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Abstract—Magnetic resonance image (MRI) reconstruction
using SENSitivity Encoding (SENSE) requires regularizaton to
suppress noise and aliasing effects. Edge-preserving anplagsity-
based regularization criteria can improve image quality, hut
they demand computation-intensive nonlinear optimizatio. In
this paper, we present novel methods for regularized MRI
reconstruction from undersampled sensitivity encoded da—
SENSE-reconstruction—using the augmented Lagrangian (AL
framework for solving large-scale constrained optimizaton prob-
lems. We first formulate regularized SENSE-reconstructionas
an unconstrained optimization task and then convert it to a st
of (equivalent) constrained problems usingvariable splitting. We
then attack these constrained versions in an AL framework uig
an alternating minimization method, leading to algorithms that
can be implemented easily. The proposed methods are applicie
to a general class of regularizers that includes popular edg
preserving (e.g., total-variation) and sparsity-promoting (e.g.,¢:-
norm of wavelet coefficients) criteria and combinations thesof.
Numerical experiments with synthetic andin-vivo human data
illustrate that the proposed AL algorithms converge fasterthan
both general-purpose optimization algorithms such as normhear
conjugate gradient (NCG) and state-of-the-art MFISTA method.

Index Terms—Parallel MRI, SENSE, Image Reconstruction,
Regularization, Augmented Lagrangian

I. INTRODUCTION

Arallel MR imaging (pMRI) exploits spatial sensitivity of

an array of receiver coils to reduce the number of requir
Fourier encoding steps, thereby accelerating MR scanni
SENSIitivity Encoding (SENSE) [1], [2] is a popular pMRI
technique where reconstruction is performed by solving
linear system that explicitly depends on the sensitivitypma
of the coil array. While efficient reconstruction methodséa
been devised for SENSE with Cartesian [1], as well as n
Cartesiank-space trajectories [2], they inherently suffer fro
SNR degradation in the presence of noise [1] mainly due

k-space undersampling and instability arising from cotieta
in sensitivity maps [3].

Regularization is an attractive means of restoring stsbili
in the reconstruction mechanism where prior informatio
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can also be incorporated effectively [3]-[9]. Tikhonokdi
guadratic regularization [3]-[6] leads to a closed-forfuson
(under a Gaussian noise model) that can be numerically im-
plemented efficiently. However, with the advent of compeélss
sensing (CS) theory, sparsity-promoting regularizatioteda
(e.g.,¢,-based regularization) have gained popularity in MRI
[10]. The basic assumption underlying CS-MRI is that many
MR images are inherently sparse in some transform domain
and can be reconstructed with high accuracy from signifi-
cantly undersampled-space data by minimizing transform-
domain sparsity-promoting regularization criteria sbje
data-consistency. The CS framework is apt for pMRI [11]
with undersampled data. This paper investigates the prob-
lem of regularized reconstruction from sensitivity enadbde
data—SENSE-reconstruction—using sparsity-promotiiggi+e
larizers. We formulate regularized SENSE-reconstructisn
an unconstrained optimization problem where we obtain the
reconstructed imagek, by minimizing a cost function/(x),
composed of a regularization terrn¥(x), and a (negative)
log-likelihood term corresponding to the noise model. For
¥, we consider a general class of functionals that includes
popular edge-preserving (e.g., total-variation) and spar
promoting (e.g./;-norm of wavelet coefficients) criteria and
combinations thereof. Such regularization criteria aren
smooth” (i.e., they may not be differentiable everywhers] a

ér(ljey require solving a nonlinear optimization problem gsin

iterative algorithms.

ngThis paper presents accelerated algorithms for regutarize

SaENSE—reconstruction using the augmented Lagrangian (AL)
formalism. The AL framework was originally developed for
solving constrained optimization problems [12]; one camelsi

the function to be minimized with a Lagrange multiplier term

on-

and a penalty term for the constraints, and minimizes iaiter
tt%/ely (while taking care to update the Lagrange paramgters
solve the original constrained problem. This combinatieere
comes the shortcomings of the Lagrange multiplier method
and penalty-based methods for solving constrained prablem
[an]. To use the AL formalism for regularized SENSE-
reconstruction, we first convert the unconstrained prollem
to an equivalent constrained optimization problem using a
technique calledvariable splittingwhere auxiliary variables
take the place of linear transformations &fin the cost
function J. Then, we construct a corresponding AL function
and minimize it alternatively with respect to one auxiliary
variable at a time—this step forms the key ingredient as it
decouples the minimization process and simplifies optimiza
tion. We investigate different variable-splitting appcbas and
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correspondingly design different AL algorithms for solgin whereK,,;, is the inverse of thé/ L x M L noise covariance
the original unconstrained SENSE-reconstruction probl&n matrix, [ul|%, = u"Kj u, and ¥ represents a suitable
also propose to use a diagonal weighting term in the Alegularizer. We have includeK ,;;, in the data-fidelity term
formalism to induce suitable balance between various cadio- account for the fact that noise from different coils may
straints because the matrix-elements associated withidfoube correlated [1], [2]. Assuming that noise is wide-sense
encoding and the sensitivity maps can be of different ordeswtionary and is correlated only over space (i.e., coifg) a
of magnitude in SENSE. The proposed AL algorithms amot overk-space Ky, can be written a¥ ;1 = K ® Iy,
applicable for regularized SENSE-reconstruction fromadawhereKj is a L x L matrix that corresponds to the inverse of
acquired on arbitrary non-Cartesiarspace trajectories. Basedthe covariance matrix of the spatial component of noisafro
on numerical experiments with synthetic and real data, wecaoils).

demonstrate that the proposed AL algorithms convergerfaste The weighting matrixi,,;, can be eliminated frony in

(to an actual solution of the original unconstrained regedal  (2) by applying a noise-decorrelation procedure [2]: SikGe
SENSE-reconstruction problem) compared to general-merpds generally positive definite, we writ&, = KK, and
optimization algorithms such as NCG (that has been appligth,;, = K, Ky, whereK ;;, = K, ®1,,. Then, because
for CS-(p)MRI in [10], [11]), and the recently proposed stat of the structures oK ;. andF, we have that [2]

of-the-art Monotone Fast Iterative Shrinkage-Threshngjdil-

gorithm (MFISTA) [13]. Ky F (Ks@Ly) ® (I ® Fu)
The paper is organized as follows. Section Il formulates = (KiIp ®@IyF,)
Lhe rtzgulariTeq SENSE—reconstruction prot()jlem (Wi_th s?pgrs = (IK,®F.Iy)
ased regularization) as an unconstrained optimizatiek. ta ~ ~
¢ ) y = (L ®F)(K,®Iy) = FKyy,

Next, we concentrate on the development of AL-based algo-

rithms. First, Section Il presents a quick overview of ALwheref{NL A K, ® Iy. Letting

framework. Then, Section IV applies the AL formalism to ‘

regularized SENSE-reconstruction in detail. Here, wewfisc a 2 Knyzd, (3)
various strategies for applying variable splitting and elep § A RS 4
different AL algorithms for regularized SENSE-reconstioic. o NLS (4)
Section V is dedicated to numerical experiments and resulf therefore get that

Section VI discusses possible extensions of the proposed AL

methods to handle some variations of SENSE-reconstruction 1||d ~FSx|} = lH& — FSx|2, (5)
such as that proposed in [14]. Finally, we draw our conchssio 2 ME2

in Section VIL. which is an equivalent unweighted data-fidelity térmith a

Il. PROBLEM FORMULATION new set of sensitivity mapS obtglneNd obtained by weighting
) i ) i ) the original sensitivity map$ with Ky . In the sequel, we
We consider the discretized SENSE MR imaging modgke the r.h.s. of (5) for data-fidelity and drop the ~ for edse o
given by notation. In the numerical experiments, we used (3) and (4).
d=FSx+e, (1) We consider sparsity-promoting regularization fbrbased
. . on the field of compressed sensing for MRI—CS-MRI [10],
wherex is a N x 1 column vector containing the samples of th([a 1]. We focus on the “analysis form” of the reconstruction

l,\JAnFL(POV\Im |mag(:11e todbe re;:v?zstrijcteld (e.g., atZ—D slice of ad3- oblem where the regularization is a function of the unknow
volume),d ande are > 1 column VECIOrs correspon “imagex. Specifically, we consider a general class of regular-

ing to the data-samples from coils and noise, respectively,. .

Sis aNL x N matrix given byS — [SH---SUJI, S, is a izers that use a sum @p terms given by

N x N (possibly complex) diagonal matrix corresponding to Q Ny Py

the sensitivity map of théth coil, 1 <1 < L, ()" represents U(x) =D A D Pgn| D [Rpgx]n|™] (6)

the Hermitian-transpos& is a M L x N L matrix given by g=1 =1 p=1

F=1I,®F, F,isaM x N Fourier encoding matrixI,

is the identity matrix of sizd. and® denotes the Kronecker

product. The subscript ‘u’ irf, signifies the fact that thé-

space may be undersampled to reduce scan time)i.ec, N.
Given an estimate of the sensitivity mafis the SENSE-

reconstruction problem is to find from datad. Since regu- e . .

larization is an attractive means of reducing aliasingfaots tight frames, flnltg-d|ﬁ§renC|ng matrices), but the methgan

and the effect of noise in the reconstruction (by incorgoat b? applied FO shlft-vgrlanF ones suph as orthonormal wisrele

prior knowledge), we formulate the problem in a penalized?ith only minor modifications. TypicallyP, << M, N V ¢ (as

likelihood setting where the reconstruction is obtained B3FEN i the examples below). We consider that the values, of
minimizing a cost criterion: nd the choice of potential functiodds,, vV ¢ andn are such

whereg indexes the regularization terms, the paramager 0
controls the strength of theth regularization term, anfk],,
or x, represents theith element of the vectox. The IV, x
N matricesR,,, p = 1,..., P, V ¢, represent sparsifying
operators. We focus on shift-invariant operatorsRyy, (e.g.,

s . 1 2 1The r.h.s. of (5) automatically i i =
S i _ ne r.h.s. y includes the special casK@f;, = I/,
PO: x argmxm{J(x) 2||d FSXHKML +‘I’(x)}, (2) With S — S andd —d.



that ¥ is composed of non-quadratic convex regularizatiahe “penalty” termd with penalty parametéry > 0. The AL

terms. scheme [12] for solving (7) alternates between minimizing
The general class of regularizers (6) includes populéiu,~, ) with respect tou for a fixedy and updatingy, i.e.,

sparsity-promoting regularization criteria such as

ul ) = argmin £(u, 9", ), (9)
(&) ¢1-norm of wavelet coefficients) =1, P, =1, m; = (1) ) " (+1)
1, Ri; = W is a wavelet transform (orthonormal or a v = 7Y +p(Cu’" —b), (10)
tight frame), andby,, () = = wheren indexes the rows | some stopping criterion is satisfied.

of Riy, So-called “penalty methods” [12] correspond to the case

(b) discrete isotropic total-variation (TV) regularizaii wherey = 0 and (9) is solved repeatedly while increasing
(18] @ =1, P = 2, my = 2, Ry and Ry, repre- . o, The AL scheme (9)-(10) also permits the use of
sent ho'rlzontal and vertical f|n|te—d|ﬁereQC|ng mat”pesfncreasing sequences pfvalues, but an important aspect of
respectively, andb,,(z) = \/z, wheren indexes the (e Al scheme is that convergence may be guaranteed without
rows of R.q, . o ] the need for changing [12].

(c) discrete anisotropic total-variation (TV) regulatipa The AL scheme is also closely related to the Bregman
[15: @ = 1, Pr = 2, my = 1, R and Ry repre- jierations [15, Equations (2.6)-(2.8)] applied to problémx
sent horizontal and vertical finite-differencing matrices ‘ ‘ _ u
respectively, andby,,(z) = =, wheren indexes rows of ~ u*) = argmin Ds(u,u?, p)) 4 S lICu— b|2, (11)

R | P+ Z ) — L CH(CulY) b, (12)

The general form (6) also allows the use of a variety of
potential functions forb. We consider such a generalizatiowhere Dg(u,v,p) = f(u) — f(v) — p"(u — v) is called
because combinations of wavelet-and TV-regularizatiorehathe “Bregman distance” [15] ang is a V' x 1 vector in the
been reported to be preferable [10]. The proposed methads gdbgradient off at u. The connection between AL method
be easily generalized for synthesis-based formulatiofil [1 and Bregman iterations is readily establishegit= —C'ly

The minimization in (2) is a non-trivial optimization task,[22]- Then, Dy(u, ut?), pt)) + §[|Cu — b|3 is identical to
even for only one regularization term. Although general puﬁ(ua’Y(])»M) (up to constants irrelevant for optlml_zatlon) and
pose optimization techniques such as the nonlinear conf)-(10) become equivalent to (11)-(12) as noted in [223]{2
gate gradient (NCG) method or iteratively reweighted least 1he AL fU”Ct'O”_ﬁ n _(8) can be rewritten by grouping
squares can be applied to differentiable approximations @@ether the terms involvin€u — b as
PO, they may either be computation-intensive or exhibit slow _ J 2
convergence. This paper describes new techniques based on Elun, p) = fu) + 2 [Cu =l +Cy, (13)

the augmented Lag_rang|an (AI.‘) fo_rmallsm that yield faSt%\r/heren Ay Ly andC, is a constant independent of
convergence per unit computation time.

u that we ignore henceforth. The parametecan then be

. The bgsic id?? 'is to break' dovRD in to smgller tasks by replaced byn in (10) which results in the following version
introducing “artificial” constraints that are designed Battthe of AL algorithm for solving (7)

sub-problems become decoupled and can be solved relatively
rapidly [15], [17]-[20]. We first briefly review the AL method Algorithm AL

and then discuss some strategies for applying P@o 1. Selectu®, 5®, andy > 0; setj = 0
Repeat
I11. CONSTRAINED OPTIMIZATION AND AUGMENTED 2. ul¥th = argmin{f(u) + EHCu _ ,,’(j)Hg}
. u
LAGRANGIAN (AL) FORMALISM 3. gUth =l —(CultD) —b)
4. Setj=j5+1
Consider the following optimization problem with linear Until stop-criterion is met

equality constraints: -
It has been shown in [15, Theorem 2.2] that the Bregman

@ = arg min f(u) subject toCu = b, @) iterations (1.1)-(12)—eq-u.ivalently, théL algorithm .under
ueQn above mentioned conditions—converge to a solution of (7)

whenever the minimization in (11)—in turn, Step 2 of #k

algorithm—is performed exactly. However, this step may be

andb € QM. In the augmented Lagrangian (AL) frameworlﬁompmatlona”y expensive and is often replaced in practic

(also known as the multiplier method [12]), an AL function is y an inexact minimization [.12]’ [15]’. .[1.7]' -Nume.ncal
first constructed for problem (7) as evidence in [15] suggests that inexact minimizations cdh st

be effective in the Bregman/AL scheme.

whereQ) is R or C, f is a real convex functiorC is a M x N
(real or complex) matrix that specifies the constraint eiquat

L(u,y,p1) = f(u) + ’YH(CU —b) + gHCu - b”; 8) 2A more general version of AL allows for the minimization ofmoonvex
functions subject to nonlinear equality and/or inequationstraints with non-

M . .__Quadratic “penalty” terms [12].

wherey € QO represents the vector of Lagrange multipliers, 3For non-convex problems, there may exist a lower bound orptissible

and the quadratic term on the r.h.s. of above equation isdtallalues ofy for establishing convergence [12, Proposition 1], [21,60849].



IV. PROPOSEDAL ALGORITHMS FORREGULARIZED anduyy,, = Rygx, p = 1,..., P, V ¢. ProblemP1 can be
SENSE-RECONSTRUCTION written in the general form of (7) with

Our strategy is to first transform the unconstrained problem u
POinto a constrained optimization task as follows. We repladt= [
linear transformations aof (FSx, andR,,x) in J with a set of
auxiliary variables{u; }. Then, we framé0 as a constraine
problem Where_] is minimized as a funct|_on ofu;} subject La(w,y1, 1) = Ji(x,w) +4HCu + H||Cu||§-
to the constraint that each auxiliary variable, equals the 2

respective linear transformationsxfWe handle the resulting The AL function £; can be written in the form of (13)
constrained optimization task (that is equivalenP@ in the (ignoring irrelevant constants) as

AL framework described in Section IIl. M )

The technique of introducing auxiliary variabldsy} is L1(un1, 1) = J1(x, 1) + 5[ Cu—m %, (14)
also known asvariable splitting it has been employed, for 1 i ) ,
instance, in [15], [18]-[20] for image deconvolution, in-\"’he,re_’71 = T Applymg theAL algorithm toP1 requires
painting and CS-MRI with wavelets- and TV-based regularizéhe J_O'nt m|r_1|m|zat|on of£y with _respect ton a“O_'X at Step
tion in a Bregman/AL framework and in [17] for developingz' S_mce this can b? comp_utgtlopally challenging, we apply
a fast penalty-based algorithm for TV image restoratiore T (inéxact) alternating minimization method [15], [179]:

purpose of variable splitting is to make the associated AWe alternatively minimize£; with respect to one variable

function £ amenable to alternating minimization methodgt a time while holding others constant. This decouples the

[15], [17], [24]-[26] which may decouple the minimization'”di"idual updates ofi; andx and simplifies the optimization

of £ with respect to the auxiliary variables. This makes (9_t sk._Specifi_ce_llly, at_thyéth iter_ation, we perform thefollow?ng
easier to accomplish compared to directly solving the neigi "dividual minimizations, taking care to use updated \alga
unconstrained problerRO. for subsequent minimizations [15], [17]:

The splitting procedures used in [15], [17], [19] introduce
auxiliary variables only for decoupling the effect of regnita- 4 4
tion. In this work, in addition to splitting the regulariia, XUt = argmin £, (0 x, 9 ). (16)
we also propose to use one or more auxiliary variables to *
separate the terms involvirl§ andS (see Section IV-B). The 1) Minimization with respect toac: The minimization in
AL-based techniques in [18], [20] also use auxiliary valéab (16) is straightforward since the associated cost funcitson
for the data-fidelity term, but they pertain to problems o thduadratic. Ignoring irrelevant constants, we get that

2] s = o), €= 1x ~RL b =0

d The associated AL function (8) is therefore

ugj—i_l) = argmin El (ulax(j)7n(1j)7p’)a (15)
u;

form o 5 lla - Fsx}
; i _ xV = argmin ; 0112
min f(v) subject tov = Cu, gl oo Hugﬁl) —Rx — nga)HQ
WhereC is a “tall”, i.e., plock-colymn matrix and are not - G;l[SHFHdJruRH(u%”U —ﬂgj))], (17)
directly applicable to (7) with some instanced®investigated
in this paper (see Sections IV-B and VI-C). Furthermorayheré
in general, different splitting mechanisms vyield differext- G, = S"FUFS 4 yR"R. (18)

gorithms as they attempt to solve constrained optimization
problems (that are equivalent RD) with different constraints. Although (17) is an analytical solution, computiltglj1 is
In this paper, we investigate two splitting schemes Rf; impractical for largeN. Therefore, we apply a few iterations

described below. of the conjugate-gradient (CG) algorithm witvarm starting
i.e., the CG algorithm is initialized with the estimatedrom
A. Splitting the Regularization Term the previousAL iteration.

In the first form, we split the regularization term by intro 2) Minimization with respect tan: Writing out (15) ex-
) ’ plicitly (i i i h h
ducingu, — Rx € CF, whereR = [R - - REQQ]H and R plicitly (ignoring constants independent af), we have that

is the number of rows iR. This form is similar to the split- Q Nq Py
Bregman scheme proposed in [15, Section 4.2]. The resultingﬂ) Z Aq Z Dyn z [[a1pgln|™
uy

constrained formulation o0 is given by =argmin ¢ g=1  n=1 p=1 - (19)
Iz ‘ [|?
P1:min J;(x,u1) subject tou; = Rx + 5 Hul — Rx —ﬂgj)H2
ul,X

While (19) is a large-scale problem by itself, the splitting

1 variableu; decouples the different regularization terms so that

Ji(x,uy) = —||d — FSx|? (19) can be decomposed into smaller minimization tasks as
2 follows. Letr() = Rx9); for eachq andn, we collectv,,, =

where

Py

Q Ny
m
"‘Z)‘q Z (pqn Z Hulpq]n| ‘ “We design the regularizatio® such that the non-trivial null-spaces of
g=1 n=1 p=1 RHR and SHFHFS are disjoint. ThenG,, is non-singular foru > 0.



{ipgn}yty, 05 = {rom}ory, and B = {n{!) },, so is no closed form solution to (23). Nevertheless, for given
thatv,,, o5, 8% € CF. Then, (19) separates for eagland and 1« values, (23) can be solved numericallpy using a

n as look-up table for®’ to find the value for the shrinkage factor
A\ x([[v]l2) such that (23) is satisfied.
) . —qq>qn(||vqn||ﬁg) Case of TV-type regularizatioriTo obtain a TV-type regu-
Vg, ) = arg min 1 PPN (20)  Jarization in (6) we setn = 2 and ®(z) = \/z. Correspond-
! t3 ‘ van — (04 +Bgr) ‘2 ingly, (21) becomes
This is basically aP,-dimensional denoising problem with x([v]l2)v = @) + W), (24)

gﬁﬂ? +,B¢(1'ZZ playing the role of the data and whef€|, denotes \ _

the /,-norm. Often (20) has a closed-form solution as digvherex([[v|2) = (m + 1) for v # 0. In this case, an
cussed below. Otherwise, a gradient-descent-based thigoriexact value fory can be found as shown below. Takirig
such as NCG with warm starting can be applied for obtainirgprm of the vectors on both sides of (24) and manipulating,
a partial update fov ;™" . Before proceeding, it is useful towe get that|[vlz|,_, i1 = [le¥) + B89 — 2, and

compute the gradient of the cost function in (20). Ignoring t ) )

indicesq andn and setting the gradient of the cost function (VD ) = ||Q +§ 2

in (20) to zero, we get for # 0 that leW) + 8Dz =2 )7

OV) +1p)V|(_yirn =09 + B, (21) which leads to the following vector-shrinkage rule [15]7]1
[22]
where \
A (Amo VU — shrinko { 0 4 g0, _} 7
o) 2 dig { e (il |, (@) oA

and®’ is the first derivative off, andvy, is thekth component whereshrinkye.{d, A} 2 dimaX{HdHQ — A, 0}. Itis also
of v. The main obstacles to obtaining a direct solution of (Z(ipossible to derive closed-fo |2

o . rm solutions of (20) far= 2 for
are the coupling introduced between different componefts 9, - - instances ab listed in [28, Section 4]. In summary, the
v, i.e., ®(||v]|™), and the presence of tHe,|™~2 in B(v).

: ] _ minimization problem (20) is fairly simple and fast typilyal
Below we analyze some special cases of practical mteresg) AL Algorithm for ProblemP1: Combining the results

where this problem can be circumvented to obtain simpjg, | sections IV-A1 and IV-A2, we now present the first

solutions. N L AL algorithm (that is similar to the split-Bregman scheme

Case of(,-regularization: For ¢,-type regularization in (6) 15]) for solving the constrained optimization problem
we setm :fl,hq)(x) = 7. Cons;fquently, (21) further decouple 1, formulated as a tractable alternative to the original
In terms of the components of as unconstrained problerR0.

A1)y = W) + W) . .
Uk = O ko AL-P1: AL Algorithm for solving problem P1

pl |
1. Selectx(®) andy > 0
wherev, # 0, k = 1,2,... P. The minimizer of (20) in this HH 4. 0y -
case is given by the shrinkage rule [27] 2. Precomput&TF d; sety; " = 0 andj =0

Repeat:
: . ) ; G+1) | i ; i
G g ) G) A 3. Obtain an update; using an appropriate technique
vp = shrink {Qk A u} vk, as described in Section IV-A2

d 4. Obtain an updata“*1) by running few CG iteration
whereshrink{d, A\} = —max{|d| — \,0}. on (17)

|d| GHD) () _ (D) 41
Case ofP = 1: In this case, (20) reduces to 1-D minimizal 2 1~ =1 —(ur "~ — RxU+1)
6. Setj =7+1

tion that can be easily achieved numerically for a genéral - o

or analytically form = 1 and some specific instances &f Until_stop-criterion is met

listed in [28, Section 4]. The most complex step of this algorithm is using CG
Case ofm = 2 and a generaf: Form = 2, the solution to solve (17). We now present an alternative algorithm that

of (20) is in general determined by a vector-shrinkage rsle gimplifies computation further.

explained below. Settingr = 2 in (21), we get that

n

2\ ) 2 ) ) B. Splitting the Fourier Encoding and Spatial Components in
( P lviz) + 1) v=er+pr. @3 the Data-Fidelity Term
x(Ivll2) Since the data-fidelity term is composed of compone8its (

The bracketed term on the l.h.s. is a non-negative scalar
® is non-decreasing), so that (23) corresponds to shrinki

o) + B9 by an amount prescribed W(||V||2) for v # 0. 5Taking the?s-norm of the vectors on both sides of (23), we see that (23)
The exact value of (|| v||2) depends ow and in general, there entails solving a 1-D problem of the forfA®’ (22) 4 1)z = d, for z.

?d F) that act on the unknown image in different domains
(E:sgoatial andk-space, respectively) it is natural to introduce



auxiliary variables to split these two components. Speaific xUHD) — argmin { %Huf)j“) — Sx — 77%) ”% } . 29)

we now consider the constrained problem + %Hug“) —x -2

22 112

P2: min  Jo(up,u;) subject to The minimization in (27) is exactly same as the one in (19)
3““_1“82; u = Rus andus — x except that we now havBu, instead ofRx in the quadratic
07 Pm LT A S part of the cost. Therefore, we apply the techniques destrib

whereuy € CNL, uy € CE, uy € CV, and in Section 1V-A2 to solve (27).
1 1) Minimization with respect toup . and x: The cost
Jo(ug,uy) 2 Z||d — Fug)? functions in (26) and (28)-(29) are all quadratic and thugeha
2 closed-form solutions as follows:
Q NCI P‘I ) )
2 A0 D Pan| D [[uplal™ ). uf ™ = B [EY 4 (S + ), (30)
qg=1 =1 p=1
Clearly,P2is equivalent td?0. The new variablai, simplifies RH(ugj"rl) _ ngb i

the implementation by decoupling, andu;. In terms of the

uf ™ = Hy Vo Dy | (31)
general AL formulation (7)P2 is written as

viv2 + V_(X(J) + M55
1

Uo

0 H, G+ ()
_ | W _ _ _ G+1) _ gr—1 S*(ug — 150 )
u= 7f(u)*J2(uOvu1)aC*ABab* 0 ) Xj *Hyf i i ) (32)
Uy 0 2+ Vz(ugﬁl) *77(2]2)) |
X
where
where .
Iy, © 0 In, 0 0 -S H, = F F+MVIQJVL7 (33)
A=| 0 mIz 0 |,B=| 0 Iz -R 0 | H,,, = RUR+ =y, (34)
0 0 I 0 0 Iy -I !
Vialy NN H,, = SUS+wly. (35)

We have introduced a diagonal weighting matfAxin the ) ) o
constraint equation whose purpose will be explained belofye Show below that these matrices can be inverted efficiently
Using A does not alter problerR2 as long as/; » > 0. The thereby avoiding the more difficult mverié;1 in (17). We

associated AL function (8) is given by have proposed usin§ to ensure suitable balance between the
various constraints (equivalently, the block-rowsBf since
Lo(u,y2, 1) = Jo(ug, ur) + yABu + g”BUH%% the block-rows ofB may be of different orders of magnitude.

We can adjust, » to regulate the condition numbersHf,, .., ,
wherey, = [y5L 4l ~4iL1H, one component for each row ofandH,, to ensure stability of the inverses in (31)-(32). Using
B. Then, we write£, in the form of (13) (without irrelevant general positive definite diagonal matrices in place of Wweskd

constants) as identity matrices inside\ is possible but would complicate
7 the structure of the matriceH,,,,, and H,, in (34)-(35),
Lo(u,m2, 1) = J2(uo, ur) + EHBU — 2132, (25)  respectively.
2) Implementing the Matrix InversesiVhen thek-space
wheren, 2 [pil nil pil]H = —+A~"y,. From (25), we samples lie on a Cartesian griff,, corresponds to a sub-

see thatA specifies the relative influence of the constraintsampled DFT matrix in which case we solve (30) exactly
individually while p determines the overall influence of theusing FFTs. For non-Cartesi@nspace trajectories, computing
constraints onl,. Note again that the final solution &2 u(()’“) requires an iterative method. For example, a CG-solver
does not depend on any pf v; oOr vs. (with warm starting) that implements products wilh'F
We again apply alternating minimization to (25) (ignoringising gridding-based techniques [29] can be used for (30).
irrelevant constants) to obtain the following sub-probdem  Alternatively, we can exploit the special structure BF'F
e ' %Hd ~ Fuo 2 (of size éVL XséVL\avtohimplfr:nfm (30) using the technique
uj; - argmm{ ) 2 }7 (26) proposed in [30]. We have tha

uo + %HUQ — SX(j) 71’](2%)

F'F = Z"QZ, (36)
@ Na Fa . whereZ is a 2N L x NL zero-padding matrix and) is a
u§j+1) — argmin q_zl)\q qu)qn s |[u1pgln|™ . (27) 2N L x 2N L circulant matrix [31]. Then, we writél,, as
ug - n= =
+ %Hul - Rugj) —’75]1)”% H;L = (ZHle + gINL) R

H,, becaus&) may have a non-trivial null-space and therefore

(5+1)
u
? may not be invertible. Lettingr denote the quantity within the

= arg min
us

"y +1 i
{ 20U+ — Ruy — )3

whereQ; = Q + §Iynr. We have split the factopIyz, in
. A : , (28
+ 22 luy - x0) — )13 }



. TABLE |
brackets on the r.h.s. of (30), we apply the Sherman-Matfiso coupyTation TIME PEROUTER ITERATION OF VARIOUS ALGORITHMS

Woodbury matrix inversion lemma (MIL) t&1,,* in (30) and FOR THEEXPERIMENTS INSECTION V
in
obta 9 4 Algorithm Time Taken (in seconds)
(G+1) _ g1, H (Section V-B) [ (Section V-C)
u =H =—w—- =721 37

v p W= 0T Re T (37) AL-P1-4 0.21 0.17

. . AL-P1-6 0.27 0.22

whereT must be obtained by solving AL-P1-10 0.35 0.30

9 AL-P2 0.15 0.12

(Ql—l + _zzH) T = Zw. (38) NCG-1 0.21 0.17

M NCG-5 0.30 0.26

. o . . . . MFISTA-1 0.22 0.18

Silncte is circulant andZZ" is a diagonal matrix containing MEISTA-5 0.53 0.43

either ones or zeros (due to the structure Zjf [30], we MFISTA-20 1.51 1.18

use a circulant preconditioner of the forf@; " + alan ) _ ]

(with o ~ 0) to quickly solve (38) using the CG algorithm.C. Choosingu- and v-values for theAL algorithms

The advantage here is that the matrices in the L.h.s. of (38)although ;- and v-values do not affect the final solution

and the preconditioner are either circulant or diagonaichvh g PO, they can affect the convergencate of AL-P1 and

simplifies CG-implementation. AL-P2. For AL-P2, we set the parameters, v, and v,
When the regularization matriceR,,,, p =1,..., P ¥ ¢, 5o as to achieve condition numbers{H,,), x(H,,,,), and

are shift-invariant (or circulantiR"'R is also shift-invariant. (g,,) of H,, H,,,,, andH,,, respectively—that result in

Then, we computdd, ;,, efficiently using FFTs. In the casefast convergence of the algorithm. Because of the presence o

where @R, is not shift-invariant (e.g., an orthonormal WaVeleFdentity matrices in (33)-(35)x(H,,), x(H,,,,), andx(H,,)

transform), we apply a few CG iterations with warm-startingre decreasing functions pf 2 andw,, respectively. Choos-

to solve (31) Fina”y, sinc&S is diagonal, we see th&[w |ng 1 such tham(Hu) | WCl)Uld require a |argeL and ac-

is also diagonal and is therefore easily inverted. cordingly, the influence of self-adjoint compon&HtF in H,,
Splitting thek-space and spatial (i.& andsS, respectively) diminishes—H,, becomes “over-regularized”; we observed in

components in the data-fidelity term has led to separatéXmagyr experiments that this phenomenon would result in slow

inverses—H ' andH, ' involving the componentB"'F and convergence ofAL-P2. On the other hand, taking — 0

S'S, respectively. Withouts,, one would have ended up withwould increaser(H,) making H;' numerically unstable

a termS"F'FS (as in G,,) that is more difficult to handle (hecauseP"F may have a non-trivial null-space). The same

using MIL compared t&"F. Using u, decouples the terms trend also applies te(H,,,,) and x(H,,) as functions of

R"R and S™S, thereby replacing a numerically intractable and,, respectively. We found empirically that choosing

matrix inverse of the forn{SS + «RYR)~! with tractable /'f v and vy such thats(H,), x(H,,,,), £(H,,) € [10, 36]

ones such a#f, ;, andH_ . o generally provided good convergence speedsAioiP2 in all
3) AL Algorithm for ProblemP2: Combining the results g, experiments.
from Sections IV-B1 and IV-B2, we present our second AL In the case oAAL-P1, the componentS8" FHFS andRFR

algorithm that solves probleri2, and thusP0, balance each other in preventing, (18) from having a

AL-P2: AL Algorithm for solving problem P2 non-trivial null-space—the condition numbel(G}f) of Gy,
© 0 _ (0 theref_ore exhibits a minimum for SOM&énin > 0: fmin =
1. Selectx™, uy* =x', v15>0, andp >0 argmin, £(G,). It was suggested in [15] thagl,, can
2. Precomputd*d; Setﬂé%),mz =0andj=0 be used for split-Bregman-like schemes suchAasP1 for
Repeat: ensuring quick convergence of the CG algorithm applied to
3. Computeu/ ™" from (30) using FFTs on (37) (17) (Step 4 ofAL-P1). However, we observed that selecting
4, Computeugﬁl) using an appropriate technique as [dey, = pu.,,;, did not consistently yieRl fast convergence of
scribed in Section IV-A2 for problem (27) the AL-P1 algorithm in our experiments (see Section VI-B).
5. Computeug“) using (31) So, we resorted to a manual selection offor AL-P1 for
6. ComputexU+1) using (32) reconstructing one slice of a 3-D MRI volume, but applied
7. 90 =) — (T — sxl+D) the sameu-value for reconstructing other slices.
G+ _ 0 _ qlD) _ g+
i R S R N
9. %™ =nf) — (Y — xUFY) V. EXPERIMENTS
10. Setj =j +1
Until stop-criterion is met A. Experimental Setup

With the possible exception of Steps 3 and 4, all updates in!n all our experiments, we consideréespace samples on a

AL-P2 are exact (for circulan{R,, }) unlike AL-P1 because Cartesiafigrid, soF, corresponds to an undersampled version

of the way we split the variables iR2. of the DFT matrix. We used Poisson-disk-based sub-sampling
Although Steps 2-4 oAL-P1 and Steps 2-6 oAL-P2 do

not exactly accomplish Step 2 &L, we found in our exper- 6A possible explanation for this phenomenon is presented isup-

. ' . plementary downloadable material available, along witle thaper, at

iments that bottAL-P1 and AL-P2 work well, corroborating http: //i eeexpl ore. i eee. or g.

the numerical evidence from [15]. "The proposed algorithms also apply to non-Cartegiapace trajectories.
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Fig. 1. Experiment with synthetic data: (a) Noise-free T2-weighiR image used for the experiment; (b) Poisson-disk-baseapbng
pattern (on a Cartesian grid) in the phase-encode plane 8@% undersampling (black spots represent sample locgti¢os SoS of
sensitivity maps $''S) of coils; (d) Square-root of SoS of coil images (SNR = 9.52 dBtained by taking inverse Fourier transform of
the undersampled data after filling the missingpace samples with zeros (also the initial gue$?); (e) the solutionx(>> (SNR = 24.52
dB) obtained by runnindVFISTA-20; (f) Absolute difference between (a) and (e). The goal of thirk is to converge to the image >’

in (e) quickly.

-8.8¢

[32] which provides random, but nearly uniform samplingtthe
is advantageous for CS-MRI [33]. 16

—¥%— MFISTA-1]|
—&— MFISTA-5

We compared the proposed AL methods to NCG (which h. 7232 D
been used for CS-(p)MRI [10], [11]) and to the recently prc 304 ——AL-P1-4 ||
—o—AL-P1-6 |

posed MFISTA [13]—a monotone version of the state-of-th¢ 376
art Fast Iterative Shrinkage-Thresholding Algorithm (FA$ 448
[34]. For the minimization step [13, Equation 5.3] in MFISTA
we applied the Chambolle-type algorithm developed in [3!
that accommodates general regularizers of the form (6). \ &
used the line-search described in [36] for NCG that guaesnte 736
monotonic decrease of (x). NCG also requires a positive
“smoothing” parameter (as indicated in [10, Appendix A])
to round-off “corners” of non-smooth regularization crite
we sete = 10~® which seemed to yield good convergenc
speed for NCG without compromising the resulting solutio 0 87 174 262 349 436 524 611 698 786 873 960
too much (see Section VI-A). We implemented the followin,_ tj (seconds)

algorithms in MATLAB:

——AL-P1-10|]

) (indB)
g

Fig. 2. Experiment with synthetic data: Plot §€;) as a function time

« MFISTA-N with N iterations of [35, Equation 6], for NCG, MFISTA, andAL-P1 and AL-P2. Both AL algorithms
+« NCG-N with N line-search iterations, converge much faster than NCG and MFISTA.

o AL-P1-N with N CG iterations at Step 4, and

o AL-P2.

We conducted the experiments on a dual quad-core Mac Rletermines the image quality), we focused on the speed of

with 2.67 GHz Intel processors. Table | shows the per-itenat convergence to a solution dP0. For all algorithms, we

computation time of the above algorithms for each expertmeuantified convergence rate by computing the normalized
Since our goal is to minimize the cost functioh(which distance betweex(’) and the limitx(>) (that represents a
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Fig. 3. Experiment within-vivo human brain data (Slice 38): (a) Body-coil image correspuntb fully-sampled phase-encode; (b) Poisson-
disk-based:-space sampling pattern (on a Cartesian grid) with 84% wwadepling (black spots represent sample locations); (ca®groot

of SoS of coil images obtained by taking inverse Fourierdfam of the undersampled data after filling the missingpace samples with
zeros (also the initial guess®): (d) the solutionx(>>) to PO in (2) obtained by runningMFISTA-20; (e) Absolute difference between (a)
and (d) indicates that aliasing artifacts and noise have Beppressed considerably in the reconstruction (d).

(d)

solution of PO) given by a visually appealing solutiox(®>). In practice, quantitative
Ix0) — x| methods such as the discrepancy principle or cross-valitat
£(j) = 201logyq <—> (39) based schemes may be used for automatic tuning [37] of
(>l regularization parameters. We adjusjedor AL-P1 and ¢,
We obtainedx(>) in each experiment by running thousandandrz) for AL-P2 as described in Section IV-C: In particular,
of iterations of MFISTA-20 because our implementation ofwe universally set
MFISTA (with Chambolle-type inner iterations [35]) doestno K(H,) = 24, #(H,,,,) = 12 (40)
require rounding the corners of non-smooth regularization " h P
unlike NCG, and therefore converges to a solutionRgt k(H,,) = min{0.95(S"S), 12} (41)
Since the algorithms have different computational loads pgr AL-P2 in all our experiments, which provided good
outer-iteration, we evaluated(j) as a function of algorithm results for different undersampling rates and regulaonat
run-timé ¢; (time elapsed from start until iteratiof). We settings (such a& -norm of wavelet coefficients, TV and their
used the square-root of sum of squares (SRSoS) of coil imagesmbination) as demonstrated next.
(obtained by taking inverse Fourier transform of the unalers
pled data after fiIIing(’ghe missink-space samples with zeros)s. Experiments with Synthetic Data
T e T, 7 e DA% e considere s x 235 T2-veighted MR
such that mi'nimizing the correspondinin (2) resulted in image obtained from the Brainweb database [38]. We used
a Poisson-disk-based sampling scheme where we fully sam-

8In timing MFISTA, we ignored the computation time spent otireating pled the centraB x 8 port.ion _Of the k-space; the resulting
the maximum eigenvalue 8" FHFS necessary for its implementation.  sampling pattern (shown in Figure 1b) corresponded to 80%
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Fig. 4. Experiment within-vivo human brain data (Slice 90): (a) Body-coil image correspantb fully-sampled phase-encodes; (b) Square-

root of SoS of coil images obtained by taking inverse Fouriansform of the undersampled data after filling the misdirgpace samples

with zeros (also the initial guess®); (c) the solutionx(>) to POin (2) obtained by running/FISTA-20; (d) Absolute difference between
(a) and (c) indicates that aliasing artifacts and noise Heen suppressed considerably in the reconstruction (c).

(d)

undersampling of thé-space. We simulated data froln=4 C. Experiments with In-Vivo Human Brain Data
coils whose sensitivities were generated using the tecleniq
developed in [39] (SoS of coil sensitivities is shown in Figu  In our next experiment, we used a 3-D-vivo human
1c). We added complex zero-mean white Gaussian nol¥@in data-set acquired from a GE 3T scanrn€g (= 25
(with a 1/r-type correlation between coils) to simulate noisyns, 7z = 5.172 ms, and voxel-size 3 x 1.35 x 1 mm?),
correlated coil data of 30 dB SNR. This setup simulates daséth a 8-channel head-coil. The-space data corresponded
acquisition corresponding to one 2-D slice of a 3-D MRI0 256 x 144 x 128 uniformly-spaced samples in the,
volume where thek-space sampling pattern in Figure 1b i&nd k, (phase-encode plane), ard (read-out) directions,
in the phase-encode plane. respectively. We used the iFFT-reconstruction of fullyagded

We utilized the true sensitivities and inverse noise célata collected simultaneously from a body-coil as a refezen
variance matrix (i.e., those employed for simulating daf@r quality. Two slices—Slice 38 and 90—(alongy direc-
generation) to comput8 in (4). We chosel (x) = |[Wx|y,, tion) of the reference body-coil image-volume are shown in
whereW represents 2 levels of the undecimated Haar-wavefdgures 3a and 4a, respectively. To estimate the sengitivit
transform (with periodic boundary conditions) excludifgt MapsS corresponding to a slice, we separately optimized a
‘scaling’ coefficients. Using/;-regularization has reducedduadratic-regularized least-squares criterion (sintieaf40])
aliasing artifacts and restored most of the fine structureké that encouraged smooth maps which “closely” fit the body-
regularized reconstructior(>) (Figure 1le) compared to thecoil image to the head-coil images. We estimated the inverse
SRS0S image (Figure 1d). Figure 2 compares NCG, MFIST¥ noise covariance matri¥, from data collected during a
and the proposedL-P1 and AL-P2 schemes in terms of dummy scan where only the static magnetic-field (and no RF
speed of convergence t(>), showing&(j) as a function excitations) was applied and computgdising (4).
of ¢; for the above algorithms. Both AL methods converge We then performed regularized SENSE-reconstruction of 2-
significantly faster than NCG and MFISTA. D slices -y plane)—Slice 38 and 90—from undersampled
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Fig. 5. Experiment within-vivo human brain data: Plot of(j) as a function timet; for NCG, MFISTA, AL-P1, and AL-P2 for the
reconstruction of (a) Slice 38, and (b) Slice 90. The AL pgnglarameter, was manually tuned for fast convergence Aif-P1 for
reconstructing Slice 38, while the samevalue was used iAL-P1 for reconstructing Slice 90. F&L-P2, the “universal” setting (40)-(41)
was used for reconstructing both slices. It is seen that thalgorithms converge much faster than NCG and MFISTA in brsbes. These
results also indicate that the proposed condition-nursbting (40)-(41) provides agreeably fast convergencAleP2 for reconstructing
multiple slices of a 3-D volume.

phase-encodes: For experiments with both slices, we appliegularizers. Whilee is usually set to a “small” value in
the Poisson-disk-sampling pattern in Figure 3b (corredmmn practice, we observed in our experiments that varyirgyer
to 16% of the origina256 x 144 k-space samples) in the phaseseveral orders of magnitude yielded a trade-off (results no
encode plane and used a regularizer that combipethrm of shown) between the convergence speed of NCG and the limit
2-level undecimated Haar-wavelet coefficients (excludimg to which it converged. Smallet yielded slow convergence
‘scaling’ coefficients) and TV-regularization. The rectos- speeds, probably becau® J||» (norm of the gradient of the
tions, x(°), corresponding to Slice 38 and 90 were obtainecbst function in (2)) is large for non-smooth regularizatio
by running several thousands of iterationdFISTA-20 and criteria with sparsifying operators and correspondingigny
are shown in Figures 3d and 4c, respectively. Aliasingaotf NCG-iterations may have to be executed before a satisfactor
and noise have been suppressed considerably in the regaartecrease of|V.J||2 can be achieved. For sufficiently small
reconstructions compared to corresponding SRSoS imagesning numerous NCG-iterations would approach a solution
(Figures 3c and 4b, respectively). We manually adjugied of PO. On the other hand, increasimgaccordingly decreases
for AL-P1 for reconstructing Slice 38 and used the sgme the gradient-norm thereby accelerating convergence. Memwe
value for reconstructing Slice 90 usirAl-P1. For AL-P2, for largere-values, the gradient no longer corresponds to the
we used the “universal” setting (40)-(41) for reconstmigti actual VJ and NCG converges to something that is not a
both slices. We also ran NCG and MFISTA in both cases asdlution of PO (e.g., Figure 5). In our experiments, we found
computedt. Figures 5a and 5b plgtj) for the all algorithms that e € [107%, 10~%] provided reasonable balance in the
as a function oft;. The AL algorithms converge faster thamabove trade-off. No such is needed in MFISTA and AL
NCG and MFISTA in both cases. These figures also illustrateethods.
that choosingu, v; and v, using the proposed condition-
number-setting (40)-(41) provides agreeably fast coremcg
of AL-P2 for reconstructing multiple slices of a 3-D volumeB: AL-P1 versusAL-P2
We also obtained results (not shown) in favor AE-P2 Increasing the number of CG iterationd, in AL-P1-N,
similar to those in Figures 3-5 when we repeated the abo@ds to a more accurate updaté™!) at Step 4 ofAL-
experiment (with Slices 38 and 90) with the same samplirijl thereby decreasingL-P1’s run-time to convergence (e.g.,
and regularization setup but using sensitivity maps eséicha Figures 2 and 5a). However, at some point the computation
from low-resolution body-coil and head-coil images obegin load dominates the accuracy gained resulting in longer run-
from iFFT-reconstruction of corresponding centBal x 32 time to achieve convergence—this is illustrated in Figue 5
phase-encodes. whereAL-P1-6 is slightly faster tharAL-P1-10.
Selecting i = pmin did not consistently provide fast
VI. DISCUSSION convergence of the split-Bregman-liké.-P1 algorithm in our
, experiments as remarked in Section IV-C. Our understanding
A. Influence of Corner-Smoothing Parameter on NCG of this phenomenon is that,.i, can be extremely large or
Section V-A mentioned that implementing NCG requires small whenever the elements S FIFS and RER in G,
parametere > 0 to round-off the “corners” of non-smooth(18) are of different orders of magnitude (becaecan
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vary arbitrarily depending on the scanner or noise leveBnd investigated two constrained versions—equivalenhéo t
Correspondingly,uijn in (20) becomes very small or large,original unconstrained problem—using variable splittinge
which does not favor the convergence speedbfP1. first version,P1, is similar to the split-Bregman approach [15]
In devisingAL-P2, we circumvented the above problem byvhere we split only the regularization term. In the second
introducing additional splitting variables that lead tonpier version,P2, we proposed to split the components of the data-
matricesH,, H,,,,, and H,, whose condition numbersfidelity term as well. These constrained problems were then
k(H,), k(H,,,,), andx(H,,), can be adjusted individually tackled in the AL framework. We applied alternating schemes
to account for differing orders of magnitude Bf R, andS, to decouple the minimization of the associated AL functions
respectively. Choosin@u, 11, 2) based on condition numbersand developed AL algorithm&L-P1 andAL-P2, respectively,
(40)-(41) provided good convergence speedMoiP2 in our  thereof.
experiments (including those in Sections V-B and V-C) with The convergence speeds of the above AL algorithms is
different synthetic data-sets and a real breast-phantam dahiefly determined by the AL penalty parameterAutomat-
set acquired with a Philips 3T scanner (results not showmally selectingu for fast convergence oAL-P1 still remains
Furthermore, almost all the steps AL-P2 are exact which to be addressed for regularized SENSE-reconstructiors. i§hi
makes it more appealing for implementation. With propex significant practical drawback &fL-P1. However, forAL-
code-optimization, we believe the computation-timeAdf- P2 we provided an empirical condition-number-rule to select
P2 can be reduced more than thatAif-P1. u for fast convergence. In our experiments with synthetic
and real data, the proposed AL algorithm&tP1 andAL-
P2 (with p determined as above)—converged faster than
conventional (NCG) and state-of-the-art (MFISTA) methods

Recentlyl, Liuet al[14] applied a Bregman ngtive schemerpe aigebraic developments and numerical results in thisipa
to TV-regularized SENSE-reconstruction, which converges i, qicate the potential of using variable splitting and aitging

a solution of the constrained optimization problem minimization in the AL formalism for solving other largeaie
min ¥(Rx) subject toFSx = d (42) constrained/unconstrained optimization problems.

C. Constraint Involving the Data

for some regularization?. Although this paper has focused
on faster algorithms for solving the unconstrained problem

(P0), we can extend the proposed approaches to solve (42) b)The agthors would like tq thank the anonymous revie_wer for
including a constraint involving the data. For instance2)(4 Suggesting the reformulation of the problem in equation (5)
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Parallel MR Image Reconstruction using
Augmented Lagrangian Methods:
Supplementary Material
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In this transcript, we discuss the quantitative selectibthe augmented Lagrangian (AL) parametgrs/y,
and v, associated with the AL algorithm®\.-P1 and AL-P2) that we developed in “Parallel MR Image Re-
construction using Augmented Lagrangian MethodEEE Transactions on Medical Imaging. These parameters
govern only the convergence speed of the above AL algoritimasdoes not affect the solution of the regularized
SENSE-reconstruction problem. References to equatiectpss, tables, figures, etc., given here are with respect
to the paper unless stated otherwise.

As described in Section IV-C, fohL-P1, p is related to the condition numbeXG,) of G, (18), while for
AL-P2, 11, v1, andu, are related to;(H,,), ~(H,,,,) andx(H,,) of H,, H,,,, andH,, (33)-(35), respectively.
So we proposed to select these parameters by adjustinfpr fast convergence of the AL algorithms in the paper.
The AL-P1 algorithm is similar to the split-Bregman algorithm [15] iag$s based on splitting the regularization
term alone (Section IV-A). It was suggested in [15] that oae selectu = pmin £ arg min,, x(G,) for split-
Bregman-like schemes such Ak-P1, so as to minimize the condition numbef{G,,) of G, thereby ensuring
fast convergence of the conjugate gradient (CG) algoritbmsblvingt (17). We observed in our experiments
that this rule did not consistently yield good convergengeesls forAL-P1: pi,in and pop (the p-value that
provides best convergence speed Abr-P1) differed at least by an order of magnitude in all our experits
and the convergence speedAif-P1 achieved using:,i, was far less compared to that obtained using;.

We provide a possible explanation for this behavior at theé @hSection 4 of this note. Table | at the end of
this note succinctly summarizes these results. In Figur&s 4, 5, and 7, the vertical black-dashed line indicates
Imin, While the vertical red-dashed lines indicatg,;, for AL-P1-4, AL-P1-6 andAL-P1-10, respectively.

We also illustrate the effectiveness of an empirical caodinumber rule for selecting, v;, andv, for fast

convergence oAL-P2 in Section 5 of this note.

1. EXPERIMENT WITH SYNTHETIC DATA-SET

For the experiment described in Section V-B, Figure 1 in tidte plots the normalize€h-distancet (equation
(39)) which quantifies the convergence speed) to the soluie®) of original regularized SENSE-reconstruction
problem for various run-times o&AL-P1 and the correspondiig:(G,,) as functions ofu. For this experiment
&(fmin) = —15.48 dB for AL-P1 which is far from¢&(popt) = —102.23 dB.

2. EXPERIMENT WITH REAL BREAST-PHANTOM DATA-SET

We also performed a similar experiment with a breast-phardata-set acquired from a Philips 3T scanner
with a 4-channel coil: The-space data corresponded800 x 394 x 94 uniformly-spaced samples in the.
(read-out) k,, andk, (phase-encode) directions, respectively. From the falygled 3-D data, we computed the
square-root of SoS (SRSo0S) reconstruction which servedete@ence for quality; Slice 418 (alongz direction)
of the reference SRSo0S volume is shown in Figure 2a. To edithe sensitivity maps, we truncated the fully
sampled phase-encodes by applyinga 12 cosine-squared window centered at the origin to generavetrad
coil images and computed the ratios of these smooth imagéseio SRSoS reconstruction. We estimated the
noise covariance matrix from data collected during a dumognswvhere the phantom was magnetized but no
RF excitations were applied.

In the figures AL-P1-N stands forAL-P1 with N CG iterations applied to (17).

2In all experiments, we estimated G ) using the Power method applied @, and G;l, where we implementeﬂ};1 using 500
iterations of the CG algorithm.
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corresponding to fully sampled phase-encodes; (b) Poidsiabasedk-space sampling pattern (on a Cartesian grid); (c)
SRS0S of coil images obtained by taking inverse Fourierstam of zero-filled undersampled data; (d) the solutid??)
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condition numbew(G,,) as functions ofu. It is seen thaAL-P1 using umin (indicated by a black-dashed line) converges

relatively slowly compared to usinggpt.



1 115 ——
[ | |
-5.5r 10.8f : : : : N
-12¢, 10.2- : : : : b
-185 9.5 o | B
L [ | | 4
-25 . 8.9 - i
[ |
-315 < 82 o } 1
- 2 o |
3 -38 I, 751 o I J
S
£ 45 ‘ g oof I ,
w 51 | —+— AL-P1-4; after 10s || = 62 o } ]
I —&— AL-P1-6; after 10s || ;1 | o | |
574 ! —o— AL-P1-10; after 10s g 56 e
-63.9 | —*— AL-P1-4; after 355 H 491 o | B
! —O6— AL-P1-6; after 35s || L . ! ! i
704 | | —— AL-P1-10; after 35s 43 N |
-76.9 : : —+— AL-P1-4; after 61s 3.61 : : \ : J
—¥— AL-P1-6; after 61s
-83.4 | | ’ H 29+ I | | 4
! ! —&— AL-P1-10; after 61s [N !
_899 1 Lol V) 1l 1 1 T T T T 2.3 1 Ll il T 1 1 1 1 1
-15.2 -13.6 -11.9 -10.3 -87 -7 -54 -38 -21 -05 12 28 -15.2 -13.6 -11.9 -103 -87 -7 -54 -38 -21 -05 12 28
u  (log m—scale) p (log m—scale)

Fig. 4. Experiment with Slice 38 ofin-vivo human brain data-set(corresponding to Section V-C): Plots §ffor various
run-times of AL-P1 and condition number(G,) as functions ofu. It is seen thatAL-P1 using pmin (indicated by a
black-dashed line) converges relatively slowly compamedging jtopt.
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Fig. 5. Experiment with Slice 90 ofin-vivo human brain data-set(corresponding to Section V-C): Plots §ffor various
run-times of AL-P1 and condition number(G,) as functions ofu. It is seen thatAL-P1 using pmin (indicated by a
black-dashed line) converges relatively slowly compamedging jtopt.

We then performed SENSE-reconstruction of Slices 418 fromtetsampled phase-encodes ushigP1. We
used a Poisson-disk-sampling pattern (confined to a Cantegid where we fully sampled the centralx 4
portion) in the phase-encode plane, corresponding to 7%eobtiginal394 x 94 phase-encodes (see Figure 2b).
We used a regularizer that combinédnorm of 2-level undecimated Haar wavelet coefficients l{gkiag the
‘scaling’ coefficients) and total-variation regularizati The reconstructior(>) corresponding to Slice 418 was
obtained by running several thousands of iteration8161STA-20 (as explained in Section V-A of the paper)
and is shown in Figure 2d. We rakL-P1 for variousp and computed. Figure 3 in this note plots for various
run-times ofAL-P1 and the corresponding(G,,) as functions ofu. For this experimen{ (/imin) = —36.28 dB
which is sub-optimal compared tq1.pt) = —83.18 dB. We obtained similar results in favor pf,: (under the
same experimental setup) for reconstructing other sli¢¢seoreal breast-phantom data-set usikigP1.

3. EXPERIMENT WITH In-Vivo HUMAN BRAIN DATA-SET

For the experiment (with Slices 38 and 90infvivo human brain data-set) described in Section V-C, Figures
4 and 5 plot{ for various run-times oAL-P1 andx(G,) as functions ofu, for Slices 38 and 90, respectively.
In this experiment toou,i, Yields sub-optimal convergence speef§uf,in) = —36.20 dB for Slice 38 and
£(min) = —51.99 dB for Slice 90) forAL-P1 compared touops (§(popt) = —89.82 dB for Slice 38 and
&(popt) = —116.90 dB for Slice 90).
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Fig. 6. Experiment with modified synthetic data-set:(a) Scaled noise-free T2-weighted MR image; (b) SRSoS df coi
images obtained by taking inverse Fourier transform of #me-illed undersampled data; (c) the solutiofi® obtained by
running MFISTA-20.
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Fig. 7. Experiment with modified synthetic data-set: Plots of¢ for various run-times oAL-P1 and condition number
x(G,) as functions ofu. The i that minimizesx(G,,) does not yield the best convergence speediioP1.

4. EXPERIMENT WITH A DIFFERENT SYNTHETIC DATA-SET

In another experiment, we generated a synthetic dataesattite T2-weighted noise-free MR image (in Section
1) after scaling it to increase its dynamic range fr@im253] to [0, 33554432]. We used the same experimental
setting described in Section V-B and Figure 1 in the paper, (same sensitivity maps, noise level, sampling
pattern and regularizer with appropriately scaled regzdtion parameter) and generated noisy data with 30 dB
SNR. This resulted in large values in the inverse noise+tawee matrix and correspondingly the spectra of
SHFHES (where we utilized the true sensitivities and inverse neiseariance matrix to comput®) andR' R
were several magnitudes apart. For this experiment, wenazmainedx(>) using MFISTA-20 (show in Figure
6¢c). We ranAL-P1, computed{ and x(G,) and plotted them as functions @f in Figure 7. Similar to the
situations encountered earligr,,i, is comparably close ta,,; but still does not provide a good convergence
speed.

Our understanding of the phenomenon encountered in Sectidnis that the proposed AL algorithms, -P1
and AL-P2, are sensitive to the threshold-valugs= % andr, = MATl respectively and that; and » need to
be carefully set (by fixing: and v, properly) to ensure rapid convergence of the AL algorithmMewever,;

IS more sensitive tg, compared tor, becauser; depends only om—even a small deviation from the optimal
value ;o becomes detrimental to the convergence speedlePl as seen from Figures 1, 3, 4, 5, and 7, where
AL-P1 exhibits good convergence speeds only in a narewindow.

Table | succinctly summarizes the results from Sections df-4his note where we compare the ratio of

maximum eigenvalues SHFEFS and RER, Imin and pope. In all experiments, it is seen that,;, is of the

: : : mpxeigval {STFHFS) P : : ]
same order of magnitude and is relatively close3- == ey Which is quite expected singe,;, balances
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Fig. 8. Plots of¢ for various run-times oAL-P2 as a function ofu for (a) Experiment with synthetic data-set(Section

1); (b) Experiment with Slice 418 of real breast-phantom data-se{Section 2); (c)Experiment with Slice 38 of in-
vivo human brain data-set (Section 3); (d)Experiment with Slice 90 of in-vivo human brain data-set (Section 3);

(e) Experiment with modified synthetic data-set(Section 4). The vertical black-dashed line indicgtes: 1o for which
x(H,,) = 24 used in our experiments. It is seen thaH,,) € [10, 36] provides agreeable results for all data-sets even for
cases (c)-(e) where corresponding;, did not yield comparable results féd_-P1.



TABLE |

COMPARISON OF RATIO OF MAXIMUM EIGENVALUES OFSTFTFS AND RYR, jimin = arg min,, £(G,), ftopt (1£-VALUE THAT
PROVIDES BEST CONVERGENCE SPEED FORL-P1), NORMALIZED £>-DISTANCE TOx(*), £, OBTAINED BY RUNNING AL-P1 WITH

maxeigval{SHFHFS}

min AND [lopt

Experiment - o [hmin Hopt E(fmin) (in dB) | &(popt) (in dB)
maxeigval{R"R}
Section 1 2.286 10.109 0.112 -15.48 -102.23
Section 2 152.618 178.438 12.397 -36.28 -83.18
Section 3 (Slice 38) 4.999 x 107° 3.567 x 107% | 6.887 x 107! -36.20 -89.82
Section 3 (Slice 90 ) 2.291 x 107° 1.985 x 1072 | 3.831 x 107 -51.99 -116.90
Section 4 3.793 x 1074 1.703 x 1071 | 9.450 x 1072 -20.20 -113.71
TABLE Il

COMPARISON OF 19 WHERE k(H .=y ) = 24, ftopt FORAL-P2, NORMALIZED £2-DISTANCE TOx(*®), £, OBTAINED BY RUNNING
AL-P2 WITH 10 AND fiopt

Experiment | mo fops || &(po0) (in dB) | &(popt) (in dB)
Section 1 2849.391| 2114.065 -93.48 -96.25
Section 2 1755.429| 1271.1724 -72.45 -82.73
Section 3 (Slice 38) || 1755.429| 1755.427 -91.31 -91.31
Section 3 (Slice 90 )| 1755.427| 2835.692 -98.58 -104.44
Section 4 3120.762| 5041.231 -112.69 -121.19

the spectra oS"FIFS and RUR in the process of minimizing:(G,,). As mentioned earlier, it is seen that
AL-P1 using imin does not lead to a significant decrease afs compared to that using,.

In summary,G,, is a non-circulant matrix without any special structure séaondition number(G,,)
cannot be computed in a straightforward manner. Moreoirere$ can vary arbitrarily in SENSE-reconstruction
problems depending on the scanner or noise lexal,x(G,) has to be performed on a case-by-case basis which

can be tedious. Finally, as illustrated in Figures 1-7, miring x(-) may not be robust for selectingfor AL-P1
in regularized SENSE-reconstruction problems.

5. SELECTION OF u, v1, o FORAL-P2

In devisingAL-P2 in the paper, we circumvented the above issues by introduaiditional splitting variables
that lead to simpler matriceH,,, H,,,,, andH,, (33)-(35), which have special structures (toeplitz, dmot
and diagonal, respectively) and whose condition nhumbensbeacomputed easily and controlled individually.
Moreover, in the case oAL-P2, the threshold-value, = %1 depends oru and vy so that a deviation of:
from a corresponding,; for AL-P2 can be balanced appropriately by adjustingWe observed that choosing
u, vi andwvy such thatx(H,), x(H,,,,), «(H,,) € [10, 36] generally provided good convergence speeds for
AL-P2 in all our experiments, so we simply setH,,,,) = 12, x(H,,) = min{0.9x(S"S), 12} universally in
all our experiments (40)-(41). Figure 8 illustrates th&k,,) € [10, 36] provides good convergence speeds for
AL-P2 for all data-sets even when,;, did not yield comparable results fél_-P1. In the paper, we universally
setx(H,,) = 24 for all experiments and obtained promising results in faoAL-P2. Table Il summarizes our
observations folAL-P2 where we see thai(s) is agreeably close t6(u.pt) compared to the corresponding
values in Table I. Alsoyy and p.p¢ are of the same order of magnitude; the deviatiom@from /oy in 7 is
compensated by; which is empirically selected (using the above conditiomber setting) for obtaining good
convergence speeds.
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