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ABSTRACT

Magnetic resonance imaging (MRI) is a sophisticated and ver-

satile medical imaging modality. Traditionally, MR images

are reconstructed from the raw measurements by a simple in-

verse 2D or 3D fast Fourier transform (FFT). However, there

are a growing number of MRI applications where a simple

inverse FFT is inadequate, e.g., due to non-Cartesian sam-

pling patterns, non-Fourier physical effects, nonlinear mag-

netic fields, or deliberate under-sampling to reduce scan times.

Such considerations have led to increasing interest in methods

for model-based image reconstruction in MRI.

1. INTRODUCTION

The inverse fast Fourier transform (FFT) has served the MR

community very well as the conventional image reconstruc-

tion method for k-space data with full Cartesian sampling.

And for well sampled non-Cartesian data, the gridding method

[1] with appropriate density compensation factors [2] is fast

and effective. But when only under-sampled data is avail-

able, or when non-Fourier physical effects like field inhomo-

geneity are important, then gridding/FFT methods for image

reconstruction are suboptimal, and iterative algorithms based

on appropriate models can improve image quality, at the price

of increased computation. This paper reviews the use of iter-

ative algorithms for model-based MR image reconstruction.

The references give pointers to some recent work but are by

no means a comprehensive survey⋆.

2. MRI BACKGROUND

Any signal processing method aimed at forming images from

measurement devices such as MRI scanners must consider

the relevant physics. A survey in this magazine [3] and a

book written from a signal processing perspective [4] have

described MRI physics well. Here we review the physics

in a somewhat unconventional way that facilitates describing

some of the “non-Fourier” aspects of MRI.
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2.1. MRI physics

Standard MRI scanners use a large static magnetic field

~B0(~r) = B0(~r)~k (1)

to induce a net magnetization ~M = Mx~ı + My ~ + Mz
~k at

each point in space in the body being imaged, where ~ı, ~, ~k
denote the unit vectors along the x, y and z axes respectively,

and ~r = (x, y, z) denotes 3D spatial coordinates. Ideally the

static field strength B0(~r) would be spatially uniform, i.e., a

single constant B0. In practice it is never perfectly uniform,

due to the unavoidable nonuniformities of all practical coil

designs and due to the field strength variations that are in-

duced by the nonuniform magnetic susceptibilities of differ-

ent tissue types[5] [6]. The electron distributions in different

molecules also influence the local magnetic environment ex-

perienced by an atom’s nucleus, called chemical shift. Some

types of MRI scans are robust to such spatial variations ofB0;

others are sensitive to nonuniformities, necessitating correc-

tion methods[7].

At equilibrium (which is established within a few seconds

for a stationary object), the magnetization ~M is aligned with

the applied static field and its magnitude is proportional to

the product of B0(~r) and the object-dependent local density

of (predominately) hydrogen protons or “spins.” This proton

density alone is of only modest interest in MRI; in practice

one applies time-varying magnetic fields ~B(~r, t) that induce

time-varying changes in the magnetization

~M(~r, t) = Mx(~r, t)~ı+My(~r, t)~+Mz(~r, t)~k. (2)

These changes depend on time constants (tissue-dependent

relaxation parameters) and other factors, and the goal in MRI

is to form images of aspects of this magnetization. By manip-

ulating the applied field ~B0(~r, t) appropriately, sometimes in

conjunction with injected or inhaled contrast agents, one can

examine a multitude of different tissue properties.

An MRI scan consists of one or more alternations between

two stages: excitation and readout. During the excitation

stage, the applied magnetic field ~B(~r, t) is designed to tip the

magnetization vectors ~M within some slice or slab away from

equilibrium, so that they have a component in the transverse

plane, i.e., the (x, y) plane. It is convenient to represent this



transverse component mathematically using a complex func-

tion defined as follows:

M(~r, t) , Mx(~r, t)+ıMy(~r, t), (3)

where ı ,
√
−1. Note that the field components Mx and My

are real physical quantities; the “transverse magnetization”

M(~r, t) is complex solely by definition. The excitation process

can be quite complicated to model and is beyond the scope of

this paper. See [3] for an introduction to the role that signal

processing plays in the design of excitation pulses, and [8] [9]

[10] for some recent model-based RF pulse design methods.

During the readout stage, the applied field ~B(~r, t) is ma-

nipulated in ways that help elucidate the transverse magne-

tization M(~r, t). For image reconstruction, it is essential to

model the effects of the applied field on the transverse mag-

netization. The precise relationship is governed by the Bloch

equation [11] [3]. For most image reconstruction purposes,

it suffices to consider just two aspects of the full relation-

ship: precession and transverse relaxation. The most im-

portant equation in MRI is the Larmor relation: ω = γ
∣

∣ ~B
∣

∣,
which states that the magnetization precesses (around the axis

of the applied field) at a frequencyω that is proportional to the

magnitude of the applied field. The constant of proportional-

ity γ is called the gyromagnetic ratio and is about 42.6 MHz

per Tesla for hydrogen protons. During a readout, only the

longitudinal component of ~B is varied usually, i.e.,

~B(~r, t) = Bz(~r, t)~k, (4)

so the magnetization precesses around ~k, i.e., within the trans-

verse plane. This property is why the complex representation

(3) is convenient, because precession can be expressed using

a complex phase in this form. In general the applied longitu-

dinal field strength Bz(~r, t) varies both spatially and tempo-

rally, so the Larmor relationship describes the instantaneous

frequency at a given spatial location:

ω(~r, t) = γ Bz(~r, t) . (5)

Without loss of generality, let t = 0 be the time when the

excitation pulse is completed, and consider some time point

t > 0 during the readout. The precession of the transverse

magnetization between time 0 and time t corresponds to a net

phase that is the integral of the instantaneous frequency (5),

i.e., ideally we would have

M(~r, t) = M(~r, 0) exp

(

−ı
∫ t

0

ω(~r, t′) dt′
)

.

In practice, microscopic variations in the magnetic field cause

the spins within a given voxel to become out of phase over

time. So the transverse magnetization vector’s magnitude de-

creases approximately exponentially with a time constant T ∗

2 .

Accounting for this decay, an accurate model for the temporal

evolution of the transverse magnetization during a readout is

M(~r, t) = f(~r) e−t/T∗

2
(~r) exp

(

−ıγ
∫ t

0

Bz(~r, t
′) dt′

)

, (6)

where f(~r) , M(~r, 0) denotes the object’s transverse magne-

tization immediately after excitation. A typical goal in MRI is

to form an image of f(~r). The properties of f(~r) depend not

only on spin density, but also on the type of excitation used.

Note that for simplicity of exposition, we focus here on the

case where the object is static so that f(~r) is not a function

of time t. Generalizations to dynamic imaging are very active

research areas in MR image reconstruction[12].

The relaxation factor T ∗

2 varies spatially, and often is on

the order of 10ms. This relatively rapid decay is a significant

limitation in MRI. If T ∗

2 were longer, then a signal excitation

stage followed by a (lengthy) readout stage could be sufficient

to form a high-resolution image of f(~r). In practice, the rapid

decay limits how much spatial information can be recorded in

a single readout stage, so such “single shot” imaging, such as

echo-planar imaging (EPI) [13], provides only modest spatial

resolution. Therefore, high-resolution imaging uses multi-

ple alternations between excitation stages and readout stages,

each with different variations of the applied field Bz(~r, t).

2.2. Data acquisition: the MR signal

By Faraday’s law the time-varying magnetization M(~r, t) will

induce an electromotive force (emf) in a nearby coil. The

emf will be proportional to the volume integral of the time

derivative of the magnetization M(~r, t) multiplied by the coil

response pattern c(~r). The resulting electrical potential v(t)
across the receive coil is

v(t) = real

(
∫

c(~r)
d

dt
M(~r, t) d~r

)

, (7)

where real(·) denotes the real part of a complex number. The

coil response c(~r) generally decreases with distance from the

coil. If uncorrected, this nonuniformity causes spatial vari-

ations in signal strength that can be a challenge for image

processing methods like segmentation algorithms. Numerous

correction methods have been developed[14] [15] [16] [17]

[18].

Because the time constant T ∗

2 is on the order of millisec-

onds whereas the phase variations in (6) are many MHz, it

is very reasonable to use a narrow-band approximation when

evaluating the time derivative of M(~r, t) as needed in (7). The

time derivative of a narrow-band signal is well approximated

by a constant scaling factor: d
dt M(~r, t) ≈ c0 M(~r, t) . We ab-

sorb this constant into the coil response pattern and rewrite

(7) as

v(t) = real

(
∫

c(~r)M(~r, t) d~r

)

. (8)

The receive coil’s signal is amplified and demodulated us-

ing some center frequency ω0. Ideally one would use ω0 =



γ B0 if the static magnetic field had uniform strength B0.

Usually quadrature demodulation is used, yielding separate

in-phase I(t) and quadrature Q(t) baseband signals. In the

literature, the demodulated “MR signal” s(t) is defined (im-

plicitly) as

s(t) , I(t) + ıQ(t)

= lowpass
(

eı ω0 t v(t)
)

= eı ω0 t

∫

c(~r) M(~r, t) d~r, (9)

where the lowpass operation selects the baseband component

of the demodulated signal. This complex analog signal is just

a mathematical definition; in practice, the I(t) and Q(t) sig-

nals are each sampled and digitized yielding two digital sig-

nals. (One can use two separate A/D converters, or a single

A/D converter running at twice the normal rate to avoid I/Q

imbalance.) Digitally, these two signals can be combined and

stored as complex values, i.e., we record samples

I(m∆T) + ıQ(m∆T), m = 1, . . . , nd,

where ∆T denotes the sampling rate (typically around 1 µs)

and nd denotes the number of recorded samples, typically 64-

512 for a given readout stage. Again, the physical quantities

are real, but complex quantities are defined in terms of those

physical quantities for convenience. (In some systems, digital

demodulation is used, but the modeling remains identical.)

2.3. Signal model

To improve signal to noise ratio (SNR) and reduce acquisition

times, the use of multiple receive coils has become increas-

ingly popular in MRI. Although originally called phased ar-

ray imaging [19], a term that resonates with other signal pro-

cessing applications involving multiple receivers, today the

use of multiple receive coils in MRI is usually called parallel

imaging [20] [21] [22].

Let cl(~r) denote the sensitivity (response pattern) of the

lth coil, for l = 1, . . . , L, where L denotes the number of

coils. Let sl(t) denote the demodulated “MR signal” asso-

ciated with the lth coil, defined as in (9). Substituting (6)

into (9) and simplifying yields the following general forward

model for the MR signal associated with the lth coil:

sl(t) =

∫

cl(~r) f(~r) e−t/T∗

2
(~r) e−ıφ(~r,t) d~r, (10)

where the space- and time-varying phase is

φ(~r, t) ,

∫ t

0

(γ Bz(~r, t
′)−ω0) dt′ . (11)

In practice multiple such signals are recorded, one for each

excitation/readout pair (“shots”). For simplicity of notation

we consider “single shot” imaging; the extension to multiple

shots is conceptually straightforward but notationally cum-

bersome. Note that the phase variations (11) are common to

all receive coils; only the coil response patterns {cl(~r)} differ

between coils.

2.4. Measurement model

The recorded measurements in a MR scan consist of noisy

samples of the MR signal (10)

yli = sl(ti) + εli, i = 1, . . . , nd, l = 1, . . . , L, (12)

where yli denotes the ith sample of the lth coil’s signal at

time ti and nd denotes the number of time samples. Usually

the ti values are equally spaced, and often there are one or

more time values where the signal is particularly strong due

to alignment of the magnetization’s phases; these values are

called echo times. The measurement errors εli are very well

modeled by additive, complex, zero-mean, temporally white

gaussian noise [23] [24] [25]. However, there can be coupling

of the noise values between different coils for the same time

points, i.e.,

Cov{εli, εkj} = Σlk δ[i− j], (13)

where δ denotes the Kronecker impulse, and the L×Lmatrix

Σ characterizes the noise covariance between coils [26] [22].

3. LINEAR RECONSTRUCTION PROBLEM

Using the measurement model (12) and the signal model (10),

the “typical” image reconstruction problem in MRI is to es-

timate the object f(~r) from the measurement vector y =
(y1, . . . ,yL), where yl = (yl1, . . . , yl,nd

). (All vectors are

column vectors here.) We first consider model-based image

reconstruction for this “basic” linear formulation. Because

parallel imaging is of considerable interest, we continue to

consider the general case of L receive coils. A standard sin-

gle receive coil is a simple special case.

This is an ill-posed problem because the given measure-

ments y are discrete whereas the object f(~r) is an unknown

continuous-space function. To facilitate parametric estima-

tion, we approximate the object f(~r) using a “finite series

expansion” as follows:

f(~r) =
N

∑

j=1

fj b(~r − ~rj), (14)

where b(·) denotes the object basis function, ~rj denotes the

center of the jth translated basis function, and N is the num-

ber of parameters. Such approximations are classic in the to-

mographic image reconstruction literature [27] and are slowly

taking root in the MR community. Minimum L2 norm meth-

ods [28] can postpone the discretization (14) until the final

step of displaying the image, but it is unclear if this approach



provides image quality benefits that outweigh its computa-

tional requirements. For simplicity, hereafter we use rect ba-

sis functions b(~r) = rect(~r/∆), i.e., square pixels of dimen-

sion ∆, so N is the number of pixels, or voxels in 3D scans.

Many other possible basis function choices can be considered,

all of which are imperfect because the true object never sat-

isfies the parametric model (14) exactly. Nevertheless simple

basis functions can provide useful approximations.

Substituting the basis expansion (14) into the signal model

(10) and simplifying leads to the discrete forward model

sl(ti) =

N
∑

j=1

alijfj (15)

where the elements {alij} of the system matrix Al associated

with the lth coil are given by

alij =

∫

b(~r − ~rj) cl(~r) e−ti/T∗

2
(~r) e−ıφ(~r,ti) d~r . (16)

In practice the basis functions are usually highly localized

(e.g., voxels), so “center of voxel” approximations like the

following are nearly always used, often implicitly:

alij ≈ cl(~rj) e−ti/T∗

2
(~rj) e−ıφ(~rj ,ti) . (17)

For exceptions, see [29] [30].

Typically the decay due to T ∗

2 is ignored, or it is assumed

implicitly that the total readout time tnd
− t1 is small rel-

ative to T ∗

2 in which case one can make the approximation

e−ti/T∗

2
(~r) ≈ e−t1/T∗

2
(~r) . Under this approximation, we can

absorb the T ∗

2 -weighting effect of e−t1/T∗

2
(~r) into the unknown

image f(~r).
Combining (12) and (15) in matrix-vector form yields:

yl = Alf + εl,

where f = (f1, . . . , fN) is the vector of parameters (pixel

values) that we wish to estimate from the data y. Stacking up

all L measurement vectors as y = (y1, . . . ,yL) and defining

the (ndL) ×N system matrix A = (A1, . . . ,AL) yields the

linear model

y = Af + ε. (18)

At first glance this linear model appears amenable to a va-

riety of iterative solution methods. However, a significant

challenge that arises is that in general the elements of A can

be quite complicated in the form above, yet A is too large

to store for typical problem sizes. Most iterative algorithms

require matrix-vector multiplication by A and its transpose;

there are fast algorithms for these operations (without storing

A explicitly) in many special cases of interest [31] [30] [7].

Thus far we have allowed the phase function φ(~rj , ti) to

be quite general, without the traditional focus on “Fourier

encoding.” Recently there has been interest in investigating

nonlinear magnetic field variationsBz(~r, t) in (4), and recon-

struction algorithms have been proposed that use much of the

generality in (16) [32] [33]. These are currently specialized

research topics, so we now focus on the more common case

of linear field gradients.

3.1. Fourier encoding

In typical MR scanners, the longitudinal component of the

applied field Bz(~r, t) in (4) consists of three components:

Bz(~r, t) = B0 + ∆B0(~r)+ ~G(t) ·~r. (19)

The constant B0 denotes the advertised field strength of the

main static field. The function ∆B0(~r) denotes the spatial

deviations of the field strength from this nominal value. This

function is often called a field map, and in general it is un-

known, but it can be estimated by suitable types of acquisi-

tions and data processing methods [34] [35]. The field gra-

dients ~G(t) = ~Gx(t)~ + ~Gy(t)~ + ~Gz(t)~ consist of three

user-controlled functions that are the historical key to provid-

ing spatial information in standard MR imaging[36]. Many

different types of MR scans are possible by changing ~G(t).

Substituting (19) into (11) using ω0 , γ B0 and simplify-

ing yields

φ(~r, t) =

∫ t

0

γ∆B0(~r)+γ ~G(t) ·~r dt

or equivalently

e−ıφ(~r,t) = e−ı ∆ω0(~r) t e−ı2π ~k(t) ·~r (20)

where ∆ω0(~r) , γ∆B0(~r) denotes the off-resonance fre-

quency and the k-space trajectory is defined by

~k(t) ,
1

2π

∫ t

0

γ ~G(t) dt . (21)

Usually the phase accrual e−ı ∆ω0(~r) t due to off resonance

is undesirable and can distort reconstructed images if ignored[37].

Therefore some image reconstruction methods, particularly in

fMRI, account for its effects [38] [30]. In some cases the map

∆ω0(~r) is found from a separate “pre-scan;” in other cases it

is estimated jointly with f [39] [40] [41]. In chemical shift

imaging, e.g., to separate fat and water components, the term

∆ω0(~r) includes both useful information about the chemical

shift effect as well as the undesirable variations due to field

inhomogeneity [42] [43].

For the linear field gradients (19), substituting (20) into

(17) yields simpler expressions for the system matrix:

alij ≈ cl(~rj) e− z(~rj) ti e−ı2π ~k(ti) ·~rj , (22)

where we define the “rate map” z(~r) by combining the relax-

ation and field maps:

z(~r) , 1/T ∗

2 (~r) + ı∆ω0(~r) . (23)



When this rate map is assumed to be zero, i.e., if relax-

ation and off resonance are ignored, then alij is the product

of a Fourier encoding matrix having elements e−ı2π ~k(ti) ·~rj

with a diagonal sensitivity encoding matrix having elements

cl(~rj).

If the k-space sample locations ~k(ti) lie on an appropriate

subset of a Cartesian grid, then FFT operations provide effi-

cient multiplication by A and its transpose. If non-Cartesian

k-space sampling is used, then a nonuniform FFT (NUFFT)

is needed [44].

When z(~r) in (22) is nonzero, then the elements (22) no

longer correspond to a standard Fourier transform. Approx-

imations are needed to provide fast computation of matrix-

vector products. In particular, often one can approximate the

exponentials in (17) using an additively separable form:

e− z(~rj) ti ≈
∑

k

bikckj

for various choices for the basis functions bik and coefficients

ckj [7]. With this type of approximation, we can rewrite

matrix-vector multiplication as follows:

[Alf ]i ≈
∑

k

bik

N
∑

j=1

(ckj cl(~rj) fj) e−ı2π ~k(ti) ·~rj .

The inner sum is simply a FFT or NUFFT so this approach is

relatively fast. Free software for this is available [45].

3.2. Reconstruction cost function

Having specified the linear model (18), we now turn to so-

lution methods. Because the noise in MRI measurements is

gaussian, a natural approach is to estimate f by minimizing a

regularized least-squares cost function:

f̂ = arg min
f

Ψ(f), Ψ(f) , ‖y − Af‖2
+β R(f) . (24)

For a single coil, the noise variance in the k-space data is

white (uncorrelated with uniform variance), so the usual Eu-

clidian norm ‖·‖ is appropriate. For parallel MRI, noise is

stationary across time samples (i), but the norm should in-

clude the inverse of the L × L covariance matrix Σ in (13)

that describes the noise correlation between receive coils [26]

[22].

If the k-space samples lie on an equally-spaced grid (Carte-

sian sampling) with appropriate sample spacings relative to

the object field of view, and if the rate map z(~r) is zero (i.e.,

we ignore relaxation and field inhomogeneity), and if we con-

sider just a single coil (L = 1) and treat the sensitivity pattern

as uniform, i.e., c1(~r) = 1, then the system matrix Al is or-

thogonal. In this special case, no regularization is needed and

A−1 = 1
N A′ and the solution is simply f̂ = 1

N A′y, which

can be evaluated by an inverse FFT. This is the most common

MR image reconstruction method. However, if any of these

conditions do not hold, then typically the system matrix A is

not well conditioned, and the unregularized LS solution can

lead to undesirable noise amplification. To avoid this prob-

lem, some form of regularization is needed.

3.3. Regularization

An open problem in most image reconstruction problems, in-

cluding MRI, is how to best choose the regularizer R(f). If

this term is not included, then the image estimate f̂ will suf-

fer from noise and artifacts for under-sampled and/or non-

Cartesian data, because this inverse problem is ill-conditioned.

The approach for iterative reconstruction that has been adopted

in commercial PET scanners is to use an unregularized algorithm[46],

initialize it with a uniform image, stop iterating just as the im-

age gets unacceptably noisy, and then perhaps apply a bit of

post-filtering to reduce the noise. One could adopt a similar

approach for MR imaging[47]. However, introducing regular-

ization can ensure that the iterative algorithm converges to a

stable image, and can enforce prior information that improves

image quality particularly for under-sampled data.

The simplest choice is Tikhonov regularization R(f) =

‖f‖2
or R(f) =

∥

∥f − f̄
∥

∥

2
, where f̄ is some prior or refer-

ence image (possibly zero). The disadvantage of this choice

is that it biases the estimate towards the reference image f̄ . In

particular, if the reference image is zero, then all pixel values

in f̂ are diminished towards zero, possibly reducing contrast.

Another choice is a quadratic roughness penalty function,

which in 1D would be written

R(f) =

N
∑

j=2

|fj − fj−1|2 . (25)

This choice biases the reconstruction towards a smooth image

where neighboring pixel values are similar. It is convenient

for minimization [30], but it has the drawback of smoothing

image edges, particularly if the regularization parameter β in

(24) is too large. One can prove that using (25) guarantees

that the cost function (24) has a unique minimizer.

More recently, total variation methods have been investi-

gated for MR image reconstruction [48]. In 1D, these meth-

ods replace the squared differences between neighboring pix-

els above with absolute differences:

R(f) =

N
∑

j=2

|fj − fj−1| . (26)

In 2D continuous space, the analogous functional is

∫

‖∇f‖d~r =

∫∫

√

∣

∣

∣

∣

∂

∂x
f(~r)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂

∂y
f(~r)

∣

∣

∣

∣

2

dxdy .

The advantage of this type of regularization is that it biases

the reconstructed image towards a piecewise smooth image,



instead of a globally smooth image, thereby better preserving

image edges. However it is harder to minimize and can lead to

the appearance of “blocky” texture in images[49]. Numerous

alternatives of the form

R(f) =

N
∑

j=2

ψ(fj − fj−1)

for various choices of the “potential function” ψ(·) have been

proposed in the imaging literature. Many of these compro-

mise between the quadratic case (25) and the absolute differ-

ence case (26), for example the hyperbola

ψ(t) =

√

1 + |t/δ|2 − 1 (27)

is approximately quadratic near 0, which aids noise reduction,

yet approximately linear away from 0, which helps preserve

edges[50].

3.4. Algorithms

Iterative algorithms are needed to minimize (24). For differ-

entiable regularizers such as (25), the conjugate gradient algo-

rithm is a natural choice [26] [30]. For nondifferentiable reg-

ularizers like (26), more sophisticated algorithms are needed

and this is an active research area[51, 52] [12].

4. RECONSTRUCTION CHALLENGES

Although a variety of useful problems can be solved in MRI

using the formulation (24), there are numerous challenges that

provide research opportunities.

4.1. Regularization parameter selection

A practical challenge with regularized methods is selection

of the regularization parameter β in (24). For quadratic reg-

ularization, there is a well-developed theory for choosing β
in terms of the desired spatial resolution properties of the re-

constructed image [53] [54]. This theory extends readily to

MR imaging with reasonably well sampled trajectories (and

to parallel imaging with reasonable acceleration factors) for

which the point spread function (PSF) of the reconstructed

image is relatively close to a Kronecker impulse so that sim-

ple measures like full width at half maximum (FWHM) are

reasonable resolution metrics[55]. For highly under-sampled

trajectories the PSF can have “heavy tails” due to aliasing ef-

fects, and more investigation is needed to extend the above

methods to MR applications.

For nonquadratic regularization such as the total variation

method (26), the analysis in [53] [54] is inapplicable so one

must resort to other methods for choosing β. Statisticians of-

ten use cross validation [56] [57] for choosing regularization

parameters, with a goal of finding the parameter that mini-

mizes the mean-squared error (MSE) between f̂ and the un-

known f . However, MSE is the sum of variance and bias

squared, and where bias is related to spatial resolution and ar-

tifacts, and it is unclear whether an equal weighting of noise

variance and bias (squared) is optimal from an image quality

perspective in medical imaging.

Another method for choosingβ is the “L-curve” method[58]

[59]. This method is expensive because it requires evaluating

f̂ for several values of β, and it has some theoretical deficien-

cies [60].

In summary, choosing β for nonquadratic regularization

remains a nontrivial issue in most ill-posed imaging problems

including MRI, and remains an active research area [61] [62].

4.2. Partial k-space methods

If the object f(~r) were real, then its Fourier transform would

be Hermitian symmetric so in principle only half of k-space

would need to be sampled. In practice the magnetization (3)

is complex due to a variety of physical effects. However,

in many cases the phase of M(~r, t) can be assumed to be a

smooth function. This property has led to a variety of partial

k-space methods where one samples a bit more than half of

k-space, then estimates the phase from the central portion of

k-space (corresponding to low spatial frequencies), and then

uses this estimated phase to reconstruct the entire image [63]

[64] [65] [66]. Such methods are used routinely in many types

of MR scans.

4.3. Under-sampled k-space data

The need for some type of regularization is essential when the

k-space data is under sampled, i.e., when the number of mea-

surements Lnd is less than the number of unknown voxels

N . In MRI, the scan time is roughly proportional to the num-

ber of measurements, so collecting fewer samples can reduce

scan time, which is particularly desirable in dynamic imaging.

In the broader field of tomographic image reconstruction,

there is a long history of using prior information, such as as-

suming objects are piecewise smooth, to reconstruct images

from an under-sampled set of projection views, e.g., [67] [68]

[69] [70] [71]. Many of these methods involve cost functions

of the form (24) with a suitable system matrix A for the ap-

plication and appropriate regularizers R(f) that capture prior

information about the object.

Recently it has become very popular to express prior in-

formation in terms of some type of sparsity of the object.

Notions of sparsity have deep roots in statistical signal pro-

cessing [72] [73] [74] [75]. Sparsity is especially apparent

in MR angiography [76]. The moniker of compressed sens-

ing or compressive sampling has become widespread for such

techniques, and recently entire sessions at MR conferences

are devoted to this topic [77] [12]. Some compressed sensing



formulations ignore the noise in the data. In the presence of

noise, a typical formulation is

arg min
f

‖Ψf‖1 s.t. ‖y − Af‖2 ≤ ǫ,

where Ψ transforms the image f into a domain (such as wavelet

coefficients) where one postulates that the signal is sparse.

Often this optimization problem is solved using a Lagrange

multiplier approach:

argmin
f

‖y − Af‖2
2 + β ‖Ψf‖1 ,

which corresponds to a particular regularizer in (24). Rarely

is the ℓ1 norm implemented exactly; in practice usually a con-

tinuously differentiable approximation is used, such as:

‖v‖1 ≈
∑

i

(

√

|vi|2 + δ2 − δ

)

(28)

for some small value of δ > 0. This approximation is equiva-

lent to the hyperbola (27) used frequently for edge-preserving

image reconstruction. Non-convex methods that enforce spar-

sity even more strongly are also under investigation[78]. In

the usual case where A corresponds to an under-sampled dis-

crete Fourier transform (DFT), a variety of algorithms are

available that have numerous potential applications in MR

[12]. Challenges with this approach include choosing the

sparsifying transform Ψ and regularization parameters β and

δ appropriately. Furthermore, when δ is small, the regularizer

(28) has very high curvature near 0, which can slow conver-

gence. Choice of the k-space sampling pattern is also impor-

tant. Nonuniform sampling has a long history in MRI, e.g.,

[79].

5. NONLINEAR RECONSTRUCTION PROBLEMS

The linear image reconstruction problem (24) is just one of

many estimation problems of interest in MRI. Returning to

the elements of the system matrix (22), there has been re-

search on estimating essentially every component therein, as

summarized below.

5.1. Field map estimation

For scans with long readout times, the effect of field inhomo-

geneity ∆ω0 in (22) is important. In practice the field map

ω(~r) is not known a priori but rather it must be estimated

from noisy MR scans. One can examine the phase differences

between two scans having different echo times to determine

∆ω0. If these two scans have short readouts, then there are

simple image-domain methods for estimating ∆ω0, which is

known as B0 field mapping [80] [35]. Errors in the field map

estimates may cause artifacts in reconstructed images that are

based on models like (22).

In addition, object motion that occurs between the field

map scans and subsequent scans of interest, e.g., in fMRI,

will lead to an inconsistency between the actual scan data and

the assumed model (22) used by the reconstruction algorithm.

This possibility has motivated the development of dynamic

field mapping methods that estimate the field map separately

for each frame in a dynamic study, e.g., [38] [81] [82] [41].

For scans with long readout durations, the appearance of ∆ω0

in a complex exponential in (22) makes this a somewhat com-

plicated nonlinear estimation problem.

5.2. Relaxation map estimation

In some MR applications, it is useful to estimate tissue relax-

ation parameters, particularly T2 or T ∗

2 , on a pixel-by-pixel

basis[83] [84] [85] [86]. One approach to measuring such

relaxation parameters is to acquire a “baseline” scan of the

object and then acquire one or more additional scans hav-

ing different echo times. One then reconstructs images from

each of those scans, and then performs linear regression on a

voxel-by-voxel basis using the logarithm of the image voxel

values. This approach can be adequate if the readout dura-

tions are sufficiently small. But for acquisitions with long

readouts, the effect of time ti in the e− z(~rj) ti in (22) should

be considered, i.e., we should account for relaxation during

the signal readout[86]. This requires methods that estimate

the relaxation map directly from the k-space data. These are

more challenging nonlinear estimation problems because T ∗

2

appears in an exponent in (22). Several methods for jointly es-

timating T ∗

2 , ∆ω0, and f(~r) have been investigated [87] [88]

[40] [89] [82].

5.3. Sensitivity map estimation

The coil sensitivity patterns cl(~r) in (22) also must be de-

termined for parallel imaging based on sensitivity encoding.

Normally this is done by acquiring well-sampled data both

with local receive coils and with a reference body coil and di-

viding the two [22]. Acquiring the extra reference data can be

inconvenient, so normalizing by the square root of the sum of

squares of the local receive coils is also used[90]. A variety of

other estimation methods have been proposed[91] [92] [93],

including methods that jointly estimate the sensitivity maps

{cl(~r)} and the image f(~r) [94] [95] [96]. Note that if f(~r)
were known, then the problem of estimating cl(~r) would be

a linear estimation problem because cl(~r) appears as a linear

scaling in (22). But when both f(~r) and cl(~r) are to be esti-

mated, the model is bilinear because f(~r) and cl(~r) appear as

a product in (10). This complicates joint estimation.

5.4. Trajectory mapping

The k-space trajectory ~k(ti), defined as an integral of the gra-

dient waveforms in (21), should be calibrated carefully to

ensure that the system model (22) is accurate. In practice,



the field gradients induced by the gradient coils in the scan-

ner are not exactly proportional to the waveforms applied to

those coils due to eddy currents. Therefore the physical k-

space trajectory realized in the system can depart somewhat

from the desired k-space trajectory. These differences can de-

grade the reconstructed image, particularly for non-Cartesian

trajectories with long readout durations. Therefore, a vari-

ety of techniques have been developed for mapping the actual

k-space trajectory experimentally[97] [98] [99] [100] [101]

[102] [103].

5.5. Within-voxel gradients

The model (23) treats the field inhomogeneity within each

voxel as being a constant, ignoring within-voxel gradients

of the off-resonance map. However, these gradients can be

significant in functional magnetic resonance imaging (fMRI)

based on the BOLD effect [104]. Accurate reconstruction of

signals near air-tissue interfaces requires compensation for

these within-voxel gradients, which complicates the recon-

struction method [105] [106] [29] [107].

6. EXAMPLE

To illustrate the capabilities of model-based image reconstruc-

tion methods for MRI, we simulated k-space data for a 4-shot

EPI sequence with matrix size 128×128 and 5 µsec sampling

so the readout duration was 27.3 msec per shot. The field map

∆B0(~r) appears in Fig. 2 of [35] and is based on a brain slice

above the sinuses and ear canals where susceptibility effects

occur. Fig. 1 shows the true image used in the simulations

and images from three different reconstruction methods. The

“uncorrected” reconstruction simply uses an inverse 2D FFT,

with no consideration of field inhomogeneity. The field inho-

mogeneity causes spatial distortion in the read-out (vertical)

direction (that increases NRMSE dramatically), as well as

significant intensity artifacts above the ears and sinuses where

the susceptibility effects are largest. The classical conjugate

phase reconstruction method, which corresponds to A′y in

this single-coil case, reduces the spatial distortion but the in-

tensity artifacts persist. Applying 15 iterations of a conjugate

gradient algorithm with a monotonic line search [108] [7] to

the cost function (24) with the edge-preserving hyperbola (27)

yields the right-most image in Fig. 1. This model-based im-

age reconstruction method yields the lowest RMS error, but

it requires about 30× more computation than the noniterative

conjugate phase method [7] because each iteration requires

multiplication by A and A′. The software that generated this

figure is available online [45].

7. SUMMARY

Image reconstruction is not a single problem in MRI, but rather

is a wide family of problems depending on what physical ef-

fects are included in the signal model. The most widely stud-

ied case, particularly in the signal processing community, is

when nearly all physical effects are disregarded and the sys-

tem model consists solely of sampled of the Fourier trans-

form of the object. This basic model is amenable to familiar

signal processing tools and is applicable to many MR scans.

But there are also many interesting applications where other

physical effects are relevant, and model-based methods that

account for those effects are proving to be beneficial for im-

proving image quality. Model-based methods themselves de-

pend on estimates of a variety of model parameters, leading to

interesting problems where those parameters are determined

either by separate calibration scans or by jointly estimating

the image and those parameters. Despite over 3 decades of

MR research, there remain challenging and intriguing prob-

lems in MR image reconstruction.

The published version of this paper (with a short bibliog-

raphy) is [109].
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