]et;ergg::; ti.m;éie; o@rﬂig ddggf?;i 'E[?]ee
exact motion from multi-modal imaging systems is challen P q 9 9

ing due to misregistration between two imaging modalitigg/arp operator7 : & — X by g = Tf if and only if

o - - 4 ) ;
(e.g. PET and CT) and the non-linear, non-convex natu%(eﬁér:ni{] (ez(fh)g g)c;.({i’ngt (ejr/‘\,’ daer:‘?ng(! 3;36 ,[Iﬁe' Jhe'fa?greiﬂgltx
of image registration problem. We investigated the effdct 0 ! ! P

1 1 — 4 P
motion error in our reconstructed images. We reconstruitted satisfies(g, T f) = _<Tg, f)iorall f.g € &, where(, )
simple phantom in Section V-B again, but with 1.7 mm (a haﬂenotes the usual inner product an

' ) By a simple change of variablg = T'(¥), we have

pixel) and 3.4 mm (1 pixel) motion errors in the x-direction
0T = [o@TH@di = [ o@) T

deformation. Additionally, we reconstructed PULS imag&wi
with respect tof; whereC| is a first-order finite difference /f(g) 1

motion errors by minimizingi|y. — AaTef1]13 + 1l|Co f1 3
g N
matrix for a standard shift-invariant quadratic regulariz |VT(T71(37))|9(T &))dy,  (51)
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where|VT(-)| denotes the determinant of JacobianZofWe
define an operatobr : X — X such that
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IVT'(Z)| R
Then, by (51), the adjoint operatgr is given by EFERENCES
, 1 [1] C. J. Ritchie, J. Hsieh, M. F. Gard, J. D. Godwin, Y. Kim,dan
T =T "Dr. (52) C. R. Crawford, “Predictive respiratory gating: a new metfio reduce

Therefore, in continuous space, the adjoint of an inveatibl
nonrigid warp is the product of the inverse of the warp with a2]
diagonal operator based on the local Jacobian determiriant o
the warp. The discrete approximation that matches (52) is

1 ) (53) [3]
|VTm7n(fj)‘ .

Now we use the result (53) and (8) to approximate thé*!
transpose of the discrete space matrifgs, in (6) as follows:

T, ., ~ T,;}nD<

T~ [D(VTon(@)[) Ton ] )
1
~ TmlnD<7q>D VT ()| [6]
5 ‘VTm,n(l‘j” (‘ 5 ( ])| )

Ty D (VT 0 (25)P1)

[7]
D(|V T (7)) 7) Ty

(54)

APPENDIXB (8]
EQUIVALENT FREQUENCY FORM FOR AFFINE

TRANSFORMATION 9]

This appendix analyzes the behavior of a gram matrix or
a quadratic regularizer that is sandwiched in between the]
transpose and forward affine transformation operators such
as ﬁ’m and Io%m in (16). We consider the continuous-spac&ll
analogue as follows:

T'Q'H () QT (55)
where H (w) denotes the frequency response with frequen%/zl
domain variabless, Q is a Fourier transform operator, and

T corresponds to the total activity-preserving affine transf
operator that is associated with the affine transform

T(Z) = L +d. (56)

Here, L is ad x d invertible matrix,d is a translation vector,
and is spatial domain coordinates &f’. If f(#) has Fourier
transform F'(«), then the Fourier transform of 7 f)(Z) =
\VT(@)P f(T () is

(QT f)(@) = |L|P~ > L IF (L))

After multiplying (Q7 f)(w) by H (w) and matching a change
of variables, the inverse Fourier operat@f will result in the
following continuous function:

(23]
[14]
[15]

[16]

/ |L'|P H (L) F ()72 @ (L3+d) [17]

du.
Lastly, by Appendix A, an operatcﬂo‘" will change LT + d
into # and multiply by|L’|P~1. Therefore, (55) simplifies to

T'QH(W)QT = Q'|L'|* 'H(L'w)Q. (57)
Note that the translatiod does not affect the equivalent fre-
quency response (57). For exampleHifw) = ||| = p? in
the polar frequency coordinate, ®), the frequency response
of 7'Q'H (w)QT will be |L'|?*P~1p?|| L’ - (cos ®,sin ®)’||%.
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Image reconstruction methods”
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|. SIMULATION RESULTS
A. Simple phantom with affine motion

Fig. 1 (a) and (b) show that the image intensities arounditigsrade nonuniform due to the anisotropic and/or
non-uniform spatial resolutions of PMC-S and PMC-C. Figcllshows our proposed PMC-P, which approximately
achieved the same spatial resolution as the target imagigirl Kd) with isotropic and uniform spatial resolution.

PMC-S

(a) PMC-S (b) PMC-C
PMC-P Target
(c) PMC-P (d) Target

Fig. 1. Reconstructed images of PMC with different spaggjularizers from the noiseless projection data. Nonunifand/or anisotropic
LIRs lead to non-uniform estimation bias in small or narrdwistures such as small lesions or rings.
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PMM-S PMM-C
ﬂs

(@) PMM-S (b) PMM-C

PMM-P Target

(c) PMM-P (d) Target

Fig. 2. Reconstructed images of PMM with different spategularizers from the noiseless projection data. Nonumifand/or anisotropic
LIRs lead to non-uniform estimation bias in small or narrawustures such as small lesions or rings.

Fig. 2 also shows similar results: PMM-S and PMM-C causedundform estimation bias due to the spatial-
variant data statistics and the motion, but PMM-P achieygztaximately the same isotropic and uniform spatial
resolution as those of the target PULS estimator.

Fig. 3 shows that our proposed spatial regularization neetbo MTR, denoted MTR-P, approximately achieved
the same spatial resolution regardlesg pfvhereas the spatial resolution of MTR-S changes with
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MTR-S, { = 0.01

© C

(@) MTR-S,¢ = 0.01 (b) MTR-S, ¢ = 1
MTR-P,Z = 0.01 MTR-P,{=1

() MTR-P, ¢ = 0.01 (d) MTR-P,¢ = 1
Target

(e) Target

3

Fig. 3. Reconstructed images of MTR-S, MTR-P with differéntalues from the noiseless projection data. Nonuniform @nahisotropic

LIRs lead to non-uniform estimation bias in small or narravustures such as small lesions or rings.



