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Abstract—In simultaneous dual-isotope myocardial perfusion
SPECT (MPS) imaging, data are simultaneously acquired to
determine the distributions of two radioactive isotopes. The goal
of this work was to develop penalized maximum likelihood (PML)
algorithms for a novel cross-tracer prior that exploits the fact
that the two images reconstructed from simultaneous dual-isotope
MPS projection data are perfectly registered in space. We first
formulated the simultaneous dual-isotope MPS reconstruction
problem as a joint estimation problem. A cross-tracer prior that
couples voxel values on both images was then proposed. We devel-
oped an iterative algorithm to reconstruct the MPS images that
converges to the maximum a posteriori solution for this prior based
on separable surrogate functions. To accelerate the convergence,
we developed a fast algorithm for the cross-tracer prior based
on the complete data OS-EM (COSEM) framework. The pro-
posed algorithm was compared qualitatively and quantitatively
to a single-tracer version of the prior that did not include the
cross-tracer term. Quantitative evaluations included comparisons
of mean and standard deviation images as well as assessment of
image fidelity using the mean square error. We also evaluated
the cross tracer prior using a three-class observer study with
respect to the three-class MPS diagnostic task, i.e., classifying
patients as having either no defect, reversible defect, or fixed
defects. For this study, a comparison with conventional ordered
subsets-expectation maximization (OS-EM) reconstruction with
postfiltering was performed. The comparisons to the single-tracer
prior demonstrated similar resolution for areas of the image with
large intensity changes and reduced noise in uniform regions. The
cross-tracer prior was also superior to the single-tracer version
in terms of restoring image fidelity. Results of the three-class ob-
server study showed that the proposed cross-tracer prior and the
convergent algorithms improved the image quality of dual-isotope
MPS images compared to OS-EM.

Index Terms—Dual isotope imaging, emission computed tomog-
raphy, joint estimation, maximum a posteriori (MAP) reconstruc-
tion.
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I. INTRODUCTION

ENALIZED maximum likelihood (PML) image recon-
P struction methods have been used extensively to address
the ill-posed nature of emission image reconstruction. In partic-
ular, various penalty functions have been developed to penalize
the maximum likelihood (ML) solution of the emission re-
construction problem to lower the noise in nuclear medicine
images. These penalty functions, or priors, penalize images that
exhibit large differences between nearby voxels.

In some nuclear medicine imaging protocols, multiple images
are obtained for the same patient characterizing different func-
tional or anatomical properties. For example, in simultaneous
dual-isotope myocardial perfusion SPECT (MPS) imaging, two
images are acquired simultaneously, representing the distribu-
tions of two radioactive isotopes. Due to the simultaneous ac-
quisition, the two images are perfectly registered in time and
space. We hypothesize that common information in the regis-
tered data can be used to improve the overall image quality. The
goal of this study was to develop a cross-tracer prior that uses
this common information and penalizes both images simulta-
neously, to develop converging PML algorithms for the cross-
tracer prior, and to compare the new reconstruction method,
using task-based performance measures, to a conventional sep-
arate reconstruction technique.

A. Simultaneous Dual-Isotope Myocardial Perfusion SPECT

In a simultaneous dual-isotope MPS imaging protocol, radio-
pharmaceuticals labeled with two isotopes, ™ Tc and 2°'Tl,
are simultaneously present in the patient body. Projection data
are acquired and two images are reconstructed, thus simultane-
ously characterizing the stress and rest states of myocardial per-
fusion. Since the projection data are acquired simultaneously,
the two reconstructed images are thus perfectly registered. The
diagnosis of coronary artery disease (CAD) using MPS con-
siders defect presence in both images and classifies patients as
being normal, having reversible ischemia, or fixed perfusion de-
fects, as shown in Table 1.

One limiting problem in simultaneous dual isotope imaging
is crosstalk contamination between the projection data from the
two isotopes. We have previously developed methods to model
[1], [2] and compensate for [3] this contamination using iter-
ative reconstruction algorithms. We have also shown the effi-
cacy of these methods in improving image quality compared to
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TABLE I
THREE CLASSES IN SIMULTANEOUS DUAL-ISOTOPE
MPS IMAGING
Class 1 Class 3 Class 2
Normal Reversible Fixed
defect defect
Tc-99m (stress) No* Yes** Yes
T1-201 (rest) No No Yes

* No denotes perfusion defect absence
** Yes denotes perfusion defect presence

the case of no crosstalk compensation. While crosstalk compen-
sation was effective, task performance was still degraded com-
pared to separate acquisition. We believe that a major reason
for this is the increase in noise in the compensated dual iso-
tope image compared to the separate acquisition. Specifically,
the compensation method can, at best, estimate only the mean
of the crosstalk, leaving behind the noise from the crosstalk. As
an example, assume that a uniform background is added to pro-
jections, which are thus corrupted by Poisson noise. Subtracting
the background would remove the bias, but not the noise from
the crosstalk. The goal of this work is to exploit the perfect reg-
istration of the simultaneous dual isotope images to reduce the
impact of this noise on task performance.

B. Motivation for the Cross-Tracer Prior

To motivate the hypothesis that the perfectly registered im-
ages can be used to improve image quality, we performed an
experiment using data from [4]. In this study, we evaluated the
image quality of dual-isotope MPS imaging using a large sim-
ulated image ensemble, reconstructed with OS-EM algorithms
with attenuation, scatter and detector response compensation.
The image ensemble is described in more detail in Section III.
We used a two-class observer study to assess defect detectability
using either the image of the isotope itself, or with the addi-
tion of data from the other isotope. We investigated two cases.
First we investigated defect detection performance in the ™ Tc
image with and without access to the 2°1'T1 image. In this case,
the 29MT1 image was defect free regardless of the state of the
99mT¢ jmage. Thus, detecting the defect in the 9™ Tc data dis-
tinguished between normal and reversible lesions. In the second
case, we investigated defect detection performance in the 2°1T1
image with and without access to the ™Tc image. For this
case, the 9™ T¢ image had a defect present in all cases, and de-
tecting the defect in the 2°! T1 image thus distinguished between
patients with fixed or reversible defects.

Table II shows the AUC values obtained using reconstructed
images from both separate and simultaneous acquisitions. The
left half of Table II shows the AUC values for classifying normal
patients versus patients with reversible defects using the 9™ Tc
image alone or using both images. Similarly, the right half of
Table II shows the AUC values for classifying patients with fixed
versus reversible defects using the 2°1 Tl image only or both im-
ages. In both cases, using both the 9™ T¢ and 2°* T1 images re-
sulted in a higher AUC value than using only one of the images.
These results indicate that, despite the fact that the image from
one of the isotopes did not explicitly contain information about
whether there was a defect present in the other image, access to
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TABLE II
COMPARISON OF TwO-CLASS AUC VALUES USING
SINGLE AND DUAL ISOTOPE DATA

Normal vs. Reversible || Fixed vs. Reversible

Separate | Simultaneous||Separate | Simultaneous
Tedata) - ggg 0.886 0.888 0870 |Tidata
only only
TerTH g 046 0.937 0917 0890 | Te*T
data data

that image improved defect detection performance. This obser-
vation suggests that successfully using this information during
the reconstruction might improve the overall image quality, i.e.,
the ability to correctly classify into the three diagnostic classes.

C. Application of the Penalized Maximum Likelihood (PML)
Algorithms

As shown above, incorporating the information provided by
the other isotope may improve the image quality, and simulta-
neous acquisition provides a convenient means to enable this
since the acquired data are perfectly registered. The goal of this
work was thus to develop fast and convergent PML algorithms
that integrate the information on images from both isotopes.
Many challenges exist in accomplishing this goal.

The first challenge was development of a prior that couples
the information on both stress and rest images. One way of
achieving this would be to use 4D maximum a posteriori (MAP)
reconstruction algorithms. In these algorithms, a time domain
clique is employed and a time domain smoothing term is incor-
porated into the prior to penalize differences in corresponding
voxel values on images from different time frames. This is pos-
sible because it is assumed that the voxel values are contin-
uous in the time domain. In dual-isotope MPS imaging, how-
ever, the voxel values are not necessarily related in the two im-
ages. Instead, general anatomical features, such as anatomical
boundaries, are common. We used this, as well as constraints
on the prior form needed to develop a convergent algorithm,
and designed a cross-tracer prior that will be described in detail
below. Based on this cross-tracer prior, the dual-isotope MPS
reconstruction algorithm was formulated as a joint estimation
problem.

A second challenge lies in the development of a convergent
PML algorithm for the proposed cross-tracer prior. Converging
PML algorithms have been investigated for different types of
priors, and many optimization techniques have been used in
the literature [5]-[8]. We chose to use optimization transfer
methods [9], which replace the original cost function at each
step with a surrogate function. The surrogate function is se-
lected so that it is easier to optimize and often a closed-form
solution update equation exists. In addition, compared to other
approaches, reduced computation time is possible for a care-
fully chosen surrogate function. Thus, the essence of the second
challenge is to carefully choose surrogate functions. De Pierro
proposed certain surrogate functions for MAP algorithms
based on the concavity of the log-likelihood function and the
convexity of certain penalty functions, but derived closed form
solutions only for quadratic priors [7]. Based on De Pierro’s
approach, Chang demonstrated that closed-form solutions are
possible for a group of nonquadratic Gibbs priors [10]. In
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this work, we adopted Chang’s approach to derive a separable
surrogate function for the proposed cross-tracer prior.

The third challenge is to accelerate the algorithm using
ordered subsets while still maintaining the convergence of
the algorithm. A fast converging MAP algorithm, row-action
maximum-likelihood algorithm (RAMLA), was proposed by
Browne et al., based on the row-action Algebraic Reconstruc-
tion Technique (ART) algorithm, by introducing a subset-inde-
pendent diminishing step size [11]. Based on Browne’s work,
Ahn et al. proposed a modified block sequential regularized
expectation maximization (BSREM) algorithm, which allows
more convenient selection of the relaxation parameters [8].
However, the relaxation scheme selection must be performed
carefully, and the convergence rate of the algorithms depends
on the relaxation scheme. Gunawardana [12] studied the ap-
plication of the incremental EM algorithm [13] to PET image
reconstruction. A similar method, COSEM, was independently
proposed by Hisao et al. [5], [14], [15] for emission tomography
reconstruction. Both methods perform an alternating descent
on the complete data and image estimate. These methods
provide an accelerated and convergent framework for emission
image reconstruction without requiring relaxation parameters
[12], [16], [17]. However, closed form solutions have been
derived previously only for quadratic priors [14]. In this work
we derived a separable surrogate function for the proposed
cross-tracer prior and implemented a COSEM-MAP-like fast
and convergent image reconstruction algorithm.

ALGORITHMS

In the following, we first formulate the dual-isotope recon-
struction problem as a joint estimation problem and define the
joint estimation objective functions. Second, we introduce the
cross-tracer prior and formulate a surrogate function that de-
couples the cross-tracer prior. Using this surrogate, we develop
a PML algorithm that converges to the MAP solution. Finally,
we develop accelerated algorithms that use ordered subsets.

D. Formulating a Joint Estimation Problem

As described previously, the goal is to reconstruct both stress
and rest images simultaneously, resulting in a joint estimation
problem. Erdogan et al. formulated the objective function for
a joint estimation problem for simultaneous reconstruction of
attenuation and emission images from PET scans [18]. Inspired
by Erdogan’s formula, we propose the following objective func-
tion:

®(x,y) = —L(x) — L(y) + BA(x,y) )]

where x and y are the image vectors of the two isotopes, L(x)
and L(y) are the log likelihood of images x and y given the
measured data, and A(x,y) is the potential function for the
prior, which is a function of both images.

If A(x,y) can be written as the sum of the energy function of
x and the energy function of y, i.e.,

A(x,y) = Ax(x) + Ay (y) @
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then the objective function ®(x,y) can be written as
O(x,y) = —L(x) = L(y) + BAx(x) + BAy (y).  3)

In this case, the minimization can be achieved by minimizing
the terms involving x and y separately. In other words, the re-
construction algorithm could minimize (3) by reconstructing the
images x and y separately, i.e., without referencing the informa-
tion in the other image.

However, incorporating the information from both images
into the reconstruction process of each individual images re-
quires a prior that couples the voxel values of both x and y.

E. Definition of Cross-Tracer Prior

Because the images of the two isotopes, x and y, are per-
fectly registered, if neighboring voxels values in one image are
similar, suggesting the neighboring voxels belong to the same
organ, then the corresponding pixels on the other image prob-
ably belong to the same organ too. Thus, the prior should pe-
nalize pixel differences in both images simultaneously. We de-
fine a cross-tracer prior as

J
A(le) - Z Z wjkl/}(xj7xk7yj7yk) (4)

j=1keN;

where wj;, is the weighting factor of the clique consisting of
pixel j and pixel k, and

2 2
)

In (4) and (5), J is the number of voxels in the image of
each isotope, N represents the neighborhood of voxel j, the
constants w;, are non-negative weights, and ¢ and 7 are the two
adjustable parameters that define the prior. In principle, § and
n may be different due to differences in the scale of the two
images.

We chose the hyperbolic form of the prior so that it is convex
and edge preserving. To understand how it meets the other de-
sign goal of favoring smoothness in portions of an image where
the image for the other radionuclide is smooth, consider the po-
tential function in terms of the difference in pixel values

. 2 . 2
I/J(Azljjk,ijk) = \/1 + <A:;jk> + (Azjk> -1 (6)

where Az, = (x; — o) and Ay;, = (y; — yx). Consider the
partial derivative of the potential function, which is analogous to
the force that tries to reduce the difference between neighboring
pixels, in the image x

oY (Azji, Ayjr)
anjk

—92 .
_ 6 ijk ) (7)

2 2
e (3)+ (332)

For simplicity, consider the case where ¢ and 7 are 1. Fig. 1
shows a plot of the derivative of the potential function for sev-
eral different values of Ay;;. Note that the “force” increases
more rapidly as a function of the difference in the pixel values
in the x image when the difference in pixel values in the y
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Fig. 1. Graph of partial derivative of cross-tracer prior potential function with

respect to pixel differences in the x image for various values of pixel difference
in the y image.

image is smaller. Thus, small differences in the pixel values of
neighboring pixels in the y image favor small differences in the
pixel values in the x image. Similarly, large differences in neigh-
boring pixel values in the y image apply less “force” to smooth
differences in the pixels in the x image. In other words, if the
differences in both the y image and x image are small, then
the partial derivative is large, and the prior will provide more
smoothing. On the other hand, if the differences in both the y
and x images are large, then the partial derivative will be small,
providing less smoothing. When the difference in one image is
large but small in the other image, the smoothing will be some-
where in between the previous two cases.

FE. Convergent PML Algorithm With the Cross-Tracer Prior
Separable Surrogate Function of the Prior

To obtain a closed-form solution for the update equation, we
first construct a separable surrogate function for the penalty
function at a given iteration using the estimate obtained from
the previous iteration. The surrogate function is denoted by,
A (x,y) and should satisfy the following conditions:

C1) A(n)( (m), (n))

(X(n)7 y(n)) (8)

and

C2) A(n)(x,y) > A(x,y) for all x and y 9)

where x” and y(™ are the estimates of x and y after the nth
iteration.

We now derive the separable surrogates for the hyperbolic
prior function in (5). Let

(@i, Tr, Y5, Yk) = N5 — T, Y5 — Yn) (10)
and define
ON(z,y)
Mz, y) = —222
=(T,9) 52
and
OA(z,y)
Ay(2,y) = —"—. (11)

dy
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Further, let
] _OM(z,y) 1
Yolw,y) =—5 =
and
ON(z,y) 1
Yy(zy) =—— - —. (12)

Given the above assumptions, in Appendix I we derived a sep-
arable surrogate function, A(™)(x,y), given by

A (x,y) = AV () + A () +C13)
where
A(n -9 Z Z h(n) )
j=1 keN;
AP (x —22 S b () (14)
j=1keN;
and
=23
j=1keEN;
Al (y —22 Z g] (15)
Jj= 1 kEN;
where C(") is a constant independent of x and y
hgz)( )= w]k'Yz( () (n) yj(n) ?/J(Cn))
(n) +x (n)
and
(JJ(Z)(U) = WjikVYy (zSn) - x,(cn),y](-n) - y;@)
OO
Sty
X <y — %) (17)

G. Surrogate Function for the Log Likelihood Functions

De Pierro derived a surrogate function for the log likelihood
function [7], [19]. Chang et al. later adopted this surrogate func-
tion to develop a convergent PML algorithm for PET image re-
construction [10]. This surrogate function, Li"), is given by

LM (x)
I (n) J
:Z ZP” i logz; — ZP”xJ
i=1 | j=1 szkwi) j=1
k=1
+o) (18)
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where the constant Cﬁgr is independent of ;. In (18), P;; de-
notes the probability that a photon emitted from the jth voxel of
image x is detected in the +th detector bin, and p; is the observed
projection data from image x in the <th detector bin. It has been
shown [7], [10], that

Cc1) LM(x™)=Ly(x™)  and (19)
C2) LM (x) < Ly(x) for allx. (20)

Note that (18) does not include additive terms to model
crosstalk, but these could be easily incorporated.

H. Surrogate Function for the Objective Function

The goal is to derive a separable surrogate function for the ob-
jective function in (1). We have obtained the surrogate functions
for both the log likelihood functions and the prior. The surrogate
for the objective function in (1) is thus the sum of these two sur-
rogate functions, i.e.,

o™ (x,y) = — L (x) - LM (y)
+ BA (x) + AL ()
+p0™ —of) —of) 1)

Considering equations (8) and (9) and (19) and (20), it can be
proved that the surrogate objective function (™ (x,y) in (21)
satisfies the following conditions:

€ B, y0) = a(x™, y) 22)

and

¢2) ®"(x,y) > ®(x,y) for all x and y. (23)
Substituting the surrogate functions of the log likelihood
functions and the priors into (1), we obtain the separable

surrogate function of ®(x,y), i.e

) (x,y) = 8 (3)+ @) (y)+ ) +017) +C1T), @4
where
oM (x)

= —LM(x) + A (x)

I 7 (n) J
Pijx;
:—Z Zpl - it long—ZPlkxk
i=1 |i=1 Y Pyal ) k=1
k=1
J
+283° 3 h () (25)
j=1keN;
and
(M (y)
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I (n)
H;jy;
==D (D gy logy; - Zﬂlkyk
= | Y Hygl
k=1
J
+265°3 o'V () (26)
j=1keN;

The surrogate functions (25) and (26) are separable in terms
of x and y. Thus one can minimize ®(") (x,y) simply by mini-
mizing o (x) and Q>§,n) (y) separately. In (26), H;; is the prob-
ability that a photon emitted from the jth voxel of image y is
detected in the sth detector bin, and ¢; is the observed projection
data from image y in the 4th detector bin. Note that H;; differs
from P;; because the attenuation and scatter are different for the
two tracers.

I. Derivation of the Convergent PML Algorithm

From the decoupled objective functions, one can solve for x
and y by minimizing (25) and (26) separately. First consider
the minimization problem for <I>x") (x) in (25). Substituting (16)
into (25), <I),((n)(x) becomes

(" (x)

I J P x(n)
:_ZZpl ! loglj+ZZPLklk
i=1 j=1 Zkl ik i=1 k=1

J
+203 3w (o =y =) o
j=1keN,
b
283 3w (o8 — 0, - o)
J=1kEN;
X (:vgn) + :v,(cn)) x
J
+ lﬂz Z Wik (:EE :E,(C")7y§n) (n))
23 kEN,
X (xgn) n x,(j‘))z. 27)

Simplifying, we have
J 7 7
(D}(cn) (x) = — Z Ej(n) log zj+ Z ng)wg + Z F;n)fﬂ?
j=1 j=1 i=1

J
=Y [FEM t0ga; + Gy + FMa] 08)

=1
where

I
EM =3 p;

i=1

(n)
(29)

IR
Z Zk‘rk

F™ =28 Z wirra (2§ = o 5" = ") G0)

kEN;
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and

Gl = ZPL] ~28 ) Wik

kEN;

(o ) (0 )

Now we can find the optimal solution for x ;, that is

$§n+1) = arg mi>% sgn)(xj) i=12,...J0 (32)
where
s = —EM logt + G+ FL (33)
Since the second derivative of sgn) (t) is non-negative, i.e.,
925" (t)
j I OR (n) o
g = E] e + ZF 34)

the function sg-n)(t) is convex. Finding the solution for (32) is
equivalent to solving the following equation:

sy EM

i T g o™y — g,
T " + G5+ 2F; (35)
The solution to (32) is thus
(n) (n)2 (n) go(n)
iy _ —G \/Gj +8F T E; 36
i = ™) - (36)
4F;
Similarly, we derived the solution for y<n+1)
_ /(n) /(n)2 /(n) /(n)
i G+ Ve 18 37
! 4F[™
where
1 (n)
n H;jy
B =3 a5 - (38)
=1 Z Hikyk
k=1
kEN;
and

/(n) ZH =20 Z WikYy

kEN;

% (wgn) 2™ ),y]( ) yin)) (y](n)

(36)—(40) are the MAP algorithm. Note that in deriving (36) and
(37), we excluded the negative solutions.

+ y,ﬁ”)) . (40)
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J. Accelerated PML Algorithms Using Ordered Subsets

The algorithm derived in the previous section converges to
the MAP solution; however, it is slow without using ordered
subset techniques. Direct application of ordered subsets would
accelerate the reconstruction process, but the resulting algo-
rithm would not be guaranteed to converge. We have thus de-
rived a convergent ordered-subset algorithm based on the work
in [12], [20] and COSEM [5], [15]-[17], both of which are par-
ticular examples of incremental EM algorithm [13]. In [21], in-
cremental optimization transfer, as a generalization of the incre-
mental EM algorithm, was applied to transmission tomography.
The incremental EM algorithm is a generalization of ordinary
EM, generalizing from expectation-maximization to maximiza-
tion-maximization. That is, the E step in the ordinary EM algo-
rithm is replaced by a maximization procedure. This variant of
the EM algorithm is applicable to the case of statistically inde-
pendent observations, and thus to the case of emission tomog-
raphy. The algorithm divides the observed data and complete
data into partitions (ordered-subsets), and there are two sub-it-
erations for each iteration. In the first sub-iteration, optimization
is achieved by updating the conditional sufficient statistics with
complete data on one partition only. In the second step, the pa-
rameters, in our case the image estimates, are chosen to optimize
the conditional expectation of the likelihood of all the complete
data. For more details, refer to the discussions in [12], [13], and
[20]. In emission tomography, the elements of the complete data
are the number of emissions from each voxel detected by one
particular detector bin, which is also a component of the suffi-
cient statistics vector; the observed data is the number of emis-
sions from all pixels detected in one detector bin; and the param-
eters to be estimated are the activity in each voxel. As a partic-
ular example of incremental EM algorithm, COSEM formulates
the reconstruction problem as an optimization problem with re-
spect to both the image estimate and complete data, which is
solved by alternate updating of the image estimates and com-
plete data. In particular, in the COSEM-MAP framework, the
objective function for the complete data is formulated using or-
dered-subsets as [15], [21]

Ecmp—l\'[AP(ny;V)
= Ecmp ML(C X, V) +,8‘l/( )

_ZP“mJ—i-ZZZCUIOgP

1=14€S; j=1

Yy,

I=14€S; j=1

+ Z'Uv‘, Zcij —pi | +0Y(x)
i J

(41)

where C;; is the (7, j)th element of the complete data, v; is a
Lagrange multiplier to add the constraint ) j C;; = pi, where
p; is the projection data in the ith bin, ¥(x) is the potential
function of the prior and s; is the /th subset. In [14], a separable



HE et al.: REGULARIZED IMAGE RECONSTRUCTION ALGORITHMS FOR DUAL-ISOTOPE MYOCARDIAL PERFUSION SPECT

surrogate was derived for a quadratic prior. The optimization
of (41) uses an alternating descent approach and performs the
reconstruction using two update equations: 1) a complete data
update and 2) an image estimate update.

Here we extend (41) to the joint estimation problem for the
cross-tracer prior. Rewriting (1) using the surrogate function for
the cross-tracer prior we get

E(C7 Cl"/ X,y,Vv, vl) = ECmp—NIL(C"/ X, V)

+ Ecmp—ML(Cla Yy, V/)

+A(x,y) 42)
where C and C’ are the complete data matrices for images x and
y, respectively, and v and v’ are the Lagrange multipliers for the
constraints » ; C;j =p;and ) ; C';; = q;, respectively.

The first step of the optimization is the complete data update.
Taking partial derivatives with respect to the elements in C and
C’, solving for the maximum, and enforcing the constraints re-
sults in

(nl) _ vy

o _piw VieS,Vj (43)
k
ot =Y vig S,V g (44)
(n,l—1)

H; i

;gnD Zf; nll)vteslvj (45)
and

ol = ¢l v i ¢ 51,9 (46)

where the superscript (n,[) denotes the nth iteration and [th
subset.

The second step in the optimization is updating the image es-
timates, x and y, with the complete data fixed. To do this, we
replaced the prior with the separable surrogate function. Fol-
lowing the derivation in [14] and [17], in this step we used the
objective

Fosj (x5 0)

L N
SR IDID W

Pjzj+ Y Pyjx;
m=14€S,, j*l ij

L
_ Z Z ZC’I(n D logHijyj-l-ZHijyj

m=1 eSmJ 1 ij
Z S Al (@) + cfmd
j=1kEN,
J
+28% > g () + O (47)
j=1keN;

where g](-Z’l) (x) and hﬁ’l) (x) are defined similar to those in (16)
and (17), and C{™" and C’gsn’l) are constants that do not depend
on x(™! and y("’l). Minimization of (47) can thus be achieved
by minimizing the terms involving x and y separately to obtain
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the solution to x(™! and y(™) . In particular, taking the partial
derivatives of (47) with respect to x; and y; separately, equating
to zero, and solving, we obtain

_G§n.l—1)+\/(G(nl 1)) +16ﬂF (n,l— 1)E(n 1)

.I(n’l) = T
J n,
T (48)
(n,0) _G;(””_l)+\/(G’("”_l))—+168F;(”"_1)E1’_(”=’)
yj = 8/5’F/(”l )
where
(n7l) (n,l)
EJ ZC’LJ
(nvl_l) —
F; =
Z {wjk%( (nl-1) ffl(cn’l_l)7y§n’l_1) _y](cn,z—n)}
kEN;
nl 1) Z
23 Z wjk%( (i=1) _ plmt=1), yj(nl 1 ](Cn,l—l))
keEN;
(‘T(‘n,l—l)_{_'x(n,l—l))
/(“ D) /(n,l)
- >
Fl('n.l 1)

n,l—1 n,l—1 n,l—1 nil—1
> (0 = a0 )
kEN;
and
Gl(nl 1)

ZHZJ 20 Z WikVy
kEN;
(xg_n,zfl) _ xgnz 1)7y§n,171) _ yl(cn,zq))(y;n =1 yl(cn7l71)) .

In summary, the dual-isotope reconstruction using the cross-
tracer prior based on COSEM framework is implemented in two
steps. Step 1 updates the complete data using (43)—(46), and
Step 2 updates the images using (48).

II. EVALUATION EXPERIMENTS

A. Comparison Using Sample Images

We have investigated the convergence of the proposed algo-
rithm and the qualitative properties of the reconstructed images
using a simulation study. Projection data were simulated using
the 4D NCAT torso phantom. A defect was placed on the my-
ocardial wall. Low noise projection data were simulated using
the SImSET Monte Carlo simulation code. The projection data
were scaled and Poisson noise was added to obtain projections
with a clinically realistic noise level. We used these data to per-
form experiments demonstrating the convergence of the algo-
rithm and the properties of the cross-tracer prior.
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B. Image Fidelity Study

To investigate the properties and benefits of the cross-tracer
prior we performed a simulation experiment using a phantom
designed to simulate myocardial perfusion imaging while being
simple enough to provide insight into the effects of the recon-
struction hyperparameters. The phantom consisted of an ellip-
tical cylinder 16 cm long with major and minor axes of 31 and
21 cm, respectively. A spherical shell with outside and inside
diameters of 8 and 5 cm, respectively, was created to simulate
the myocardium. The shell was offset 4 cm in the left lateral di-
rection and 2 cm in the anterior direction from the center of the
cylinder. The shell had an activity 5 times as high as the back-
ground. We created a simulated perfusion defect with a 50%
reduction of myocardial activity in the region of intersection of
a 4 cm diameter sphere centered in the middle of the shell wall
at the left lateral position. We created a pair of phantoms rep-
resenting a reversible defect: one without the defect (rest) and
one with the defect (stress). The phantoms were digitized into
64 x 64 x 32 cm matrices with a voxel size of 0.5 cm. We also
created an attenuation map the same size as the cylinder with an
attenuation coefficient of 0.15 cm~!. We used the same analytic
projector as used in the reconstruction to generate projections
for a standard 180° cardiac orbit with 64 projection views. We
modeled an LEHR collimator (including spatially varying blur-
ring) and a circular radius of rotation of 16 cm. The projections
were scaled to a total of 100 k counts in the central slice of the
phantom and Poisson noise was simulated. The images were re-
constructed using OS-EM (up to 20 iterations with 16 subsets
per iteration), the proposed MAP algorithm with the cross-tracer
prior (CTMAP), and the same algorithm modified to use only
the hyperbolic prior applied to each of the images separately. In
other words, we used the prior

J 2
A =YY wiy/1+ <%> T TO)
j kEN;

for the x an y images, which were reconstructed separately. A
total of 100 iterations (16 subsets per iteration) were used for
the MAP reconstruction to insure convergence. All reconstruc-
tions were performed with attenuation and collimator-detector
response modeling. The OS-EM images were postreconstruc-
tion filtered using Butterworth filters with an order 8 and cutoff
frequencies from 0.10 to 0.30 pixel ™! in increments of 0.02
pixelsfl. For the MAP methods, we investigated values of 3
equal to 5, 2, and 1 times 10", with n in the range 0 to —4, for a
total of 12 values of 5. For each 8 we used values of 6'/2 equal
t0 0.01,0.02,0.05,0.1,0.2,0.5, and 1.0, and used the same value
of 4 for both images (i.e., set n = § for CTMAP).

After reconstruction and (for OS-EM) filtering, we com-
puted the voxel-by-voxel mean-square error with respect to the
phantom to provide a measure of image fidelity.

C. Task-Based Three-Class Observer Study

To evaluate the proposed algorithms in the context of recon-
structing dual-isotope images, we conducted a three-class ob-
server study to evaluate the classification performance in dis-
tinguishing between patients with no defect, with a reversible
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defect, or with a fixed defect. In this study, we used a popula-
tion of stress (9™ Tc) and rest (2°1'T1) images that realistically
modeled patient variations.

In this study we used a previously developed phantom pop-
ulation [4], [22] based on the 4D NCAT phantom [23], which
realistically modeled the anatomical and organ uptake varia-
tions seen in clinical data. The phantom population included 24
NCAT anatomies with variations in gender, patient size, heart
angle, size, and position, and lung volume [24]. We modeled
variations in perfusion defect sizes and locations. Please refer
to [4], [22], [25] for the details of the phantom population gen-
eration.

For each of the 24 anatomies, we separately simulated
projections of five organs (heart, lung, body, liver, and kidney)
using a combined SimSET and angular response function
(ARF) simulation code [26]. Attenuation, scatter in the body,
the distant-dependent collimator-detector response, and pen-
etration and scatter in the collimator were modeled in the
simulation. Data for 2°1T1 were simulated including the seven
major emission energies. The energy window for %™ Tc was
15% wide, centered at 140.5 KeV; that for 21Tl was 20%
wide, centered at 70 KeV. Square projection bins and cubic
reconstructed voxels with a side length of 0.48 cm were used
for both 9™ T¢ and 2°1T1 images. The projections consisted of
64 views over 180° from left posterior oblique (LPO) to right
anterior oblique (RAO). Since the phantoms modeled uptakes
observed in real patients, and the simulations modeled the sen-
sitivity and acquistion times for clinical cardiac acquisitions,
the count levels in the data were clinically realistic for both
isotopes. The means + standard deviations of the total counts
in the sinogram averaged over the 48 slices reconstructed were
193 4 38 k counts for 9™ Tc¢ and 110426 k counts for 291 T1.

Using the individual projections, we generated a population
of dual-isotope projection data that included realistic variations
in organ uptake by summing the organ projections. Defects at
three locations in the myocardium were simulated. The pro-
jection data were scaled to model **™Tc and 2°'Tl injected
activities of 16 and 3 mCi, respectively. This procedure pro-
duced 1296 pairs of 99T /201 T1 projection datasets (24 phan-
toms X 3 defect locations X 6 uptake ratio combinations X 3 de-
fect statuses, i.e., normal, reversible defect, and fixed defect).
Note that we did not include crosstalk in these simulations be-
cause the implementation of the cross-tracer MAP reconstruc-
tion algorithm did not include the ability to compensate for
crosstalk. The inclusion of crosstalk in the data combined with
use of crosstalk compensation would result in increased noise
in the reconstructed images, especially for 2°1T1. This should
provide a greater advantage for the cross tracer prior, but this
requires future in depth investigation.

We reconstructed the 1,296 pairs of %™ Tc /29 T1 images
using the proposed algorithm. In the reconstruction process, at-
tenuation and detector response effects (AD) were modeled. As
a comparison, we performed OS-EM reconstruction with the
same compensations. In both cases we used 20 iterations with
16 updates per iteration.

We then applied standard postprocessing methods to the
reconstructed images. For OS-EM reconstruction, the images
were reoriented to short axis, filtered with a Butterworth filter,
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and windowed to obtain short axis (SA) 9™ T¢/?°'T1 image
pairs. For each reoriented 3D stress ("™ Tc) image, a 32 x 32
image containing the centroid of the defect (or the same
short-axis slice in the corresponding defect-absent image) was
extracted from the postprocessed short-axis slices. The same
short-axis slice in the corresponding rest (2°1T1) image was
also selected. These 99™Tc/2°1T1 SA image pairs served as
the input for the three-class mathematical observer studies. For
the cross-tracer MAP reconstruction, the same postprocessing
methods were used with the exception that the Butterworth
filtering was omitted.

We then applied a three-class channelized Hotelling observer
(3-CHO) to the ?9™Tc/2°1T] image pair, resulting in one fea-
ture vector for each image pair. The details for the 3-CHO and
the channels used for the 3-CHO are described in [4].

Using half the image pairs for each reconstruction and post-
processing combination, we trained a 3-CHO, which was then
tested using the remaining half of the images. The volume under
a three-class ROC surface (VUS) was used as a figure-of-merit
for task performance.

III. RESULTS

A. Convergence of the Two Algorithms

We verified the convergence of the convergent and acceler-
ated PML algorithms for the cross-tracer prior, introduced in
Sections I-I and I-J, using the following parameters: 6 = n =
V10 and § = 0.05.

We evaluated the value of the objective function in (1) at
each iteration for the convergent PML algorithm, as shown
in Fig. 2(a). Also shown is the (negative) change of objec-
tive function on a semi-log scale. In particular, we computed
In(—(¢p(i + 1) — ¢(7))), where ¢(7) is the objective function
evaluated at the sth iteration. These data show that, as expected,
the objective function decreases monotonically.

Using the same set of parameters, we tested the convergence
of the accelerated PML algorithms. As noted in [12], [15], [20],
the energy function defined in (42) decreases monotonically
with each iteration, and the algorithm reaches the maximum a
posterior (MAP) solution of (1), though a monotonic decrease
of the objective function in (1) is not guaranteed. Despite this,
in our simulations we did observe a monotonic decrease in the
objective function of (1). Fig. 3 shows the value of the objective
function for three values of the number of subsets per iteration
(8, 4, and 2), corresponding to 8, 16, and 32 angles per subset,
respectively. It can be seen that the accelerated algorithm con-
verged faster with a smaller number of angles per subset (i.e.,
more subsets per iteration). In addition, the accelerated algo-
rithm achieved the same ultimate value of the objective func-
tion.

We have also studied the change of mean value of three slices
of the reconstructed images with iterations to demonstrate the
convergence of the convergent PML algorithm. The results are
shown in Fig. 4. It can be seen that convergence is achieved after
200 iterations. A comparison of images and profiles through the
Tc-99m stress images after 200 and 300 iterations is shown in
Fig. 5. These data demonstrate that both the value of the objec-
tive function and the reconstructed images converge.

1177

® &

~N o
1

|

@©
©
I
|

)
©

Value of the Opjective Function
©
[(e]

©
/

i
50 100
Iteration

o
)

Log of Change in Objective Function

0 50 100

Iteration

150 200

Fig. 2. (a) Plot of the objective function and (b) logarithm of the (negative)
change of the objective function of the convergent PML algorithm as a function
of iteration.

B. Effects of the Cross-Tracer Prior—Comparison of Sample
Images

Using the parameters in the previous section, we recon-
structed a pair of images that contained reversible defects to
demonstrate the effects of the cross-tracer prior compared
to a conventional edge-preserving prior. The conventional
edge-preserving prior used is that shown in (49). This recon-
struction algorithm will be referred to as single-tracer MAP
(STMAP). We used the same value of 4 and 6 for both the rest
and stress images and the same values used in the previous
section (3 = 0.05,8 = v/10). We used a set of projection data
with a reversible defect (defect present in the stress image, but
not in the rest image) with a reduction of 35% of the myocardial
activity concentration. We generated and reconstructed 50 sets
of simulated Poisson noise realizations and computed both the
mean and standard deviation images.

Fig. 6 shows coronal slices through the phantom, mean, and
sample noisy images for both isotopes and both reconstruction
algorithms. Note that the mean images contain some noise arti-
facts, partly because of the residual noise in the MC simulated
data. From these images we see that edges corresponding to
large activity discontinuities, such as at the boundary of the my-
ocardium and chamber and liver and background, are sharp with
both algorithms. Fig. 7 shows profiles through the mean images
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Fig. 4. The mean value of the reconstructed images with iterations.

that illustrate the similar sharpness. In Fig. 6, the sample noisy
images from CTMAP appear considerably less noisy inside uni-
form regions like the liver. This is further corroborated by the
profile through the standard deviation image, shown in Fig. 7,
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Fig. 5. Profiles of stress images at iteration 200 and 300.
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Fig. 6. Comparison of images reconstructed using the cross-tracer (CTMAP)
and single-tracer (STMAP) algorithms. The rows are, top to bottom, the
phantom, mean of 50 noisy CTMAP and STMAP reconstructions, and sample
noisy CTMAP and STMAP reconstructions. The columns are (left to right)
images of the rest and stress distributions. A 35% contrast myocardial perfusion
defect was present in the stress distribution, but there was no defect in the rest
distribution. All reconstructions were obtained using 16 subsets, 100 iterations,
B = 0.05,and 6 = 10.

where the standard deviation for CTMAP is on the order of 50%
less than for STMAP.

Also note that the images in Fig. 6 contain reversible defects,
i.e., a defect-present in the stress image, and no defect in the rest
image. Although the cross-tracer prior couples the smoothness
on both images, the existence of a defect in the stress image
did not induce a shadow in the rest image, as can be seen by
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Fig. 7. Profiles through the mean stress image in Fig. 6 as well as standard

deviation (std) images (not shown in Fig. 6) for the cross-tracer (CTMAP) and
single-tracer (STMAP) algorithms at the position indicated in the inset image.

comparing the mean rest images from CTMAP and STMAP in
the defect region in the inferior wall of the left ventricle.

C. Effects of the Cross-Tracer Prior—Results From Fidelity
Study

Figs. 8 and 9 show the slice containing the center of the
heart reconstructed with STMAP and CTMAP, respectively, for
a range of (3 and ¢ values. For the same values of [ and ¢, the
cross-tracer reconstruction does a better job of preserving edges.
This allows using a higher value of (3, and thus increasing the
smoothing in flat regions with the same edge preservation. For
example, among all the combinations of 3 and 6, the one having
the lowest MSE for CTMAP was 8 = 1.0 and § = 0.1795,
while for STMAP the best was 8 = 0.5, § = 0.27%5. Further,
using these optimal combinations of priors, the MSE values for
the stress and rest images were lower for CTMAP (stress 266.0,
rest 275.0) than for STMAP (stress 297.2, rest 309.8). Both of
these were substantially lower than the combination of OS-EM
iteration and postreconstruction Butterworth filter cutoff fre-
quency (five iterations and 0.20 pixel_l) giving the lowest MSE
(stress 406.3, rest 416.7). The rest and stress images for the op-
timal parameter values for each of the methods are shown, in
comparison with the phantom images, in Fig. 10. Note in par-
ticular that the cross tracer prior did not induce shadow defects
nor did it eliminate the real defect when appropriate values of
the hyperparameters were used. These results indicate that, at
least in terms of image fidelity, the MAP methods are better
than OS-EM and, for the range of parameters investigated, the
cross-tracer prior provides some advantage over a single-tracer
prior having the same functional form.

D. Three-Class Observer Study

For cross-tracer MAP reconstruction, we used § = 7 = \/5
These values were chosen based on qualitative evaluation of the
image quality and were not formally optimized. We did, how-
ever, optimize the weight of the prior, 3, by computing the value
of the VUS for four different values of 3 in the range 0.001 to
0.4. The resulting VUS values are shown in Fig. 11. Fig. 12
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Fig. 8. Reconstructed stress images using STMAP (100 iterations, 16 subsets).
The rows are for (top to bottom) 3 = 0.2, 0.5, 1.0, 2.0, and 5.0. The columns
(left to right) are for §—1/2 = 0.01, 0.02, 0.05, 0.1, and 0.2.

Fig. 9. Reconstructed stress images using CTMAP (35 iterations, 16 subsets).
The rows are for (top to bottom) 3 = 0.2, 0.5, 1.0, 2.0, and 5.0. The columns
(left to right) are for §—1/2 = (.01, 0.02, 0.05, 0.1, and 0.2.
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Fig. 10. Optimal Images: Columns (left to right) rest and stress. Rows (top to
bottom): true image; OS-EM (5 iterations, 16 subsets, cutoff = 0.2 pixel ~1);
STMAP (3 = 0.5,6'/2 = 0.2); and CTMAP, (3 = 1.0,6'/2 = 0.1).

shows the VUS values for OS-EM reconstruction with an order
eight postreconstruction Butterworth filter as a function of the
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Fig. 11. VUS values for cross-tracer MAP reconstruction.
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Fig. 12. VUS values for OS-EM reconstruction with postreconstruction But-
terworth filtering.

TABLE III
COMPARISON OF CROSS-TRACER MAP AND OS-EM
‘WITH FILTERING USING OPTIMAL PARAMETERS

VUS Stddev
Cross-tracer MAP 0.818 0.015
OS-EM with filtering | ( 761 0.016

cutoff frequency. Table III shows a comparison of cross-tracer
MAP and OS-EM with filtering using optimal parameters. It can
be seen that cross-tracer MAP significantly improved the overall
image quality as measured by the VUS. The p value for this dif-
ference using a two-tailed z-test was smaller than 0.001, indi-
cating that this difference was highly statistically significant.

Fig. 13 shows some sample reconstructed images. The pa-
rameters for the reconstruction are also shown. It can be seen
that the cross-tracer reconstruction improved the contrast in the
201T] image.

IV. CONCLUSION

In simultaneous dual isotope nuclear medicine imaging pro-
tocols, two or more images are simultaneously obtained from
a patient to characterize different functional or anatomical fea-
tures. The use of simultaneous acquisition means that these im-
ages are perfectly registered in space and time. To exploit com-
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Fig. 13. Sample reconstructed images. All images were obtained using seven
iterations.

monalities in these images, we have proposed a cross-tracer
prior that couples the voxel values in two perfectly registered
images. We then developed convergent MAP algorithms, with
and without ordered subsets acceleration, to optimize the re-
sulting objective function. The algorithms were applied to dual-
isotope MPS imaging using data that did not include crosstalk,
and were compared to OS-EM with respect to its performance
in a three-class diagnostic task. The addition of crosstalk and
crosstalk compensation to the evaluation would have been de-
sirable. However, crosstalk combined with crosstalk compensa-
tion would increase the noise of the 2°!'T1 images. Thus, one
might hypothesize that this would increase the advantage of the
cross-tracer prior. However, full evaluation of this remains a task
for future work.

Results of both image resolution and noise and image fi-
delity studies showed that the proposed cross-tracer prior was
superior to a single-tracer prior with the same functional form
but without the cross-tracer coupling. Task-based evaluation
studies showed that the proposed cross-tracer prior and the
convergent algorithm substantially improved image quality for
dual-isotope MPS images compared to OS-EM reconstruction
with post-reconstruction filtering. In future work we will in-
vestigate more complete optimization of the hyperparameters
of the cross-tracer prior and implementation of scatter and
crosstalk compensation in the algorithm.

APPENDIX

Surrogate for the Cross-Tracer Prior: The cross-tracer
prior, A(x,y), is given by

2
T\ 2 y
Masy) =1+ () + <E> ~1. (A1)
Define \(z,%) as a quadratic function
- 1 1
AMz,y)=a+ 5():52 + 561/2 (A2)

with the coefficients a, b, and ¢ to be determined such that

{ Az, y) > Az, y) for all the = (A3)

/\($07y0) = /\(1707110)-
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These conditions imply that A and \ have a common tangent at
(20, yo). Thus we obtain

d\ T,y dX(z,y
Ei:l? ) (zo,90) = bzo = Elil? ) ( ) - /\,z(x()’y(])
To,Yo
(Ad)
and
d\(z,y) d\(z,y) ’
0, = CYo = :/\'lx’y'
dy  |ove) 0 LT [ (oo O()AS)

Solving (A3), (A4) and (AS), for a, b, and ¢, and using the con-
dition A(zo,y0) = A(zo,yo), wWe obtain

)\/
b= z(x07y0) (A6)
79
N (zg,
c—= y( 0 yO) (A7)
Yo
and
Lo Lo
a = \Nwo,y0) — 5300/\$(x0,y0) - §y0)\y(ﬂ€0,yo)- (A8)
Now we check the other condition in (A3), i.e., whether

/:\(a:, y) > A(z,y), for all z and y. Denoting the difference of
Az, y) and A(z,y), as z(z,y), we see that

A
1
= M0,%0) — 520\, (%0, Yo) — §y0/\§,($07?/0)

1 A, (%0, %0)
-y — A, y).

(A9)

+ 1 Az (2o, yo)xz +
2z 2 Yo

Substituting (A1) into (A9), A.II provides a proof that z(z, y)
achieves its minimum at (¢, yo). From (A6)-(A8), we see that

Az, y) is

- 1 1
Az, y) = | Mz, Y0) — 5170/\/.2(37072/0) - §y0/\§,(3707?/0)

1. (o, 1Ay (o,
L X(@om0) o 1N (@080) o o)
2 Zo 2 Yo
We now define
Ay (z,y) Az (@, y)
i) = 20 and o) = D Ay

Equation (A10) can thus be rewritten as
< 1, 1,
Mz, y) = | M=o, %0) — 520N, (T0,%0) — §y0/\y($07’y0)

2
1 1
+ 5%(370,?!0)1172 + B

1
= 5%(9307?40) [2% = 2220 + 23] + AL (70, yo)

Yy (20, 0)y?

+ 5% (@0, %0) [v* = 2yy0 + ] + X, (w0, 30)y
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1
- 5%(3907’!!0)’!!0

1 1
+ Ao, %0) — 5930)\;(1170,?!0) - §y0)\;(a¢0,y0)

1
= 5%(%71/0) [z — $0]2
1
+ §’Yy($07 Yo) [y — y0]2
+ X, (0, o) (= — o) + Xy (0, 90) [y — wol
+ )\(aio,yo). (A12)
Now let
r=x; —xpand y = y; — Y. (A13)
Similarly,
Trog = Lf?j — .f?k and Yo = ﬂj — gk. (A14)
From the relationship
[j — a1 — (&) — &)]
1 1 2
== (2.’13j — 2.f7j) + = (ka — ZQZk)
2 2
1 2, 1 L N2
S 5 (2.’17j — 2117]') + 5 (2.’17k — QJZk) (AlS)

we can find a surrogate function for X(xj — Tk, Y — Yk L5 —
:f?k,ﬂj — ’ljk), that is

N@j = T, Y5 — Yns &5 — Tho Yj — Yi)
SN(&5 = Ty — yie) [v5 — 2 — (25 — o)
+ Ay (&5 = i,y — un) [y — vk — (05 — y)]
+ M2 — T,y — yn)

Lo
+ Z%(ﬂij = 2k, Y5 — Y)

X [(233] — 211j)2 + (Q.Tk — 2$k)2i|
. .
+ (&5 — Fr, 95— i)

X [(2% —2y5)" + (2yn — 2Qk)2} : (A16)

So, we now have a new surrogate function, ¢(z;, Tk, ¥, Yk ),
given by

¢(xj7$k7yj7yk)
= No (@ — &, 95 — Ox) [ — wn — (25 — @)
+ N (@5 — Tk, 95 — Ok) s — vk — (95 — )]
+ A& — &, 95 — r)

1
4

X [(2xj —2,)? + (254 — 25%)2}

Vol&5 = &y 05 — k)

1. A .
+ 1 7(&5 = & 95— )

X [(2;,]» — 207 + (2yn — 2gk)2} . (A17)
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Rearranging (A17), we obtain, where
¢($j7$k(7;1!j7yk} . hgz)(t) 2 wjve(a — 2yl -y
= Yz x_]_xk‘ayj_yk 1 2
1 2 1 2 X[t__(()+x(n))]
2
X { {x]- -3 (z; + il?k):| + |:£I?k —5 (z; + il?k):| } (n) /o a m ) @) ()
( | 9 (&) =wieyy (@7 — o7y =y )
+ (T — T, Y5 — Yk 2
_ 2, (n)
% [t 2 ( + )}

X yj—l(yj+yk)2+ yk—l(yj+yk)2
[ 2 } [ 2 }

4O — iy — ur) (A18) and C'(™) is a constant term that does not depend on T, Tk, Yy
7 s Y3 E

and y.
where z(x,y) in (A9) Achieves its Minimum at (xo,Yp): Substi-
tuting (A1) into (A9) and simplifying, z(z,y) becomes (A21),
C(if?j - Zp, 5 — Z)k) shown at the bottom of the page.

In (A21), the denominator is greater than zero. Since s = /1
is a monotonically increasing function, proving the numerator
N PN 1 A2 is greater than zero is equivalent to proving that
=& — &k, 95 = Gr) 5 (95— Gx) g d proving
+ A& — k. 95 — )

is a constant that is independent of x;, x1, ¥;, and y,. Now we
substitute (A18) into (4), and the surrogate function of the prior

a(e e (2)) (6 ()

A (x, v
(A22)

_22 Z Wik {’Ym(l ") —z; ”) ”) —yt ”))[m____(zg_n)_i_zscn))]z}

j kEN;

Simplifying (A22), we see that the inequality in (A22) is equiv-
+2Z S {7 (27 =) ) _y (7)) [y___( " 4y (72))] } alent to

j kEN;

2 2\ 12
i et o (@ (2))- (64 ()] 2o o

where C (3;5") — a:,(cn), yg.") — yl(cn)) is a constant that is inde- Since the left-hand side of (A23) is a quadratic function, it is

pendent of x and y. Note that in (A19) we used x](»n) and y](-n) g;:;f;);rzn);jdand y» and thus the numerator of (A21) is greater

to replace #; and ;, respectively, for notational purposes. In

particular, the superscript (n) denotes the estimate after the nth >0 A4
iteration. Simplifying A(™)(x,y), we have #{zy) 2 0. (A24)
J
(n) — ().
A (x,y) =2 221 kZN hiy () ACKNOWLEDGMENT
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