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Abstract—There are many systems for counting photons such as
gamma-rays emitted from radioactive sources. Many of these sys-
tems are also position-sensitive, which means that the system pro-
vides directional information about recorded events. This paper in-
vestigates whether or not the additional information provided by
position-sensitive capability improves the performance of detecting
a point-source in background. We analyze the asymptotic perfor-
mance of the generalized likelihood ratio test (GLRT) and a test
based on the maximum-likelihood (ML) estimate of the source in-
tensity for systems with and without position-sensitive capability.
When the background intensity is known and detector sensitivity
is spatially uniform, we prove that position-sensitive capability in-
creases the area under the receiver operating characteristic curve
(AUC). For cases when detector sensitivity is nonuniform or back-
ground intensity is unknown, we provide numerical results to illus-
trate the effect of the parameters on detection performance.

Index Terms—Asymptotic, detection, generalized likelihood
ratio test (GLRT).

I. INTRODUCTION

T HE ability to detect radioactive material is important for
security and nuclear nonproliferation. For security appli-

cations, the goal is to screen passengers and cargo for nuclear
explosives or other potentially harmful materials. For nonprolif-
eration applications, the goal is to assess the amount of different
isotopes present at a nuclear reactor to ensure that the facility is
not producing weapons materials. One means of detecting ra-
dioactive sources is to count gamma-ray photons emitted from
it. Such a detector, hereafter called a counting detector, is lim-
ited by its inability to determine the direction or other attributes
of incoming photons. In contrast, a position-sensitive detector
provides some information in addition to the number of counts.
It is reasonable to hypothesize that directional information can
improve detection capability by distinguishing between photons
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from a localized source and photons from a distributed back-
ground.

There is a wide body of literature on the problem of
gamma-ray source detection. A common assumption in the
field of security imaging is that sources of radiation are small,
so they appear point-like to a detector [1]. There are many
gamma-ray detection modalities including stationary radiation
portal monitors [1], coded aperture imaging systems [2], arrays
of scintillating detectors [3], and position-sensitive Compton
detectors [4], [5]. Some detection algorithms are specific to
certain modalities, such as using images reconstructed from a
coded aperture system to detect a point-source [2]. A mean dif-
ference test (MDT) statistic was applied to scintillating arrays
in [3]. In this paper, we analyze the detection performance of
two tests that are based on the likelihood: one is the generalized
likelihood ratio test (GLRT), and the other is the ML estimate
of the source intensity. We refer to the latter as the source
intensity test (SIT). We compare the asymptotic performance
of the GLRT and SIT to the MDT presented in [3].

When performing detection using the GLRT with a posi-
tion-sensitive Compton imaging detector in a known back-
ground, a particular experiment found that position information
did not significantly improve detection performance over
merely counting received photons [6]. In light of the numerous
modalities that provide information beyond the number of
received counts, we seek to show theoretically how posi-
tion-sensitive capability affects detection performance. The
goals of this work are to explain previous empirical results,
such as those contained in [6], and to help guide the design of
future detectors.

The question of whether or not imaging capability improves
detection performance was addressed in [7] in the context of
coded-aperture imaging systems. Reference [7] shows that if the
background intensity is unknown, imaging may improve SNR
[7] and thus detection performance by providing a means to
separate the otherwise indistinguishable source and background
photons. The analysis in this paper differs from that of [7] be-
cause we treat the problem from a detection task-based point
of view [8]. We analyze the task of source detection using the
asymptotic performance of various test statistics applied to de-
tectors with and without position-sensitive capability. Our treat-
ment of detection differs from that in [7] because SNR does
not capture the additional information received on a per-photon
basis by a position-sensitive detector.

In this work, we quantify detection performance using the
area under the receiver operating characteristic curve (AUC).
This metric is independent of any particular threshold value and
is a measure of the overall detectability [9].

1053-587X/$26.00 © 2010 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 16,2010 at 15:53:27 UTC from IEEE Xplore.  Restrictions apply. 



4474 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 9, SEPTEMBER 2010

The novel contribution of this work is the task-based anal-
ysis of the asymptotic performance of the GLRT and SIT for
detecting a single source in background using detectors with
and without position-sensitive capability. We prove Theorem 1,
which states that in a known background, a uniform-sensitivity
position-sensitive detector always has equal or better detection
performance asymptotically, in terms of AUC, than a counting
detector of equal sensitivity. Our analysis also provides an ex-
pression that quantifies how much position-sensitive capability
increases the AUC.

We compare the AUCs of position-sensitive and counting de-
tectors when the assumptions of Theorem 1 do not hold. For
the case of known background and nonuniform sensitivity, we
numerically evaluate the asymptotic AUC of the GLRT and
SIT for a simple position-sensitive detector of nonuniform sen-
sitivity. Our results show that, unlike the uniform sensitivity
case, a position-sensitive detector with nonuniform sensitivity
can have a smaller AUC than a uniform-sensitivity counting
detector of equal area for some source positions, particularly
for a position-sensitive detector with poor sensitivity and poor
position resolution. However, as sensitivity and resolution im-
prove, the position-sensitive detector can have better detection
performance. We use examples of various detectors to show how
nonuniformity and other detector properties relate to detection
performance, which could help in practical design problems.

We also show how relaxing the assumption of a known back-
ground impacts detection performance in terms of AUC through
numerical examples. We use simple detectors to show that the
degradation in detection performance caused by an unknown
background is related to uncertainty in the source position esti-
mate. The information that a position-sensitive detector records
allows it to distinguish source and background photons when
the source and background have different spatial distributions
but identical energies. A counting detector does not have this
capability when the source and background photons are of the
same energy, so it is difficult to directly compare position-sen-
sitive and counting detectors in an unknown background. More
specifically, one cannot set the appropriate threshold for a test
using a counting detector. In our analysis, we assume that the
operator of a counting detector sets the threshold with a ran-
domly chosen background intensity and examine how the distri-
bution of the chosen background intensity affects the difference
in AUC between the counting and position-sensitive detectors.
The specific examples are meant to be a guide in analyzing and
comparing particular systems.

II. MATHEMATICAL BACKGROUND

The model described in this section is general enough to de-
scribe any system that records a Poisson-distributed number of
measurements or events, where the events are independent and
each event is described by a vector of recorded attributes. This
model accurately describes position-sensitive Compton detec-
tors, coded aperture detectors, and scintillator arrays. The model
is based on [8] and [10]. It assumes a fixed scan time, thus the
number of recorded events is random.

A. Measurement Model

Following the notation of [8], let denote
a list of recorded attribute vectors from photon interaction
events. Each element of is itself a vector of attributes de-
scribing the event. An example of a detector that one can de-
scribe with this model is a position-sensitive Compton detector.
A Compton detector records a Poisson-distributed number of
gamma-ray photons. Each detected photon interacts one or more
times inside the detector and the detector records these interac-
tion locations and possibly other attributes such as deposited en-
ergy. We assume that distinct attribute vectors are statistically
independent, which is reasonable provided the count rates are
low enough to avoid dead time effects [8].

In the detection problem considered here, the goal is to decide
whether or not a point-source is present in an environment with
some background. Denote the source intensity by
with units of counts emitted per unit time. The probability dis-
tribution of recorded attribute vectors for events that originate
at the source may depend on parameters other than the source
intensity, and we denote the vector of additional parameters by

. In the 3-D far-field when the source and background are
of the same energy, an example for the set is ,
which represents all possible source positions in terms of az-
imuthal and polar angle in space. If a detector is energy-sensi-
tive and the source and background energy spectra differ, the
source energy could also be an element of .

We model the background as a linear combination of a fi-
nite number of fixed, known distributions. We parameterize the
background by the rate in counts recorded per unit time
and a vector of mixture coefficients , such that the proba-
bility distribution of recorded events given that they originated
from background is a mixture of the distributions of recorded
attributes given that they came from each object [10]. For this
linear model, the background count rate, , is not a function of

.
We define the vector to be the vector of all unknown param-

eters. When the source and background intensities and position
parameters are all unknown,

(1)

A similar parameterization of a far-field point source is given
in [3].

Let be the event that a photon is recorded and be the
event that a photon passes through the detector. We define the
sensitivity, which is the probability of recording a photon given
that it came from direction , to be

(2)

where is the intrinsic sensitivity, which depends on
the detector shape and attenuation, and is the geometric
sensitivity, which depends on the fraction of emitted photons
that pass through the detector [11, p. 65]. In 3-D, the geometric
sensitivity is the solid angle subtended by the detector in a spher-
ical coordinate system centered at the source.

Let denote the distribution of recorded attributes
, where is the set of all possible event attributes. Let

and denote the distributions of recorded
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event attributes given that they are detected and come from the
source and background, respectively. The overall distribution of
recorded attributes (given that an event is detected) is a mixture
of and given by [10]

(3)

As shown in [8], the likelihood of is

(4)

and the number of recorded photons obeys the Poisson
distribution

(5)

with mean given by

(6)

where denotes the known measurement recording time.
We can make the concept of a counting detector more con-

crete by the following definition:
Definition 1: A detector is a counting detector if and only

if almost everywhere1 for all
and mixture coefficients .

Definition 1 says that in a counting detector, the distribu-
tion of event attributes is independent of whether or not the
event originated from the source. Otherwise we call it an po-
sition-sensitive detector. By this definition, a detector that is en-
ergy-sensitive but not does not record interaction locations is
not a counting detector. In such a detector, the recorded ener-
gies can produce some position information, so we treat spec-
trometers that do not record interaction locations similarly to
spectrometers that do. The asymptotic expressions in this paper
allow one to compare the asymptotic detection performance of
particular spectrometers that do and do not record interaction
locations. We refer to detectors that are not counting detectors
as position-sensitive detectors, although a position-sensitive de-
tector does not necessarily record interaction locations.

B. Fisher Information

The asymptotic detection performances of the test statistics
examined in this work depend on the Fisher information matrix

. To facilitate the analysis of , we define its block com-
ponents as follows:

(7)

where is , is , is
, is , is ,

is , is , is ,
is , and is . In source

detection problems, the source position , the background in-

1Throughout, “almost everywhere” means with respect to the distribution of
��� in (3)

tensity , and the background shape parameters are nuisance
parameters.

A counting detector is neither capable of estimating nor
distinguishing source and background events of the same en-
ergy because does not depend on by Definition 1.
Because of this, for the purposes of defining the Fisher infor-
mation, we assume that , , and the value of are known
to a counting detector, so the Fisher information is a scalar in
this case. Using the model in (4) and (5), the likelihood for
the counting case is , for which the
Fisher information is given by

(8)

To help express the Fisher information matrix (7) for a posi-
tion-sensitive detector, we first define the following functions of
:

where is the column gradient with respect to . Note that
, , and .

Using (3)–(5), one can show that the Fisher Information for a
position-sensitive detector is given by

(9)
where

(10)

provided that the expectation and the gradient with respect to
the parameters are interchangeable. Appendix B gives sample
derivations of the block Fisher information elements.

In the case where the background intensities are known, we
remove the entries corresponding to the unknown background
and the Fisher information for a position-sensitive detector sim-
plifies to

(11)

The elements of the Fisher information appear prominently in
the detection analyses that follow.

C. Test Statistics for Source Detection

In the source detection problem, we would like to discern
between two hypotheses:

(12)
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Based on the model (3) and (5), there are several reasonable tests
for this problem.

1) Generalized Likelihood Ratio Test (GLRT): The GLRT is
a common method of choosing between two hypotheses when
one or more of the hypotheses depends on unknown parameters
[12]. We can write the GLRT as

(13)

where the GLRT test statistic is

(14)

To calibrate the test threshold and analyze the performance
of the detector, one must determine the distribution of . If
one uses a restricted ML estimator (MLE) motivated by the one-
sided hypothesis in (12), the distribution of is compli-
cated because under , the parameter lies on the boundary of
the parameter space [13]. To simplify the analysis of the GLRT
and give intuition, instead of (12), we consider the two-sided
test

(15)

which is also the basis of the analysis in [14]. When the test is
treated with the two-sided formulation in (15) and the source in-
tensity is small, it is shown in [12, pp. 239–240], that the asymp-
totic distribution of the test statistic is given by

,
(16)

where denotes the noncentral chi-square distribution with
one degree of freedom and noncentrality parameter . Assuming

is invertible, for the model (4), the noncentrality parameter
is

(17)

This asymptotic framework is also used to analyze a test of
whether one or two sources are present in [14].

2) Wald Test: The Wald test is a classical test for the com-
posite hypothesis problem and is known to be approximately
asymptotically equivalent to the GLRT for small source intensi-
ties [12, p. 188]. The Wald test for the source detection problem
is given by

(18)

where is the ML estimate of . The Wald test is a nonmono-
tonic function of when is the unrestricted MLE of

. Although the source intensity cannot be physically less than
zero, one can find by maximizing the likelihood over the
real line. Intuitively, a negative estimate of the source intensity
is strong evidence for the null hypothesis. Either squaring or
thresholding negative source intensity estimates at zero can re-

Fig. 1. AUC of GLRT (14) versus noncentraltity parameter � of the asymptotic
distribution of the GLRT.

duce detection performance by reducing the separability of the
test statistic distributions under the two hypotheses, especially
for weak sources. Our numerical results do not include the Wald
test since it is asymptotically equivalent to the GLRT.

3) Source Intensity Test (SIT): Because the squaring opera-
tion in the Wald test statistic can degrade detection performance,
we consider the following source intensity test statistic

This test was also considered in the context of array processing
[15]. By the asymptotic normality of the MLE [12, p. 240], we
have that, asymptotically

,
(19)

where is the parameter vector under the null hypothesis with
. The next section uses the asymptotic distributions in (16)

and (19) to show that position-sensitive capability improves de-
tection performance.

4) Mean Difference Test (MDT): The mean difference test
statistic is proposed in [3] and is equivalent to

(20)

where is the number of photons recorded on all source-ex-
posed surfaces of the detector and is the number of pho-
tons recorded on all surfaces not exposed to the source. When
the source position is unknown, one must estimate which sur-
faces are exposed to the source. The asymptotics of the MDT
are given in [3].

III. EFFECT OF POSITION-SENSITIVE CAPABILITY ON

DETECTION PERFORMANCE

As illustrated in Fig. 1, the AUC of the GLRT for (15) is
a monotone function of the noncentrality parameter in (17),
so to show that position-sensitive capability improves AUC, it
suffices to show that position-sensitive capability increases .
Furthermore, if position-sensitive capability increases for all
values of , then position-sensitive capability will improve
the performance of the SIT by reducing the variance of the test
statistic under each hypothesis in (19).

A. Effect of Position-Sensitive Capability for a Uniform
Sensitivity Detector With Known Background

We first define the concept of a uniform-sensitivity detector:
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Definition 2: A detector has uniform-sensitivity if
for all , where is a constant.

The main result of this section, given by Theorem 1, is that
the detection performance of a uniform-sensitivity position-sen-
sitive detector is greater than or equal to that of a uniform sen-
sitivity counting detector. The AUC of the GLRT applied to a
position-sensitive detector is greater than the AUC of the GLRT
applied to a counting detector if the noncentrality parameter of
the asymptotic distribution under in (17) is larger for a posi-
tion-sensitive detector. As shown in [12, p. 232], the asymptotic
distribution of the GLRT is most accurate for small source in-
tensities because the derivation of the asymptotic distribution
assumes that the log-likelihood evaluated at is approxi-
mately equal to the second order approximation of the log-likeli-
hood about the value of the source intensity estimate . For
the SIT, a detector with position-sensitive capability performs
better if the variances in (19) are smaller for the position-sensi-
tive detector. The asymptotics of the SIT do not assume a small
source intensity. The above discussion leads to the sufficient
condition that position-sensitive capability improves the AUC
of the GLRT and SIT for any :

(21)

Theorem 1: For a uniform-sensitivity detector in a known
background, , i.e., the reciprocal of the

component of the inverse Fisher Information Matrix (11)
for a position-sensitive detector is greater than or equal to that
of a counting detector (8). Therefore, the asymptotic AUC for a
position-sensitive detector is greater than or equal to the asymp-
totic AUC of a counting detector in a known background when
the GLRT with a small source intensity or the SIT is used.

The proof, which is given in Appendix A, shows that the non-
centrality parameters of the GLRT for position-sensitive and
counting detectors, and , respectively, obey

(22)

Furthermore, if is diagonal,

(23)

so position-sensitive capability increases the noncentrality pa-
rameter in (17) by the factor in (9). In this case, the
inequality in Theorem 1 becomes strict.

IV. SETUP FOR NUMERICAL CALCULATIONS

In Section V, we numerically evaluate the Fisher information
(9) for 2-D circular detectors of radius and 2-D square detec-
tors with side length to illustrate Theorem 1 and to explore
the cases where Theorem 1 does not apply. The detectors in this
section do not necessarily represent any particular detector tech-
nology and are used for illustrative purposes only. The simpli-
fied detectors have tractable models for the recorded attributes,
facilitating accurate calculation of the Fisher information.

Fig. 2. Diagram of square detector with side length ��.

For simplicity, we assume that these detectors record only
single photon interaction events and that the source and back-
ground energy spectra are identical. For each recorded event,
the detector records the position of the interaction . The
attribute vector is the interaction position of the event.
Each attribute vector has length 2, so we compute the compo-
nents of the Fisher information (10) numerically using Riemann
approximation. This hypothetical system allows us to gain intu-
ition on how detector nonuniformity and unknown background
affect detection performance. This intuition will be useful when
thinking about more realistic 3-D detectors.

For this analysis, we assume that the point-source is in the
far-field, so denotes the source position in the 2-D
plane. The density of recorded attributes, depends
on the source position , so the parameter vector in (1) is equal
to .

The probability density of photon interaction locations is gov-
erned by the Beer-Lambert law for attenuation [16, pp. 54–56].
The density of interaction events at a particular point inside the
detector is a decreasing function of the length of material that
a photon must pass through to reach that point. The number of
photons, on average, that interact in a given length of material
is parameterized by , the material linear attenuation coefficient
at the energy of incoming gamma-rays, which is assumed to be
known. The attenuation coefficient depends on detector mate-
rial and influences its position resolution. The interaction prob-
ability distribution is given by

(24)
where is the distance that the photon must travel in
the direction through the detector before interacting at ,
and is the largest distance between any two lines with slope

that pass through the detector. These quantities are illus-
trated in Fig. 2.
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It is difficult to define the intrinsic position resolution of these
systems, so we report the angular uncertainty measured by the
square root of the Cramér–Rao lower bound on the position es-
timate , where is defined in (9).

V. NUMERICAL RESULTS

We first consider uniform-sensitivity position-sensitive and
counting detectors in a known background to illustrate the re-
sults of Theorem 1 and to explore under what conditions posi-
tion information is most beneficial. Next, we consider a square
position-sensitive detector, which has nonuniform sensitivity,
and compare its performance to a uniform counting detector of
equal area. We then examine the performance of uniform-sen-
sitivity detectors in unknown background. We exclude the case
of a nonuniform sensitivity detector in an unknown background
because its analysis requires many assumptions.

A. Uniform Sensitivity Detector With Known Background

A circular detector with radius has inherent uniform sen-
sitivity due to its circular symmetry. Fig. 3(a) shows the AUC,
the position-sensitive gain factor from (9), and the an-
gular uncertainty as a function of attenuation-radius product
for a circular detector. The quantity represents the expected
number of photons emitted from the source during the scan
and represents the expected number of background pho-
tons recorded. The expected number of source photons recorded
is given by , where as defined in (2). We de-
note the sensitivity by to emphasize that the sensitivity of a
circular detector is not a function of source position in the far
field. In this section, we consider only source photons that pass
through the detector, i.e., in (2). As guaranteed by
Theorem 1, the AUC of the position-sensitive detector always
exceeds that of the counting detector for each test.

The AUC of the SIT exceeds that of the GLRT for this ex-
periment. This performance difference comes from the fact that
the GLRT is asymptotically equivalent to the Wald test, which
involves a square of the source activity estimate. When one uses
an unrestricted MLE of the source intensity, this squaring oper-
ation reduces the separation between test statistic values under
the two hypotheses.

Fig. 3(d) shows as a function of to aid interpreting
Fig. 3(a). For this experiment, the Fisher information matrix is
diagonal, so is the multiplicative improvement in the non-
centrality parameter of the asymptotic distribution of the GLRT
under , as expressed in (23). As increases, the angular
uncertainty decreases and the difference in AUC between the
detectors with and without position-sensitive information in-
creases. Fig. 3(a) and (b) illustrates that as the detector provides
more precise position-sensitive information, the improvement
in detection performance due to position-sensitive information
increases even when the background is known.

Fig. 4 shows the AUC for a circular uniform-sensitivity
detector as a function of source intensity for a fixed back-
ground intensity. The AUC values for the position-sensitive
and counting detectors differ the most for source intensities
near the background intensity. For low source-to-background
ratios, the source is difficult to detect with either detector, and
when the source-to–background ratio is large, the source is so

Fig. 3. Various quantities for a circular uniform-sensitivity detector with
�� � ��� � � � ���� and geometric sensitivity ������� � �. (a) AUC versus
��; (b) 	 versus ��; (c) angular uncertainty versus ��; and (d) 
 versus
��.

easily detected that position-sensitive capability provides little
additional benefit. Again, the position-sensitive detector always
has higher AUC than the counting detector as expressed in
Theorem 1, and the SIT performs better than the GLRT.

The next section considers the detection performance of
nonuniform-sensitivity detectors, to which Theorem 1 does not
apply, but which can be more practical to build than uniform
sensitivity detectors.

B. Nonuniform Sensitivity Detector With Known Background

For implementation and manufacturing reasons, current posi-
tion-sensitive Compton imaging detectors are often box-shaped
[4]. We examined the performance of the GLRT and SIT ap-
plied to the 2-D square detector in Fig. 2 to gain insight into the
performance of nonuniform sensitivity detectors.
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Fig. 4. AUC versus expected source counts for a circular uniform-sensitivity
detector with � � � ��� and �� � �.

In the case of a position-sensitive detector, the maximum-
likelihood estimate of the source intensity depends on , but
a counting detector, by definition, gives no information about

. To compute the ML estimate of the source intensity with a
counting detector, one would need to assume a particular value
of because appears in the likelihood and is a func-
tion of the unobservable position . Substituting a fixed value
for will result in a likelihood model that does not match the
true distribution, so the estimator based on that model can be bi-
ased. Since the asymptotic analysis considered in this work does
not apply when the parameter estimators are biased, we compare
the square position-sensitive detector to a circular uniform-sen-
sitivity counting detector of equal area with radius .
This comparison constrains the amount of detector material and
explores whether the position-sensitive square or the counting
circle has better detection performance using the SIT and GLRT.

Fig. 5(a) shows the AUC of the square position-sensitive
and the circular counting detectors as a function of source
position for both the GLRT and SIT. For , the square
position-sensitive detector performs worse than the circular
counting detector. However, the detector with outper-
forms the counting detector for all source positions. As in the
uniform-sensitivity case, the SIT outperforms the GLRT.

To aid in visualization, we present the sensitivity of the square
relative to that of a circular detector of equal area. To compute
the relative sensitivity in Fig. 5(b), we normalized the geometric
sensitivity of the square detector in (2) by that of a circular de-
tector of the same area, so in this case,

By using the relative sensitivity instead of the absolute sensi-
tivity, the source intensity has units of counts impinging on the
detector per unit time. This figure, along with Fig. 5(a), shows
that the detection performance of the square is better when the
sensitivity is larger, and that detection performance is better for
source positions where the slope of the sensitivity curve is small.
In practice, one could generate similar plots with the appropriate
sensitivity for a particular application.

Fig. 5(c) shows the angular uncertainty as a function of
source position. The AUC in Fig. 5(a) is largest when the
angular uncertainty is largest near , but this is not
contradictory because the sensitivity, shown in Fig. 5(b), is
approximately uniform near . Because of this, the
Fisher information matrix is approximately diagonal for source

Fig. 5. AUC, relative sensitivity, and angular uncertainty for square position-
sensitive and circular counting detectors of equal area �� � ���

�
�� versus ���

with �� � �	� (left) and �� � � (right), and 
� � � � � ��. (a) AUC versus
���; (b) ������ versus ���; and (c) angular uncertainty versus ���.

positions near , which means that the position nuisance
parameter has little effect on the component of .

Whether a nonuniform sensitivity position-sensitive detector
is better than a counting detector depends on the characteristics
of the counting detector used for comparison. A position-sen-
sitive detector provides information about the source position,
whereas a counting detector does not. For some applications, the
position information could outweigh a smaller AUC for some
source positions.

C. Uniform Sensitivity Detector With Spatially-Uniform
Unknown Background

We analyze the detection performance of a 2-D uniform-sen-
sitivity circular position-sensitive detector with attenuation
and radius with a point source in a spatially uniform back-
ground of unknown intensity , with the goal of examining how
not knowing the background affects detection performance. We
use the element of the inverse of the block Fisher
information matrix in (9). We remove the 4th row and column
of because there is no to parameterize the background
mixture in this model. We then use (16) and (19) to quantify the
AUC.

Fig. 6 shows the AUC for a position-sensitive detector in
a uniform background of known and unknown intensity as a
function of the true background intensity. As the true back-
ground intensity increases, the difference between the AUCs of
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Fig. 6. AUC versus � � for spatially uniform background of known and un-
known intensity background where �� � �� and �� � ��.

Fig. 7. AUC for spatially uniform background of known and unknown intensity
versus attenuation-radius product for �� � ��� � � � ���.

known and unknown background increases for each particular
test statistic. As in the known background case, the SIT outper-
forms the GLRT. In Fig. 6, we also show the performance of
the MDT [3]. The MDT, as presented in [3] assumes a spher-
ical array of detectors, and the detectors considered in this work
record interactions in the interior of the detector. As the attenua-
tion coefficient of these detectors increases, they behave more
like a circular array of scintillators. To evaluate the performance
of the MDT for finite-attenuation detectors, we computed the
asymptotic mean number of counts recorded in the semicircles
facing and opposite the source. The MDT performs better than
the GLRT and worse than the SIT for low source-to-background
ratios in this experiment. We assumed that the MDT knows the
source position, so that the boundary between the two semicir-
cles is not estimated. Although this is not a fair comparison, it
gives the MDT the advantage.

Fig. 7 shows the AUC for a position-sensitive detector in a
spatially uniform background of known and unknown inten-
sity as a function of the attenuation-radius product. As the
product increases, the difference in AUC between the known
and unknown background case decreases for the SIT and GLRT.
Also, as increases, the SIT performs better than the MDT. A
possible explanation for this is that the SIT considers the inter-
action location of each photon and the MDT considers only the
semicircle in which the interaction occurred.

Notice that the difference in AUC between the known and
unknown background cases for each test statistic decreases as

increases. Recall from Fig. 3(c) that the angular uncertainty
decreases as increases. As the angular uncertainty decreases,
the variance of the background intensity estimate decreases

Fig. 8. AUC versus �� for position-sensitive and counting detectors, where the
counting detector uses a “guessed” background rate in the “known background”
GLRT. �� � � � � ��.

because the detector can more reliably distinguish source and
background photons. One could recover the AUC “lost” by not
knowing the background by increasing the scan time somewhat.

D. Position-Sensitive Versus Counting Detectors With
Unknown Background

In practice, one can sometimes measure the background prior
to screening for sources of interest. Also, an experienced oper-
ator of a counting detector could plausibly guess the background
with some degree of uncertainty. The detection performance of
such an operator depends on the accuracy or distribution of such
guesses. As a hypothetical example, suppose that the operator of
a counting detector applies the GLRT for a “known background”
hypothesis test using a background rate distributed according
to the following gamma distribution [17, p. 291]:

(25)

where is a scale parameter that could represent the op-
erator’s accuracy and is the true background rate. Note
that and . If is small, then the
operator’s guesses are narrowly distributed about the true back-
ground rate, and as increases, the guesses are farther from
the mean, on average. The gamma distribution is a reasonable
model for operator uncertainty because of its nonnegativity,
and there may be other models that are more accurate in prac-
tice. Fig. 8 shows the AUC of the GLRT using an operator’s
guess, for various scale parameters . Even when is small,
the position-sensitive detector with large still performs
better. This is because as and , the AUCs of
both detectors approach the known background case, where
Theorem 1 applies.

VI. CONCLUSION AND FUTURE WORK

We investigated how position-sensitive capability impacts
the detection performance in photon counting detectors. In the
case of a uniform-sensitivity detector in known background,
we showed in Theorem 1 that position-sensitive capability
always improves detection performance in terms of asymptotic
AUC for the SIT and the GLRT when the source intensity is
small relative to the background intensity. We also showed
empirically that the SIT can outperform the GLRT in terms of
AUC.
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In reality, detector sensitivity may be nonuniform. For
nonuniform-sensitivity detectors, the benefit of position-sensi-
tive capability depends on detector quality and the method of
comparison. For sufficiently large , the square position-sen-
sitive detector outperformed a round counting detector of equal
area, but for small , the counting detector performed better
for some source positions. Also, for sufficiently high , the
position-sensitive detector can even outperform a hypothetical
counting detector that “knows” the source position.

An unknown background intensity is likely in practical detec-
tion scenarios. As in the nonuniform sensitivity case, it is dif-
ficult to compare position-sensitive and counting detectors. We
found that a position-sensitive detector that does not know the
background rate can outperform a counting detector with an
operator who has the ability to estimate the background inten-
sity accurately. However, the results in the unknown background
case are mixed because which type of detector has a higher AUC
depends on many factors, such as detector size, detector attenu-
ation, and the particular background model.

To compare a nonuniform position-sensitive detector to
a counting detector in the case of an unknown background,
one must make assumptions about the operator of a counting
detector, as we did with the uniform-sensitivity detector in
unknown background. Alternatively, one could model the
background intensity with a prior distribution. The particular
application of the detection system will determine the best
method of comparison. Detection performance in this case is
governed by the combined effects of unknown background
and nonuniform sensitivity, which we studied separately. The
intuition from the separate analyses applies to the case of a
nonuniform detector in an unknown background.

This work addressed the benefits of position-sensitive ca-
pability in photon-counting detectors. In a practical setting,
one may wish to know whether or not position-sensitive capa-
bility is worth the added cost. This is a complex issue due to
the variety of high-energy photon detection technologies. In
many technologies, such as scintillators or position-sensitive
Compton imaging systems, the position-sensitive capability
comes at little to no extra cost because they are designed to
be imaging systems. Furthermore, position-sensitive Compton
imaging is an emerging technology and its current price does
not reflect its true cost if it were to be mass-produced. In
practice, one could use the analysis framework of this paper to
perform a cost-benefit analysis of available technology.

This work focused on evaluating the detection performance of
position-sensitive detectors and comparing it to the performance

of counting detectors. Future work could extend this analysis to
networks of position-sensitive sensors. Since counting sensors
are typically much less expensive, future work will lay the foun-
dation for cost-benefit analysis for use of position-sensitive de-
tectors for networked applications. The numerical calculations
considered single a photon energy, and future work should con-
sider energy spectra [18]. The numerical results were for single
photon interaction detectors, and future work will extend these
results to Compton detectors, which can record multiple inter-
actions. In processing Compton interactions, one often forms
an approximate model for the system response, e.g., [18]. Fu-
ture work to evaluate the asymptotic detection performance of
Compton detectors should account for the model mismatch in-
troduced by approximations to the system response function.

APPENDIX

A. Proof of Theorem 1

Proof: We first show the inequality (21). By the block ma-
trix inversion formula applied to the Fisher information matrix
(9),

(26)

thus, to show (21), it suffices to show that

(27)

To simplify notation, we introduce the following shorthand:
and . Since the sensitivity is

uniform, let for all . Now, see (28), shown at
the bottom of the page. Using the fact that

we can rewrite (28) as (29)–(31), shown at the top of the next
page.

Equality holds when because in this
case,

(32)

and

(33)

(28)
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(29)

(30)

(31)

where is the zero vector, so equality is attained in (27). Note
that (29) follows from (28) by the fact that when sensitivity is
uniform,

(34)

because

(35)

B. Sample Derivations of Fisher Information

Derivation of : The component of the Fisher
information is given by

where is the log-likelihood, which is the logarithm of the
likelihood in (4). Substituting

and using (3) with iterated expectation yields

Derivation of : The component of the Fisher
information is given by

Using the model in (4),

where the third step follows because

by the assumption that integration and differentiation are inter-
changeable.

The other terms in (9) have similar derivations.
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