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Parallel MR Image Reconstruction Using
Augmented Lagrangian Methods
Sathish Ramani*, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Magnetic resonance image (MRI) reconstruction
using SENSitivity Encoding (SENSE) requires regularization to
suppress noise and aliasing effects. Edge-preserving and spar-
sity-based regularization criteria can improve image quality,
but they demand computation-intensive nonlinear optimiza-
tion. In this paper, we present novel methods for regularized
MRI reconstruction from undersampled sensitivity encoded
data—SENSE-reconstruction—using the augmented Lagrangian
(AL) framework for solving large-scale constrained optimization
problems. We first formulate regularized SENSE-reconstruction
as an unconstrained optimization task and then convert it to a set
of (equivalent) constrained problems using variable splitting. We
then attack these constrained versions in an AL framework using
an alternating minimization method, leading to algorithms that can
be implemented easily. The proposed methods are applicable to a
general class of regularizers that includes popular edge-preserving
(e.g., total-variation) and sparsity-promoting (e.g., �-norm of
wavelet coefficients) criteria and combinations thereof. Numerical
experiments with synthetic and in vivo human data illustrate
that the proposed AL algorithms converge faster than both gen-
eral-purpose optimization algorithms such as nonlinear conjugate
gradient (NCG) and state-of-the-art MFISTA.

Index Terms—Augmented Lagrangian, image reconstruction,
parallel magnetic resonance imaging (MRI), regularization, sen-
sitivity encoding (SENSE).

I. INTRODUCTION

P ARALLEL MR imaging (pMRI) exploits spatial sensi-
tivity of an array of receiver coils to reduce the number of

required Fourier encoding steps, thereby accelerating MR scan-
ning. SENSitivity Encoding (SENSE) [1], [2] is a popular pMRI
technique where reconstruction is performed by solving a linear
system that explicitly depends on the sensitivity maps of the coil
array. While efficient reconstruction methods have been devised
for SENSE with Cartesian [1], as well as non-Cartesian -space
trajectories [2], they inherently suffer from SNR degradation in
the presence of noise [1] mainly due to -space undersampling
and instability arising from correlation in sensitivity maps [3].
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Regularization is an attractive means of restoring stability
in the reconstruction mechanism where prior information
can also be incorporated effectively [3]–[9]. Tikhonov-like
quadratic regularization [3]–[6] leads to a closed-form solu-
tion (under a Gaussian noise model) that can be numerically
implemented efficiently. However, with the advent of com-
pressed sensing (CS) theory, sparsity-promoting regularization
criteria (e.g., -based regularization) have gained popularity
in MRI [10]. The basic assumption underlying CS-MRI is
that many MR images are inherently sparse in some trans-
form domain and can be reconstructed with high accuracy
from significantly undersampled -space data by minimizing
transform-domain sparsity-promoting regularization criteria
subject to data-consistency. The CS framework is apt for
pMRI [11] with undersampled data. This paper investigates the
problem of regularized reconstruction from sensitivity encoded
data—SENSE-reconstruction—using sparsity-promoting reg-
ularizers. We formulate regularized SENSE-reconstruction as
an unconstrained optimization problem where we obtain the
reconstructed image, , by minimizing a cost function, ,
composed of a regularization term, , and a (negative)
log-likelihood term corresponding to the noise model. For ,
we consider a general class of functionals that includes popular
edge-preserving (e.g., total-variation) and sparsity-promoting
(e.g., -norm of wavelet coefficients) criteria and combinations
thereof. Such regularization criteria are “non-smooth” (i.e., they
may not be differentiable everywhere) and they require solving
a nonlinear optimization problem using iterative algorithms.

This paper presents accelerated algorithms for regularized
SENSE-reconstruction using the augmented Lagrangian (AL)
formalism. The AL framework was originally developed for
solving constrained optimization problems [12]; one combines
the function to be minimized with a Lagrange multiplier term
and a penalty term for the constraints, and minimizes it itera-
tively (while taking care to update the Lagrange parameters) to
solve the original constrained problem. This combination over-
comes the shortcomings of the Lagrange multiplier method and
penalty-based methods for solving constrained problems [12].
To use the AL formalism for regularized SENSE-reconstruc-
tion, we first convert the unconstrained problem in to an equiva-
lent constrained optimization problem using a technique called
variable splitting where auxiliary variables take the place of
linear transformations of in the cost function . Then, we
construct a corresponding AL function and minimize it alter-
natively with respect to one auxiliary variable at a time—this
step forms the key ingredient as it decouples the minimiza-
tion process and simplifies optimization. We investigate dif-
ferent variable-splitting approaches and correspondingly design
different AL algorithms for solving the original unconstrained
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SENSE-reconstruction problem. We also propose to use a diag-
onal weighting term in the AL formalism to induce suitable bal-
ance between various constraints because the matrix-elements
associated with Fourier encoding and the sensitivity maps can be
of different orders of magnitude in SENSE. The proposed AL al-
gorithms are applicable for regularized SENSE-reconstruction
from data acquired on arbitrary non-Cartesian -space trajec-
tories. Based on numerical experiments with synthetic and real
data, we demonstrate that the proposed AL algorithms converge
faster (to an actual solution of the original unconstrained regu-
larized SENSE-reconstruction problem) compared to general-
purpose optimization algorithms such as NCG (that has been
applied for CS-(p)MRI in [10] and [11]), and the recently pro-
posed state-of-the-art monotone fast iterative shrinkage-thresh-
olding algorithm (MFISTA) [13].

The paper is organized as follows. Section II formulates
the regularized SENSE-reconstruction problem (with spar-
sity-based regularization) as an unconstrained optimization
task. Next, we concentrate on the development of AL-based
algorithms. First, Section III presents a quick overview of AL
framework. Then, Section IV applies the AL formalism to
regularized SENSE-reconstruction in detail. Here, we discuss
various strategies for applying variable splitting and develop
different AL algorithms for regularized SENSE-reconstruction.
Section V is dedicated to numerical experiments and results.
Section VI discusses possible extensions of the proposed AL
methods to handle some variations of SENSE-reconstruction
such as that proposed in [14]. Finally, we draw our conclusions
in Section VII.

II. PROBLEM FORMULATION

We consider the discretized SENSE MR imaging model given
by

(1)

where is a 1 column vector containing the samples of
the unknown image to be reconstructed (e.g., a 2-D slice of a
3-D MRI volume), and are 1 column vectors corre-
sponding to the data-samples from coils and noise, respec-
tively, is a matrix given by ,
is a (possibly complex) diagonal matrix corresponding
to the sensitivity map of the th coil, , repre-
sents the Hermitian-transpose, is a matrix given by

, is a Fourier encoding matrix, is the
identity matrix of size and denotes the Kronecker product.
The subscript “ ” in signifies the fact that the -space may
be undersampled to reduce scan time, i.e., .

Given an estimate of the sensitivity maps , the SENSE-re-
construction problem is to find from data . Since regular-
ization is an attractive means of reducing aliasing artifacts and
the effect of noise in the reconstruction (by incorporating prior
knowledge), we formulate the problem in a penalized-likelihood
setting where the reconstruction is obtained by minimizing a
cost criterion

(2)

where is the inverse of the noise covariance
matrix, , and represents a suitable reg-
ularizer. We have included in the data-fidelity term to ac-
count for the fact that noise from different coils may be corre-
lated [1], [2]. Assuming that noise is wide-sense stationary and
is correlated only over space (i.e., coils) and not over -space,

can be written as , where is a
matrix that corresponds to the inverse of the covariance matrix
of the spatial component of noise (from coils).

The weighting matrix can be eliminated from in (2)
by applying a noise-decorrelation procedure [2]: Since is
generally positive definite, we write , and

, where . Then, because of the
structures of and , we have that [2]

where . Letting

(3)

(4)

we therefore get that

(5)

which is an equivalent unweighted data-fidelity term1 with a
new set of sensitivity maps obtained obtained by weighting
the original sensitivity maps with . In the sequel, we use
the right-hand side of (5) for data-fidelity and drop the ~ for ease
of notation. In the numerical experiments, we used (3) and (4).

We consider sparsity-promoting regularization for based
on the field of compressed sensing for MRI—CS-MRI [10],
[11]. We focus on the “analysis form” of the reconstruction
problem where the regularization is a function of the unknown
image . Specifically, we consider a general class of regular-
izers that use a sum of terms given by

(6)

where indexes the regularization terms, the parameter
controls the strength of the th regularization term, and or

represents the th element of the vector . The ma-
trices , , represent sparsifying operators.
We focus on shift-invariant operators for (e.g., tight frames,
finite-differencing matrices), but the methods can be applied to
shift-variant ones such as orthonormal wavelets with only minor
modifications. Typically, (as seen in the exam-
ples below). We consider that the values of and the choice of
potential functions and are such that is composed
of nonquadratic convex regularization terms.

The general class of regularizers (6) includes popular spar-
sity-promoting regularization criteria such as follows.

1The right-hand side of (5) automatically includes the special case of� �

� with �� � � and �� � �.
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1) -norm of wavelet coefficients: , ,
, is a wavelet transform (orthonormal or a

tight frame), and where indexes the rows
of .

2) Discrete isotropic total-variation (TV) regularization
[15]: , , , and represent
horizontal and vertical finite-differencing matrices,
respectively, and , where indexes the
rows of .

3) Discrete anisotropic total-variation (TV) regularization
[15]: , , , and repre-
sent horizontal and vertical finite-differencing matrices,
respectively, and , where indexes rows of

.
The general form (6) also allows the use of a variety of poten-
tial functions for . We consider such a generalization because
combinations of wavelet- and TV-regularization have been re-
ported to be preferable [10]. The proposed methods can be easily
generalized for synthesis-based formulations [16].

The minimization in (2) is a nontrivial optimization task, even
for only one regularization term. Although general purpose op-
timization techniques such as the nonlinear conjugate gradient
(NCG) method or iteratively reweighted least squares can be ap-
plied to differentiable approximations of P0, they may either be
computation-intensive or exhibit slow convergence. This paper
describes new techniques based on the augmented Lagrangian
(AL) formalism that yield faster convergence per unit computa-
tion time.

The basic idea is to break down P0 in to smaller tasks by in-
troducing “artificial” constraints that are designed so that the
subproblems become decoupled and can be solved relatively
rapidly [15], [17]–[20]. We first briefly review the AL method
and then discuss some strategies for applying it to P0.

III. CONSTRAINED OPTIMIZATION AND AUGMENTED

LAGRANGIAN (AL) FORMALISM

Consider the following optimization problem with linear
equality constraints:

(7)

where is or , is a real convex function, is a
(real or complex) matrix that specifies the constraint equations,
and . In the augmented Lagrangian (AL) framework
(also known as the multiplier method [12]), an AL function is
first constructed for problem (7) as

(8)

where represents the vector of Lagrange multipliers,
and the quadratic term on the right-hand side of above equation
is called the “penalty” term2 with penalty parameter3 . The

2A more general version of AL allows for the minimization of nonconvex
functions subject to nonlinear equality and/or inequality constraints with non-
quadratic “penalty” terms [12].

3For nonconvex problems, there may exist a positive lower bound on the pos-
sible values of � for establishing convergence [12, Prop. 1], [21, p. 519].

AL scheme [12] for solving (7) alternates between minimizing
with respect to for a fixed and updating , i.e.,

(9)

(10)

until some stopping criterion is satisfied.
So-called “penalty methods” [12] correspond to the case

where and (9) is solved repeatedly while increasing
. The AL scheme (9)–(10) also permits the use of

increasing sequences of -values, but an important aspect of
the AL scheme is that convergence may be guaranteed without
the need for changing [12].

The AL scheme is also closely related to the Bregman itera-
tions [15, Eq. (2.6)–(2.8)] applied to problem (7)

(11)

(12)

where is called
the “Bregman distance” [15] and is a 1 vector in the
subgradient of at . The connection between AL method
and Bregman iterations is readily established if
[22]. Then, is identical to

(up to constants irrelevant for optimization) and
(9) and (10) become equivalent to (11)–(12) as noted in [22],
[23].

The AL function in (8) can be rewritten by grouping to-
gether the terms involving as

(13)

where , and is a constant independent of
that we ignore henceforth. The parameter can then be re-

placed by in (10) which results in the following version of AL
algorithm for solving (7).

Algorithm AL

1. Select , , and ; set

Repeat

2.

3.

4. Set

Until stop-criterion is met

It has been shown in [15, Theorem 2.2] that the Bregman
iterations (11)–(12)—equivalently, the AL algorithm under
above mentioned conditions—converge to a solution of (7)
whenever the minimization in (11)—in turn, Step 2 of the AL
algorithm—is performed exactly. However, this step may be
computationally expensive and is often replaced in practice by
an inexact minimization [12], [15], [17]. Numerical evidence
in [15] suggests that inexact minimizations can still be effective
in the Bregman/AL scheme.

fessler
Sticky Note
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IV. PROPOSED AL ALGORITHMS FOR REGULARIZED

SENSE-RECONSTRUCTION

Our strategy is to first transform the unconstrained problem
P0 into a constrained optimization task as follows. We replace
linear transformations of ( , and ) in with a set of
auxiliary variables . Then, we frame P0 as a constrained
problem where is minimized as a function of subject
to the constraint that each auxiliary variable, , equals the re-
spective linear transformation of . We handle the resulting con-
strained optimization task (that is equivalent to P0) in the AL
framework described in Section III.

The technique of introducing auxiliary variables is
also known as variable splitting; it has been employed, for in-
stance, in [15], [18]–[20] for image deconvolution, in-painting
and CS-MRI with wavelets- and TV-based regularization in
a Bregman/AL framework and in [17] for developing a fast
penalty-based algorithm for TV image restoration. The purpose
of variable splitting is to make the associated AL function

amenable to alternating minimization methods [15], [17],
[24]–[26] which may decouple the minimization of with
respect to the auxiliary variables. This makes (9) easier to
accomplish compared to directly solving the original uncon-
strained problem P0.

The splitting procedures used in [15], [17], [19] introduce
auxiliary variables only for decoupling the effect of regulariza-
tion. In this work, in addition to splitting the regularization, we
also propose to use one or more auxiliary variables to separate
the terms involving and (see Section IV-B). The AL-based
techniques in [18], [20] also use auxiliary variables for the data-
fidelity term, but they pertain to problems of the form

where is a “tall,” i.e., block-column matrix and are not di-
rectly applicable to (7) with some instances of investigated in
this paper (see Sections IV-B and VI-C). Furthermore, in gen-
eral, different splitting mechanisms yield different algorithms
as they attempt to solve constrained optimization problems (that
are equivalent to P0) with different constraints. In this paper, we
investigate two splitting schemes for P0, described below.

A. Splitting the Regularization Term

In the first form, we split the regularization term by intro-
ducing , where and
is the number of rows in . This form is similar to the split-
Bregman scheme proposed in [15, Sec. 4.2]. The resulting con-
strained formulation of P0 is given by

where

and , . Problem P1 can be
written in the general form of (7) with

The associated AL function (8) is therefore

The AL function can be written in the form of (13) (ignoring
irrelevant constants) as

(14)

where . Applying the AL algorithm to P1 re-
quires the joint minimization of with respect to and
at Step 2. Since this can be computationally challenging, we
apply an (inexact) alternating minimization method [15], [17],
[19]. We alternatively minimize with respect to one variable
at a time while holding others constant. This decouples the indi-
vidual updates of and and simplifies the optimization task.
Specifically, at the th iteration, we perform the following indi-
vidual minimizations, taking care to use updated variables for
subsequent minimizations [15], [17]:

(15)

(16)

1) Minimization With Respect to : The minimization in (16)
is straightforward since the associated cost function is quadratic.
Ignoring irrelevant constants, we get that

(17)

where4

(18)

Although (17) is an analytical solution, computing is im-
practical for large . Therefore, we apply a few iterations of the
conjugate-gradient (CG) algorithm with warm starting, i.e., the
CG algorithm is initialized with the estimated from the pre-
vious AL iteration.

2) Minimization With Respect to : Writing out (15) explic-
itly (ignoring constants independent of ), we have that

(19)

While (19) is a large-scale problem by itself, the splitting
variable decouples the different regularization terms
so that (19) can be decomposed into smaller minimiza-
tion tasks as follows. Let ; for each and

, we collect , , and

, so that . Then, (19)

4We design the regularization� such that the nontrivial null-spaces of� �

and � � �� are disjoint. Then,� is nonsingular for � � �.
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separates for each and as

(20)

This is basically a -dimensional denoising problem with
playing the role of the data and where denotes

the -norm. Often (20) has a closed-form solution as discussed
below. Otherwise, a gradient-descent-based algorithm such as
NCG with warm starting can be applied for obtaining a partial
update for . Before proceeding, it is useful to compute
the gradient of the cost function in (20). Ignoring the indices

and and setting the gradient of the cost function in (20) to
zero, we get for that

(21)

where

(22)

and is the first derivative of , and is the th component
of . The main obstacles to obtaining a direct solution of (20)
are the coupling introduced between different components of ,
i.e., , and the presence of the in . Below
we analyze some special cases of practical interest where this
problem can be circumvented to obtain simple solutions.

3) Case of -Regularization: For -type regularization in
(6) we set , . Consequently, (21) further decou-
ples in terms of the components of as

where , . The minimizer of (20) in this
case is given by the shrinkage rule [27]

where .
4) Case of : In this case, (20) reduces to 1-D mini-

mization that can be easily achieved numerically for a general
or analytically for and some specific instances of

listed in [28, Sec. 4].
5) Case of and A General : For , the solution

of (20) is in general determined by a vector-shrinkage rule as
explained below. Setting in (21), we get that

(23)

The bracketed term on the left-hand side is a nonnegative scalar
(cf. is nondecreasing), so that (23) corresponds to shrinking

by an amount prescribed by for .

The exact value of depends on and in general, there
is no closed form solution to (23). Nevertheless, for given and

values, (23) can be solved numerically5 by using a look-up
table for to find the value for the shrinkage factor
such that (23) is satisfied.

6) Case of TV-Type Regularization: To obtain a TV-type reg-
ularization in (6) we set and . Correspond-
ingly, (21) becomes

(24)

where for . In this case, an
exact value for can be found as shown below. Taking -norm
of the vectors on both sides of (24) and manipulating, we get
that , and

which leads to the following vector-shrinkage rule [15], [17],
[22]

where . It is
also possible to derive closed-form solutions of (20) for
for some instances of listed in [28, Sec. 4]. In summary, the
minimization problem (20) is fairly simple and fast typically.

7) AL Algorithm for Problem P1: Combining the results
from Sections IV-A1 to IV-A6, we now present the first AL al-
gorithm (that is similar to the split-Bregman scheme [15]) for
solving the constrained optimization problem P1, formulated as
a tractable alternative to the original unconstrained problem P0.

AL-P1: AL Algorithm for solving problem P1

1. Select and

2. Precompute ; set and

Repeat:

3. Obtain an update using an appropriate technique
as described in Sections IV-A2 to IV-A6

4. Obtain an update by running few CG iterations
on (17)

5.

6. Set

Until stop-criterion is met

The most complex step of this algorithm is using CG to solve
(17). We now present an alternative algorithm that simplifies
computation further.

5Taking the � -norm of the vectors on both sides of (23), we see that (23)
entails solving a 1-D problem of the form ��� �� � � ��� � �, for �.
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B. Splitting the Fourier Encoding and Spatial Components in
the Data-Fidelity Term

Since the data-fidelity term is composed of components (
and ) that act on the unknown image in different domains (spa-
tial and -space, respectively) it is natural to introduce auxiliary
variables to split these two components. Specifically, we now
consider the constrained problem

where , , , and

Clearly, P2 is equivalent to P0. The new variable simplifies
the implementation by decoupling and . In terms of the
general AL formulation (7), P2 is written as

where

We have introduced a diagonal weighting matrix in the con-
straint equation whose purpose will be explained below. Using

does not alter problem P2 as long as . The associated
AL function (8) is given by

where , one component for each row of
. Then, we write in the form of (13) (without irrelevant

constants) as

(25)

where . From (25), we
see that specifies the relative influence of the constraints in-
dividually while determines the overall influence of the con-
straints on . Note again that the final solution of P2 does not
depend on any of , , or .

We again apply alternating minimization to (25) (ignoring
irrelevant constants) to obtain the following subproblems:

(26)

(27)

(28)

(29)

The minimization in (27) is exactly same as the one in (19) ex-
cept that we now have instead of in the quadratic part
of the cost. Therefore, we apply the techniques described in Sec-
tions IV-A2 to IV-A6 to solve (27).

1) Minimization With Respect to and : The cost func-
tions in (26), (28), and (29) are all quadratic and thus have
closed-form solutions as follows:

(30)

(31)

(32)

where

(33)

(34)

(35)

We show below that these matrices can be inverted efficiently
thereby avoiding the more difficult in (17). We have pro-
posed using to ensure suitable balance between the various
constraints (equivalently, the block-rows of ) since the block-
rows of may be of different orders of magnitude. We can ad-
just to regulate the condition numbers of , and
to ensure stability of the inverses in (31) and (32). Using general
positive definite diagonal matrices in place of weighted identity
matrices inside is possible but would complicate the structure
of the matrices , and in (34) and (35), respectively.

2) Implementing the Matrix Inverses: When the -space
samples lie on a Cartesian grid, corresponds to a sub-
sampled DFT matrix in which case we solve (30) exactly
using FFTs. For non-Cartesian -space trajectories, computing

requires an iterative method. For example, a CG-solver
(with warm starting) that implements products with using
gridding-based techniques [29] can be used for (30). Alter-
natively, we can exploit the special structure of (of size

) to implement (30) using the technique proposed in
[30]. We have that

(36)

where is a zero-padding matrix and is a
circulant matrix [31]. Then, we write as

where . We have split the factor in
because may have a nontrivial null-space and therefore

may not be invertible. Letting denote the quantity within
the brackets on the right-hand side of (30), we apply the
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Sherman–Morrison–Woodbury matrix inversion lemma (MIL)
to in (30) and obtain

(37)

where must be obtained by solving

(38)

Since is circulant and is a diagonal matrix containing
either ones or zeros (due to the structure of ) [30], we use a
circulant preconditioner of the form (with

) to quickly solve (38) using the CG algorithm. The ad-
vantage here is that the matrices in the left-hand side of (38) and
the preconditioner are either circulant or diagonal, which sim-
plifies CG-implementation.

When the regularization matrices, , ,
are shift-invariant (or circulant), is also shift-invariant.
Then, we compute efficiently using FFTs. In the case
where a is not shift-invariant (e.g., an orthonormal wavelet
transform), we apply a few CG iterations with warm-starting to
solve (31). Finally, since is diagonal, we see that is
also diagonal and is therefore easily inverted.

Splitting the -space and spatial (i.e., and , respectively)
components in the data-fidelity term has led to separate matrix
inverses— and involving the components and

, respectively. Without , one would have ended up with a
term (as in ) that is more difficult to handle using
MIL compared to . Using decouples the terms
and , thereby replacing a numerically intractable matrix in-
verse of the form with tractable ones such
as and .

3) AL Algorithm for Problem P2: Combining the results
from Sections IV-B1 and IV-B2, we present our second AL al-
gorithm that solves problem P2, and thus P0.

AL-P2: AL Algorithm for solving problem P2

1. Select , , , and

2. Precompute ; set and

Repeat:

3. Compute from (30) using FFTs on (37)

4. Compute using an appropriate technique as
described in Section IV-A2 to IV-A6 for problem (27)

5. Compute using (31)

6. Compute using (32)

7.

8.

9.

10. Set

Until stop-criterion is met

With the possible exception of Steps 3 and 4, all updates in
AL-P2 are exact (for circulant ) unlike AL-P1 because
of the way we split the variables in P2.

Although Steps 2–4 of AL-P1 and Steps 2–6 of AL-P2 do
not exactly accomplish Step 2 of AL, we found in our experi-
ments that both AL-P1 and AL-P2 work well, corroborating the
numerical evidence from [15].

C. Choosing - and -Values for the AL Algorithms

Although - and -values do not affect the final solution to
P0, they can affect the convergence rate of AL-P1 and AL-P2.
For AL-P2, we set the parameters , , and so as to achieve
condition numbers— , , and of ,

, and , respectively—that result in fast convergence
of the algorithm. Because of the presence of identity matrices
in (33)–(35), , , and are decreasing
functions of , , and , respectively. Choosing such
that would require a large and accordingly,
the influence of self-adjoint component in dimin-
ishes— becomes “over-regularized;” we observed in our
experiments that this phenomenon would result in slow con-
vergence of AL-P2. On the other hand, taking would
increase making numerically unstable (because

may have a nontrivial null-space). The same trend also
applies to and as functions of and ,
respectively. We found empirically that choosing , , and

such that , , generally
provided good convergence speeds for AL-P2 in all our exper-
iments.

In the case of AL-P1, the components and
balance each other in preventing (18) from having

a nontrivial null-space—the condition number of
therefore exhibits a minimum for some :

. It was suggested in [15] that
can be used for split-Bregman-like schemes such as AL-P1
for ensuring quick convergence of the CG algorithm applied to
(17) (Step 4 of AL-P1). However, we observed that selecting

did not consistently yield6 fast convergence of the
AL-P1 algorithm in our experiments (see Section VI-B). So,
we resorted to a manual selection of for AL-P1 for recon-
structing one slice of a 3-D MRI volume, but applied the same

-value for reconstructing other slices.

V. EXPERIMENTS

A. Experimental Setup

In all our experiments, we considered -space samples on a
Cartesian7 grid, so corresponds to an undersampled version
of the DFT matrix. We used Poisson-disk-based sub-sampling
[32] which provides random, but nearly uniform sampling that
is advantageous for CS-MRI [33].

We compared the proposed AL methods to NCG (which has
been used for CS-(p)MRI [10], [11]) and to the recently pro-
posed MFISTA [13]—a monotone version of the state-of-the-art
fast iterative shrinkage-thresholding algorithm (FISTA) [34].

6A possible explanation for this phenomenon is presented in a supplementary
downloadable material available at http://ieeexplore.ieee.org.

7The proposed algorithms also apply to non-Cartesian �-space trajectories.
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TABLE I
COMPUTATION TIME PER OUTER ITERATION OF VARIOUS

ALGORITHMS FOR THE EXPERIMENTS IN SECTION V

For the minimization step [13, Eq. (5.3)] in MFISTA, we
applied the Chambolle-type algorithm developed in [35] that
accommodates general regularizers of the form (6). We used
the line-search described in [36] for NCG that guarantees
monotonic decrease of . NCG also requires a positive
“smoothing” parameter, (as indicated in [10, Appendix A])
to round-off “corners” of nonsmooth regularization criteria;
we set which seemed to yield good convergence
speed for NCG without compromising the resulting solution
too much (see Section VI-A). We implemented the following
algorithms in MATLAB.

• MFISTA- with iterations of [35, Eq. (6)];
• NCG- with line-search iterations;
• AL-P1- with CG iterations at Step 4;
• AL-P2.

We conducted the experiments on a dual quad-core Mac Pro
with 2.67 GHz Intel processors. Table I shows the per-iteration
computation time of the above algorithms for each experiment.

Since our goal is to minimize the cost function (which de-
termines the image quality), we focused on the speed of con-
vergence to a solution of P0. For all algorithms, we quantified
convergence rate by computing the normalized -distance be-
tween and the limit (that represents a solution of P0)
given by

(39)

We obtained in each experiment by running thousands
of iterations of MFISTA-20 because our implementation of
MFISTA (with Chambolle-type inner iterations [35]) does
not require rounding the corners of nonsmooth regularization
unlike NCG, and therefore converges to a solution of P0.
Since the algorithms have different computational loads per
outer-iteration, we evaluated as a function of algorithm
run-time8 (time elapsed from start until iteration ). We used
the square-root of sum of squares (SRSoS) of coil images (ob-
tained by taking inverse Fourier transform of the undersampled
data after filling the missing -space samples with zeros) as our
initial guess for all algorithms. For the purpose of illustra-
tion, we selected the regularization parameters such that
minimizing the corresponding in (2) resulted in a visually
appealing solution . In practice, quantitative methods such
as the discrepancy principle or cross-validation-based schemes

8In timing MFISTA, we ignored the computation time spent on estimating the
maximum eigenvalue of �� � ��� necessary for its implementation.

may be used for automatic tuning [37] of regularization param-
eters. We adjusted for AL-P1 and ( and ) for AL-P2 as
described in Section IV-C. In particular, we universally set

(40)

(41)

for AL-P2 in all our experiments, which provided good results
for different undersampling rates and regularization settings
(such as -norm of wavelet coefficients, TV and their combi-
nation) as demonstrated next.

B. Experiments With Synthetic Data

We considered a noise-free 256 256 T2-weighted MR
image obtained from the Brainweb database [38]. We used a
Poisson-disk-based sampling scheme where we fully sampled
the central 8 8 portion of the -space; the resulting sampling
pattern [shown in Fig. 1(b)] corresponded to 80% undersam-
pling of the -space. We simulated data from coils
whose sensitivities were generated using the technique devel-
oped in [39] [SoS of coil sensitivities is shown in Fig. 1(c)].
We added complex zero-mean white Gaussian noise (with a

-type correlation between coils) to simulate noisy correlated
coil data of 30 dB SNR. This setup simulates data acquisition
corresponding to one 2-D slice of a 3-D MRI volume where
the -space sampling pattern in Fig. 1(b) is in the phase-encode
plane.

We utilized the true sensitivities and inverse noise covariance
matrix (i.e., those employed for simulating data generation) to
compute in (4). We chose , where rep-
resents two levels of the undecimated Haar-wavelet transform
(with periodic boundary conditions) excluding the “scaling” co-
efficients. Using -regularization has reduced aliasing artifacts
and restored most of the fine structures in the regularized re-
construction [Fig. 1(e)] compared to the SRSoS image
[Fig. 1(d)]. Fig. 2 compares NCG, MFISTA and the proposed
AL-P1 and AL-P2 schemes in terms of speed of convergence to

, showing as a function of for the above algorithms.
Both AL methods converge significantly faster than NCG and
MFISTA.

C. Experiments With In Vivo Human Brain Data

In our next experiment, we used a 3-D in vivo human
brain data-set acquired from a GE 3T scanner ( ms,

ms, and voxel size mm ),
with a 8-channel head-coil. The -space data corresponded
to 256 144 128 uniformly-spaced samples in the and

(phase-encode plane), and (read-out) directions, re-
spectively. We used the iFFT-reconstruction of fully-sampled
data collected simultaneously from a body-coil as a reference
for quality. Two slices—Slice 38 and 90—(along - direc-
tion) of the reference body-coil image-volume are shown in
Fig. 3(a) and Fig. 4(a), respectively. To estimate the sensitivity
maps corresponding to a slice, we separately optimized a
quadratic-regularized least-squares criterion (similar to [40])
that encouraged smooth maps which “closely” fit the body-coil
image to the head-coil images. We estimated the inverse of
noise covariance matrix from data collected during a
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Fig. 1. Experiment with synthetic data: (a) Noise-free T2-weighted MR image used for the experiment; (b) Poisson-disk-based sampling pattern (on a Cartesian
grid) in the phase-encode plane with 80% undersampling (black spots represent sample locations); (c) SoS of sensitivity maps (� �) of coils; (d) Square-root of
SoS of coil images (��� � ���� �	) obtained by taking inverse Fourier transform of the undersampled data after filling the missing �-space samples with zeros
(also the initial guess � ); (e) the solution � (��� � �
��� �	) obtained by running MFISTA-20; (f) Absolute difference between (a) and (e). The goal of
this work is to converge to the image � in (e) quickly.

Fig. 2. Experiment with synthetic data: Plot of ���� as a function of time �

for NCG, MFISTA, and AL-P1 and AL-P2. Both AL algorithms converge much
faster than NCG and MFISTA.

dummy scan where only the static magnetic-field (and no RF
excitations) was applied and computed using (4).

We then performed regularized SENSE-reconstruction of
2-D slices ( - plane)—Slice 38 and 90—from undersampled
phase-encodes: For experiments with both slices, we applied

the Poisson-disk-sampling pattern in Fig. 3(b) (corresponding
to 16% of the original 256 144 -space samples) in the
phase-encode plane and used a regularizer that combined

-norm of two-level undecimated Haar-wavelet coefficients
(excluding the “scaling” coefficients) and TV-regularization.
The reconstructions, , corresponding to Slice 38 and 90
were obtained by running several thousands of iterations of
MFISTA-20 and are shown in Fig. 3(d) and Fig. 4(c), re-
spectively. Aliasing artifacts and noise have been suppressed
considerably in the regularized reconstructions compared to
corresponding SRSoS images [Fig. 3(c) and Fig. 4(b), respec-
tively]. We manually adjusted for AL-P1 for reconstructing
Slice 38 and used the same -value for reconstructing Slice
90 using AL-P1. For AL-P2, we used the “universal” setting
(40) and (41) for reconstructing both slices. We also ran NCG
and MFISTA in both cases and computed . Fig. 5(a) and (b)
plot for all the algorithms as a function of . The AL
algorithms converge faster than NCG and MFISTA in both
cases. These figures also illustrate that choosing , and
using the proposed condition-number-setting (40) and (41) pro-
vides agreeably fast convergence of AL-P2 for reconstructing
multiple slices of a 3-D volume. We also obtained results (not
shown) in favor of AL-P2 similar to those in Figs. 3–5 when we
repeated the above experiment (with Slices 38 and 90) with the
same sampling and regularization setup but using sensitivity
maps estimated from low-resolution body-coil and head-coil
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Fig. 3. Experiment with in vivo human brain data (Slice 38). (a) Body-coil image corresponding to fully-sampled phase-encodes. (b) Poisson-disk-based �-space
sampling pattern (on a Cartesian grid) with 84% undersampling (black spots represent sample locations). (c) Square-root of SoS of coil images obtained by taking
inverse Fourier transform of the undersampled data after filling the missing �-space samples with zeros (also the initial guess � ). (d) The solution � to ��
in (2) obtained by running MFISTA-20. (e) Absolute difference between (a) and (d) indicates that aliasing artifacts and noise have been suppressed considerably
in the reconstruction (d).

images obtained from iFFT-reconstruction of corresponding
central 32 32 phase-encodes.

VI. DISCUSSION

A. Influence of Corner-Smoothing Parameter on NCG

Section V-A mentioned that implementing NCG requires a
parameter to round-off the “corners” of nonsmooth regu-
larizers. While is usually set to a “small” value in practice, we
observed in our experiments that varying over several orders
of magnitude yielded a trade-off (results not shown) between
the convergence speed of NCG and the limit to which it con-
verged. Smaller yielded slow convergence speeds, probably
because [norm of the gradient of the cost function in (2)]
is large for nonsmooth regularization criteria with sparsifying
operators and correspondingly, many NCG-iterations may have
to be executed before a satisfactory decrease of can be
achieved. For sufficiently small , running numerous NCG-it-
erations would approach a solution of P0. On the other hand,
increasing accordingly decreases the gradient-norm thereby
accelerating convergence. However, for larger -values, the gra-
dient no longer corresponds to the actual and NCG con-

verges to something that is not a solution of P0 (e.g., Fig. 5).
In our experiments, we found that provided
reasonable balance in the above trade-off. No such is needed
in MFISTA and AL methods.

B. AL-P1 Versus AL-P2

Increasing the number of CG iterations, in AL-P1- ,
leads to a more accurate update at Step 4 of AL-P1
thereby decreasing AL-P1’s run-time to convergence [e.g.,
Fig. 2 and Fig. 5(a)]. However, at some point the computation
load dominates the accuracy gained resulting in longer run-time
to achieve convergence—this is illustrated in Fig. 5(b) where
AL-P1–6 is slightly faster than AL-P1–10.

Selecting did not consistently provide fast con-
vergence of the split-Bregman-like AL-P1 algorithm in our
experiments as remarked in Section IV-C. Our understanding
of this phenomenon is that can be extremely large or small
whenever the elements of and in (18) are
of different orders of magnitude (because can vary arbitrarily
depending on the scanner or noise level). Correspondingly,

in (20) becomes very small or large, which does not
favor the convergence speed of AL-P1.
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Fig. 4. Experiment with in vivo human brain data (Slice 90). (a) Body-coil image corresponding to fully-sampled phase-encodes. (b) Square-root of SoS of coil
images obtained by taking inverse Fourier transform of the undersampled data after filling the missing �-space samples with zeros (also the initial guess � ). (c)
The solution � to �� in (2) obtained by running MFISTA-20. (d) Absolute difference between (a) and (c) indicates that aliasing artifacts and noise have been
suppressed considerably in the reconstruction (c).

In devising AL-P2, we circumvented the above problem
by introducing additional splitting variables that lead to sim-
pler matrices , , and whose condition numbers

, , and , can be adjusted individually
to account for differing orders of magnitude of , , and ,
respectively. Choosing based on condition numbers
(40) and (41) provided good convergence speeds for AL-P2
in our experiments (including those in Sections V-B and V-C)
with different synthetic data-sets and a real breast-phantom
data-set acquired with a Philips 3T scanner (results not shown).
Furthermore, almost all the steps of AL-P2 are exact which
makes it more appealing for implementation. With proper
code-optimization, we believe the computation-time of AL-P2
can be reduced more than that of AL-P1.

C. Constraint Involving the Data

Recently, Liu et al. [14] applied a Bregman iterative scheme
to TV-regularized SENSE-reconstruction, which converges to a
solution of the constrained optimization problem

(42)

for some regularization . Although this paper has focused on
faster algorithms for solving the unconstrained problem (P0),
we can extend the proposed approaches to solve (42) by in-
cluding a constraint involving the data. For instance, (42) can
be reformulated as

(43)

where we have introduced auxiliary variables to decouple the
data-domain components and , and the regularization com-
ponent . The AL technique (Section III) can then be applied
to (43) noting that it can be written in the general form of (7) as

, where is a suitable weighting matrix similar
to administered in P2, respectively. The AL algorithm (Sec-
tion III) applied to (43) will converge to a solution that satisfies
the constraint in (42).
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Fig. 5. Experiment with in vivo human brain data: Plot of ���� as a function of time � for NCG, MFISTA, AL-P1, and AL-P2 for the reconstruction of (a) Slice
38, and (b) Slice 90. The AL penalty parameter � was manually tuned for fast convergence of AL-P1 for reconstructing Slice 38, while the same �-value was used
in AL-P1 for reconstructing Slice 90. For AL-P2, the “universal” setting (40) and (41) was used for reconstructing both slices. It is seen that the AL algorithms
converge much faster than NCG and MFISTA in both cases. These results also indicate that the proposed condition-number-setting (40) and (41) provides agreeably
fast convergence of AL-P2 for reconstructing multiple slices of a 3-D volume.

VII. SUMMARY AND CONCLUSION

The augmented Lagrangian (AL) framework constitutes an
attractive class of methods for solving constrained optimization
problems. In this paper, we investigated the use of AL-based
methods for MR image reconstruction from undersampled data
using sensitivity encoding (SENSE) with a general class of
regularization functional. Specifically, we formulated regular-
ized SENSE-reconstruction as an unconstrained optimization
problem in a penalized-likelihood framework and investigated
two constrained versions—equivalent to the original uncon-
strained problem—using variable splitting. The first version,
P1, is similar to the split-Bregman approach [15] where we
split only the regularization term. In the second version, P2,
we proposed to split the components of the data-fidelity term
as well. These constrained problems were then tackled in the
AL framework. We applied alternating schemes to decouple
the minimization of the associated AL functions and developed
AL algorithms AL-P1 and AL-P2, respectively, thereof.

The convergence speeds of the above AL algorithms is chiefly
determined by the AL penalty parameter . Automatically se-
lecting for fast convergence of AL-P1 still remains to be ad-
dressed for regularized SENSE-reconstruction. This is a signifi-
cant practical drawback of AL-P1. However, for AL-P2 we pro-
vided an empirical condition-number-rule to select for fast
convergence. In our experiments with synthetic and real data,
the proposed AL algorithms—AL-P1 and AL-P2 (with de-
termined as above)—converged faster than conventional (NCG)
and state-of-the-art (MFISTA) methods. The algebraic develop-
ments and numerical results in this paper indicate the potential
of using variable splitting and alternating minimization in the
AL formalism for solving other large-scale constrained/uncon-
strained optimization problems.
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In this transcript, we discuss the quantitative selection of the augmented Lagrangian (AL) parametersµ, ν1,
and ν2 associated with the AL algorithms (AL-P1 and AL-P2) that we developed in “Parallel MR Image Re-
construction using Augmented Lagrangian Methods”,IEEE Transactions on Medical Imaging. These parameters
govern only the convergence speed of the above AL algorithmsand does not affect the solution of the regularized
SENSE-reconstruction problem. References to equations, sections, tables, figures, etc., given here are with respect
to the paper unless stated otherwise.

As described in Section IV-C, forAL-P1, µ is related to the condition numberκ(Gµ) of Gµ (18), while for
AL-P2, µ, ν1, andν2 are related toκ(Hµ), κ(Hν1ν2

) andκ(Hν2
) of Hµ, Hν1ν2

andHν2
(33)-(35), respectively.

So we proposed to select these parameters by adjustingκ(·) for fast convergence of the AL algorithms in the paper.
The AL-P1 algorithm is similar to the split-Bregman algorithm [15] asit is based on splitting the regularization
term alone (Section IV-A). It was suggested in [15] that one can selectµ = µmin

△
= arg minµ κ(Gµ) for split-

Bregman-like schemes such asAL-P1, so as to minimize the condition numberκ(Gµ) of Gµ thereby ensuring
fast convergence of the conjugate gradient (CG) algorithm for solving1 (17). We observed in our experiments
that this rule did not consistently yield good convergence speeds forAL-P1: µmin andµopt (the µ-value that
provides best convergence speed forAL-P1) differed at least by an order of magnitude in all our experiments
and the convergence speed ofAL-P1 achieved usingµmin was far less compared to that obtained usingµopt.
We provide a possible explanation for this behavior at the end of Section 4 of this note. Table I at the end of
this note succinctly summarizes these results. In Figures 1, 3, 4, 5, and 7, the vertical black-dashed line indicates
µmin, while the vertical red-dashed lines indicateµopt for AL-P1-4, AL-P1-6 andAL-P1-10, respectively.

We also illustrate the effectiveness of an empirical condition number rule for selectingµ, ν1, andν2 for fast
convergence ofAL-P2 in Section 5 of this note.

1. EXPERIMENT WITH SYNTHETIC DATA -SET

For the experiment described in Section V-B, Figure 1 in thisnote plots the normalizedℓ2-distanceξ (equation
(39)) which quantifies the convergence speed) to the solution x(∞) of original regularized SENSE-reconstruction
problem for various run-times ofAL-P1 and the corresponding2 κ(Gµ) as functions ofµ. For this experiment
ξ(µmin) = −15.48 dB for AL-P1 which is far fromξ(µopt) = −102.23 dB.

2. EXPERIMENT WITH REAL BREAST-PHANTOM DATA -SET

We also performed a similar experiment with a breast-phantom data-set acquired from a Philips 3T scanner
with a 4-channel coil: Thek-space data corresponded to800 × 394 × 94 uniformly-spaced samples in thekx
(read-out),ky, andkz (phase-encode) directions, respectively. From the fully sampled 3-D data, we computed the
square-root of SoS (SRSoS) reconstruction which served as areference for quality; Slice 418 (alongy-z direction)
of the reference SRSoS volume is shown in Figure 2a. To estimate the sensitivity maps, we truncated the fully
sampled phase-encodes by applying a48×12 cosine-squared window centered at the origin to generate smoothed
coil images and computed the ratios of these smooth images totheir SRSoS reconstruction. We estimated the
noise covariance matrix from data collected during a dummy scan where the phantom was magnetized but no
RF excitations were applied.

1In the figures,AL-P1-NNN stands forAL-P1 with NNN CG iterations applied to (17).
2In all experiments, we estimatedκ(Gµ) using the Power method applied toGµ andG−1

µ , where we implementedG−1
µ using 500

iterations of the CG algorithm.
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Fig. 1. Experiment with synthetic data-set(corresponding to Section V-B in the paper): Plots ofξ for various run-times
of AL-P1 and condition numberκ(Gµ) as functions ofµ. It is seen thatµmin (indicated by a black-dashed line) does not
provide good convergence speed forAL-P1 in this example.
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Fig. 2. Experiment with real breast-phantom data-set (Slice 418):(a) Square-root of SoS (SRSoS) of coil images
corresponding to fully sampled phase-encodes; (b) Poisson-disk-basedk-space sampling pattern (on a Cartesian grid); (c)
SRSoS of coil images obtained by taking inverse Fourier transform of zero-filled undersampled data; (d) the solutionx(∞)

obtained by runningMFISTA-20 .
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Fig. 3. Experiment with real breast-phantom data-set (Slice 418):Plots of ξ for various run-times ofAL-P1 and
condition numberκ(Gµ) as functions ofµ. It is seen thatAL-P1 usingµmin (indicated by a black-dashed line) converges
relatively slowly compared to usingµopt.
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Fig. 4. Experiment with Slice 38 of in-vivo human brain data-set (corresponding to Section V-C): Plots ofξ for various
run-times ofAL-P1 and condition numberκ(Gµ) as functions ofµ. It is seen thatAL-P1 using µmin (indicated by a
black-dashed line) converges relatively slowly compared to usingµopt.
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Fig. 5. Experiment with Slice 90 of in-vivo human brain data-set (corresponding to Section V-C): Plots ofξ for various
run-times ofAL-P1 and condition numberκ(Gµ) as functions ofµ. It is seen thatAL-P1 using µmin (indicated by a
black-dashed line) converges relatively slowly compared to usingµopt.

We then performed SENSE-reconstruction of Slices 418 from undersampled phase-encodes usingAL-P1. We
used a Poisson-disk-sampling pattern (confined to a Cartesian grid where we fully sampled the central4 × 4
portion) in the phase-encode plane, corresponding to 7% of the original394× 94 phase-encodes (see Figure 2b).
We used a regularizer that combinedℓ1-norm of 2-level undecimated Haar wavelet coefficients (excluding the
‘scaling’ coefficients) and total-variation regularization. The reconstructionx(∞) corresponding to Slice 418 was
obtained by running several thousands of iterations ofMFISTA-20 (as explained in Section V-A of the paper)
and is shown in Figure 2d. We ranAL-P1 for variousµ and computedξ. Figure 3 in this note plotsξ for various
run-times ofAL-P1 and the correspondingκ(Gµ) as functions ofµ. For this experimentξ(µmin) = −36.28 dB
which is sub-optimal compared toξ(µopt) = −83.18 dB. We obtained similar results in favor ofµopt (under the
same experimental setup) for reconstructing other slices of the real breast-phantom data-set usingAL-P1.

3. EXPERIMENT WITH In-Vivo HUMAN BRAIN DATA -SET

For the experiment (with Slices 38 and 90 ofin-vivo human brain data-set) described in Section V-C, Figures
4 and 5 plotξ for various run-times ofAL-P1 andκ(Gµ) as functions ofµ, for Slices 38 and 90, respectively.
In this experiment too,µmin yields sub-optimal convergence speeds (ξ(µmin) = −36.20 dB for Slice 38 and
ξ(µmin) = −51.99 dB for Slice 90) forAL-P1 compared toµopt (ξ(µopt) = −89.82 dB for Slice 38 and
ξ(µopt) = −116.90 dB for Slice 90).
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Fig. 6. Experiment with modified synthetic data-set: (a) Scaled noise-free T2-weighted MR image; (b) SRSoS of coil
images obtained by taking inverse Fourier transform of the zero-filled undersampled data; (c) the solutionx(∞) obtained by
runningMFISTA-20 .
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Fig. 7. Experiment with modified synthetic data-set:Plots of ξ for various run-times ofAL-P1 and condition number
κ(Gµ) as functions ofµ. Theµ that minimizesκ(Gµ) does not yield the best convergence speed forAL-P1.

4. EXPERIMENT WITH A DIFFERENT SYNTHETIC DATA -SET

In another experiment, we generated a synthetic data-set from the T2-weighted noise-free MR image (in Section
1) after scaling it to increase its dynamic range from[0, 253] to [0, 33554432]. We used the same experimental
setting described in Section V-B and Figure 1 in the paper (i.e., same sensitivity maps, noise level, sampling
pattern and regularizer with appropriately scaled regularization parameter) and generated noisy data with 30 dB
SNR. This resulted in large values in the inverse noise-covariance matrix and correspondingly the spectra of
S̃HFHFS̃ (where we utilized the true sensitivities and inverse noisecovariance matrix to computẽS) andRHR
were several magnitudes apart. For this experiment, we again obtainedx(∞) usingMFISTA-20 (show in Figure
6c). We ranAL-P1, computedξ and κ(Gµ) and plotted them as functions ofµ in Figure 7. Similar to the
situations encountered earlier,µmin is comparably close toµopt but still does not provide a good convergence
speed.

Our understanding of the phenomenon encountered in Sections 1-4 is that the proposed AL algorithms,AL-P1
and AL-P2, are sensitive to the threshold-valuesτ1 = λ

µ andτ2 = λ
µν1

, respectively and thatτ1 and τ2 need to
be carefully set (by fixingµ and ν1 properly) to ensure rapid convergence of the AL algorithms.However,τ1
is more sensitive toµ compared toτ2 becauseτ1 depends only onµ—even a small deviation from the optimal
valueµopt becomes detrimental to the convergence speed ofAL-P1 as seen from Figures 1, 3, 4, 5, and 7, where
AL-P1 exhibits good convergence speeds only in a narrowµ-window.

Table I succinctly summarizes the results from Sections 1-4of this note where we compare the ratio of
maximum eigenvalues of̃SHFHFS̃ andRHR, µmin andµopt. In all experiments, it is seen thatµmin is of the

same order of magnitude and is relatively close tomaxeigval{S̃HFHFS̃}
maxeigval{RHR} which is quite expected sinceµmin balances
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Fig. 8. Plots ofξ for various run-times ofAL-P2 as a function ofµ for (a) Experiment with synthetic data-set(Section
1); (b) Experiment with Slice 418 of real breast-phantom data-set(Section 2); (c)Experiment with Slice 38 of in-
vivo human brain data-set (Section 3); (d)Experiment with Slice 90 of in-vivo human brain data-set (Section 3);
(e) Experiment with modified synthetic data-set(Section 4). The vertical black-dashed line indicatesµ = µ0 for which
κ(Hµ0) = 24 used in our experiments. It is seen thatκ(Hµ) ∈ [10, 36] provides agreeable results for all data-sets even for
cases (c)-(e) where correspondingµmin did not yield comparable results forAL-P1.
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TABLE I
COMPARISON OF RATIO OF MAXIMUM EIGENVALUES OFS̃HFHFS̃ AND RHR, µmin = arg minµ κ(Gµ), µopt (µ-VALUE THAT

PROVIDES BEST CONVERGENCE SPEED FORAL-P1), NORMALIZED ℓ2-DISTANCE TOx(∞), ξ, OBTAINED BY RUNNING AL-P1 WITH

µmin AND µopt

Experiment
maxeigval{S̃HFHFS̃}
maxeigval{RHR} µmin µopt ξ(µmin) (in dB) ξ(µopt) (in dB)

Section 1 2.286 10.109 0.112 -15.48 -102.23
Section 2 152.618 178.438 12.397 -36.28 -83.18
Section 3 (Slice 38) 4.999 × 10−9 3.567 × 10−9 6.887 × 10−11 -36.20 -89.82
Section 3 (Slice 90 ) 2.291 × 10−9 1.985 × 10−9 3.831 × 10−10 -51.99 -116.90
Section 4 3.793 × 10−11 1.703 × 10−10 9.450 × 10−12 -20.20 -113.71

TABLE II
COMPARISON OFµ0 WHEREκ(Hµ=µ0) = 24, µopt FOR AL-P2, NORMALIZED ℓ2-DISTANCE TOx(∞), ξ, OBTAINED BY RUNNING

AL-P2 WITH µ0 AND µopt

Experiment µ0 µopt ξ(µ0) (in dB) ξ(µopt) (in dB)
Section 1 2849.391 2114.065 -93.48 -96.25
Section 2 1755.429 1271.1724 -72.45 -82.73
Section 3 (Slice 38) 1755.429 1755.427 -91.31 -91.31
Section 3 (Slice 90 ) 1755.427 2835.692 -98.58 -104.44
Section 4 3120.762 5041.231 -112.69 -121.19

the spectra of̃SHFHFS̃ andRHR in the process of minimizingκ(Gµ). As mentioned earlier, it is seen that
AL-P1 usingµmin does not lead to a significant decrease ofξ as compared to that usingµopt.

In summary,Gµ is a non-circulant matrix without any special structure whose condition numberκ(Gµ)
cannot be computed in a straightforward manner. Moreover, since S̃ can vary arbitrarily in SENSE-reconstruction
problems depending on the scanner or noise level,min

µ
κ(Gµ) has to be performed on a case-by-case basis which

can be tedious. Finally, as illustrated in Figures 1-7, minimizingκ(·) may not be robust for selectingµ for AL-P1
in regularized SENSE-reconstruction problems.

5. SELECTION OFµ, ν1, ν2 FOR AL-P2

In devisingAL-P2 in the paper, we circumvented the above issues by introducing additional splitting variables
that lead to simpler matricesHµ, Hν1ν2

, andHν2
(33)-(35), which have special structures (toeplitz, circulant

and diagonal, respectively) and whose condition numbers can be computed easily and controlled individually.
Moreover, in the case ofAL-P2, the threshold-valueτ2 = λ

µν1
depends onµ and ν1 so that a deviation ofµ

from a correspondingµopt for AL-P2 can be balanced appropriately by adjustingν1. We observed that choosing
µ, ν1 and ν2 such thatκ(Hµ), κ(Hν1ν2

), κ(Hν2
) ∈ [10, 36] generally provided good convergence speeds for

AL-P2 in all our experiments, so we simply setκ(Hν1ν2
) = 12, κ(Hν2

) = min{0.9κ(S̃HS̃), 12} universally in
all our experiments (40)-(41). Figure 8 illustrates thatκ(Hµ) ∈ [10, 36] provides good convergence speeds for
AL-P2 for all data-sets even whenµmin did not yield comparable results forAL-P1. In the paper, we universally
setκ(Hµ) = 24 for all experiments and obtained promising results in favorof AL-P2. Table II summarizes our
observations forAL-P2 where we see thatξ(µ0) is agreeably close toξ(µopt) compared to the corresponding
values in Table I. Also,µ0 andµopt are of the same order of magnitude; the deviation ofµ0 from µopt in τ2 is
compensated byν1 which is empirically selected (using the above condition number setting) for obtaining good
convergence speeds.
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