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lti-center Alzheimer's Disease Neuroimaging Initiative (ADNI), a large multi-site
study of dementia, including patients having mild cognitive impairment (MCI), probable Alzheimer's disease
(AD), as well as healthy elderly controls. A major portion of ADNI involves the use of [18F]-fluorodeoxyglucose
(FDG) with positron emission tomography (PET). The objective of this paper is the reduction of inter-scanner
differences in the FDG-PET scans obtained from the 50 participating PET centers having fifteen different
scanner models. In spite of a standardized imaging protocol, systematic inter-scanner variability in PET
images from various sites is observed primarily due to differences in scanner resolution, reconstruction
techniques, and different implementations of scatter and attenuation corrections. Two correction steps were
developed by comparison of 3-D Hoffman brain phantom scans with the ‘gold standard’ digital 3-D Hoffman
brain phantom: i) high frequency correction; where a smoothing kernel for each scanner model was
estimated to smooth all images to a common resolution and ii) low frequency correction; where smooth
affine correction factors were obtained to reduce the attenuation and scatter correction errors. For the
phantom data, the high frequency correction reduced the variability by 20%–50% and the low frequency
correction further reduced the differences by another 20%–25%. Correction factors obtained from phantom
studies were applied to 95 scans from normal control subjects obtained from the participating sites. The high
frequency correction reduced differences similar to the phantom studies. However, the low frequency
correction did not further reduce differences; hence further refinement of the procedure is necessary.

© 2009 Elsevier Inc. All rights reserved.
Introduction

This work is part of the ongoing multi-center Alzheimer's Disease
Neuroimaging Initiative (ADNI) project, a longitudinal, multi-site
observational study of healthy controls, patients with mild cognitive
impairment (MCI), and mild probable Alzheimer's disease (AD)
patients. This five-year research project aims to study the rate of change
of cognition, brain structure and function in 200 elderly controls, 400
subjects with mild cognitive impairment, and 200 with probable
Alzheimer's disease. Data is being acquired longitudinally using
magnetic resonance imaging (MRI), [18F]FDG PET, [11C]PiB PET, urine
serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical and
psychometric assessments. PET scans are being performed on half of the
subjects in each of the three groups. The Division of Nuclear Medicine
PET Center at the University of Michigan is the coordinating center for
quality control and pre-processing of all PET studies, while several
groups are responsible for the analysis of the PET data.

The objective of this work is the development of a framework for
reduction of inter-scanner differences in static FDG scans acquired in
ADNI. The scans are being obtained from 50 participating PET centers
l rights reserved.
having different hardware and software. In all there were 15 different
scanner-types in this project. In spite of using a standardized imaging
protocol, systematic inter-scanner variability in PET images from
various sites has been observed due to differences in scanner
resolution, reconstruction techniques, and different implementations
of scatter and attenuation corrections on the different scannermodels.
It is an important step to try to minimize these differences before the
data across centers is pooled for analysis.

The differences in the human PET scans can be classified into two
broad categories: 1) actual inter-subject variability, which includes
both anatomic and functional differences and 2) systematic differ-
ences related to scanner hardware and software. The goal of PET is to
determine the functional differences between individuals or groups of
individuals, and hence removal of both the anatomic differences that
exist between subjects as well as the systematic differences across
scanner models is of interest. While much work has been done in
reducing anatomic differences across subjects by the use of standar-
dized atlases (Mazziotta et al., 1995; Minoshima et al., 1994a) and
non-linear warping techniques (Minoshima et al., 1994b), the focus of
the present work is the reduction of the systematic differences
between the different scanner models.

The correction factors to reduce systematic inter-scanner varia-
bility were obtained from 3-D Hoffman brain phantom (Hoffman et
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al., 1990) scans acquired at the participating sites. The 3-D Hoffman
brain phantom is a cylindrically shaped phantom that simulates the
radiotracer distribution in a normal human brain for tracers aimed at
measuring cerebral glucose metabolism or blood flow. The relative
concentrations of radioactivity in “gray matter”, “white matter”, and
all other structures are 4:1:0, respectively. The correction factors for
each scanner type were obtained by comparison of the phantom
scans with a ‘gold standard’ digital representation of the true
Hoffman brain phantom (i.e. representing the actual radioactivity
distribution).

The systematic differences in the reconstructed images across the
different scanners were classified into two general types: high
frequency differences, related primarily to image resolution; and
low frequency differences, related to image uniformity and the more
subtle aspects of image formation such as corrections for attenuation
and scatter. Resolution differences are due primarily to differences in
crystal sizes, and to a lesser extent due to detector material (LSO, BGO,
GSO and LYSO), detector crystal axial depths, energy windows, as well
as the number of rings, crystals per ring and axial field-of-view. The
low frequency uniformity differences may manifest as differences in
contrast (grey-to-white matter ratios) as well as superior-to-inferior,
anterior-to-posterior, and/or midline-to-lateral gradients. These non-
uniformities between scanners are likely to be caused primarily by
disparity in the software routines that handle attenuation and scatter.
The high frequency correction proposed in this work involves
smoothing the data from different scanner models to a common
resolution, whereas, the low frequency correction involves application
of smooth affine correction factors following the high frequency
correction. Both the high and low frequency correction factors were
obtained by comparison of phantom scan data with the digital
phantom. The phantom-based correction factors were applied to
phantom scans to determine the maximum recovery possible using
this approach. Subsequently, the phantom-based corrections were
applied to 95 normal control scans to test their utility in human PET
studies.

Methods

Hoffman brain phantom scans were obtained from all participating
sites using a standard protocol. There were in all fifteen different
scanner models among the participating sites (7 PET-only and 8 PET/
CT scanners). The key features of the protocol include the following.

1. The Hoffman phantom is filled with 0.5–0.6 mCi of 18F solution and
placed in the scanner.

2. The chest phantom is filled with 2.0–2.4 mCi of 18F solution and
placed close to the Hoffman phantom to simulate the effects of out-
of-field activity.

3. The 3-D Hoffman phantom is imaged for 30 min to obtain high
quality images with low statistical noise contribution.

4. Reconstructions parameters for each scanner model were deter-
mined by the ADNI PET core and differed between vendors based
on available software.

5. The image volume is registered to the digital Hoffman brain
phantom to achieve a common orientation and image grid for all
scans.

Pre-processing of phantom scans

Two phantom scans were obtained for test/retest purposes at each
site. All scans passing quality control tests were registered to the
digital Hoffman phantom. The voxel-grid for registered phantom
images of all scanner-types was 160×160×90 with a voxel-size of
1.548mm3. The size of 1.548mmwas chosen such that the dimensions
of the digital phantom best matched the physical dimensions
individual layers of the 3-D Hoffman brain phantom. The registered
images from each site were normalized using a mask (based on the
digital Hoffman phantom) such that the mean of all voxels within
the mask was unity. The normalized phantom images from different
sites having the same scanner model were averaged to obtain an
average image per scannermodel. Let this normalized average image
for scanner model n be represented as An (An∈Rp× q× r where
p=160 (x-dimension), q=160 (y-dimension) and r=90 (z-
dimension)). High and low frequency correction factors were
obtained by comparison of the average image An with the digital
Hoffman brain phantom as described below.

High frequency correction

The high frequency correction was a simple smoothing operation
to bring the images from the different scanner models to a uniform
spatial resolution. The common minimum resolution was determined
by estimating the resolution of each scanner model from the phantom
scans. The digital Hoffman brain phantom was smoothed in all three
dimensions with incremental full width half maximum (FWHM)
Gaussian kernels to obtain a library of the digital phantom at various
resolutions as shown below.

D� ki =Di; i=1mm; 2mm; N 10mm; ð1Þ
where D is the unsmoothed digital Hoffman brain phantom, ki is the
smoothing kernel with FWHM of i mm in all three dimensions, ⊗ is
the convolution operator and Di is the smoothed phantom with i mm
resolution. During implementation of this step, different in-plane (xy
plane) and axial (z-axis) smoothing was done; but for brevity it has
been represented in Eq. (1) to be the same in all dimensions. The
effective resolution of nth scanner model was estimated by determin-
ing the smoothed digital phantom (Di) that was closest to An in the
least squares sense as shown below.

în = arg min
i

jjAn−Dijj2; ð2Þ

where An and Di are lexicographically arranged vectors of all the
voxels in the three-dimensional image volumes An and Di respectively.
The coarsest resolution scanner of all the models was found to match
the digital Hoffman phantom smoothed between 7 and 8 mm FWHM,
both in plane and axially. Hence, the ‘target’ resolution for the average
phantom image (An) for each scanner model was chosen to be the
effective resolution that best matches isotropically smoothed 8 mm
digital phantom, D8.

Kernels to smooth each scanner model's average phantom image
to the target resolution were determined as follows. A library for each
average phantom scan An was formed by smoothing it with
incremental FWHM Gaussian kernels with as shown below.

An; j = An � kj; j=1mm; N N ;10mm: ð3Þ

The FWHM of the smoothing kernel for the nth scanner model (jn)
was selected such that the smoothed image (An,j) matched the ‘gold
standard’ digital phantom smoothed to 8 mm resolution (D8) in the
least squares sense as shown below.

ĵn = argmin
j

jjD8−An; jjj2; ð4Þ

where An;j and D8 are lexicographically arranged vectors of the three
dimensional image volumes An,j and D8 respectively. As before, j was
allowed to vary between in-plane and axial smoothing. Let the
phantom image for scanner model ‘n’ after smoothing to 8 mm
resolution be represented by An; j. The smoothing kernel for each
scanner model (k

jn
) thus obtained from phantom data was then

applied to every human subject scan (In) obtained from scanner
model n (In; ĵn = In � kĵn

).



Table 1
Scanner models and the FWHM (in mm) of the smoothing kernels to attain a resolution
of 8 mm FWHM (in-plane and axial)

Scanner model PET or PET/CT FWHM in-plane (mm) FWHMaxially (mm)

Siemens HRRT PET 6 6
Siemens BiographHiRez PET/CT 6 5
Phillips Gemini TF PET/CT
Siemens HR+ PET 5 5
GE Discovery RX PET/CT 5 4
Phillips G-PET PET
GE Advance PET 5 3
GE Discovery LS PET/CT
GE Discovery ST PET/CT 4 3
Phillips Gemini PET/CT 3 3
Phillips Gemini GXL PET/CT
Phillips Allegro PET
Siemens Accel PET 2 3
Siemens Exact PET
Siemens Biograph PET/CT
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Low frequency correction

High frequency correction was followed by low frequency adjust-
ment to correct for differences across scanner models that are
presumed to be due primarily to small but consistent differences in
the corrections for attenuation and scatter. The following linear model
was used as the low frequency correction.

D8 = anAn; ĵn
+ bn + ɛn; ð5Þ

where an and bn are the low frequency correction terms (multi-
plicative and additive respectively) to be determined from the high
frequency corrected phantom images An; jn (ɛn is the residual term).
Note that all terms in Eq. (5) have the same dimensions and all
operations are voxel-wise. The terms an and bn are smooth functions
for nth scanner model and are designed as linear combinations of
three dimensional, fifth order polynomials as shown below:

an;p =
XM

m = 1

αmλp;m; bn;p =
XM

m = 1

βmλp;m; ð6Þ

where an,p and bn,p are values of the correction factors an and bn at
voxel p, M is the total number of polynomial terms (M=52 for three
dimensional fifth order polynomials), αm and βm are the coefficients
of the polynomial termm (1≤m≤M), and λp,m is the value of themth
polynomial term at voxel p. Since the low frequency errors were
expected to be symmetric across the midline of the brain, the non-
symmetric polynomial terms (28 in number) were eliminated
(M=34). The correction terms an and bn can be expressed in the
vector form as follows:

an = Λαn; bn = Λβn; ð7Þ
where an aRN×1 and bn aRN×1 vectors are the lexicographical
arrangements of the three-dimensional terms an and bn (N is the
number of voxels in the image volume), Λ∈RN×M is the polynomial
matrix and αn;βnaRM×1 are the coefficients of the polynomial terms.
The coefficient set αn;βn

� �
for the nth scanner model is estimated by

the following minimization:

α̂n; β̂n

� �
= argmin

α n ;βnð Þ

����
����D8−diag An; ĵn

� �
Λαn−Λβn

����
����
2

2
ð8Þ

The low frequency correction factors can then be applied to the
individual PET images that have undergone high frequency correction
(I

n;jn
). The application of low frequency correction for scanner model n

would be as shown below.

Cn; ĵn
= anIn; ĵn + bn: ð9Þ

Themultiplicative and additive correction factors can be considered to
be terms that alter the profiles across the image volume to better
match the true radioactivity distribution in order to correct for
attenuation, scatter, and other sources of inconsistency between
scanners.

Simulation for assessing the validity of low frequency correction factors

Simulations were performed to validate the low frequency
correction methodology proposed above as well as to get an intuitive
feeling for their physical interpretation. The following three scenarios
of residual low frequency errors were simulated using a digital
Hoffman phantom smoothed to 8 mm resolution (D8):

1. Simulation of residual attenuation: The digital Hoffman brain
phantom smoothed to a uniform 8 mm resolution (D8) was
forward-projected to obtain its emission sinogram (E) and
transmission sinogram (T) based on ellipse attenuation using
ASPIRE software (Fessler 1995). To simulate errors in attenuation
correction, the residual attenuation sinogramwas chosen to be the
transmission scan T scaled by 0.1. The emission sinogram with
residual attenuation was calculated as EA=Ee−0.1T (element-wise
operations). No noise was added to the sinogram. EA was
reconstructed using filtered back projection (FBP) to obtain the
phantom image with residual attenuation. The proposed low
frequency correction method was applied to test if it could correct
for the residual attenuation.

2. Simulating residual scatter: The digital Hoffman brain phantom
smoothed to 8mm resolution (D8) was forward-projected to obtain
its emission sinogram (E). The scatter sinogramwas approximated
by smoothing E with a two dimensional Gaussian filter (45 mm
width and 15mmstandard deviation). The smoothed sinogramwas
scaled by 0.15 to approximate a residual scatter sinogram (S). The
emission sinogram with residual scatter was obtained (ES=E+S)
and reconstructed using FBP to obtain the phantom image with
residual scatter. The proposed low frequency correction method
was applied to test if it could correct for the scatter correction error.

3. Simulation of residual attenuation and scatter: Both scatter and
attenuation were simulated in the forward projected digital
Hoffman brain phantom (described in the above two simulations)
and an emission sinogram with both residual attenuation and
scatter was obtained (EA+S=EA+S). The resultant sinogram (EA
+S) was reconstructed using FBP and the proposed low frequency
correction method was used to test its ability to remove the
combined residual error.

Application of correction factors to phantom and normal
control data

Phantom data

Asmentioned earlier, human studies vary due both to inter-subject
as well as to inter-scanner differences. Since the same phantom was
imaged at all participating sites, the phantom studies did not have any
variability comparable to the “inter-subject” differences seen in
humans. Thus, the differences in phantom scans are primarily due to
scanner differences, though differences due to technical factors in
performing the scan (e.g. proper mixing) could still exist. Since the
correction factors were obtained from the average phantom scans
themselves, application of correction factors to these same average
phantom scans would give a measure of the maximum reduction in
variability possible from this approach. Differences in phantom scans
were calculated for three groups of images: phantom images with no
post-reconstruction corrections, images after only high frequency
correction and images after both high and subsequent low frequency



Fig. 1. Three levels in the Hoffman brain phantom scans for 5 different scanner models pre- and post-high frequency corrections.

157A. Joshi et al. / NeuroImage 46 (2009) 154–159
corrections. The measure of the difference between a phantom image
from scanner i and those from the other scanner models was obtained
using the following metric:

%RMSEi =
1
N

X

j=1
j≠i

N jjY i−Y j jj2
jjY i jj2

; ð10Þ

where, Y i is the vector of lexicographically arranged voxel values of an
image from scanner i and N (=15) is the total number of scanner
Fig. 2. Low frequency correction factors for simulations of imageswith residual attenuation er
shows a sample profile through the 3-D correction factors. Panel D shows the same profile
models. This metric for each scanner model was expected to decrease
after the high frequency correction and then further after low
frequency correction.

Normal control data

For validation of the methods in human studies, the correction
factors obtained from phantom scans were applied to the set of 95
normal control FDG PET scans obtained from various participating
ADNI sites. ADNI subjects ranged in age from 55 to 90 years with a
ror alone. Panels A and B show themultiplicative and additive correction factors. Panel C
through the true, uncorrected, and corrected digital phantom images.



Fig. 3. Low frequency correction factors for simulations of images with residual scatter error alone. Panels A and B show the multiplicative and additive correction factors. Panel C
shows a sample profile through the 3-D correction factors. Panel D shows the same profile through the true, uncorrected, and corrected digital phantom images.
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mean age of 75, with 58% male and 42% female. As for the phantom
scans, the inter-scanner variability was calculated for three sets of
human FDG scans: normal subject scans without any post-reconstruc-
tion correction, scans after high frequency correction alone, and scans
after both high and low frequency corrections using the metric in
Eq. (10).

Results

The high frequency correction factors (FWHM of the smoothing
kernels) for smoothing the images from the fifteen scanner models to
8 mm resolution are listed in the Table 1. Fig. 1 shows visually the
reduction in resolution differences after application of the smoothing
kernels to five of the 15 scanner models.
Fig. 4. Reduction in average between-scanner RMSE for Hoffman phantom scans.
Correction factors derived from the phantom data are applied to the phantom data
itself.
Fig. 2 shows image slices of the additive and multiplicative factors
obtained from the simulation study where the reconstructed image
contains residual attenuation alone. The correction-factors are
symmetric due to the symmetry constraint applied to the polynomial
basis functions as attenuation errors are primarily multiplicative. The
additive factor was very close to zero and the multiplicative factor is
the major contributor to the correction, as attenuation errors are
primarily multiplicative. Panel C shows the profiles of the correction
factors in the x-axis (medial lateral) for fixed y (anterior posterior)
and z (inferior superior) locations. The application of the correction
factors removed the attenuation error as seen by the phantom image
profiles in Panel D.

Fig. 3 shows image slices of additive and multiplicative factors
obtained from the simulation study where the reconstructed image
contained residual scatter alone. Scatter being primarily though not
entirely an additive error, themultiplicative factor was small while the
Fig. 5. Reduction in average between-subject RMSE for normal control FDG PET scans.
Correction factors derived from the phantom data are applied to normal control scans.
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additive factor was the major contributor to the correction. Panel C
shows the profiles through the correction factor images. The
application of the correction factors removes the scatter error as
seen by the image profiles in Panel D.

For the simulation case where residual scatter and attenuation
were included, both additive and multiplicative factors made
significant contributions to the overall correction (results not
shown). As in the cases shown in Figs. 2 and 3, nearly all the error
was removed by the correction procedure.

The improvement in average phantom scans by the application of
the phantom-based correction factors can be seen in Fig. 4. The data in
Fig. 4 is normalized such that the average RMSE for the group with no
correction is 100% for each of the fifteen scanner models. The high
frequency correction reduces the variability by 20%–50% (higher
reduction for high resolution scanners). The low frequency correction
further reduced the variability further by another 20%–25%. In spite of
these two steps, 40%–60% residual variability is seen in the phantom
scans. This may be attributed to three primary causes: first, the affine
low frequency correction term is a first order correction step and is not
a complete model for low frequency variability. Second, a single
smoothing kernel for high frequency correction was used for the
entire image, which may not be optimal throughout the entire
imaging volume as resolution degrades from the center of the image
moving outward. Third, some of the remaining variability can be
attributed to differences in phantom orientation within the scanner
field-of-view, small misregistration errors, interpolation in the
registration step, non-uniform mixing of 18F solution in the phantom,
and other technical errors.

Similar to the results for phantom data, the phantom-based high
frequency correction reduced the resolution variability between the
normal control scans (Fig. 5). However, the reduction in variability
(15%–25%) is less than that in phantom studies (Fig. 4). This was
expected as normal subjects, unlike phantom studies, have inter-
subject variations in addition to the consistent scanner-related
differences. Application of the low frequency correction, however,
did not bring about a further decrease in variability thus indicating
that the low frequency correction factors obtained from the phantom
scans were not appropriate for the human scans.

Discussion

This paper develops a framework for reducing the variability in PET
scans obtained across different scanner models in a large multi-center
study; an important step prior to pooling the data for analysis. The
correction factors were derived from PET image data obtained by
scanning the same object (the 3-D Hoffman brain phantom) at all 50
participating sites. Human PET scans from different centers are
different not only because of the functional and anatomical differ-
ences between subjects but also due to the vendor-specific hardware
and software. This work attempted to reduce these systematic vendor-
specific differences by applying both high frequency and low
frequency corrections.

Three-dimensional smoothing was used to minimize the high
frequency resolution differences across scanner models. The coarsest
effective resolution of all fifteen scanner models was found to be
between 7 and 8mm, hence 8mmwas chosen as the target resolution.
This step obviously reduces the higher anatomic detail that the high-
resolution scanners provide. However, making the resolution uniform
between scanners was essential for the achievement of the various
goals of the ADNI project. While much of the ADNI analyses are
focused on changes over time, many analyses are being performed on
different sub-groups of the NC,MCI and AD populations. These include
separation by age, older or younger than 75 years; patients with or
without positive APOE status; and gender. Analysis of such group-wise
data necessitates resolution uniformity across scanners. Improving
resolution of low-resolution scanner models is another option (Hom
et al., 2007), though a challenging one, and would part of the future
work of this effort.

The high frequency correction kernels (reported in Table 1) were
found to be useful in both phantom and human control data and are
being used to adjust all ADNI PET image data on a routine basis.
Phantom scan-based low-frequency corrections reduced the varia-
bility in phantom scans but were found to be unsuccessful in further
reducing variability in normal human FDG scans. There are two likely
reasons for this result. One likely cause for the lack of success in
applying Hoffman brain phantom-derived low frequency correction
factors is the cylindrical shape of the Hoffman brain phantom (with no
skull or neck) that is very different from the ellipsoidal shape of the
human brain. Since the low frequency correction factors minimize the
residual scatter and attenuation, both of which are geometry
dependent phenomena, a more realistic humanoid phantom would
be a better choice for obtaining low frequency correction factors. At
the same time, a more realistic torso phantom should also be used to
simulate the out-of-field scatter.

Furthermore, since brain sizes are different for different subjects,
the extent of attenuation and scatter is also different. Thus, application
of the same phantom-derived correction factors to all the human
scans from a particular scannermodel is not optimal. Thus, though the
high frequency correction factors were found to reduce variability in
the human data and are being used for all ADNI scans, more work is
required for refining the approach for low frequency correction.
Simulation studies will need to be performed to study the effect of
brain size on the correction factors, with the goal of developing
individualized correction factors.

Though this work was developed for minimizing inter-scanner PET
image variability, the general techniques may be extended to multi-
center studies involving other imaging modalities as well.
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