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Current four-dimensional �4D� computed tomography �CT� imaging techniques using multislice CT
scanners require retrospective sorting of the reconstructed two-dimensional �2D� CT images. Most
existing sorting methods depend on externally monitored breathing signals recorded by extra in-
struments. External signals may not always accurately capture the breathing status and may lead to
severe discontinuity artifacts in the sorted CT volumes. This article describes a method to find the
temporal correspondences for the free-breathing multislice CT images acquired at different table
positions based on internal anatomy movement. The algorithm iteratively sorts the CT images using
estimated internal motion indices. It starts from two imperfect reference volumes obtained from the
unsorted CT images; then, in each iteration, thorax motion is estimated from the reference volumes
and the free-breathing CT images. Based on the estimated motion, the breathing indices as well as
the reference volumes are refined and fed into the next iteration. The algorithm terminates when
two successive iterations attain the same sorted reference volumes. In three out of five patient
studies, our method attained comparable image quality with that using external breathing signals.
For the other two patient studies, where the external signals poorly reflected the internal motion, the
proposed method significantly improved the sorted 4D CT volumes, albeit with greater computation
time. © 2008 American Association of Physicists in Medicine. �DOI: 10.1118/1.2837286�
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I. INTRODUCTION

There has been a significant trend in recent years toward
development and utilization of computed tomography �CT�
techniques that generate multiple volumetric reconstructions,
each one descriptive of a state of breathing. To reconstruct
such time-resolved CT volumes of patients that breathe
freely during a scan, different scanning protocols using mul-
tislice CT scanners are being investigated.1–4 Although subtle
differences exist among those scanning protocols, their gen-
eral ideas are the same, and can be described by an
oversampling-sorting process. Oversampling here means that
at each table position the x-ray gantry continuously rotates
for one to two breathing cycles. Multiple CT slices are re-
constructed from the acquired projection data at each posi-
tion. Temporally coherent CT slices are then sorted and
stacked to form “four-dimensional �4D�” CT volumes, as il-
lustrated in Fig. 1. The sorting process usually depends on
external breathing signals that are recorded synchronously
with the scan by some motion monitoring system. The re-
corded breathing signals may reflect the skin motion,2,5 the
skin tension6 or the tidal volume measured orally.1 Such ex-
ternal breathing indices may not always accurately represent
the internal motion status.7,8 Using an external breathing sig-

nal that poorly correlates with the actual thoracic motion
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may cause severe tissue mismatches in the retrospectively
sorted CT volumes. Note that 4D CT imaging can also be
based on cone-beam CT scanners. Those scanners have large
flat-panel detectors, leading to more consistent volume sam-
pling, but they usually rotate very slowly �1 min per rota-
tion� because they are mounted on linac systems. Methods
have been proposed to use such scanners to image the thorax
under free breathing conditions.9–12 In this article we mainly
focus on 4D multislice CT imaging.

The sorting requires a good respiratory-motion-correlated
signal. Sometimes external breathing signals are not avail-
able or poorly correlate with the actual internal anatomy mo-
tion. Existing methods for extracting breathing indices di-
rectly from the image include tracking the center of mass
�COM�,13,14 correlating of a region of interest �ROI� between
adjacent slices in consecutive table positions,3 calculating the
internal air content15 or estimating the diaphragm’s superior-
inferior position in the cone-beam projection views.9,16 In 4D
multislice CT images, tracking the diaphragm transition is
inapplicable because the structure is present only in slices
near the bottom of the thorax. The COM or correlation met-
rics may help identify the phase in one breathing cycle of the
acquired images. However, respiratory motion usually varies

in amplitude, duration, and shape from cycle to cycle, so the
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reproducibility of the motion with respect to phase may be
poor, unlike the more reproducible cardiac motion. It has
been reported that phase sorting often results in more arti-
facts in the stacked thorax CT volumes than amplitude sort-
ing does due to weak reproducibility of breathing
motion.17–19 However, the amplitudes of COM or correlation
signals are incomparable between different volumetric struc-
tures. Therefore, they may be insufficient to facilitate ampli-
tude sorting for 4D multislice CT imaging.

We believe a need exists to have a system to improve on
external or simple internal sorting for cases in which these
methods yield unacceptable artifacts. In this article, we de-
velop a retrospective method that finds breathing indices for
all slices based on internal anatomy motion, without using
any externally recorded surrogates of breathing motion. The
estimated motion indices are not real-time. However, the pur-
pose of this work is to build 4D CT volumes with fewer
artifacts to facilitate more accurate treatment planning. De-
tails of this method are described next followed by the ex-
periment results on five patient studies.

II. MATERIAL AND METHODS

II.A. Data acquisition

A General Electric eight-slice Lightspeed CT scanner was
used to acquire CT data. The gantry speed was 0.5 s per
rotation. The scanner was operated in an axial cine mode. In
this mode, the scanner continuously scans the patient at one
position for a certain time interval, then the x-ray beam is
automatically turned off and the table moves to the next po-
sition, where the CT scanner resumes another round of con-
tinuous scan. This process repeats to cover the whole prede-
termined length of the body. Usually the cine duration �the
scan time at each table position� is set to the maximum ob-
served breathing period of the patient plus the overhead time
of a full gantry rotation, to ensure that the scan covers an
entire respiratory cycle. Patients’ breathing cycle may vary
from 3 to 6 s. During the scan, a respiratory signal was syn-
chronously recorded by a Varian real-time position manage-
ment �RPM� system, which tracked the motion of a marker
placed on the abdominal surface. Note that the RPM signals

are not necessary for our internal motion based sorting
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method. However, RPM signals were recorded for compari-
son with our estimated internal motion indices.

II.B. Iterative sorting method

For each table position, multiple eight-slice CT volumes
are reconstructed that temporally sample the moving
anatomy for at least one full breathing cycle. We call the
eight-slice CT volumes in each table scan period a group of
free-breathing subvolumes. Assume N table positions are
scanned, then the whole dataset contains N groups of free-
breathing subvolumes, denoted fn,k�x�, x�R3, n=1, . . . ,N,
k=1, . . . ,K, where n is the index for scan position, k is the
temporal index, and K is the total number of temporal
samples in each table scan period. The nth group of subvol-
umes have an axial range of zn−d /2�z�zn+d /2, where d
is the axial aperture of the scanner at isocenter, and zn is the
central axial coordinate of the nth group subvolumes. To
obtain 4D CT volumes from the unsorted images, we esti-
mate internal motion that can provide sorting indices for all
the images.

Here is an overview of the iterative internal motion-based
sorting method.

Step 0. Extract simple preliminary breathing indices based
on centroids of the unsorted images.

Step 1. Sort two reference volumes at relatively deep ex-
hale and inhale states, denoted fex�x� and f in�x�, x�R3, us-
ing the simple breathing indices.

Step 2. Find the full deformation during inhalation, Dfull,
by registering the two reference volumes of the patient,
fex�x� and f in�x�.

Step 3. For each table position, estimate internal motion
indices by iteratively updating a motion model to best match
the deformed reference volume fex�x� to each group of mov-
ing subvolumes.

Step 4. Sort two CT volumes at near end-of-exhale and
end-of-inhale states based on the normalized internal motion
indices.

If they differ from the previous reference volumes fex�x�
and f in�x�, replace them and go back to Step 2; otherwise go

FIG. 1. Illustration of 4D CT imaging
methods.
to the final Step 5.
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Step 5. Do a final amplitude-based sorting to form 4D CT
volumes.

A registration step is necessary before Step 3 because the
motion model we will describe later is built upon the ex-
treme deformation during inhalation. To sum up, this method
starts from two imperfect reference volumes, refines the in-
ternal motion-based indices to sort two reference volumes
that contain fewer artifacts, and performs another round of
motion estimation until two successive iterations attain the
same inhale and exhale reference volumes. Typically, two to
three rounds are sufficient for this process to converge. We
now describe each step in detail.

II.B.1. Step 0 and 1: Extract a simple breathing
index and sort two initial reference volumes

We need inhale and exhale reference volumes of the pa-
tient to characterize the overall patient deformation during
inhalation. However, such volumes are not available directly
from the acquired CT images. In Step 0 we extract a simple
breathing index for each subvolume and in Step 1 we sort out
two reference volumes using this simple breathing index. We
treat the y-axis �anterior-posterior �AP� direction� centroid of
the eighth slice of each subvolume as the initial breathing
index for that subvolume. It is calculated as follows:

cn,k =
� j �i

yifn,k��xi,yj,8�

� j �i
fn,k�xi,yj,8�

, �1�

where cn,k denotes the initial breathing index of fn,k�·�. We
then stack the subvolumes having the largest or smallest in-
dex values at all positions to form two CT volumes. Other
slices may also be used for calculating the initial breathing
index. However, we need to determine whether the index
with a peak value corresponds to end-inhale or end-exhale
states. Using a boundary slice can save us effort in resolving

this relationship, which is automatically decided based on the
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following property. The chest always expands during inhale.
Assuming n=1 denotes the most superior subvolume �close
to the neck� and the AP coordinates are labeled from anterior
to posterior, as shown in Fig. 2, then the peak of cn occurs
near the end-exhale state and the valley occurs near the end-
inhale state. However, the abdomen may expand or contract
during inhale. To determine the states of the peak indices for
the inferior subvolumes, we examine the correlation coeffi-
cient �CC� of the y-axis centroids of the first and eighth slice
of the moving subvolumes. If the two sequences are poorly
correlated �e.g., CC�0.6�, we will treat the peak of cn at the
same state of the valley of cn−1, assuming the first slice of the
nth subvolumes is adjacent to the eighth slice of the �n−1�th
subvolumes. So starting from the first subvolume, the breath-
ing states of the peak and valley of the initial breathing in-
dices can be decided and propagated through subsequent sec-
tions.

II.B.2. Step 2: Registration

In Step 2 we register the two reference CT volumes to
estimate the extreme deformation during inhale. This ex-
treme deformation is needed in the next step for building the
motion model. Various image registration methods have been
developed in recent years.20–23 We use a B-spline based im-
age registration method,24 but any other method that has
been successfully applied to medical image registration can
be used here.

The B-spline based deformation model is represented as
follows:

Dfull�x;�� = �
i

�i��x − xi

�x
� , �2�

where � are the B-spline knot coefficients of the deformation
field, ��x� denotes the tensor product of cubic B-spline func-
tions, xi is the ith spatial knot location, and �x controls the

FIG. 2. A slice of the acquired CT
image.
width of the B-spline functions. Wide B-spline functions
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tend to capture more global deformations, but poorly repre-
sent local deformations. Narrow B-spline functions better de-
scribe local deformations, but they have more unknown pa-
rameters, complicating the optimization. We recommend
placing two B-spline knots along the axial axis in each sub-
volume region to capture more local deformations. For ex-
ample, for an eight-slice CT with a slice thickness of
2.5 mm, we set the knot spacing in the axial direction to be
four pixels, corresponding to 1 cm. We used 1.6 cm knot
spacings in the left-right and AP directions

During registration, we deform the exhale reference vol-
ume fex�x� to match the inhale reference volume f in�x�. We
use a sum of squared differences �SSD� similarity term. Be-
cause the estimation problem is ill-posed, it is necessary to
include some regularization on the estimated deformations.
Since the cubic B-spline based deformations are intrinsically
smooth, a smoothness regularization here is superfluous. We
also would like to have the deformation be invertible, or at
least locally invertible, so we adopt the regularization used in
Refs. 25 and 26 that encourages those properties by penaliz-
ing nonpositive values of the Jacobian determinants of the
transformation field x+Dfull�x ;��. The cost function thus
contains a SSD similarity term and a Jacobian penalty term,

�̂ = arg min
�

��
x

�f in�x� − fex�x + Dfull�x;����2

+ �R�J�· ;���� , �3�

where � controls the tradeoff between the fidelity term and
the penalty term and J�x ;�� denotes the Jacobian determi-
nant of x+Dfull�x ;��. The penalty function R�.� is calculated
as follows:

R�J�· ;��� = �
x

g�J�x;��� ,

g�J� = �1

2
�J − 0.005�2, J � 0.05

0, J � 0.05.

�4�

This penalty term helps pull the search directions of the es-
timator away from deformations having negative Jacobians.

We use the gradient descent algorithm to search for the
parameter values that minimize the cost function. The mul-
tiresolution technique is also applied in the optimization to
avoid local minimum problems.27 We start the registration
from the downsampled-by-two images and then use the re-
sults to initialize the registration of images with finer resolu-
tions.

II.B.3. Step 3: Estimate the internal motion indices

Step 3 is the key task of this iterative sorting process, in
which we find the internal motion-based breathing indices
for all subvolumes, denoted �n,k, n=1, . . . ,N, k=1, . . . ,K.
We estimate each vector �n= ��n,1 , . . . ,�n,K� from the exhale
reference volume fex�x� and the free-breathing subvolumes

fn,k�x�. The estimators iteratively update the parameters of a
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motion model to best match the reference volume to a se-
quence of moving subvolumes. The motion parameters es-
sentially represent the internal motion indices.

Now we describe the estimator. We start from the motion
model and then explain the cost function that the estimator
minimizes.

The motion model we use is based on a motion propor-
tionality assumption.28 We assume the displacement of each
voxel at any time is proportional to its full movement from
end-exhalation to end-inhalation. Based on this assumption,
we express the motion model during the scan time of the nth
subvolume as follows:

Tn�x;t� = x + �n�t�Dfull�x� , �5�

where �n�t� denotes the scalar proportionality sequence. We
allow �n�t� to be negative or greater than 1 because the es-
timated deformation Dfull�x� may not be the extreme dis-
placement of each voxel during inhale. This proportionality
motion model is imperfect. However, the ultimate goal for
this work is not to find the precise motion of every voxel. We
use the proportionality sequence �n�t� as a breathing index
for the internal motion.

For simplicity, we parameterize the continuous propor-
tionality function �n�t� using rect basis functions as follows:

�n�t� = �
k=1

K

�n,k rect�t − k� . �6�

Based on the motion model in Eqs. �5� and �6�, we optimize
each vector of proportionality parameters �n by dynamically
deforming the reference volume fex�x� according to the mo-
tion model to best match the nth group of free-breathing
subvolumes fn,k�x�. We again use the SSD as the image
matching criteria because the images are within the same
modality. Respiratory motion usually changes slowly during
free breathing, except in unusual instances like sneezing or
coughing. Because the rect basis function does not ensure
smoothness itself, we include temporal regularization into
the estimator. To estimate �n, we use a cost function �n that
contains two terms as follows:

�̂n = arg min
�n

�n��n� ,

�7�

�n��n� = �
k=1

K

Ln�fn,k�·�, fn,k� �· ;�n,k�� + �R��n� ,

where the deformed reference volume at time tk is

fn,k� �x;�n,k� = fex�x + �n,kDfull�x�� , �8�

and Ln�·� denotes the data fidelity term measured by the SSD

over the field of view �FOV� of the nth subvolume,
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Ln�fn,k�·�, fn,k� �· ;�n,k�� = �
x�FOVn

�fn,k�x� − fn,k� �x;�n,k��2.

�9�

The roughness penalty term R�·� discourages rapidly chang-
ing motion estimates, and is measured by the differences of
neighboring points as follows:

R��n� = �
k=1

K−1

��n,k+1 − �n,k�2. �10�

The scalar � controls the tradeoff between the data fidelity
and regularization terms.

Because the similarity is calculated only within the FOV
of the subvolume, it is not necessary to deform the whole
reference volume when evaluating the cost function �7�. To
save computation time, we warp only the volume in the re-
gion that is slightly larger than the FOV of the subvolumes.
For example, if the extreme deformation of the nth subvol-
ume has a maximum absolute value of r along the axial
direction, we deform the reference volume only within the
axial range of zn−d /2−r�z�zn+d /2+r, because we as-
sume the changes outside that range have negligible effect on
calculating Ln. We use the conjugate gradient method29 to
minimize the cost function �7�.

II.B.4. Step 4: Update the two reference volumes

In this step, we use the estimated 	�n ,n=1, . . . ,N
 to
form two CT volumes at near end-of-exhale and end-of-
inhale states, which will be used in the next iteration of mo-
tion estimation. We first normalize each sequence �n as fol-
lows:

sn =
�n − �n

min

�n
max − �n

min 	 100 % , n = 1, . . . ,N , �11�

where �n
max and �nomin denote the minimum and maximum

values of �n over k. We then simply stack those subvolumes
having breathing indices that are closest to 80% as an inhale

reference volume, and closest to 0% as an exhale volume.
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We use the CT volume at 80% inhale state because it ap-
peared more consistent than the “full” inhalation state for
different breathing cycles.

We normalize each breathing index sequence �n before
sorting the exhale and inhale CT volumes to compensate for
mismatch in the imperfect reference volumes. This normal-
ization helps stabilize the whole process, i.e., it will find
similar final motion indices even if started from different
initial reference volumes. Figure 3 illustrates an object that
expands along one direction. Case 1 and case 2 select time t3

and t2 as the reference inhale state, respectively. The esti-
mated motion indices for these two cases will be quite dif-
ferent. However, the normalization equalizes them. Thus the
estimated final breathing indices can be robust to imperfect
initial reference volumes. Due to these normalizations, two
rounds of motion estimations are generally sufficient to ar-
rive at the final motion indices. Although this process is ro-
bust to imperfect reference volumes, extremely “bad” initial
reference volumes will still fail with this algorithm. The bot-
tom line is that each subvolume stacked in the inhale refer-
ence volume should be at a deeper inhale state than that in
the exhale reference volume.

II.B.5. Step 5: Final sorting

Using the final internal motion indices associated with all
the free-breathing subvolumes at all table positions, we di-
vide the subvolumes into several breathing state bins to form
4D CT volumes. Various binning methods have been
proposed,1,2,9,18,30 but they mainly fall into two categories:
amplitude-based sorting and phase-based sorting. Amplitude-
based sorting methods bin the data using the values and di-
rections �inhale or exhale� of the breathing indices. Phase-
based sorting methods usually bin the data according to
phase-angles determined by some transformations on the
breathing signal from the time domain to a phase domain.
Phase-based sorting results in larger mismatch because of the

18

FIG. 3. Illustration that the normaliza-
tion in Eq. �11� of each estimated
breathing index sequence can improve
robustness to imperfect reference
volumes.
insufficient motion reproducibility with respect to phase.
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We chose amplitude sorting for this application. We first nor-
malize the breathing signals using the following formula:

sn,k =
�n,k − �min

�max − �min
	 100 % , �12�

where �min and �max denote the minimum and maximum
values of � over both n and k. This normalization still pre-
serves the relative amplitude variations among different
breathing cycles. We then define a set of breathing state bins,
each with an amplitude value in �0%, 100%� and a direction
called ascending or descending. The amplitude value repre-
sents how deep the breathing is, and the direction indicates
whether it is during inhalation or exhalation. We associate to
each state bin the subvolume whose corresponding breathing
index is the closest to the bin amplitude value and that has
the correct bin direction. We determine the direction of each
motion index �n,k by comparing its value with its neighbor-
ing points �n,k−1 and �n,k+1. For the experimental results that
follow, we specified 11 breathing states with these bin val-
ues,
Medical Physics, Vol. 35, No. 3, March 2008
bin.value = �1,0.8,0.6,0.4,0.2,0,0.2,0.4,0.6,0.8,1�

	 ratio,

ratio = median��1
max, . . . ,�N

max� , �13�

and these bin directions,

bin.direction = �1,1,1,1,1,1,0,0,0,0,0� ,

where 1 and 0 represent “descending” and “ascending”, re-
spectively. Under this assignment, bin�1�, bin�6�, and bin�11�
correspond to start of exhale, end of exhale, and end of in-
hale, respectively. Because the bin values are adjusted by the
ratio defined in Eq. �13�, offsets between the actual states
using different kinds of breathing indices are minimized,
hence the comparisons we report later between the internal
motion indices and the external indices on sorting the images
can be fair.

FIG. 5. Sorted CT volumes of patient
1 using �a� recorded RPM indices and
�b� internal motion indices. From up-
per left to lower right, the patient ex-
hales and then inhales. Severe tissue
mismatches are marked by arrows.

FIG. 4. The extracted simple breathing
signals of patient 1 based on centroid
tracking. Position 4 is near the neck
and position 16 is near the abdomen.
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III. RESULTS AND DISCUSSION

III.A. Experiment results

We applied the iterative sorting method to five sets of 4D
CT patient data. The CT images had a resolution of
0.98 cm	0.98 cm and a slice thickness of 2.5 mm. The data
were obtained from an existing “standard” 4D CT imaging
protocol. The x-ray tube current was 100 mA. The cine du-
rations were about 6 s. Since the gantry speed was 0.5 s per
rotation, a new set of 180° projections became available ev-
ery 0.25 s for image reconstruction. This yielded about 20
distinct subvolumes per table position.

Figure 4 shows examples of the extracted centroid-based
simple breathing indices for several positions of one patient.
The ranges of the curves of the superior positions are smaller
because the motion of the upper thorax during breathing is
less. However, clear ascending and descending trends exist.
The smallest and largest values in these breathing signals
occur either near the end-inhalation or end-exhalation state.
We stacked those subvolumes associated with peak or base
indices to form two initial reference CT volumes.

Using these two reference volumes, the rest of the proce-
dure described in Sec. II was implemented. For Step 2, we
set the regularization parameter � in Eq. �3� to be 8	105.
This parameter was set based on our previous registration
experiments.25,26 For Step 3, we set the regularization param-
eter � to be 10. It was manually tuned using the first dataset.
We started � from 1 and scaled it up by 5 until there were no
abrupt bumps in the estimated proportionality sequence. For
both registration and motion estimation, the reference vol-
umes were downsampled by 2 in the transaxial plane to save
computation time. The downsampled images provide enough
information because of the small number of parameters in
the proportionality motion model in Eq. �5�. Using a finer
resolution would require significantly longer computation
time but with very minor improvements, if any.

We experimented with five patient datasets. In two of
them, the RPM signals correlated with the patients’ breathing
motion sufficiently to have minimized sorting artifacts and
our method attained comparable image quality. The other
three datasets �labeled patient 1, 2, and 3� are further de-
scribed in this section.

For patients 1 and 2, the RPM signals resulted in severe
mismatches in the 4D CT volumes, as seen in Figs. 5�b� and
6�b�. We compared the estimated internal motion indices and
the RPM breathing indices for those two patients in Figs. 7
and 8, respectively. In both plots these two sequences show
similar transitions of inhalation and exhalation, but there also
exist considerable discrepancies between them. Sorting the
slices using the internal motion indices resulted in signifi-
cantly better tissue consistency at the subvolume boundaries.
As shown in Figs. 5 and 6, most of these artifacts such as
“flatness” and discontinuities in the RPM-sorted CT volumes
were corrected.

For patient 3, neither the RPM indices nor the internal
motion indices could find acceptable deep-inhale CT vol-
umes. The mismatch occurred at the boundary between the

seventh and eighth groups of subvolumes, as shown in Fig.
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9. We did a manual stack of the subvolumes between the
seventh and eighth groups. We found that no data in the
eighth group could match the relatively deep-inhale subvol-
umes in the seventh group because the patient breathed much
more shallowly when acquiring the scans of the eighth
group. So this failure is mainly due to data insufficiency
rather than the proposed sorting algorithm.

III.B. Discussion

This article describes an algorithm that forms 4D CT vol-
umes by sorting using internal motion estimates. This 4D CT

FIG. 6. Sorted CT volumes of patient 2 using �a� recorded RPM indices and
�b� internal motion indices. From upper left to lower right, the patient ex-
hales and then inhales. Severe tissue mismatches are marked by arrows.
method does not require external breathing signals that may
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be inaccurate in measuring the actual overall tissue move-
ment. As shown in the two bad examples �patient 1 and 2�
presented previously the inaccuracy of the external RPM sig-
nals led to significant mismatches in the sorted CT volumes.
The proposed internal motion-based sorting method led to
better consistency for both examples.

Our current implementation of this algorithm spent about
40 min on Step 2 �registration� and 20 min on Step 3 �mo-
tion estimation�, respectively, on a single Pentium 3 GHz
processor for the first iteration. For the later iterations, reg-
istration and motion estimation can start from the results of
the previous iteration, hence requiring less computation time.
When we strictly followed the termination condition, i.e.,
Medical Physics, Vol. 35, No. 3, March 2008
two successive iterations found the same reference volumes,
four experiments needed three iterations and one needed two
iterations, indicating that the second iteration already arrives
at the final motion indices for most cases. This agrees with
the conclusion we made in Step 4 that two iterations are
sufficient for this iterative sorting process. The computation
time is still long for routine clinical usage. However, in cases
when the recorded breathing signals fail to produce accept-
able 4D CT volumes, it may be worthwhile to use this
method to sort the CT slices rather than rescan the patient,
which would involve more x-ray exposure and still may not
guarantee a successful reconstruction. From this point of
view, the longer computation of the proposed method may be

FIG. 7. The estimated internal motion
breathing signals �+� and the recorded
external RPM signals �.�. Both signals
were normalized according to Eq.
�12�. Each piece of curve represents
the breathing signal for one scan posi-
tion. From upper left to lower right,
the position advanced from close to
neck to close to abdomen. There were
16 positions for patient 1.

FIG. 8. The estimated internal motion
breathing signals �+� and the recorded
external RPM signals �.� for patient 2.
Both signals were normalized accord-
ing to Eq. �12�. Each piece of curve
represents the breathing signal for one
scan position. From upper left to lower
right, the position advanced from close
to neck to close to abdomen. There are
15 positions for patient 2.



925 Zeng et al.: Internal motion-based sorting for four-dimensional CT images 925
clinically acceptable. Certainly more effort will be put in
reducing the computation time such as using a faster image
registration algorithm, and parallelization could accelerate it
significantly.

Our internal motion estimation is based on a proportion-
ality motion model in Eq. �5�. This one-dimensional �1D�
spatially linear motion model cannot describe perfectly the
actual trajectory of any point during breathing. However, the
proportionality parameter can summarize the “average” de-
formation of all points, and hence can be a useful index.
Although there are missing data at the boundary slices for
CT image registration, we expect its effect on the accuracy of
the estimated motion indices to be small because the motion
estimator uses very few parameters. A higher-dimensionality
motion model could better describe the actual 3D thorax mo-
tion. However, for sorting purposes, using lower dimension-
ality can simplify establishing the motion correspondences.
From this point of view, we may also think that the propor-
tionality motion represents the projection of the actual
higher-dimensional motion onto a lower one-dimensional
linear space to facilitate sorting. Similarly, after Xu et al.19

obtained the deformation of each voxel by registering each
slice to a high-resolution breath-hold reference volume, they
still needed extra signal processing to generate a 1D breath-
ing signal from the high-dimensional deformation field to
enable a convenient motion phase synchronization among
the CT images. The processing included an averaging of the
deformations of all voxels and a principle component analy-
sis on the 3D vector obtained from averaging. Because their
1D breathing motion signal could not facilitate an amplitude
sorting, their final 4D CT volumes are generated by deform-
ing the reference volume according to deformation fields that
were smoothed at the subvolume boundaries. So for sorting-
based 4D CT imaging techniques, simple but reasonably de-
scriptive motion models like Eq. �5� seem sufficient.

Our method improves the sorting of 4D CT images ob-
tained from an existing standard imaging protocol. It would
be an interesting future study to investigate how this new
method performs for alternative scan protocols, including he-
lical scan and lower dose studies. Although ultra-low-dose
protocols may suffice for motion estimation, they may not be
relevant clinically because the 4D CT scans are used for
treatment planning and the image quality should be sufficient

FIG. 9. End-of-inhale CT volumes of patient 3 using �a� recorded RPM
indices and �b� internal motion indices. Both contained mismatch at the
bronchi.
for accurate delineation of critical structures.
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IV. CONCLUSION

We developed a method to sort free-breathing multislice
CT images according to internal anatomy motion. Our
method completely eliminates the reliance on any externally
recorded surrogate of breathing motion. Patient studies
showed that the internal motion indices estimated by our
method resulted in better or at least comparable consistency
in the stacked thorax CT volumes. Longer computation is
required for this method because of image registration and
motion estimation, hence we suggest it as a backup solution
when the external surrogates of breathing motion result in
poor sorting.
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