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Abstract—Iterative methods for 3D image reconstruction have
the potential to improve image quality over conventional fitered
back projection (FBP) in X-ray computed tomography (CT).
However, the computation burden of 3D cone-beam forward and
back-projectors is one of the greatest challenges facing pctical
adoption of iterative methods for X-ray CT. Moreover, projector
accuracy is also important for iterative methods. This pape
describes two new separable footprint (SF) projector methds
that approximate the voxel footprint functions as 2D separale
functions. Because of the separability of these footprintunctions,
calculating their integrals over a detector cell is greatlysimplified
and can be implemented efficiently. The SF-TR projector uses
trapezoid functions in the transaxial direction and rectargular
functions in the axial direction, whereas the SF-TT projecbr uses
trapezoid functions in both directions. Simulations and eperi-
ments showed that both SF projector methods are more accurat
than the distance-driven (DD) projector, which is a current state-
of-the-art method in the field. The SF-TT projector is more
accurate than the SF-TR projector for rays associated with drge
cone angles. The SF-TR projector has similar computation sged
with the DD projector and the SF-TT projector is about two times
slower.

Index Terms—Cone-beam tomography, iterative tomographic
image reconstruction, forward and back-projection

|. INTRODUCTION

Iterative statistical methods for 3D tomographic image r
construction [1]-[3] offer numerous advantages such as t
potential for improved image quality and reduced dose, 3
compared to the conventional methods such as filtered ba?u—
projection (FBP) [4]. They are based on models for measurg;
ment statistics and physics, and can easily incorporata pr
information, the system geometry and the detector respon

The main disadvantage of statistical reconstruction nugho

is the longer computation time of iterative algorithms thes

usually required to minimize certain cost functions. Forsino

iterative reconstruction methods, each iteration reguoae
forward projection and one back-projection, where the v

transform, and the back-projector is the adjoint of the fandv

projector. These operations are the primary computatio

bottleneck in iterative reconstruction methods, partdyl in

3D image reconstruction. Forward projector methods are al
useful for making digitally rendered radiographs (DRR),[5]f

[6].
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Traditional forward and back-projectors compute the inter
section lengths between each tomographic ray and each image
basis function. Many methods for accelerating this process
have been proposed.,g., [7]-[13]. Due to the finite size of
detector cells, averaging the intersection lengths ovehea
detector cell is considered to be a more precise modeling-[14
[19]. Mathematically, it is akin to computing the convoluri
of the footprint of each basis function and some detectar, blu
such as a 2D rectangular function.

Any projector method must account for the geometry of the
imaging system. Cone-beam geometries are needed for axial
and helical cone-beam X-ray computed tomography (CT). In
3D parallel-beam geometry projection space, there are four
independent indicegu, v, ¢, 8). The ray direction is specified
by (¢, 0) wherey and@d denote the azimuthal and polar angle
of the ray respectively anfk, v) denote the local coordinates
on a 2D area detector. In contrast, axial cone-beam projecti
space is characterized by three independent indjses 3)
and two distance parametdiByy, Doq), Wheres denotes the
angle of the source point counter-clockwise from thexis,
(s,t) denote the detector coordinatd3,, denotes the source
to rotation center distance andyy denotes the isocenter to
detector distance. (See Fig. 1). The axial cone-beam gepmet
is a special case of helical cone-beam geometry with zero
elical pitch.

®The divergence of tomographic rays in the cone-beam ge-
etry causes depth-dependent magnification of image basis
ctions,i.e., voxels close to the X-ray source cast larger
adows on the detector than voxels close to the detectsr. Th
f:omplication does not appear in the parallel-beam geometry
erefore, many existing projection and back-projecticttm
ods designed for 3D parallel-beam geometry [16]-[18], [20]
[21] are not directly suitable for cone-beam geometry.

A variety of projection methods for 3D cone-beam ge-
ometries have been proposed [5], [14], [15], [22]-[25]. All
methods provide some compromise between computational

0&)mplexity and accuracy. Among these, spherically symimetr
r%isis functions (blobs) [15], [22] have many advantages ove

ple cubic voxels or other basis functions for the image

representatione.g., their appearance is independent of the
§iewing angle. However, evaluating integrals of their forart
unctions is computationally intensive. Zieglet al. [15]
stored these integrals in a lookup-table. If optimized blabe
used and high accuracy is desired, the computation of fatwar
and back-projection is still expensive due to loading adarg
table and the fact that blobs intersect many more tomogecaphi
rays than voxels.

Rectification techniques [24] were introduced to acceterat



the computation of cone-beam forward and backward pr8ection Ill introduces the SF projectors and contrasts the S
jections. Riddellet al. [24] resampled the original data toprojectors with DD projector. Section IV gives simulation
planes that are aligned with two of the reconstructed volunnesults, including accuracy and speed comparison between
main axes, so that the original cone-beam geometry canthe SF-TR, SF-TT and DD projector as stand-alone modules
replaced by a simpler geometry that involves only a succemid within iterative reconstruction. Finally, conclussoare
sion of plane magnifications. In iterative methods, resahplpresented in Section V.

measurements can simplify forward and back-projectioteac

iteration. However, resampling involves interpolatioattimay

slightly decrease spatial resolution. Another drawbackhif Il. CONE-BEAM PROJECTION

method ig t_hat the .usu.al assumption of statistical indepecs A. Cone-Beam Geometry

of the original projection data samples no longer holdsrafte

rectification, since interpolation introduces statigticarrela- ~ For simplicity of presentation, we focus on the flat-detecto
tions. axial cone-beam geometry (see Fig. 1). The methods general-

The distance-driven (DD) projector [14] is a current statéze easily to arc detectors and helical geometries.
of-the-art method. It maps the horizontal and vertical klwbun
aries of the image voxels and detector cells onto a common
plane such asz or yz plane, approximating their shapes by
rectangles. (This step is akin to rectification). It caltesathe
lengths of overlap along the (or ) direction and along the
direction, and then multiplies them to get the area of oyerla - ----~
The DD projector has the largest errors for azimuthal angles(\ 7
the X-ray source that are around odd multiplesrgf, because ~ SSurce - - |- - - Détector
the transaxial footprint is approximately triangular mtlthan Sodarce trajectory
rectangular at those angles.

This paper describes two new approaches for 3D forward
and back-projection that we call the separable footprif) (S
projectors: the SF-TR [26] and SF-TT [27] projector. They
approximate the voxel footprint functions as 2D separabiey. 1. Axial cone-beam flat-detector geometry.
functions. This approximation is reasonable for typicailabx

of their integrals over a detector cell and allows efficienf, can pe parameterized as follows:

implementation of the SF projectors. The SF-TR projectesus

t

trapezoid functions in the transaxial direction and regtdar —Dgpsin 8
functions in the axial direction, whereas the SF-TT praject po= | Dsocosf |, (1)
uses trapezoid functions in both directions. It is accutaigse 0

rectangle approximation in the axial direction for conexive . ) )
geometries with small cone angles ¢°) such as the multi- where Dy, is the source to rotatlo_n center dlstance_aﬁhd
slice detector geometries, and to use trapezoid approximatdenotes the angle of the source point counter-clockwis® fro
for CT systems with larger cone angles (0°) such as flat- the_ y axis. For simplicity, we present the case of an ideal
panel detector geometries. point source of X-rays. To_ partially account for no_n-ldeal X
Our studies showed that both SF projector methods are még¥ sources, one can modify the footprint function in (20 an
accurate than the distance-driven (DD) projector. In paldir, (26) below.
the SF methods reduce the errors around odd multiples¢f ~ Let (s, ¢) denote the local coordinates on the 2D detector
seen with DD. The SF-TT projector is more accurate than tf¢ane, where the-axis is perpendicular to the-axis, and the
SF-TR projector for voxels associated with large cone angld-axis is parallel to the-axis. A point on the 2D detector can
The SF-TR projector has similar computation speed with th& expressed as
DD projector and the SF-TT projector is abautimes slower. )
To balance computation and accuracy, one may combine . scosf + Doasin 3
the SF-TR and SF-TT projector, that is, to use the SF-TR pr= | ssinff = Dogcosf3 |, 2
projector for voxels associated with small cone angles sisch t

voxels near the plane of the X-ray source where the reCtan%ﬁereDOd — D — Dy, is the isocenter to detector distance.

approximation is adequate, and use the SF-TT projector ¥fe direction vector of a ray fromp, to 7, can then be
voxels associated with larger cone angles. expressed as

The organization of this paper is as follows. Section Il
reviews the cone-beam geometry and projection, describes sin @ cos 6
the cone-beam 3D system model. and presents the analytical e= —cospcosh |, 3)

1 — Po 7
formula of cone-beam projections of voxel basis functions. 171~ ol sin 6



where Most projection/back-projection methods use a linear rhode

R s that ignores the "exponential edge gradient effect” caused
v o= (s = afCtan( ) (4)  the nonlinearity of Beer's law [28], [29]. We adopt the same
sd . .
B a type of approximation here. Assume that the detector blur
o = p(s,8) =)+ (5) 4, 1) is shift invariant, independent af, and acts only along
0 — 0(s,t) 2 —arctan t (©) the_s andt coordinates. Then the ideal noiseless projections
/s + D%, satisfy

and ¢ and @ denote the azimuthal and polar angle of the ray  yg(sy,t;] = // h(sk — s,t; — t)p(s, t; B)dsdt, (15)
from py to p1 respectively.
The cone-beam projections of a 3D obj¢¢k), wherex = where p(s, t; 3) is the 3D projection off(X) given by (7),

(z,y,2), are given by and (s, t;) denotes the center of detector cell specified by
indices (k,l). The methods we present are applicable to
p(s,t;6) :/ f(X) de, (7) arbitrary samplegsg,t;), but for simplicity of presentation
(s:t,8) and implementation we focus on the case of uniformly spaced
where the integral is along the line segment: samples:
L(s,t,0) = {po+L&:L€]0,Ly)} sk = (k—ws)As, k=0,...,Ns—1,
Lp 2 1/D§d+52+t2. (8) tl = (l wt)ATa l:()v"';Nt_la
_ ws = (Ns—1)/2+ ¢,
For a pointX = (z,y, z) between the source and detector, we = (Ny—1)/2+ e, (16)

the projecteds coordinate of it is
where Ag and A denote the sample spacing iand ¢

7(B;2,y) = Dsa M (9) respectively. The user-selectable parametgrand ¢, denote
ds(B;2,y)’ offsets for the detectoe.g., ¢cs = 1/4 corresponds to a quarter
where detector offset [30], [31].
A ) Substituting the basis expansion model (14) for the object
T(Gi,y) = weosf+ysing, into (15) and using (7) leads to the linear model
ds @%y £ DSO_T ﬁ;xaya
( : A , H ) alsk ti] = Zaﬁ sk, ti; 1) f 7], (17)
T (Biw,y) = —xsinf+ycosf. (10)
The projected coordinate is where the elements of system matix are samples of the
Dy following cone-beam projection of a single basis function
t(B;1,y,2) = 2—r. (11) centered a€l7]:
ds(B; 2, y)
The azimuthal and polar angles of the ray connecting the aglsk, ti; 7] = F(si, ti; 55 70), (18)

source and are where the “blurred footprint” function is

. _ (8 7,y)
o(Bx,y) = ﬂ+arctan<m) 12) F(sp,t; 8;7 // —s,t; — t)q(s, t; B;M)dsdt, (19)
0(B;z,y,2) = —arctan(%). (13) and q(s,t; 0;7) denotes the cone-beam footprint of basis
\/ d2 o
T function ﬁo((i— i) A) ,i.e
B. Cone-Beam 3D System Model a(s, 45 357) = /L(Si,ﬁ) ﬁo((x - A) de. (20)

In the practice of iterative image reconstruction, rattemt Computing the footprint of the voxel is also known as “splat-

operating on a continuous obje¢{X), we forward project ting” [32].

a discretized object represented by a common basis functiormrhe goal of forward projectors is to compute (17) rapidly

Bo(X) superimposed on &5 x N x N3 Cartesian grid as but accurately. Although the system matex is sparse, it is

follows: impractical to precompute and store even the nonzero system
o _ R o = matrix values for the problem sizes of interest in cone-beam
%)= Zf 7] o ((X —d)e A) ’ (14) CT, so practical meth%ds (including our proposed approach)

essentially compute those values on the fly.

where the sum is over th¥, x N> x N; lattice that is estimated  \ye focus on a simple separable model for the detector blur

and clii] = (c1]7i], c2[7], c3[7]) denotes the center of théth

baS_!S function andi = (n1,n2,n3) € Z3. The grid spacing h(s,t) = 1 rect(i) rect(i), (21)

is A = (A1,A,A3), and® denotes element-wise division. TsTt s Tt

We consider the casé&; = +A, hereafter, but we allow wherer; andr, denote the width along andt¢ respectively.

A1 # Az, because voxels are often not cubic. This model accounts for the finite size of the detector eldmen




Note thatrs andr; can differ from the sample spacing — the exact footprint function and its profiles for a voxel with
sx—1 andt; — t;—1 to account for detector gaps. A1 = As = A3 =1 mm centered at the origin wheh= 30°.
The center column of Fig. 2 shows those of a voxel centered
at (100, 150, 15) mm wheng = 0°. The azimuthal and polar
angle of the ray connecting the source and this voxel cenger a
N9.3° and2.1° respectively. The cone angle of a typidal-
slice cone-beam CT geometry is ab@it The right column
of Fig. 2 shows those of a voxel centered(83, 93,93) mm
Bo(X) = rect(x)rect(y)rect(z) when 8 = 0°. The azimuthal and polar angle of the ray
connecting the source and this voxel center ate7° and
11.5° respectively. The cone angle of a typical cone-beam CT
wherel., denotes the indicator function. geometry with40 x 40 cm? flat-panel detector is aboug®.

Substituting (22) into (20), the analytical formula for theThe first two true footprints look like 2D separable funcson
cone-beam projection footprint of théth basis function is:  The third footprint is approximately separable except foat

Ly . areas at the upper left and lower right corner.
q(s,t; B;1) = / ﬁo((ﬁo + Le—di]) © A) de Inspired by shapes of the true footprints (see Fig. 2), we
0 approximate them as follows,

C. Footprints of Voxel Basis Functions

We focus on cubic voxel basis functions hereafter, but o
could derive analytical formulas for footprints of othersim
functions. The cubic voxel basis function is given by,

= Lgei<i/2plqyi<aeryzi<izey,  (22)

LT—’
Lijayteer1<ar /21 1 da+ea <72
~/0 {lditLer|<A1/2} H{[datLez| <A2/2} Q(S7t;ﬁ§ﬁ)%qap(s,t;ﬁ;ﬁ)é[(&t;ﬁ;ﬁ)qsf(s’t;ﬁ;ﬁ)’
]1{|d3+£e3|§A3/2} de (25)
= a1-0a2- a3 [lmax — lmin] (23) wheregs (s, t; 8;7) denotes a 2D separable function with unit

- ) . N maximum amplitude,
wheree’ = (e1, ez, e3) was defined in (3)[z], = max(x,0)

and Qo (5. 55 70) 2 qu (53 ;) qa 1 ;7). (26)
d = po—cli] = (di,dz,d3),
1 sinw — 0 where ¢1(s; 8;7) and ¢2(t; 3;@) denote the approximating
a = {ldr|saa/2, S0P = functions ins andt respectively. In (25){(s, t; 3;7) denotes
1, sing # 0, ! p Y. » 15 05
L -0 the “amplitude” ofgs¢ (s, t; 5; 7).
ay = { (el =aarzh zg:g& 20 For small basis functions and narrow blutss, ), the
’ . v ’ angles of rays within each detector cell that intersect &asis
as = { Ljds<aq/2} S}H9 =0 function are very similar, si(s, ¢; 3; @) is much smoother than
L, sinf # 0, h(s,t) andq(s, t; 8; 7). Substituting (25) into (19) leads to
lhmax = min {Lp,é_l‘_,gi,éi} R
bin = max{0,01,02 (2}, F(s,t;8;11) =~ Fy(s,t;3;7)
A — —
‘ A /2-d; 7&/241} _ = h(s,t) ** [I(s,t; B310)qst (s, t; B3 17)]
b, = max{ e “ @70 ~ (s, t;0;71) [h(s,t) **xqs(s,t;8;7
+ o e =0 (5,85 8;7) [h(s,t) *x gse (s, 5 85 7)),
/i min { 51:/2—111:’ —&;/2—d; } . e #0 (27)
- —00, e; = 0. where the inequality uses the fact thHs,¢; 5;7) is ap-

(24) proximately a constant over each detector cell. The value

. ) I(sk,t1; ;1) denotes this constant for detector cédl,t;),
For typical cone-beam geometries, polar anglesf rays are 5144 denotes 2D convolution

much smaller thard0°, o there is no need to con_sider the it the detector blur is also modeled as separabie,
case ofcosf = 0. Combining (18), (19) and (23) yields the
“ideal” projector for cubic voxels in cone-beam CT. h(s,t) = h1(s)ha(t) (28)

Ill. SEPARABLE FOOTPRINT(SF)PROJECTOR then the blurred footprint functions (27) have the follogin

It would be expensive to exactly compute the true footpriseparable approximation:
(23) and the “blurred footprint” (19) for the voxel basis
function on the fly, so appropriate approximations of the Fi(sy,t;;3;7) = l(sk, ti; 3;7) Fi(sk; 8; 1) Fa(t; B; 1),
“blurred footprint” (19) are needed to simplify the double (29)
integral calculation. where

To explore alternatives, we simulated a flat-detector cone-
beam geometry witlDyy = 541 mm andDgq = 949 mm. We Fi(sp; 3;7) & /hl(sk — 8)q1(s; B;)ds
computed cone-beam projections of voxels analyticallygisi
(23) at sample location$n/As, mA;) where Ay = Ap = By(ty; B;i) 2 /hg(tl — O)ga(t; B; 1) dt. (30)
0.001 mm andn,m € Z. The left column of Fig. 2 shows
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Fig. 2. Exact footprint functiong(s, t; 3; i) and their profiles for Imrhvoxels centered at the origiteft), (100, 150, 15) mm (center) and (93, 93, 93) mm
(right).

A. Amplitude Approximation Methods trigonometric operationscés, sin andtan ) or square and

One natural choice for the amplitude functién) is the square root operations to directly evaluate andsin.

following voxel-dependent factor that we call the A3 method To accelerate computaﬂop of the SF projector, we prgpose
a voxel-ray-dependent amplitude named the A2 method:

Usk,ti; B;7) = 13(3;71) £ Ly, - Lo, (31) la(sks ti; 3:7) 2 lyg - logse,t) (34)
1
where £ —
lositn) [cos(0(sk, 1))]’ (35)
loy = - ! - (32) where 0(sg,t;) given in (6) is the polar angle of the ray
max1{| cos(wo) |, |sin(yo) [} connecting the source and detector cerfter, t;). There are
lo, 2 —_—, (33) many fewer tomographic rays\ x NNy) than voxels in a 3D
| cos(6o) | image (Vi x No x N3) and 6(sg,t;) does not depend on

wherepo = oo (3,7) andéy = 6o(3,7) denote the azimuthal g for flat detector geometries (see (6)), so using (34) saves

and polar angles of the ray connecting the source and cehtePgoStantial computation versus (31). _

the iith voxel. They can be computed by (12) and (13). Since We also investigated a ray-dependent amplitude named the
this voxel-dependent amplitude depends on angtesy,) Al method:

and 3, the approximated footprinf., (s, ¢; 3;7) is separable [ (s, #;3) £ Lo(ss) * LoGsitn) (36)

with respect tos and ¢ too. However, the dependence on l R A,

voxel centersi[fi| requires expensive computation. One must @ (sk383) - :
compute Ny ;[ l\fg x N3 x Ny different Iy, values and max{] cos(p(sk; F))I, [sin(p(sx; 0 )|%37)
Ni x Ny x Ng different [, values, whereNg denotes the

number of projection views. In addition, computiig and wherey(sg; 3) given in (5) is the azimuthal angle of the ray
l,, for each voxel at each projection view involves eitheconnecting the source and detector cell cerftgr,¢;). For




eachg, there arel; differentl,,,.s) for the A1 method and and
N x N, differentl,, for the A2 method. 1 . .

These amplitude methods are similar to Joseph’s metho, (t;; 3; 1) = — {min(tl + —t,t+) — max(t; — —t,t_)} ,
[8] where the triangular footprint function is scaled by Tt 2 2 (22)
1/ max(| cos ¢, [ sin¢|) for 2D fan-beam geometry. All three, nare
methods have similar accuracies, but the A3 method is much
slower than the other two (see Section IV-A). Thus we do A 52
not recommend using the A3 amplitude in the SF projecto?(sl"”) - / trap(s; 7o, 71, 72, 7) ds

method. Hereafter, we refer to (29) with either (34) or (36) a - 7il(max(shm)’ min(ss, 71))
“the SF method”.

+72(max(s1, 71), min(sa, 72))

+73(max(sy, 72), min(sa, 73)),

B. SF Projector with Trapezoid/Rectangle Function (SF-TR) N 1 9 9

. _ _ 71(b1,02) = s———=I[(b2 — 70)" = (b1 — 70)"| L{by 50,1

Inspired by the shapes of the true footprints associateldl wit 2(r1 — 10)
small cone angles (see the first two columns of Fig. 2), we(bi,b2) = (b2 — b1)lgp,50,1,
approximate them as 2D separable functions with trapezoid 1
jons i al directi o D301 b2) 2 S [(b —7)” — (b2~ 7)1

functions in the transaxial direction and rectangular fiors 73171, %2 2Ams —m) o ? 27 73) 1 {ba>b1}
in the axial direction. This approximation is reasonable fo (43)

typical multi-slice cone-beam geometries, where the attiau
anglesy of rays cover the entir860° range since the X-ray
source rotates around theaxis, whereas the polar anglés

! ) C. SF Projector with Trapezoid/Trapezoid Function (SF-
of rays are small (less thal?) since the cone angle is small. ) P P (SF-TD)

The approximating function in the direction is Inspired by the shape of true footprint of a voxel associated
with large cone angles (see the last column of Fig. 2), we
qu(s;B;i) = trap(s; 7o, 71,72, T3) approximate it as a 2D separable function with trapezoid
=, To<s<mT functions in both the transaxial and axial direction. This
_ 1T, . T <5< Ty (38) trapezoid approximation in axial direction is reasonatde f
3— I

Ty < 5 < T3 cone-beam geometries with large cone angtes {°) such as
otherwise flat-panel detector geometries.

Along s, the SF-TT projector uses the same trapezoid
proximation as the SF-TR projector. The trapezoid faptpr

d the blurred footprint are given in (38) and (41).

The approximated footprint function ihis

T3—T2 !

3

wherery, 71, 2 and 3 denote vertices of the trapezoid func-a
tion that we choose to match the exact locations of thog
of the true footprint function in thes direction. They are
the projecteds coodinates of four corner points located at
(Cl[ﬁ] + A1/2,C2[ﬁ] + Ag/?) for all z.

o\ A
The approximating function in the direction is ¢2(t; 3 7) = trap(t; o, €1, €2, 83) (44)
N t—to where&y, &1, & and&s denote vertices of the trapezoid func-
q2(t; ;) = reCt< Yo >’ (39)  tion. & and¢; are the smallest and largest one of the projected
t coordinates of the lower four corners of tfith voxel located
where at (Cl [ﬁ] + A1/2, Cg[ﬁ] + A2/2, C3[ﬁ] — A3/2), and§2 and§3
A tpt are the smallest and largest one of the proje¢tedordinates
to = T of the upper four corners located &t; [i] + A1/2, co[ii] =
wo Lty —t_, (40) A2/2,cs[ii] + Az/2). The blurred footprint function irt is
Wherg ty ar_ld t_ denote the boundaries_ of the regtangular Fo(ty; B;7) = 1 (tz _ T—t,tl T ﬁ) : (45)
function which we choose to be the projectedoordinates 2 2

of the two endpoints of the axial midline of the voxel. Those o .

endpoints are located afii] + (0,0, A3/2). Given 8 and a WNerey is given in (43). o .

point % = (z,y, z), the projecteds and ¢ coordinate of this By choosmg_the_ vertices of the approximating footprints to
point can be computed by (9) and (11). Since the boundarl@&tch the projections of the voxel boundaries, the approxi-
of the separable function are determined by the projecuhﬁnsmat'on adapts to the relatlv_e positions of the source, \wxel
boundaries of the voxel basis function under the cone-be&Rd detector, as true footprints do. Take a voxel centered at
geometry, the depth-dependent magnification is accuratdif Origin as an example. Its axial footprint is approximate

modeled. a rectangular function (see the left figure in the third row
The blurred footprint functions (30) of this SF-TR projelcto()f Fig. 2), instead _of a trapezoid function. For this voxel
are trap(t; &, &1, &2, &3) IS almost a rectangle becausg ~ &;

) and & =~ &3 becausef, ¢1,& and & are the projected

(41) coordinates of four axial boundaries of this voxel.

1 Ts Ts
Fy(sg; B;71) = g (Sk - skt g



D. Implementation of SF Projector needed for the SF-TT method because it uses trapezoids in

We use the system matrix model (18) with the separabtf%e axial direction instead rectangles.

footprint approach (29) for both forward and back projestio "€ implementation of amplitudisy, ;; 3; 1) in (29) for
which ensures that the SF forward and back projector aretex§t¢ AL and A2 methods are different. For the A1 method, for

adjoint operators of each other. eachf the amplitudel; (s, t;; 3) is implemented by scaling
projections outside the loop over voxels since it depends on

detector cells only. For the A2 method, we implemented the

« Initialize projection view array to zerd,e., gs[sk,t;] = 0 fo

k=0,...,No—1andl=0,..., N, — 1 two terms (,, andly,, ) of la(sk,t;; 3;7) separately. We
o For each rown; =0,1,..., N1 — 1 of f[7]: scaled the projections b¥(,, ;) outside of the loop over
1) For each columnny =0,1,..., Ny — 1: voxels and computed,,, outside the inner loop over since
a) Compute trapezoid vertices, 71, 72, 75 in (38) using it does not depend oa.
9 The SF methods requi@(N*) operations for forward/back

b) Determine indicess{ values) of detector cells that

At 3 3 _
intersectiro, 7], 1. { : [sk— 2%, s+ ][0, 73] A projection of aN* volume to/fromN° samples of the cone

_ beam projections. There exi&f( N3 log N) methods for back-
c) Compute transaxial footprinty (sy; 3;7) using (41) Projection [35]-[37]. However, those algorithms may nopca

and (43) for all these;, values and store them. ture the distance-dependent effect of detector blur inm@ted
d) Computel,, using (32) (SF-TR-AZ only) in the model (18). In 2D one can use the Fourier Slice Theorem
e) For each slicens =0,1,..., N3 — 1:

to developO(N?log N) methods [38], but it is unclear how

i) Determine indicest( values) of detector cells that v, generalize those to 3D axial and helical CT efficiently.

intersect[t—,t.], i.e, {l : [t — &, 6 + ZF] N

[t-,t+] # 0}.
i) For eacht; value:
A) ComputeF»(t;; 3; 1) using (42). E. SF Compared with DD
B) For each s, value:
— Compute projectionp(s, ti; 3; ) where The DD method essentially approximates the voxel foot-
p = fIR]F1(sk; B; 1) Fa(t1; 3; ) for SFr  prints using rectangles in both directions on a common plane
TR-AL, such aszz or yz plane. It also uses the separable and shift-

p = [flilloo Fr(sk; B; 1) Fo(ti; B;7) fo

SETR-AZ. invariant detector blur (21) on the detector plane. Howgber

— Update projection viewjs [s, ti] = p. approximated separable detector blurs on the common plane
« Scale all the projection view by (s, t1; 3) using (36) fd based on the mapped boundaries of original detector blers ar
SF-TR-A1 or bylgs, +,) using (35) for SF-TR-A2 . no longer shift invariant. This appears to prevent using the
inner loop overs;, that aids efficiency of the SF methods.

=

TABLE |
PSEUDO-CODE FOR THESF-TRFORWARD PROJECTOR WITH THEAL
AMPLITUDE METHOD (SF-TR-A1)AND THE A2 METHOD (SF-TR-A2). 1V. RESULTS

To evaluate our proposed SF-TR and ST-TT projectors, we
Table | summaries the SF-TR projector with the A1 ameompared them with the DD projector, a current start-of-the

plitude method (SF-TR-Al) and with the A2 method (SFart method. We compared their accuracy and speed as single
TR-A2) for a given projection view anglgé. Implementating modules and within iterative reconstruction methods.
the SF-TT projector with these two amplitude methods is
similar. Implementation of the back-projector is similexcept
for scaling the projections at the beginning instead of the Forward and Back-Projector as Single Modules
end. The key to efficient implementation of this method is
to make the inner loop over (or equivalently overt;) We simulated an axial cone-beam flat-detector X-ray CT
[33], because the values @, (s,; ;1) are independent of system with a detector size d¥; x N; = 512 x 512 cells
z andt; so they are precomputed prior to that loop. Becausgaced byAs = A, = 1 mm with Ny = 984 angles over
(11) is linear inz, the first value oft, for a given (x,y) 360°. The source to detector distand&y is 949 mm, and
position can be computed prior to the inner loop oveand the source to rotation center distanég, is 541 mm. We
subsequent values can be computed by simple incremenigluded a rectangular detector response (21) with= Ag
updatescf. [34]. Thus only simple arithmetic operations andndr; = A;.
conditionals are needed for evaluatifig(t;; 5; 77) in thatinner ~ We implemented the SF-TR and SF-TT projector in an
loop; all trigonometric computations occur outside thaido ANSI C routine. The DD projector was provided by De Man
Note that this separable footprint approach does not appehr also implemented as ANSI C too. All used single precision.
to be particularly advantageous for 2D fan-beam forwaigor both the SF methods and the DD method we used POSIX
and backprojection because computing the transaxial findtp threads to parallelize the operations. For the forwardegmior
Fi(sg; B;7) requires trigonometric operations. The computeach thread works on different projection views, whereas fo
efficiency here comes from the simple rectangular footprithhe back projector each thread works on different image rows
approximation in the axial direction. More computation igns).
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Fig. 3. Maximum error comparison between the forward DD, T$Fand SF-TT projector for a voxel centered at the orideit and a voxel centered at
(100, 150, —100) mm (right).

1) Maximum Errors of Forward Projectors: We define the amplitude methods overlap with each other, demonstrating

maximum error as again that these three amplitude methods have similar accu-
. . . racies. For voxels associated with large cone angles, the SF
e(B;7) = e [F'(s,t; 05 71) — Fap(s, 8 55 7)] (46) 1T projector is more accurate than the SF-TR projector. The

) ) ) maximum errors of the DD and SF-TR projector are abidut
where £, is any of the approximate blurred footprints by,nq 3 times of that of the SF-TT projector respectively.
the SF-TR, SF-TT and DD methods. We generated the truez) Speed of Forward and Back-Projectors: We compared
blurred footprint (s, #; 5;7) in (19) by linearly averaging compytation times of the DD, SF-TR and SF-TT forward
1000 x 1000 analytical line integrals of rays sampled ovef,q packward projectors using an image with a size of
each detector cell. We computed the line integral of each Y — 512, N, = 512, N3 = 128 and a spacing of\; —
by the exact method described in (23). . Ay = Ay = 0.5 mm in thez,y, ~ direction respectively. We
We compared the maximum errors of these forward projegya|yated the elapsed time using the average of 5 projector
tors for a voxel withA; = A; = Az = Imm centered at the ;,ns on a 8-core Sun Fire X2270 server with 2.66 GHz Xeon
origin. Since the voxel is centered at the origins of all axes 5500 processors. Because of the “hyperthreading” of these
chooseN; = 180 angles over only0° rotation. Fig. 3 shows nepalem cores, we used 16 POSIX threads. (We found that
the errors on a logarithmic scale. We compared the proposgdng 16 threads reduced computation time by only about 10%
three amplitude methods by combining them with the SF'Tgompared to using 8 threads.)
projector. The errors of the A1 method are slightly largearth  rapje || summarizes the computation times. For the SF-
those of the A2 and A3 method; the biggest difference, &k projector, the A1 and A2 amplitude methods have similar
3 = 45°,is only3.4x10~%. The error curves of the A2 and A35peed, but the A3 method is abok% slower. The com-
methods overlap with each other. For the SF-TT projector, YSiitation times of the SF-TR and DD projector are about the
plotted only the A1 and A2 methods because the combinatigme \vhereas the SF-TT projector is about 2 times slower.
of the SF-TT projector and A3 method is computationallihough execution times depend on code implementation,
much slowc_ar but only slightly improves accuracy. For thg,, expect SF-TR and DD to have fairly similar compute
same amplitude method, the error curves of the SF-TR agpfes hecause the inner loop overinvolves similar simple
SF-TT method overlap. The reason is that the rectangular aggmetic operations for both methods.
trapezoid approximation are very similar for a voxel ceater
at the origin of z axis. All the SF methods have smaller ) o ]
errors than the DD method.e., the maximum error of the B- Forward and Back-projectors within Iterative Reconstruc-
DD projector is about52 times larger than the proposed Sgion
methods with the A1 amplitude, arl6 x 10% times larger ~ We compared the DD and SF projectors (SF-TR and SF-
than the SF methods with the A2 amplitude when- 45°.  TT) with the A1 and A2 amplitude methods within iterative
Fig. 3 also compares the maximum errors of these forwaitiage reconstructions. The results of A1 and A2 methods were
projectors for a voxel centered 4100, 150, —100) mm. We visually the same. For simplicity, we present the resultSBf
chooseNs = 720 angles oveB60° rotation. The error curves projectors with the A1 method.
of the SF-TR projector with three amplitude methods overlap 1) SF-TR vs. DD: In many cases, the region of interest
and the curves of the SF-TT projector with the A1 and AZROI) needed for diagnosis is much smaller than the scanner



Projectors DD | SF-TR-A1 | SF-TR-A2 | SF-TR-A3 | SF-TT-Al | SF-TT-A2
Forward time (seconds)| 46 35 35 59 91 91
Backward time (seconds) 49 44 45 63 92 93

TABLE I

SPEED COMPARISON OFDD, SF-TRAND SF-TTFORWARD AND BACK PROJECTORS

field of view (FOV). ROI reconstruction can save computatiosponding to the transition zone by a 3D separable Gaussian
time and memory. Zieglegt al. [39] proposed the following function. Fig. 4 shows different views ok.., with the
approach for iterative reconstruction of a ROI. transition zone superimposed on it in the first row.

1) lterative reconstruction of the whole FOV, yielding an We implemented iterative image reconstruction of the entir
initial estimate £, Of xroy Which is the vector of FOV with these two projector/backprojector methods. We ran
basis coefficients of the obje¢{(x), i.e., f[#] in (14). 300 iterations of the conjugate gradient algorithm, ifitied

2) Define&y,, = #pov-m wherem = (my,...,m,) with with reconstruction by the FDK method [4], for the following
0<m;<1(j=1,...,p)is a mask vector setting thepenalized weighted least-squares cost function with are-edg
estimated object, inside the ROI to zero and providingRreserving penalty function (PWLS-CG):
smooth transition from the ROI to the remaining voxels.

3) Computepoy; = Ay, which is the forward projection O(zrov) = Zwil(yi — [Azrov]i)? + BR(zrov) (47)
1 m - 2
of the masked objectz, .. i
4) Compute the projection of ROp.0i =y — pout Where R(zrov) = Zw([CmFov]k), (48)
y is the measured data. k

5) lterative reconstruction of the ROI only fropi.;. Due where y; is the negativelog of the measured cone-beam
to the transition zone, the region of this reconstructioprojection, w; values are statistical weighting factora, is
needs to be extended slightly from the predeterminede system matrixC is a differencing matrix and)(¢) is the

ROL. potential function. We used the hyperbola:
This method requires accurate forward and back projectors. ) 5
Errors in step 2, where re-projection of the masked image W(t) = 9 1+3 (f) 1. (49)
is computed, can greatly affect the results of subsequent 3 d

iterative ROI reconstruction. Moreover, for general itera . _
image reconstruction, even small approximation errorshnigh" this simulation, we used; = exp(—y;), f = 4 andd = 5
accumulate after many iterations. We evaluated the acguradounsfield units (HU).

of our proposed SF-TR projector and the DD projector in thissfjgr; ° SrfOD\]’DVS axial \_/iews_ of the reconstructed im‘?‘ges
iterative ROI reconstruction method. x3o ™ and apb, by the iterative method (PWLS-CG) using

We simulated the geometry of a GE LightSpeed X-ragpe SF-TR and DD method respectively. We computed the

CT system with an arc detector o8 detector channels MaXimum errormax; |#; — 4|, and root-mean-square (RMS)
for 64 slices (V; = 888, N, = 64) by Nz = 984 views error, \/% Z;.V:l(:%j — z;). The maximum and RMS errors of

over 360°. The size of each detector cell was, x A, = 25" andzy), are close because the errors are dominated
1.0239 x 1.0964mm?. The source to detector distance waby the axial cone-beam artifacts due to the poor sampling (no
Dgq = 949.075mm, and the source to rotation center distandeuncation) at the off-axis slices, but the DD method causes
was Dgy = 541mm. We included a quarter detector offset irartifacts that are obvious around the top and bottom areas.
the s direction to reduce aliasing. Similar artifacts of the DD method were reported in [41]. Fhi

We used a modified 3D Shepp-Logan digital phantom thédjure illustrates that the SF method improves image quality
has ellipsoids centered at the = 0 plane to evaluate the for full FOV reconstruction with large basis functions (cea
projectors. The brain-size field of view (FOV) was0 x 250 x  resolution).

40mm?, sampled into256 x 256 x 64 voxels with a coarse We applied the PWLS-CG iterative method mentioned

resolution 0f0.9766 x 0.9766 x 0.6250mmn?. above withg = 1 and§ = 1HU to reconstruct estimated
We simulated noiseless cone-beam projection measuremd®@ imagese;,, "™ and& Lo, of 256 x 256 x 64 voxels with a

from the Shepp-Logan phantom by linearly averaging 8 fine resolution 0f).2441 x 0.2441 x 0.3125mmn?. The domains
analytical rays [40, p. 104] sampled across each detector cef %™ and 22, covered the ROI and transition zone
Noiseless data is used because we want to focus on proje¢tme Fig. 4). For this image geometry, we also generated a
accuracy. We scaled the line integrals by a chosen factor$bepp-Logan reference imagg,o; from the same ellipsoid
set their maximum value to about 5. parameters used to generatg,,. Fig. 4 shows different views
We chose a ROI centered at the rotation center that coverfde ., in the second row. The fine sampling of., is 1/4
about48.8 x 48.8 x 12.5mm* (50 x 50 x 20 voxels with the and1/2 of the coarse sampling &f... in the transaxial and
coarse resolution). The transition zone surrounds the B@, axial direction respectively, and has a size266 x 200 x 40.
covers aboutl3.7 x 13.7 x 5mm® (14 x 14 x 8 voxels with Fig. 6 shows the axial view of reconstructed imagés,™
the coarse resolution). To construct masked imagjes,, we and zL5, by the iterative method (PWLS-CG) using the SF-

removed the ROI and smoothly weighted the voxels corr@R and DD projector. The maximum errors are 20 HU and
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Fig. 5. Axial views of FOV imagegtiny '+ and @22, reconstructed by the iterative method (PWLS-CG) using theaSd DD method respectivelieft:
SF-TR projector;Right: DD projector.

105 HU for the SF and DD method respectively and the RM&ems that the aliasing artifacts in the reconstructiombyD
errors are 1.6 HU and 2.8 HU. The SF-TR projector providasethod were removed by fine sampling [42], [43]. For smaller
lower artifact levels than the DD projector. The rectanglansaxial voxel sizes, the difference between the rectang
approximation in the transaxial direction of the DD metho@®D method) and trapezoid (SF-TR) approximation becomes
resulted in larger errors in the reprojection step and ocduskess visible.

mr?re errorsI when re.solu_tionbchgnﬁedblfrom coarse ftc_> fine.z) SF-TRvs SF-TT: We compared the SF-TR and SF-TT
The rectangle approximation basically blurs comers ofgena e ctors by reconstructing an image under an axial cone-

voxels, and the level of blur varies for different image viox eam CT system with largest cone anglelsf or so using

SIZ€s. these two methods [27]. We expected to see differences in
We also reconstructed full FOV images (not shown) at some off-axis slices of the reconstructed images because th
fine resolutionj.e., 1024 x 1024 x 128 voxels with a spacing trapezoid approximation of the SF-TT method is more real-
of 0.2441 x 0.2442 x 0.3125mm?. There were no apparentistic than the rectangle approximation of the SF-TR method
artifacts in both reconstructed images using the SF-TR aadpecially for voxels far away from the origin. Neverthsles
DD method and the maximum and RMS errors were similar. e did not see obvious visual difference, and the maximum
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Fig. 6. Axial views of ROl imagesty o,

Left: SF-TR projector;Right: DD projector.

and £R5; reconstructed by the iterative method (PWLS-CG) using theTR and DD method respectively.

and RMS errors were similar. It appears that the axial conaecuracy and computation, we recommend to combine the SF-
beam artifacts due to poor sampling (not truncation) at fie 0TR and SF-TT method, which is to use the SF-TR projector for
axis slices dominate other effects in the reconstructedjgsa voxels corresponding to small cone angles and to use the SF-
such as the errors caused by rectangle approximation.&urt@T projector for voxels corresponding to larger cone angles

research will evaluate these two projectors within ite&ati  The model and simulations here considered an ideal point
reconstruction methods under other CT geometries where #urce. For a finite sized X-ray source there would be more

off-axis sampling is better, such as helical scans, yet @hejlur and it is possible that the differences between the $F an
the cone angle is large enough to differentiate the SF-TR apth methods would be smaller.

SF-TT method . Approximating the footprint functions as 2D separable

functions is the key contribution of this approach. Since th
V. CONCLUSION separability greatly simplifies the calculation of integraf

. he footprint functions, using more accurate functionsha t
We presented two new 3D forward and back projector for X- . e e . ) .

ray CT: SF-TR and SF-TT. Simulation results have shown thé%‘”?"?‘x'a' and axial d|re(_:t|on is possible without cometisg
the SF-TR projector is more accurate with similar compotati significantly the .calculat!o.ns.
speed than the DD projector, and the SF-TT projector is more | € computational efficiency of the SF methods rely on the
accurate but computationally slower than the SF-TR project@SSumption that the vertical)(axis of the detector plane is
The DD projector is particularly favorable relative to otheParallel to the rotation axis. If the detector plane is siigh
previously published projectors in terms of the balance bERtated then slight interpolation would be needed to resamp
tween speed and accuracy. The SF-TR method uses trape2§ip coordinates that are parallel to the rotation axis.
functions in the transaxial direction and rectangular fioles ~ Although we focused on voxel basis functions in this paper,
in the axial direction, while the SF-TT method uses trapgzothe idea of 2D separable footprint approximation could also
functions in both directions. The rectangular approximati be applied to other basis functions with separability in the
in the axial direction is adequate for CT systems with sma#ial and transaxial directions, with appropriate choicés
cone angles, such as the multi-slice geometries. The toighezunctions.
approximation is more realistic for geometries with largae Further research will address the implementation of the SF
angles, such as the flat-panel detector geometries. Todmalaprojector based on graphics processing unit (GPU) program-



ming techniques [6], [44] to improve the speed.
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