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Quadratic Regularization Design for 2-D CT
Hugo R. Shi*, Student Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Statistical methods for tomographic image recon-
struction have improved noise and spatial resolution properties
that may improve image quality in X-ray computed tomography
(CT). Penalized weighted least squares (PWLS) methods using
conventional quadratic regularization lead to nonuniform and
anisotropic spatial resolution due to interactions between the
weighting, which is necessary for good noise properties, and
the regularizer. Previously, we addressed this problem for par-
allel-beam emission tomography using matrix algebra methods
to design data-dependent, shift-variant regularizers that improve
resolution uniformity. This paper develops a fast angular in-
tegral mostly analytical (AIMA) regularization design method
for 2-D fan-beam X-ray CT imaging, for which parallel-beam
tomography is a special case. Simulation results demonstrate that
the new method for regularization design requires very modest
computation and leads to nearly uniform and isotropic spatial
resolution in transmission tomography when using quadratic
regularization.

Index Terms—Fan-beam computed tomography (CT), iterative
reconstruction, local impulse response, regularization, spatial res-
olution.

I. INTRODUCTION

S TATISTICAL image reconstruction methods for X-ray
computed tomography (CT) imaging have the potential to

reduce patient dose, reduce artifacts from beam hardening and
metal objects, and accommodate scanning geometries that are
poorly suited for conventional FBP reconstruction. Unregular-
ized image reconstruction leads to excessively noisy images,
which necessitates noise control such as a penalized weighted
least squares1 (PWLS) method, or a penalized-likelihood (PL)
method [1].

Although PL and PWLS methods can control noise, interac-
tions between a conventional quadratic roughness penalty and
the weighting that is explicit in PWLS methods [2], and is im-
plicit in PL methods, results in images with nonuniform and
anisotropic spatial resolution, even for idealized shift-invariant
imaging systems [3]. Fan-beam geometries used in X-ray CT
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1In this paper, we write PWLS and penalized unweighted least squares
(PULS) because the techniques used in this paper can be generalized for
nonquadratic regularization. However, the scope of this paper is quadratic
regularization and all regularizers used here are quadratic.

are shift-variant and contain additional variations in spatial res-
olution over the field-of-view (FOV) [4]. The resulting nonuni-
formities and anisotropy could be avoided in part by using a
conventional penalized unweighted least-squares (PULS) esti-
mation method. However, without the weighting, PULS yields
poor noise properties (akin to FBP).

Much previous work on regularization design focuses on ma-
trix-based approaches to fit the local impulse response of the
estimator to a target impulse response. A shift-variant regular-
izer based on the aggregate certainty of measurement rays in-
tersecting each pixel was developed that yielded uniform but
anisotropic spatial resolution [3]. Stayman parameterized the
quadratic regularizer to produce uniform and isotropic spatial
resolution [5] and generalized regularization design to other
non-Poisson noise models [6]. [7] presents a regularization de-
sign method for uniform and isotropic spatial resolution that is
not based on an explicit target point spread function (PSF), but
rather focuses on circular symmetry and uniformity. Extensions
to 3-D PET have also been proposed [8], [9].

We previously proposed an analytical approach to regular-
ization design for 2-D parallel-beam emission reconstruction
that uses continuous space analogs to simplify the regulariza-
tion design problem [10]. This paper extends [10] by devel-
oping a mostly analytical approach to regularization design for
fan-beam geometries [11]. Section II reviews the concept of a
local impulse response (LIR) and discusses the design of regu-
larizers that yield approximately uniform and isotropic spatial
resolution. Section III uses the frequency domain to gain some
insight into the problem and derives a minimization problem to
solve for the appropriate regularization coefficients. Section IV
describes efficient techniques for computing the regularization
coefficients. Section V presents the results of our simulations
using simulated and real X-ray CT data, and Section VI ana-
lyzes them.

II. LOCAL IMPULSE REPONSE

Let denote the vector of noisy transmis-
sion sinogram measurements recorded in a CT system. For sim-
plicity, we consider the following mono-energetic formulation
for the ensemble mean of the measured data:

(1)

where is the system matrix, is a dis-
cretized version of the object being imaged, denotes the blank
scan, denotes the additive contribution of scatter, and

. The spatial resolution and therefore regularization
design techniques are applicable to PL methods when appro-
priate weightings are chosen [3]. We estimate by minimizing
the following cost function:

(2)

(3)
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where using element-wise division,
is a regularizer that controls noise, is a scalar that de-

termines the resolution-noise tradeoff, and is a
statistical weighting matrix. For transmission tomography with
the model in (1), usually we have the plug-in weighting
corresponding to the PL estimator for (1) [12]. For emission to-
mography, the plug-in weighting is ; for low count
levels alternative weightings are preferable [13]. The regular-
ization design methods in this paper apply to other statistical
models than (1) by simply changing the weighting matrix .

The goal of this work is to design so that the recon-
structed image has approximately uniform and isotropic spatial
resolution. The tools developed for this purpose could be modi-
fied to achieve other resolution design goals. Analyzing the local
impulse response (LIR) is an essential part of assessing the res-
olution. Here we use the following definition of local impulse
response for the th pixel:

(4)

where is a Kronecker impulse at the th pixel and the gradient
operations are matrices such that
and (this definition depends on the
mean of the data, rather than the mean of and differs slightly
from that used in [3], but yields the same final expression
without requiring further approximations). Evaluating (4)[3],
the LIR for the PWLS estimator (3) is

(5)

where is the Hessian of the regularizer .
As is evident from (5), the local impulse response depends on

the regularizer through its Hessian, . We would like to design
such that the local impulse response best matches a target

response at every pixel . We could phrase this matrix opti-
mization problem as

(6)

where is a shift operator that recenters to the center
pixel. This matrix formulation of the design problem seems
intractable, so we turn to the frequency domain to simplify the
problem.

III. FREQUENCY DOMAIN ANALYSIS

This section first reviews the use of discrete Fourier trans-
forms for resolution analysis, leading to a computationally in-
tensive approach to regularization design. We then consider con-
tinuous-space analogs that lead to simplified designs.

A. Discrete Fourier Analysis

An analytical expression for is derived in Ap-
pendix B, showing that changes slowly with . Thus

is approximately locally circulant. The matrix in (5)
can be designed to be locally circulant as well. This allows us
to factor out a Fourier transform matrix in (5).

Let denote an orthonormal discrete Fourier transform ma-
trix centered at pixel (we recenter the Fourier matrix to avoid
the complex exponentials caused by noncentered impulse re-
sponses). Then , where and

, and , where

and , where denotes the 2-D DFT [8], [14].
Then we can approximate the LIR in (5) as

(7)

(8)

where the matrices in the bracketed term are diagonal and the
division operation is element-wise on the diagonal. These ap-
proximations are accurate only for row and column indices that
are “sufficiently close” to pixel . The terms in brackets in (8)
correspond to the local frequency response of our estimator. We
would like to match these to the frequency response of a
target PSF (that will be discussed in Section III-B) as closely as
possible, i.e., we want

(9)

Based on (9), one might consider a DFT formulation of
the regularization design using the following minimization
approach:

(10)

where is the frequency response of and denotes the set
of possible frequency responses for the regularizer limited by its
structure that will be enumerated in Section III-B. Alternatively,
as a preview of the methods in Section IV-A, we can cross mul-
tiply the terms in (9) yielding the simpler design criterion

(11)

This approach is similar to the formulation in [6]. Because is
the DFT of , calculating requires one forward pro-
jection and backward projection per pixel. Thus, regularization
design based on (10) or (11) would be very slow.

Prior to [10], regularization design methods were based on
discrete Fourier transforms. As shown in Appendix B, the con-
tinuous-space analog of in polar coordinates is the
frequency response , where is an expression
that incorporates the Jacobian from the change of coordinates
from parallel-beam to fan-beam geometry, and weights from
that correspond to rays that intersect pixel at angle . Sub-
stituting this into (9) and using continuous space analogs of
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yields the following expression for the continuous space analog
of :

(12)

where is the local frequency response of the regular-
izer near pixel . The continuous space analogs of and
simplify (12) to provide a more efficient approach to regular-
ization design than (11), as detailed below in (27).

B. Regularization Structure

Regularizers control roughness by penalizing differences be-
tween neighboring pixels. Indexing the image as a 2-D func-
tion , we define a first-order differencing function for a
regularizer that penalizes the th direction as

(13)

where typically , cor-
responding to horizontal, vertical, and diagonal differences. A
conventional quadratic regularizer can then be expressed as

(14)

where denotes 2-D convolution. This conventional regular-
izer assigns the same weight to the differences between each
neighbor. In this paper, we make the regularizer spatially adap-
tive with the addition of weighting coefficients as follows:

(15)

where is the columnized pixel index which is a function of
. The objective of this paper is to design coefficients

. To this end, we must analyze the local frequency response
of the Hessian of the space-variant regularizer (15).

Taking the Fourier transform of (13) yields

(16)

Combining (16) and (15) yields an accurate expression for the
local frequency response of our regularizer that leads to the
slower but more accurate Full Integral Iterative NNLS, FIIN,
method, described in Appendix A. Next we use an approxima-
tion to simplify (16) that will lead to a fast, Angular Integral
Mostly Analytical, AIMA method.

C. Efficient Approximation for

Using the approximation , which we will
refer to as the AIMA approximation, (16) simplifies to

(17)

One can think about isotropy intuitively in polar coordinates
as eliminating angular dependence. Therefore, we convert
(17) to polar frequency coordinates to simplify the analysis.
Using frequency and sampling relationships from the DFT,

and , where
denotes pixel size and are polar frequency coordinates.
For simplicity, we assume for square pixels.
Then

(18)

where . Taking the Fourier transform of
(15) and combining with (18), our final expression for the local
frequency response of the regularizer near the th pixel is

(19)

For the usual choice of and for described below
(13), .

D. Target Local Frequency Response

Substituting (19) into (12) yields a simple expression for the
local frequency response of a PWLS estimator. We want to de-
sign each regularization coefficient vector
such that our frequency response matches that of the target as
closely as possible. We know that the local frequency response
associated with PULS is isotropic at the center of the field of
view so we select that to be our target.

Using , the squared magnitude re-
sponse of a conventional regularizer in (14) using the AIMA ap-
proximation is

(20)

and without the approximation is

(21)

For an unweighted cost function and a parallel beam geometry,
the continuous-space frequency response that is analogous to

is . As shown in (49) in Appendix B, for uni-
form weights ( ) we have the following local frequency
response for fan-beam geometries:

(22)
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where is the Jacobian for the change of coordinates
from parallel-beam to fan-beam geometries as defined in (44),
and is an index into the sinogram based on pixel and
angle . Setting to correspond with the center pixel
in (49), the target local frequency response is

(23)

(24)

where is the continuous-space analog of in (9). Next we
will use these continuous-space analogs to solve for the regular-
ization coefficients .

IV. AIMA APPROACH

This section describes the angular integral mostly analytical
(AIMA) approach. This approach is appropriately named be-
cause the continuous space approximations removes all depen-
dence on leaving a single integral over the angular coordinate

. This also results in a very simple problem that can be solved
mostly analytically.

A. Solving for Regularization Coefficients

We try to design regularization coefficients to match our
designed local frequency response (12) to the target local fre-
quency response (24) as follows:

(25)

Cross multiplying and simplifying yields

(26)

We design by minimizing the difference between both sides
of (26)

(27)
We solve for coefficients using the above minimization for

each pixel . We constrain the coefficients to be nonnegative
which ensures that the penalty function is convex. This expres-
sion also applies to parallel-beam geometries, where .

We can think of the minimization in (27) as a projection of
onto the space spanned by , which allows

us to greatly simplify the problem and derive a computation-
ally efficient and mostly analytical solution to the regulariza-
tion design problem. Expanding these cosines in terms of a three

term basis that is orthonormal with respect to the inner product
yields

(28)

The three orthonormal basis functions are

Using (27), we write , where
is an operator whose columns are , , and , and is a

matrix of linear combination coefficients whose th column
is . is computed by
taking the inner products of and , , and ,
i.e., .

Using (28), the minimization problem (27) simplifies to the
following expression:

(29)

where and denotes the adjoint of , i.e.,
, , 2, 3.

B. Zeros in the Hessian

If there are too many zeros in , there will be zeros in the
Hessian, possibly degrading . This can cause elongated im-
pulse responses that may contribute to streak artifacts in the
reconstructed image. This phenomenon occurred in [10] how-
ever we did not notice the artifacts due to the coarser spatial
resolution in PET. It is present when using AIMA with the ring
phantom in Section V. The problem improves when using FIIN
method of Appendix A, thus we believe this phenomenon is
caused by the approximation error in (17) as well as the non-
negativity constraint. For AIMA, and to be safe using FIIN, we
modify (29) to ensure that an adequate number of values are
greater than some . Requiring the penalty coefficients for
the vertical and horizontal directions be nonzero is sufficient to
eliminate zeros in the Hessian. (A similar constraint could be
created using the 2 diagonals instead of the vertical and hori-
zontal neighbors; however the approximation in (17) is worse
for diagonal neighbors). We turn to previous work to select .
In [3], we derived a certainty based weighting using a spatially
variant that seeks to provide uni-
form spatial resolution. In terms of the continuous space analogs
used in this paper, . This regular-
ization design method can be implemented using the regulariza-
tion structure presented in this paper by setting for

. This approach provides a convenient
nominal value for the regularization strength at each pixel. We
define the lower constraint vector such that for
vertical and horizontal neighbors, , and

for all other neighbors. Using a nonzero coefficient
improves noise at the expense of isotropy. For the results pre-
sented in this paper, we used .
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Now we formulate our problem so that nonnegative least
squares (NNLS) algorithms will accommodate this new con-
straint. Let . Solving with the constraint of

ensures that . Substituting into (29) yields
. So our final

cost function for regularization design is

(30)

where . We use coefficients in
the regularizer (15). We next solve (30) analytically. It is this
analytical solution that makes the AIMA more efficient than the
FIIN method of Appendix A.

C. Mostly Analytical Solution

Using a second-order neighborhood ( ) we select
to be leading to the fol-

lowing : . So
the terms in (30) are

(31)

Observe that , so affects only . Ig-
noring , is the continuous space analog of the certainty-
based regularization weighting in [3], is related to the hori-
zontal and vertical directions, and is related to the diagonal
directions.

The system (31) is under-determined, which is somewhat in-
tuitive since one can obtain approximately isotropic smoothing
using only the horizontal and vertical neighbors, or only the
diagonal neighbors. For the purposes of regularization design,
an under-determined situation is desirable since it allows us to
use the “extra” degrees-of-freedom to ensure nonnegativity even
when anisotropic regularization is needed.

We could solve the minimization (30) using an iterative NNLS
algorithm [15, p.158]. However, using the properties of and ,
we can avoid iterations almost entirely by solving (30) analyti-
cally using the KKT conditions. When , .
as outlined in Appendix C. This inequality is usually true for
the values of used (typically around 0.1), however for pixels
where it is not, the problem would have to be solved using
a NNLS algorithm rather than this analytical solution. To use
NNLS, one must add Tikhonov regularization to help (30) con-
verge to a minimum norm solution which ensures that is a
continuous function of which is a continuous function of

. For more details on using NNLS to solve the regulariza-
tion problem, see [9, Sec. IV-A]. For the results presented in this
paper, all pixels of both simulations satisfied
for all pixels and NNLS was not used. The structure of leads
to eight-fold symmetry that simplifies analysis. If we can
solve for using and then swap with . If we can
solve for using and then swap with . If we

Fig. 1. First octant of quadratic penalty design space showing the four regions
where different constraints are active.

can solve for with and interchanged, and then swap
with and with . Therefore, hereafter we focus on cases
where . Fig. 1 shows these first octant cases,
numbered according to the number of nonzero elements of .

1) If and , then
, .

2) If and ,
then , ,

.
3) If and , then there are

multiple nonnegative that exactly solve .
The minimum-norm solution is ,

, .
4) If , then there are multiple nonnegative that

are exact solutions. The natural choice is the minimum-
norm given by the pseudo-inverse solution ,
where , ,

, .
The analytical solution presented above is for the usual first-

order differences (13). For higher-order differences or neigh-
borhoods, it would appear to become increasingly cumbersome
to solve (27) analytically, so an iterative NNLS approach may
be more appealing. This can still be practical since is quite
small. The analytical solution above is a continuous function of

, which in turn is a continuous function of . This conti-
nuity property would seem to be desirable for avoiding artifacts
in the reconstructed images.

For practical implementation, we simply discretize the in-
tegrals in (31) [16]. This presents interpolation issues in ex-
tracting a discretized version of , from . For the fan
beam case, we use the analytical formula for presented
in Appendix B (48). Those equations are presented with con-
tinuous space coordinates that spans the length of the de-
tector, and , the angle of rotation of the system. In discrete
implementation, we round these off to the nearest neighbor to
get indices into . The analytical solution presented in this
section is very efficient over all values of , and the bulk of
the computation time is spent computing which has the
compute time of approximately one back-projection. For further
speed optimizations, down-sampled back-projections could be
explored. In practice, is fairly smooth and the basis func-
tions that we use to approximate are even smoother. One
can achieve good results by calculating for fewer angles
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Fig. 2. Ring phantom used for simulation study.

and interpolating the rest. The performance and efficacy of such
a scheme still needs to be explored.

V. RESULTS

We first investigated imaging a phantom consisting of two
uniform rings that highlight the effects of nonuniformities and
anisotropy [7]. Afterwards, we studied real CT data.

We simulated a 2-D third-generation fan-beam CT system
using distance-driven forward and backprojections [17]. The ro-
tation center is 40.8 cm from the detector, and the source is
94.9 cm from the detector. The axis of rotation is at the center of
the object. The simulated imaging system has 888 rays per view
spaced 1 mm apart, and 984 evenly spaced view angles over a

rotation. The reconstructed images consisted of a 512 512
grid of 1 mm pixels. We chose a in (24) such that the target
PSF has a full-width at half-maximum (FWHM) of 3.18 mm.

We simulated a noiseless fan-beam sinogram without scatter
using a phantom consisting of a background disk and two rings
each of thickness 1 mm shown in Fig. 2. We generated the noise-
less sinogram by taking line-integrals through the analytical
phantom with the same system geometry. We used the plug-in
weighting for this experiment. Fig. 3 shows penalty co-
efficients designed using the method of Section IV-C that
yielded the following results. The top images show coefficients
in the horizontal and vertical neighbors, and the bottom images
show coefficients for diagonal neighbors. There are substantial
spatial variations in these coefficients.

We reconstructed images using several methods. We first
created an image uniformly blurred by the target PSF. We then
reconstructed images using the following

1) conventional regularization, , ;
2) certainty based regularization [3];
3) AIMA method with ;
4) AIMA method with ;
5) FIIN method with .

Fig. 4 is a closeup of the right-most ring reconstructed with the
various methods listed above and Fig. 5 is a closeup of the left-
most ring.

Fig. 3. Regularization penalty coefficients used in reconstruction of ring
phantom. The four images are � for � � �� � � � � �.

Fig. 4. Images of right-most ring, Upper-Left: uniformly blurred by target PSF.
Upper-Right: reconstructed using conventional regularization. Mid-Left: recon-
structed using certainty-based regularization. Mid-Right: reconstructed using
AIMA regularization, with � � ���. Lower-Left: reconstructed using AIMA
regularization, with � � �. Lower-Right: reconstructed using FIIN regulariza-
tion, with � � �.

Figs. 6 and 7 show profiles around the two rings of the recon-
structed images using the various regularization methods rela-
tive to the mean intensity of the rings from our target, PULS re-
construction with conventional regularization. This verifies that
AIMA and FIIN improve resolution uniformity. Here, 0 radians
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Fig. 5. Images of left-most ring, Upper-Left: uniformly blurred by target PSF.
Upper-Right: reconstructed using conventional regularization. Mid-Left: recon-
structed using certainty-based regularization. Mid-Right: reconstructed using
AIMA regularization, with � � ���. Lower-Left: reconstructed using AIMA
regularization, with � � �. Lower-Right: reconstructed using FIIN regulariza-
tion, with � � �.

Fig. 6. Profiles through the right-most ring from each reconstructed image.

corresponds to the rightmost point of that ring and the angles
are measured clockwise.

The second study used a similar imaging geometry using one
slice of real CT data from a GE scanner described in [18] with
weightings computed in the same way as [19]. was selected
such that the target PSF had a FWHM of 1.51 mm.

Fig. 8 displays an image reconstructed by PWLS using
conventional regularization. The impulse response locations

Fig. 7. Profiles through the left-most ring from each reconstructed image.

Fig. 8. Reconstruction with conventional regularization without windowing
with impulse responses marked.

are denoted with crosses and a region is marked which will
be displayed in Fig. 9. Fig. 9 show windowed reconstructions
using conventional regularization, certainty based regulariza-
tion, AIMA with and , and FIIN with .

Figs. 10–13 show local impulse responses for the five reg-
ularization methods at several locations calculated analytically
using (5). These figures show from left to right, the target im-
pulse response, and local impulses responses for conventional
regularization, certainty based regularization [3], AIMA with

, AIMA with , and FIIN with . Contour plots
of the LIR are displayed below at 0.9, 0.75, 0.5, 0.25, and 0.1 of
the maximum value of the target PSF. The LIR becomes more
anisotropic near the edge of the FOV. Our Fourier-based reg-
ularization scheme compensates for this anisotropy better than
the certainty-based approach of [3].

To quantify the performance of these regularizers on real CT
data, we computed the PSF of the regularizers at every 10 pixels
within the body. Then we calculated the FWHM of the PSFs at
181 evenly spaced angles, and computed the root mean square
(rms) error between the actual FWHM and the FWHM of the
target. Histograms of these errors are displayed in Fig. 14. The
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Fig. 9. Reconstructions windowed from 800–1200 HUs using, from top to
bottom, conventional regularization, certainty based regularization, AIMA with
� � ���, AIMA with � � �, FIIN with � � �.

mean of the rms errors for conventional regularization, certainty
based regularization, the AIMA method with , the AIMA

Fig. 10. Impulse Responses at �����������. From left to right, target, con-
ventional regularization, certainty based regularization, AIMA regularization
with � � ���, AIMA regularization with � � �, FIIN regularization with
� � �.

Fig. 11. Impulse Responses at ����������. From left to right, target, conven-
tional regularization, certainty based regularization, AIMA regularization with
� � ���, AIMA regularization with � � �, FIIN regularization with � � �.

Fig. 12. Impulse Responses at (170,0). From left to right, target, conventional
regularization, certainty based regularization, AIMA regularization with � �
���, AIMA regularization with � � �, FIIN regularization with � � �.

method with , and the FIIN method with are 2.7,
2.7, 2.3, 2.5, and 2.0, respectively.

VI. DISCUSSION

A. Spatial Resolution Properties

Figs. 4 and 5 provide a qualitative understanding of the spatial
resolution properties of various regularization methods for the
ring phantom. The phantom used consists of rings of uniform
intensity and uniform width, thus images with uniform spatial
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Fig. 13. Impulse Responses at ������ ����. From left to right, target, conven-
tional regularization, certainty based regularization, AIMA regularization with
� � ���, AIMA regularization with � � �, FIIN regularization with � � �.

Fig. 14. Plots of the error histogram for different impulse responses.

resolution should have rings with uniform width and uniform in-
tensity. Conventional regularization creates rings with sharper
spatial resolution near the edge of the field of view. Certainty
based regularization improves ring uniformity but anisotropy re-
mains. The last three reconstructions using AIMA with ,
AIMA with and FIIN provide rings that look almost iden-
tical, and which have a more uniform ring width than conven-
tional, and certainty based regularization.

Figs. 6 and 7 show the amplitude of the rings traced clock-
wise. This confirms our initial assessment, that certainty based
regularization achieves more uniform spatial resolution than
conventional regularization, and that the AIMA and FIIN
methods are all very similar and outperform the previous
approaches.

Fig. 9 display a quadrant of windowed reconstructions using
real CT data to illustrate the images produced using these reg-
ularization design methodologies. However, since we do not
know the “truth” for this data, these images provide only a quali-
tative illustration of the effect of regularization design on spatial
resolution. The impulse responses in Figs. 10–13 illustrate the
effect of regularization design on spatial resolution at various
locations. These figures confirm that AIMA and FIIN methods
improved isotropy over conventional and certainty-based regu-
larization. The histogram plot of Fig. 14 and the mean of the

PSF errors mentioned previously confirm this. AIMA has lower
FWHM rms error both certainty based regularization and con-
ventional regularization. FIIN has the lowest FWHM rms error,
however it is much slower than AIMA.

The resulting impulse responses from the AIMA and FIIN
methods are not completely isotropic. This may seem to con-
tradict the dramatic improvement these regularization design
methods achieved with the ring phantom. However, recall that
we are trying to approximate using three basis functions
(see Section IV-A) for the AIMA, and four basis functions (see
Appendix A) for FIIN. With real data, is a complicated
function that cannot be parameterized using three or four basis
functions. This aspect, along with the nonnegativity constraint
limits the performance of any regularization design technique
with a finite number of parameters. is much simpler for
simple phantoms like the ring phantom, so AIMA yields better
results there. Extensions of this regularization design to higher
order penalties have the potential for more basis functions, and
better performance.

The analysis of this paper focuses on the resolution nonuni-
formities cased by statistical weightings, not the resolution vari-
ation due to detector response and magnification. A more gen-
eral regularization design with similar parameterization is dis-
cussed in [6]. Using the techniques in this paper to account for
these effects is an open problem.

B. Computation Time

AIMA is quite efficient. Computing certainty based regular-
ization takes the time of about 1 backprojection. In AIMA, we
must first compute which takes the time of about one
backprojection, and then solve the analytical solution which
is very fast. FIIN also requires one backprojection to compute

, however it then has to run a nonnegative least squares
problem for every pixel. Though this is a fairly small NNLS
problem, is 4 4, it adds much compute time since it must be
calculated for each pixel. In general, due to the faster compute
times, we recommend AIMA with . If accuracy is more
important than compute time, FIIN can be used instead.

VII. CONCLUSION AND FUTURE WORK

The results presented indicate that we have a functional
and efficient regularization design structure that yields ap-
proximately uniform and isotropic spatial resolution for 2-D
fan-beam systems. The methods also apply to the simpler case
of 2-D (parallel-beam) PET as described in [10]. In the future,
we will extend these methods to 3-D PET [9] and cone-beam
CT. We will also study the noise properties. Another open
question is how to design nonquadratic regularization [20].

APPENDIX A
SLOWER REGULARIZATION DESIGN

This appendix describes the slower Double Integral Iterative
NNLS, FIIN, method that does not use the AIMA approxima-
tion in (17) in the expression of the local
frequency response of . This design method is appropriately
named because it uses the full integral over all frequency do-
main polar coordinates instead of just the angular coordinates.
The matrices involved in this method are slightly more complex
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than those in AIMA so an iterative technique is needed. Con-
verting (16) in Section III-C into polar coordinates and com-
bining with (15) yields

where . The
target we use in regularization is the LIR associated with PULS
at the center of the image, expressed in (23).

Following (25), we try to match the LIR at each pixel to the
target

where . To design , we use a method
similar to that of Section IV-A and project
onto the space spanned by that can be
orthonormalized into basis functions, using
Gramm–Schmidt. Then our regularization design problem
simplifies to

(32)

where is a vector of inner products between
and the orthonormal basis functions ,

, and is a
matrix whose elements are the inner products between

and ,
. We define to be an op-

erator whose columns are so .
This design problem is then solved with an NNLS algorithm.
This more accurate version is slower than that presented in
Section IV-A because there is no apparent analytical solution
similar to the one presented in Section IV-C.

APPENDIX B
ANALYSIS OF GRAMMIAN OPERATOR

This appendix considers fan-beam geometries and uses con-
tinuous-space analysis to analyze the Fourier transform of the
Grammian operator to simplify the regularization design
problem in (12). One can use polar coordinates , and contin-
uous-space analysis to separate the angular and radial compo-
nents of . Using this framework, isotropy can be thought
of as eliminating dependence on the angular component .

Fan-Beam Geometry: Fig. 15 illustrates the fan-beam ge-
ometry that we consider. Let be the rotation isocenter.
denotes the distance from the point to the detector, de-
notes the distance from the X-ray source to , and de-
notes the distance from the X-ray source to the focal point of
the detector arc. Define to be the total dis-
tance from the X-ray source to the center of the detector, and

to be the total distance from the focal point
to the center of the detector. This formulation encompasses a

variety of system configurations by allowing the detector focal
point to differ from the X-ray source location. For flat detectors,

. For third-generation X-ray CT systems, . For
fourth generation X-ray CT systems, .

Let denote the (signed) arc length along
the detector, where corresponds to the detector center. As-
suming detector elements are equally spaced along the detector,
arc length is the natural parameterization. The various angles
have the following relationships:

where the two most important cases are

.
(33)

The relationship between and is

(34)
The ray corresponding to detector element and angle is

where

(35)

The range of depends on the position of the X-ray source
and the size of the detector

(36)

where and is half the total detector arc
length. The radius defines the circular FOV of the imaging
system. The fan angle is .

The line-integral projection of along is2

(37)

for and . We require
to ensure complete sampling of the FOV (otherwise the

impulse response would be highly anisotropic) .
The usual inner product for fan-beam projection space is

2Practically speaking, the integral should be restricted to the FOV:�
� � � � � � but this restriction would complicate analysis by intro-

ducing a shift variance into the problem, so we ignore it.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 3, 2009 at 21:44 from IEEE Xplore.  Restrictions apply.



SHI AND FESSLER: QUADRATIC REGULARIZATION DESIGN FOR 2-D CT 655

Fig. 15. Illustration of fan beam geometry.

Using this inner product in projection space, and the usual
inner product in image space, the adjoint of is given by

(38)

where and were defined in (35). We will next
extend a common derivation of backproject then filter (BPF)
tomographic reconstruction to accommodate a user defined
weighting, and then change the coordinates from parallel-beam
to fan-beam space.

Parallel-Beam Grammian Analysis: When we analyze the
local impulse response, we typically consider recentered local
impulse functions. In this derivation we will start with an un-
centered local impulse response, and center it at the end by re-
moving a phase term in the frequency domain. The uncentered
local impulse response of the Grammian operator is shown in

Using the sampling property with the first , define

(39)

We denote the Fourier transform of as . Then,
using the Fourier slice theorem

(40)

This is nearly the inverse Fourier transform in signed polar co-
ordinates except for a scale factor. Dividing by

The local impulse response is recentered,
which eliminates the complex

phase term . Then, the local frequency response is

(41)

Fan Beam Grammian Analysis: The natural indexing for
fan-beam data is arc-length and angle . The analogs to for
parallel-beam systems are as defined in (35). The
weighting expression is indexed as in fan-beam
coordinates. We start by looking at the fan-beam projection in
terms of the analogs to parallel-beam coordinates

We use the change of variables

(42)

(43)

as defined in (35) which has the corresponding Jacobian deter-
minant

(44)

Then

In this expression

Using the sampling property of the first as in the parallel beam
case

(45)

(46)

Again, let denote the Fourier transform of .
Then, using the Fourier slice theorem
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where . This is similar to the parallel-beam deriva-
tion except that we have two integrals. We can convert each in-
tegral into the inverse Fourier transform as we did in the par-
allel-beam case and strip out the phase term by recen-
tering the local impulse response. The local frequency responses
of the Grammian operator is

(47)

where

(48)

Because of the absolute value function in (44), is invariant
to the phase shift. For the case where we have uniform
weighting, and therefore , and (47) simpli-
fies to

(49)

We use this equation in the calculation of a target local impulse
response (24).

APPENDIX C
DERIVATIONS OF THE ANALYTICAL SOLUTION

In this appendix, we show that , as claimed
below (31) in Section IV-C. Squaring the integrals in (31), we
have

In particular

Thus, since for all and
for all and .
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