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3D Forward and Back-Projection for X-Ray CT
Using Separable Footprints

Yong Long, Jeffrey A. Fessler,Fellow, IEEE, and James M. Balter

Abstract—Iterative methods for 3D image reconstruction have
the potential to improve image quality over conventional filtered
back projection (FBP) in X-ray computed tomography (CT).
However, the computation burden of 3D cone-beam forward and
back-projectors is one of the greatest challenges facing practical
adoption of iterative methods for X-ray CT. Moreover, projector
accuracy is also important for iterative methods. This paper
describes two new separable footprint (SF) projector methods
that approximate the voxel footprint functions as 2D separable
functions. Because of the separability of these footprint functions,
calculating their integrals over a detector cell is greatlysimplified
and can be implemented efficiently. The SF-TR projector uses
trapezoid functions in the transaxial direction and rectangular
functions in the axial direction, whereas the SF-TT projector uses
trapezoid functions in both directions. Simulations and experi-
ments showed that both SF projector methods are more accurate
than the distance-driven (DD) projector, which is a currentstate-
of-the-art method in the field. The SF-TT projector is more
accurate than the SF-TR projector for rays associated with large
cone angles. The SF-TR projector has similar computation speed
with the DD projector and the SF-TT projector is about two tim es
slower.

Index Terms—Cone-beam tomography, iterative tomographic
image reconstruction, forward and back-projection

I. INTRODUCTION

Iterative statistical methods for 3D tomographic image re-
construction [1]–[3] offer numerous advantages such as the
potential for improved image quality and reduced dose, as
compared to the conventional methods such as filtered back-
projection (FBP) [4]. They are based on models for measure-
ment statistics and physics, and can easily incorporate prior
information, the system geometry and the detector response.

The main disadvantage of statistical reconstruction methods
is the longer computation time of iterative algorithms thatare
usually required to minimize certain cost functions. For most
iterative reconstruction methods, each iteration requires one
forward projection and one back-projection, where the forward
projection is roughly a discretized evaluation of the Radon
transform, and the back-projector is the adjoint of the forward
projector. These operations are the primary computational
bottleneck in iterative reconstruction methods, particularly in
3D image reconstruction. Forward projector methods are also
useful for making digitally rendered radiographs (DRR) [5],
[6].
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Traditional forward and back-projectors compute the inter-
section lengths between each tomographic ray and each image
basis function. Many methods for accelerating this process
have been proposed,e.g., [7]–[13]. Due to the finite size of
detector cells, averaging the intersection lengths over each
detector cell is considered to be a more precise modeling [14]–
[19]. Mathematically, it is akin to computing the convolution
of the footprint of each basis function and some detector blur,
such as a 2D rectangular function.

Any projector method must account for the geometry of the
imaging system. Cone-beam geometries are needed for axial
and helical cone-beam X-ray computed tomography (CT). In
3D parallel-beam geometry projection space, there are four
independent indices(u, v, ϕ, θ). The ray direction is specified
by (ϕ, θ) whereϕ andθ denote the azimuthal and polar angle
of the ray respectively and(u, v) denote the local coordinates
on a 2D area detector. In contrast, axial cone-beam projection
space is characterized by three independent indices(s, t, β)
and two distance parameters(Ds0, D0d), whereβ denotes the
angle of the source point counter-clockwise from they axis,
(s, t) denote the detector coordinates,Ds0 denotes the source
to rotation center distance andD0d denotes the isocenter to
detector distance. (See Fig. 1). The axial cone-beam geometry
is a special case of helical cone-beam geometry with zero
helical pitch.

The divergence of tomographic rays in the cone-beam ge-
ometry causes depth-dependent magnification of image basis
functions, i.e., voxels close to the X-ray source cast larger
shadows on the detector than voxels close to the detector. This
complication does not appear in the parallel-beam geometry.
Therefore, many existing projection and back-projection meth-
ods designed for 3D parallel-beam geometry [16]–[18], [20],
[21] are not directly suitable for cone-beam geometry.

A variety of projection methods for 3D cone-beam ge-
ometries have been proposed [5], [14], [15], [22]–[25]. All
methods provide some compromise between computational
complexity and accuracy. Among these, spherically symmetric
basis functions (blobs) [15], [22] have many advantages over
simple cubic voxels or other basis functions for the image
representation,e.g., their appearance is independent of the
viewing angle. However, evaluating integrals of their footprint
functions is computationally intensive. Ziegleret al. [15]
stored these integrals in a lookup-table. If optimized blobs are
used and high accuracy is desired, the computation of forward
and back-projection is still expensive due to loading a large
table and the fact that blobs intersect many more tomographic
rays than voxels.

Rectification techniques [24] were introduced to accelerate
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the computation of cone-beam forward and backward pro-
jections. Riddellet al. [24] resampled the original data to
planes that are aligned with two of the reconstructed volume
main axes, so that the original cone-beam geometry can be
replaced by a simpler geometry that involves only a succes-
sion of plane magnifications. In iterative methods, resampled
measurements can simplify forward and back-projection each
iteration. However, resampling involves interpolation that may
slightly decrease spatial resolution. Another drawback ofthis
method is that the usual assumption of statistical independence
of the original projection data samples no longer holds after
rectification, since interpolation introduces statistical correla-
tions.

The distance-driven (DD) projector [14] is a current state-
of-the-art method. It maps the horizontal and vertical bound-
aries of the image voxels and detector cells onto a common
plane such asxz or yz plane, approximating their shapes by
rectangles. (This step is akin to rectification). It calculates the
lengths of overlap along thex (or y) direction and along thez
direction, and then multiplies them to get the area of overlap.
The DD projector has the largest errors for azimuthal anglesof
the X-ray source that are around odd multiples ofπ/4, because
the transaxial footprint is approximately triangular rather than
rectangular at those angles.

This paper describes two new approaches for 3D forward
and back-projection that we call the separable footprint (SF)
projectors: the SF-TR [26] and SF-TT [27] projector. They
approximate the voxel footprint functions as 2D separable
functions. This approximation is reasonable for typical axial
or helical cone-beam CT geometries. The separability of
these footprint functions greatly simplifies the calculation
of their integrals over a detector cell and allows efficient
implementation of the SF projectors. The SF-TR projector uses
trapezoid functions in the transaxial direction and rectangular
functions in the axial direction, whereas the SF-TT projector
uses trapezoid functions in both directions. It is accurateto use
rectangle approximation in the axial direction for cone-beam
geometries with small cone angles (< 2◦) such as the multi-
slice detector geometries, and to use trapezoid approximation
for CT systems with larger cone angles (> 10◦) such as flat-
panel detector geometries.

Our studies showed that both SF projector methods are more
accurate than the distance-driven (DD) projector. In particular,
the SF methods reduce the errors around odd multiples ofπ/4
seen with DD. The SF-TT projector is more accurate than the
SF-TR projector for voxels associated with large cone angles.
The SF-TR projector has similar computation speed with the
DD projector and the SF-TT projector is about2 times slower.

To balance computation and accuracy, one may combine
the SF-TR and SF-TT projector, that is, to use the SF-TR
projector for voxels associated with small cone angles suchas
voxels near the plane of the X-ray source where the rectangle
approximation is adequate, and use the SF-TT projector for
voxels associated with larger cone angles.

The organization of this paper is as follows. Section II
reviews the cone-beam geometry and projection, describes
the cone-beam 3D system model. and presents the analytical
formula of cone-beam projections of voxel basis functions.

Section III introduces the SF projectors and contrasts the SF
projectors with DD projector. Section IV gives simulation
results, including accuracy and speed comparison between
the SF-TR, SF-TT and DD projector as stand-alone modules
and within iterative reconstruction. Finally, conclusions are
presented in Section V.

II. CONE-BEAM PROJECTION

A. Cone-Beam Geometry

For simplicity of presentation, we focus on the flat-detector
axial cone-beam geometry (see Fig. 1). The methods general-
ize easily to arc detectors and helical geometries.
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Fig. 1. Axial cone-beam flat-detector geometry.

The source lies on points on a circle of radiusDs0 centered
at the rotation center on thez = 0 plane. The source position
~p0 can be parameterized as follows:

~p0 =





−Ds0 sinβ
Ds0 cosβ

0



 , (1)

whereDs0 is the source to rotation center distance andβ
denotes the angle of the source point counter-clockwise from
the y axis. For simplicity, we present the case of an ideal
point source of X-rays. To partially account for non-ideal X-
ray sources, one can modify the footprint function in (20) and
(26) below.

Let (s, t) denote the local coordinates on the 2D detector
plane, where thes-axis is perpendicular to thez-axis, and the
t-axis is parallel to thez-axis. A point on the 2D detector can
be expressed as

~p1 =





s cosβ +D0d sinβ
s sinβ −D0d cosβ

t



 , (2)

whereD0d = Dsd −Ds0 is the isocenter to detector distance.
The direction vector of a ray from~p0 to ~p1 can then be
expressed as

~e =
~p1 − ~p0

‖~p1 − ~p0‖
=





sinϕ cos θ
− cosϕ cos θ

sin θ



 , (3)
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where

γ = γ(s) , arctan

(

s

Dsd

)

(4)

ϕ = ϕ(s, β) , γ(s) + β (5)

θ = θ(s, t) , − arctan

(

t
√

s2 +D2
sd

)

, (6)

andϕ andθ denote the azimuthal and polar angle of the ray
from ~p0 to ~p1 respectively.

The cone-beam projections of a 3D objectf(~x), where~x =
(x, y, z), are given by

p(s, t;β) =

∫

L(s,t,β)

f(~x) dℓ, (7)

where the integral is along the line segment:

L(s, t, β) = {~p0 + ℓ~e : ℓ ∈ [0, Lp]}

Lp ,

√

D2
sd + s2 + t2. (8)

For a point~x = (x, y, z) between the source and detector,
the projecteds coordinate of it is

τ(β;x, y) = Dsd
τp(β;x, y)

ds(β;x, y)
, (9)

where

τp(β;x, y) , x cosβ + y sinβ,

ds(β;x, y) , Ds0 − τ⊥(β;x, y),

τ⊥(β;x, y) , −x sinβ + y cosβ. (10)

The projectedt coordinate is

t(β;x, y, z) = z
Dsd

ds(β;x, y)
. (11)

The azimuthal and polar angles of the ray connecting the
source and~x are

ϕ(β; x, y) = β + arctan

„

τp(β; x, y)

ds(β;x, y)

«

(12)

θ(β; x, y, z) = − arctan

 

z
p

τ 2
p + d2

s

!

. (13)

B. Cone-Beam 3D System Model

In the practice of iterative image reconstruction, rather than
operating on a continuous objectf(~x), we forward project
a discretized object represented by a common basis function
β0(~x) superimposed on aN1 × N2 × N3 Cartesian grid as
follows:

f(~x) =
∑

~n

f [~n]β0

(

(~x − ~c[~n]) ⊘ ~∆
)

, (14)

where the sum is over theN1×N2×N3 lattice that is estimated
and~c[~n] = (c1[~n], c2[~n], c3[~n]) denotes the center of the~nth
basis function and~n = (n1, n2, n3) ∈ Z

3. The grid spacing
is ~∆ = (∆1,∆2,∆3), and⊘ denotes element-wise division.
We consider the case∆1 = ±∆2 hereafter, but we allow
∆1 6= ∆3, because voxels are often not cubic.

Most projection/back-projection methods use a linear model
that ignores the ”exponential edge gradient effect” causedby
the nonlinearity of Beer’s law [28], [29]. We adopt the same
type of approximation here. Assume that the detector blur
h(s, t) is shift invariant, independent ofβ, and acts only along
the s and t coordinates. Then the ideal noiseless projections
satisfy

ȳβ[sk, tl] =

∫∫

h(sk − s, tl − t)p(s, t;β)dsdt, (15)

where p(s, t;β) is the 3D projection off(~x) given by (7),
and (sk, tl) denotes the center of detector cell specified by
indices (k, l). The methods we present are applicable to
arbitrary samples(sk, tl), but for simplicity of presentation
and implementation we focus on the case of uniformly spaced
samples:

sk = (k − ws)∆S, k = 0, . . . , Ns − 1,

tl = (l − wt)∆T, l = 0, . . . , Nt − 1,

ws = (Ns − 1)/2 + cs,

wt = (Nt − 1)/2 + ct, (16)

where ∆S and ∆T denote the sample spacing ins and t
respectively. The user-selectable parameterscs and ct denote
offsets for the detector,e.g., cs = 1/4 corresponds to a quarter
detector offset [30], [31].

Substituting the basis expansion model (14) for the object
into (15) and using (7) leads to the linear model

ȳβ[sk, tl] =
∑

~n

aβ[sk, tl;~n]f [~n], (17)

where the elements of system matrixA are samples of the
following cone-beam projection of a single basis function
centered at~c[~n]:

aβ [sk, tl;~n] = F (sk, tl;β;~n), (18)

where the “blurred footprint” function is

F (sk, tl;β;~n) ,

∫∫

h(sk − s, tl − t)q(s, t;β;~n)dsdt, (19)

and q(s, t;β;~n) denotes the cone-beam footprint of basis

function β0

(

(~x − ~c[~n]) ⊘ ~∆
)

, i.e.,

q(s, t;β;~n) =

∫

L(s,t,β)

β0

(

(~x − ~c[~n]) ⊘ ~∆
)

dℓ . (20)

Computing the footprint of the voxel is also known as “splat-
ting” [32].

The goal of forward projectors is to compute (17) rapidly
but accurately. Although the system matrixA is sparse, it is
impractical to precompute and store even the nonzero system
matrix values for the problem sizes of interest in cone-beam
CT, so practical methods (including our proposed approach)
essentially compute those values on the fly.

We focus on a simple separable model for the detector blur

h(s, t) =
1

rsrt
rect

(

s

rs

)

rect

(

t

rt

)

, (21)

wherers andrt denote the width alongs and t respectively.
This model accounts for the finite size of the detector elements.
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Note thatrs andrt can differ from the sample spacingsk −
sk−1 and tl − tl−1 to account for detector gaps.

C. Footprints of Voxel Basis Functions

We focus on cubic voxel basis functions hereafter, but one
could derive analytical formulas for footprints of other basis
functions. The cubic voxel basis function is given by,

β0(~x) = rect(x) rect(y) rect(z)

= 1{|x|≤1/2}1{|y|≤1/2}1{|z|≤1/2}, (22)

where1{·} denotes the indicator function.
Substituting (22) into (20), the analytical formula for the

cone-beam projection footprint of the~nth basis function is:

q(s, t;β;~n) =

∫ Lp

0

β0

(

(~p0 + ℓ~e−~c[~n]) ⊘ ~∆
)

dℓ

=

∫ Lp

0

1{|d1+ℓe1|≤∆1/2}1{|d2+ℓe2|≤∆2/2}1{|d3+ℓe3|≤∆3/2} dℓ

= a1 · a2 · a3 · [ℓmax − ℓmin]+ , (23)

where~e = (e1, e2, e3) was defined in (3),[x]+ , max(x, 0)
and

~d , ~p0 − ~c[~n] = (d1, d2, d3),

a1 =

{ 1{|d1|≤∆1/2}, sinϕ = 0
1, sinϕ 6= 0,

a2 =

{ 1{|d2|≤∆2/2}, cosϕ = 0
1, cosϕ 6= 0,

a3 =

{ 1{|d3|≤∆3/2}, sinθ = 0
1, sinθ 6= 0,

ℓmax = min
{

Lp, ℓ
1
+, ℓ

2
+, ℓ

3
+

}

,

ℓmin = max
{

0, ℓ1−, ℓ
2
−, ℓ

3
−

}

,

ℓi+ =

{

max
{

~∆i/2−di

ei
, −

~∆i/2−di

ei

}

, ei 6= 0

∞, ei = 0,

ℓi− =

{

min
{

~∆i/2−di

ei
, −

~∆i/2−di

ei

}

, ei 6= 0

−∞, ei = 0.

(24)

For typical cone-beam geometries, polar anglesθ of rays are
much smaller than90◦, so there is no need to consider the
case ofcosθ = 0. Combining (18), (19) and (23) yields the
“ideal” projector for cubic voxels in cone-beam CT.

III. SEPARABLE FOOTPRINT(SF) PROJECTOR

It would be expensive to exactly compute the true footprint
(23) and the “blurred footprint” (19) for the voxel basis
function on the fly, so appropriate approximations of the
“blurred footprint” (19) are needed to simplify the double
integral calculation.

To explore alternatives, we simulated a flat-detector cone-
beam geometry withDs0 = 541 mm andDsd = 949 mm. We
computed cone-beam projections of voxels analytically using
(23) at sample locations(n△S,m∆T) where△S = ∆T =
0.001 mm andn,m ∈ Z. The left column of Fig. 2 shows

the exact footprint function and its profiles for a voxel with
∆1 = ∆2 = ∆3 = 1 mm centered at the origin whenβ = 30◦.
The center column of Fig. 2 shows those of a voxel centered
at (100, 150, 15) mm whenβ = 0◦. The azimuthal and polar
angle of the ray connecting the source and this voxel center are
14.3◦ and 2.1◦ respectively. The cone angle of a typical64-
slice cone-beam CT geometry is about2◦. The right column
of Fig. 2 shows those of a voxel centered at(93, 93, 93) mm
when β = 0◦. The azimuthal and polar angle of the ray
connecting the source and this voxel center are11.7◦ and
11.5◦ respectively. The cone angle of a typical cone-beam CT
geometry with40 × 40 cm2 flat-panel detector is about12◦.
The first two true footprints look like 2D separable functions.
The third footprint is approximately separable except for small
areas at the upper left and lower right corner.

Inspired by shapes of the true footprints (see Fig. 2), we
approximate them as follows,

q(s, t;β;~n) ≈ qap(s, t;β;~n) , l(s, t;β;~n)qsf(s, t;β;~n),
(25)

whereqsf(s, t;β;~n) denotes a 2D separable function with unit
maximum amplitude,

qsf(s, t;β;~n) , q1(s;β;~n)q2(t;β;~n), (26)

where q1(s;β;~n) and q2(t;β;~n) denote the approximating
functions ins and t respectively. In (25),l(s, t;β;~n) denotes
the “amplitude” ofqsf(s, t;β;~n).

For small basis functions and narrow blursh(s, t), the
angles of rays within each detector cell that intersect eachbasis
function are very similar, sol(s, t;β;~n) is much smoother than
h(s, t) andq(s, t;β;~n). Substituting (25) into (19) leads to

F (s, t;β;~n) ≈ Fsf(s, t;β;~n)

, h(s, t) ∗∗ [l(s, t;β;~n)qsf(s, t;β;~n)]

≈ l(s, t;β;~n) [h(s, t) ∗∗ qsf(s, t;β;~n)] ,

(27)

where the inequality uses the fact thatl(s, t;β;~n) is ap-
proximately a constant over each detector cell. The value
l(sk, tl;β;~n) denotes this constant for detector cell(sk, tl),
and∗∗ denotes 2D convolution

If the detector blur is also modeled as separable,i.e.,

h(s, t) = h1(s)h2(t), (28)

then the blurred footprint functions (27) have the following
separable approximation:

Fsf(sk, tl;β;~n) = l(sk, tl;β;~n)F1(sk;β;~n)F2(tl;β;~n),
(29)

where

F1(sk;β;~n) ,

∫

h1(sk − s)q1(s;β;~n)ds

F2(tl;β;~n) ,

∫

h2(tl − t)q2(t;β;~n)dt. (30)
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Fig. 2. Exact footprint functionsq(s, t; β;~n) and their profiles for 1mm3 voxels centered at the origin (left), (100, 150, 15) mm (center) and(93, 93, 93) mm
(right).

A. Amplitude Approximation Methods

One natural choice for the amplitude functionl(·) is the
following voxel-dependent factor that we call the A3 method:

l(sk, tl;β;~n) = l3(β;~n) , lϕ0
· lθ0

(31)

where

lϕ0
,

∆1

max{| cos(ϕ0) |, | sin(ϕ0) |}
(32)

lθ0
,

1

| cos(θ0) |
, (33)

whereϕ0 = ϕ0(β, ~n) andθ0 = θ0(β, ~n) denote the azimuthal
and polar angles of the ray connecting the source and center of
the~nth voxel. They can be computed by (12) and (13). Since
this voxel-dependent amplitude depends on angles(θ0, ϕ0)
andβ, the approximated footprintqap(s, t;β;~n) is separable
with respect tos and t too. However, the dependence on
voxel centers~c[~n] requires expensive computation. One must
computeN1 × N2 × N3 × Nβ different lθ0

values and
N1 × N2 × Nβ different lϕ0

values, whereNβ denotes the
number of projection views. In addition, computinglθ0

and
lϕ0

for each voxel at each projection view involves either

trigonometric operations (cos, sin and tan−1 ) or square and
square root operations to directly evaluatecos and sin.

To accelerate computation of the SF projector, we propose
a voxel-ray-dependent amplitude named the A2 method:

l2(sk, tl;β;~n) , lϕ0
· lθ(sk,tl) (34)

lθ(sk,tl) ,
1

| cos(θ(sk, tl))|
, (35)

where θ(sk, tl) given in (6) is the polar angle of the ray
connecting the source and detector center(sk, tl). There are
many fewer tomographic rays (Ns ×Nt) than voxels in a 3D
image (N1 × N2 × N3) and θ(sk, tl) does not depend on
β for flat detector geometries (see (6)), so using (34) saves
substantial computation versus (31).

We also investigated a ray-dependent amplitude named the
A1 method:

l1(sk, tl;β) , lϕ(sk;β) · lθ(sk,tl) (36)

lϕ(sk;β) ,
∆1

max{| cos(ϕ(sk;β))|, | sin(ϕ(sk;β))|}
,

(37)

whereϕ(sk;β) given in (5) is the azimuthal angle of the ray
connecting the source and detector cell center(sk, tl). For
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eachβ, there areNs different lϕ(sk;β) for the A1 method and
N1 ×N2 different lϕ0

for the A2 method.
These amplitude methods are similar to Joseph’s method

[8] where the triangular footprint function is scaled by
1/max(| cosϕ|, | sinϕ|) for 2D fan-beam geometry. All three
methods have similar accuracies, but the A3 method is much
slower than the other two (see Section IV-A). Thus we do
not recommend using the A3 amplitude in the SF projector
method. Hereafter, we refer to (29) with either (34) or (36) as
“the SF method”.

B. SF Projector with Trapezoid/Rectangle Function (SF-TR)

Inspired by the shapes of the true footprints associated with
small cone angles (see the first two columns of Fig. 2), we
approximate them as 2D separable functions with trapezoid
functions in the transaxial direction and rectangular functions
in the axial direction. This approximation is reasonable for
typical multi-slice cone-beam geometries, where the azimuthal
anglesϕ of rays cover the entire360◦ range since the X-ray
source rotates around thez axis, whereas the polar anglesθ
of rays are small (less than2◦) since the cone angle is small.

The approximating function in thes direction is

q1(s;β;~n) , trap(s; τ0, τ1, τ2, τ3)

=















s−τ0

τ1−τ0
, τ0 < s < τ1

1, τ1 ≤ s ≤ τ2
τ3−s
τ3−τ2

, τ2 < s < τ3
0, otherwise

, (38)

whereτ0, τ1, τ2 andτ3 denote vertices of the trapezoid func-
tion that we choose to match the exact locations of those
of the true footprint function in thes direction. They are
the projecteds coodinates of four corner points located at
(c1[~n] ± ∆1/2, c2[~n] ± ∆2/2) for all z.

The approximating function in thet direction is

q2(t;β;~n) , rect

(

t− t0
wt0

)

, (39)

where

t0 ,
t+ + t−

2
,

wt0 , t+ − t−, (40)

where t+ and t− denote the boundaries of the rectangular
function which we choose to be the projectedt coordinates
of the two endpoints of the axial midline of the voxel. Those
endpoints are located at~c[~n] ± (0, 0,∆3/2). Given β and a
point ~x = (x, y, z), the projecteds and t coordinate of this
point can be computed by (9) and (11). Since the boundaries
of the separable function are determined by the projectionsof
boundaries of the voxel basis function under the cone-beam
geometry, the depth-dependent magnification is accurately
modeled.

The blurred footprint functions (30) of this SF-TR projector
are

F1(sk;β;~n) =
1

rs
γ
(

sk −
rs
2
, sk +

rs
2

)

, (41)

and

F2(tl;β;~n) =
1

rt

[

min(tl +
rt
2
, t+) − max(tl −

rt
2
, t−)

]

+
,

(42)
where

γ(s1, s2) ,

∫ s2

s1

trap(s; τ0, τ1, τ2, τ3) ds

= γ1(max(s1, τ0), min(s2, τ1))

+γ2(max(s1, τ1), min(s2, τ2))

+γ3(max(s1, τ2), min(s2, τ3)),

γ1(b1, b2) ,
1

2(τ1 − τ0)
[(b2 − τ0)

2 − (b1 − τ0)
2]1{b2>b1},

γ2(b1, b2) , (b2 − b1)1{b2>b1},

γ3(b1, b2) ,
1

2(τ3 − τ2)
[(b1 − τ3)

2 − (b2 − τ3)
2]1{b2>b1}.

(43)

C. SF Projector with Trapezoid/Trapezoid Function (SF-TT)

Inspired by the shape of true footprint of a voxel associated
with large cone angles (see the last column of Fig. 2), we
approximate it as a 2D separable function with trapezoid
functions in both the transaxial and axial direction. This
trapezoid approximation in axial direction is reasonable for
cone-beam geometries with large cone angles (> 10◦) such as
flat-panel detector geometries.

Along s, the SF-TT projector uses the same trapezoid
approximation as the SF-TR projector. The trapezoid footprint
and the blurred footprint are given in (38) and (41).

The approximated footprint function int is

q2(t;β;~n) , trap(t; ξ0, ξ1, ξ2, ξ3) , (44)

whereξ0, ξ1, ξ2 andξ3 denote vertices of the trapezoid func-
tion. ξ0 andξ1 are the smallest and largest one of the projected
t coordinates of the lower four corners of the~nth voxel located
at (c1[~n]±∆1/2, c2[~n]±∆2/2, c3[~n]−∆3/2), andξ2 andξ3
are the smallest and largest one of the projectedt coordinates
of the upper four corners located at(c1[~n] ± ∆1/2, c2[~n] ±
∆2/2, c3[~n] + ∆3/2). The blurred footprint function int is

F2(tl;β;~n) =
1

rt
γ
(

tl −
rt
2
, tl +

rt
2

)

, (45)

whereγ is given in (43).
By choosing the vertices of the approximating footprints to

match the projections of the voxel boundaries, the approxi-
mation adapts to the relative positions of the source, voxels
and detector, as true footprints do. Take a voxel centered at
the origin as an example. Its axial footprint is approximately
a rectangular function (see the left figure in the third row
of Fig. 2), instead of a trapezoid function. For this voxel
trap(t; ξ0, ξ1, ξ2, ξ3) is almost a rectangle becauseξ0 ≈ ξ1
and ξ2 ≈ ξ3 becauseξ0, ξ1, ξ2 and ξ3 are the projectedt
coordinates of four axial boundaries of this voxel.
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D. Implementation of SF Projector

We use the system matrix model (18) with the separable
footprint approach (29) for both forward and back projection,
which ensures that the SF forward and back projector are exact
adjoint operators of each other.

• Initialize projection view array to zero,i.e., ȳβ[sk, tl] = 0 for
k = 0, . . . , Ns − 1 and l = 0, . . . , Nt − 1

• For each row n1 = 0, 1, . . . , N1 − 1 of f [~n]:
1) For each columnn2 = 0, 1, . . . , N2 − 1:

a) Compute trapezoid verticesτ0, τ1, τ2, τ3 in (38) using
(9).

b) Determine indices (sk values) of detector cells that
intersect[τ0, τ3], i.e. {k : [sk−

rs

2
, sk+ rs

2
]∩[τ0, τ3] 6=

∅}.
c) Compute transaxial footprintF1(sk;β;~n) using (41)

and (43) for all thesesk values and store them.
d) Computelϕ0

using (32) (SF-TR-A2 only)
e) For each slicen3 = 0, 1, . . . , N3 − 1:

i) Determine indices (tl values) of detector cells that
intersect [t−, t+], i.e., {l : [tl −

rt

2
, tl + rt

2
] ∩

[t−, t+] 6= ∅}.
ii) For each tl value:

A) ComputeF2(tl;β;~n) using (42).
B) For each sk value:

– Compute projectionp(sk, tl; β;~n) where
p = f [~n]F1(sk; β;~n)F2(tl; β;~n) for SF-
TR-A1,
p = f [~n]lϕ0

F1(sk;β;~n)F2(tl;β;~n) for
SF-TR-A2.

– Update projection view̄yβ [sk, tl] ± p.
• Scale all the projection view byl1(sk, tl; β) using (36) for

SF-TR-A1 or bylθ(sk,tl) using (35) for SF-TR-A2 .

TABLE I
PSEUDO-CODE FOR THESF-TRFORWARD PROJECTOR WITH THEA1

AMPLITUDE METHOD (SF-TR-A1)AND THE A2 METHOD (SF-TR-A2).

Table I summaries the SF-TR projector with the A1 am-
plitude method (SF-TR-A1) and with the A2 method (SF-
TR-A2) for a given projection view angleβ. Implementating
the SF-TT projector with these two amplitude methods is
similar. Implementation of the back-projector is similar,except
for scaling the projections at the beginning instead of the
end. The key to efficient implementation of this method is
to make the inner loop overz (or equivalently overtl)
[33], because the values ofF1(sk;β;~n) are independent of
z and tl so they are precomputed prior to that loop. Because
(11) is linear inz, the first value oft± for a given (x, y)
position can be computed prior to the inner loop overz, and
subsequent values can be computed by simple incremental
updates,cf. [34]. Thus only simple arithmetic operations and
conditionals are needed for evaluatingF2(tl;β;~n) in that inner
loop; all trigonometric computations occur outside that loop.
Note that this separable footprint approach does not appear
to be particularly advantageous for 2D fan-beam forward
and backprojection because computing the transaxial footprint
F1(sk;β;~n) requires trigonometric operations. The compute
efficiency here comes from the simple rectangular footprint
approximation in the axial direction. More computation is

needed for the SF-TT method because it uses trapezoids in
the axial direction instead rectangles.

The implementation of amplitudel(sk, tl;β;~n) in (29) for
the A1 and A2 methods are different. For the A1 method, for
eachβ the amplitudel1(sk, tl;β) is implemented by scaling
projections outside the loop over voxels since it depends on
detector cells only. For the A2 method, we implemented the
two terms (lϕ0

and lθ(sk,tl)) of l2(sk, tl;β;~n) separately. We
scaled the projections bylθ(sk,tl) outside of the loop over
voxels and computedlϕ0

outside the inner loop overz since
it does not depend onz.

The SF methods requireO(N4) operations for forward/back
projection of aN3 volume to/fromN3 samples of the cone-
beam projections. There existO(N3 logN) methods for back-
projection [35]–[37]. However, those algorithms may not cap-
ture the distance-dependent effect of detector blur incorporated
in the model (18). In 2D one can use the Fourier Slice Theorem
to developO(N2 logN) methods [38], but it is unclear how
to generalize those to 3D axial and helical CT efficiently.

E. SF Compared with DD

The DD method essentially approximates the voxel foot-
prints using rectangles in both directions on a common plane
such asxz or yz plane. It also uses the separable and shift-
invariant detector blur (21) on the detector plane. However, the
approximated separable detector blurs on the common plane
based on the mapped boundaries of original detector blurs are
no longer shift invariant. This appears to prevent using the
inner loop oversk that aids efficiency of the SF methods.

IV. RESULTS

To evaluate our proposed SF-TR and ST-TT projectors, we
compared them with the DD projector, a current start-of-the-
art method. We compared their accuracy and speed as single
modules and within iterative reconstruction methods.

A. Forward and Back-Projector as Single Modules

We simulated an axial cone-beam flat-detector X-ray CT
system with a detector size ofNs × Nt = 512 × 512 cells
spaced by∆S = ∆T = 1 mm with Nβ = 984 angles over
360◦. The source to detector distanceDsd is 949 mm, and
the source to rotation center distanceDs0 is 541 mm. We
included a rectangular detector response (21) withrs = ∆S

andrt = ∆T.
We implemented the SF-TR and SF-TT projector in an

ANSI C routine. The DD projector was provided by De Manet
al., also implemented as ANSI C too. All used single precision.
For both the SF methods and the DD method we used POSIX
threads to parallelize the operations. For the forward projector
each thread works on different projection views, whereas for
the back projector each thread works on different image rows
(n2).
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Fig. 3. Maximum error comparison between the forward DD, SF-TR and SF-TT projector for a voxel centered at the origin (left) and a voxel centered at
(100, 150,−100) mm (right).

1) Maximum Errors of Forward Projectors: We define the
maximum error as

e(β;~n) = max
s,t∈R

|F (s, t;β;~n) − Fap(s, t;β;~n)| , (46)

whereFap is any of the approximate blurred footprints by
the SF-TR, SF-TT and DD methods. We generated the true
blurred footprintF (s, t;β;~n) in (19) by linearly averaging
1000 × 1000 analytical line integrals of rays sampled over
each detector cell. We computed the line integral of each ray
by the exact method described in (23).

We compared the maximum errors of these forward projec-
tors for a voxel with∆1 = ∆2 = ∆3 = 1mm centered at the
origin. Since the voxel is centered at the origins of all axes, we
chooseNβ = 180 angles over only90◦ rotation. Fig. 3 shows
the errors on a logarithmic scale. We compared the proposed
three amplitude methods by combining them with the SF-TR
projector. The errors of the A1 method are slightly larger than
those of the A2 and A3 method; the biggest difference, at
β = 45◦, is only3.4×10−4. The error curves of the A2 and A3
methods overlap with each other. For the SF-TT projector, we
plotted only the A1 and A2 methods because the combination
of the SF-TT projector and A3 method is computationally
much slower but only slightly improves accuracy. For the
same amplitude method, the error curves of the SF-TR and
SF-TT method overlap. The reason is that the rectangular and
trapezoid approximation are very similar for a voxel centered
at the origin of z axis. All the SF methods have smaller
errors than the DD method,i.e., the maximum error of the
DD projector is about652 times larger than the proposed SF
methods with the A1 amplitude, and2.6 × 103 times larger
than the SF methods with the A2 amplitude whenβ = 45◦.

Fig. 3 also compares the maximum errors of these forward
projectors for a voxel centered at(100, 150,−100) mm. We
chooseNβ = 720 angles over360◦ rotation. The error curves
of the SF-TR projector with three amplitude methods overlap
and the curves of the SF-TT projector with the A1 and A2

amplitude methods overlap with each other, demonstrating
again that these three amplitude methods have similar accu-
racies. For voxels associated with large cone angles, the SF-
TT projector is more accurate than the SF-TR projector. The
maximum errors of the DD and SF-TR projector are about13
and3 times of that of the SF-TT projector respectively.

2) Speed of Forward and Back-Projectors: We compared
computation times of the DD, SF-TR and SF-TT forward
and backward projectors using an image with a size of
N1 = 512, N2 = 512, N3 = 128 and a spacing of∆1 =
∆2 = ∆3 = 0.5 mm in thex, y, z direction respectively. We
evaluated the elapsed time using the average of 5 projector
runs on a 8-core Sun Fire X2270 server with 2.66 GHz Xeon
X5500 processors. Because of the “hyperthreading” of these
Nehalem cores, we used 16 POSIX threads. (We found that
using 16 threads reduced computation time by only about 10%
compared to using 8 threads.)

Table II summarizes the computation times. For the SF-
TR projector, the A1 and A2 amplitude methods have similar
speed, but the A3 method is about50% slower. The com-
putation times of the SF-TR and DD projector are about the
same, whereas the SF-TT projector is about 2 times slower.
Although execution times depend on code implementation,
we expect SF-TR and DD to have fairly similar compute
times because the inner loop overz involves similar simple
arithmetic operations for both methods.

B. Forward and Back-projectors within Iterative Reconstruc-
tion

We compared the DD and SF projectors (SF-TR and SF-
TT) with the A1 and A2 amplitude methods within iterative
image reconstructions. The results of A1 and A2 methods were
visually the same. For simplicity, we present the results ofSF
projectors with the A1 method.

1) SF-TR vs. DD: In many cases, the region of interest
(ROI) needed for diagnosis is much smaller than the scanner
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Projectors DD SF-TR-A1 SF-TR-A2 SF-TR-A3 SF-TT-A1 SF-TT-A2
Forward time (seconds) 46 35 35 59 91 91

Backward time (seconds) 49 44 45 63 92 93

TABLE II
SPEED COMPARISON OFDD, SF-TRAND SF-TTFORWARD AND BACK PROJECTORS.

field of view (FOV). ROI reconstruction can save computation
time and memory. Ziegleret al. [39] proposed the following
approach for iterative reconstruction of a ROI.

1) Iterative reconstruction of the whole FOV, yielding an
initial estimatex̂FOV of xFOV which is the vector of
basis coefficients of the objectf(~x), i.e., f [~n] in (14).

2) Definex̂
m

FOV
= x̂FOV ·m wherem = (m1, . . . ,mp) with

0 ≤ mj ≤ 1 (j = 1, . . . , p) is a mask vector setting the
estimated object, inside the ROI to zero and providing a
smooth transition from the ROI to the remaining voxels.

3) Computepout = Ax̂
m

FOV
which is the forward projection

of the masked object̂xm

FOV
.

4) Compute the projection of ROI,proi = y −pout where
y is the measured data.

5) Iterative reconstruction of the ROI only fromproi. Due
to the transition zone, the region of this reconstruction
needs to be extended slightly from the predetermined
ROI.

This method requires accurate forward and back projectors.
Errors in step 2, where re-projection of the masked image
is computed, can greatly affect the results of subsequent
iterative ROI reconstruction. Moreover, for general iterative
image reconstruction, even small approximation errors might
accumulate after many iterations. We evaluated the accuracy
of our proposed SF-TR projector and the DD projector in this
iterative ROI reconstruction method.

We simulated the geometry of a GE LightSpeed X-ray
CT system with an arc detector of888 detector channels
for 64 slices (Ns = 888, Nt = 64) by Nβ = 984 views
over 360◦. The size of each detector cell was∆S × ∆T =
1.0239 × 1.0964mm2. The source to detector distance was
Dsd = 949.075mm, and the source to rotation center distance
wasDs0 = 541mm. We included a quarter detector offset in
the s direction to reduce aliasing.

We used a modified 3D Shepp-Logan digital phantom that
has ellipsoids centered at thez = 0 plane to evaluate the
projectors. The brain-size field of view (FOV) was250×250×
40mm3, sampled into256 × 256 × 64 voxels with a coarse
resolution of0.9766× 0.9766 × 0.6250mm3.

We simulated noiseless cone-beam projection measurements
from the Shepp-Logan phantom by linearly averaging8 × 8
analytical rays [40, p. 104] sampled across each detector cell.
Noiseless data is used because we want to focus on projector
accuracy. We scaled the line integrals by a chosen factor to
set their maximum value to about 5.

We chose a ROI centered at the rotation center that covered
about48.8 × 48.8 × 12.5mm3 (50 × 50 × 20 voxels with the
coarse resolution). The transition zone surrounds the ROI,and
covers about13.7 × 13.7 × 5mm3 (14 × 14 × 8 voxels with
the coarse resolution). To construct masked imagesx̂

m

FOV
, we

removed the ROI and smoothly weighted the voxels corre-

sponding to the transition zone by a 3D separable Gaussian
function. Fig. 4 shows different views ofxFOV with the
transition zone superimposed on it in the first row.

We implemented iterative image reconstruction of the entire
FOV with these two projector/backprojector methods. We ran
300 iterations of the conjugate gradient algorithm, initialized
with reconstruction by the FDK method [4], for the following
penalized weighted least-squares cost function with an edge-
preserving penalty function (PWLS-CG):

Φ(xFOV) =
X

i

wi
1

2
(yi − [AxFOV]i)

2 + βR(xFOV) (47)

R(xFOV) =
X

k

ψ([CxFOV]k), (48)

where yi is the negativelog of the measured cone-beam
projection,wi values are statistical weighting factors,A is
the system matrix,C is a differencing matrix andψ(t) is the
potential function. We used the hyperbola:

ψ(t) =
δ2

3





√

1 + 3

(

t

δ

)2

− 1



 . (49)

For this simulation, we usedwi = exp(−yi), β = 4 andδ = 5
Hounsfield units (HU).

Fig. 5 shows axial views of the reconstructed images
x̂

SF−TR

FOV
and x̂

DD

FOV
by the iterative method (PWLS-CG) using

the SF-TR and DD method respectively. We computed the
maximum error,maxj |x̂j − xj |, and root-mean-square (RMS)

error,
√

1
N

∑N
j=1(x̂j − xj). The maximum and RMS errors of

x̂
SF−TR

FOV
and x̂

DD

FOV
are close because the errors are dominated

by the axial cone-beam artifacts due to the poor sampling (not
truncation) at the off-axis slices, but the DD method causes
artifacts that are obvious around the top and bottom areas.
Similar artifacts of the DD method were reported in [41]. This
figure illustrates that the SF method improves image quality
for full FOV reconstruction with large basis functions (coarse
resolution).

We applied the PWLS-CG iterative method mentioned
above withβ = 1 and δ = 1HU to reconstruct estimated
ROI imagesx̂SF−TR

ROI
andx̂

DD

ROI
of 256×256×64 voxels with a

fine resolution of0.2441×0.2441×0.3125mm3. The domains
of x̂

SF−TR

ROI
and x̂

DD

ROI
covered the ROI and transition zone

(see Fig. 4). For this image geometry, we also generated a
Shepp-Logan reference imagexROI from the same ellipsoid
parameters used to generatexFOV. Fig. 4 shows different views
of xROI in the second row. The fine sampling ofxROI is 1/4
and1/2 of the coarse sampling ofxFOV in the transaxial and
axial direction respectively, and has a size of200× 200× 40.

Fig. 6 shows the axial view of reconstructed imagesx̂
SF−TR

ROI

and x̂
DD

ROI
by the iterative method (PWLS-CG) using the SF-

TR and DD projector. The maximum errors are 20 HU and
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The black rectangular box shows the transition zone. The green lines show the region of ROI reconstruction.
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Fig. 4. Shepp-Logan digital phantoms in Hounsfield units. The first, second and third columns show axial, coronal and sagittal views respectively.

x̂
SF−TR

FOV x̂
DD

FOV

Fig. 5. Axial views of FOV imageŝxSF−TR

FOV
and x̂

DD

FOV
reconstructed by the iterative method (PWLS-CG) using the SF and DD method respectively.Left:

SF-TR projector;Right: DD projector.

105 HU for the SF and DD method respectively and the RMS
errors are 1.6 HU and 2.8 HU. The SF-TR projector provides
lower artifact levels than the DD projector. The rectangle
approximation in the transaxial direction of the DD method
resulted in larger errors in the reprojection step and caused
more errors when resolution changed from coarse to fine.
The rectangle approximation basically blurs corners of image
voxels, and the level of blur varies for different image voxel
sizes.

We also reconstructed full FOV images (not shown) at a
fine resolution,i.e., 1024× 1024× 128 voxels with a spacing
of 0.2441 × 0.2442 × 0.3125mm3. There were no apparent
artifacts in both reconstructed images using the SF-TR and
DD method and the maximum and RMS errors were similar. It

seems that the aliasing artifacts in the reconstruction by the DD
method were removed by fine sampling [42], [43]. For smaller
transaxial voxel sizes, the difference between the rectangular
(DD method) and trapezoid (SF-TR) approximation becomes
less visible.

2) SF-TR vs. SF-TT: We compared the SF-TR and SF-TT
projectors by reconstructing an image under an axial cone-
beam CT system with largest cone angle of15◦ or so using
these two methods [27]. We expected to see differences in
some off-axis slices of the reconstructed images because the
trapezoid approximation of the SF-TT method is more real-
istic than the rectangle approximation of the SF-TR method
especially for voxels far away from the origin. Nevertheless,
we did not see obvious visual difference, and the maximum
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and RMS errors were similar. It appears that the axial cone-
beam artifacts due to poor sampling (not truncation) at the off-
axis slices dominate other effects in the reconstructed images,
such as the errors caused by rectangle approximation. Further
research will evaluate these two projectors within iterative
reconstruction methods under other CT geometries where the
off-axis sampling is better, such as helical scans, yet where
the cone angle is large enough to differentiate the SF-TR and
SF-TT method .

V. CONCLUSION

We presented two new 3D forward and back projector for X-
ray CT: SF-TR and SF-TT. Simulation results have shown that
the SF-TR projector is more accurate with similar computation
speed than the DD projector, and the SF-TT projector is more
accurate but computationally slower than the SF-TR projector.
The DD projector is particularly favorable relative to other
previously published projectors in terms of the balance be-
tween speed and accuracy. The SF-TR method uses trapezoid
functions in the transaxial direction and rectangular functions
in the axial direction, while the SF-TT method uses trapezoid
functions in both directions. The rectangular approximation
in the axial direction is adequate for CT systems with small
cone angles, such as the multi-slice geometries. The trapezoid
approximation is more realistic for geometries with large cone
angles, such as the flat-panel detector geometries. To balance

accuracy and computation, we recommend to combine the SF-
TR and SF-TT method, which is to use the SF-TR projector for
voxels corresponding to small cone angles and to use the SF-
TT projector for voxels corresponding to larger cone angles.

The model and simulations here considered an ideal point
source. For a finite sized X-ray source there would be more
blur and it is possible that the differences between the SF and
DD methods would be smaller.

Approximating the footprint functions as 2D separable
functions is the key contribution of this approach. Since the
separability greatly simplifies the calculation of integrals of
the footprint functions, using more accurate functions in the
transaxial and axial direction is possible without complicating
significantly the calculations.

The computational efficiency of the SF methods rely on the
assumption that the vertical (t) axis of the detector plane is
parallel to the rotation axis. If the detector plane is slightly
rotated then slight interpolation would be needed to resample
onto coordinates that are parallel to the rotation axis.

Although we focused on voxel basis functions in this paper,
the idea of 2D separable footprint approximation could also
be applied to other basis functions with separability in the
axial and transaxial directions, with appropriate choicesof
functions.

Further research will address the implementation of the SF
projector based on graphics processing unit (GPU) program-
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ming techniques [6], [44] to improve the speed.
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