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Abstract—Blood oxygen level dependent (BOLD) functional
MRI (fMRI) imaging is conventionally done by reconstructing
T

∗

2 -weighted images. However, since the images are unitless
they are nonquantifiable in terms of important physiological
parameters. An alternative approach is to reconstruct R

∗

2 maps
which are quantifiable and have comparable BOLD contrast as
T

∗

2 -weighted images. However, conventional R
∗

2 mapping involves
long readouts and ignores relaxation during readout. Another
problem with fMRI imaging is temporal drift/fluctuations in
off-resonance. Conventionally, a field map is collected at the
start of the fMRI study to correct for off-resonance, ignoring
any temporal changes. Here we propose a new fast regularized
iterative algorithm that jointly reconstructs R

∗

2 and field maps
for all time frames in fMRI data. To accelerate the algorithm
we linearize the MR signal model, enabling the use of fast
regularized iterative reconstruction methods. The regularizer was
designed to account for the different resolution properties of both
R

∗

2 and field maps and provide uniform spatial resolution. For
fMRI data with the same temporal frame rate as data collected
for T

∗

2 -weighted imaging the resulting R
∗

2 maps performed
comparably to T

∗

2 -weighted images in activation detection while
also correcting for spatially global and local temporal changes
in off-resonance.

Index Terms—fMRI, R
∗

2, field map, joint reconstruction, linear
approximation, magnetic field drift correction, physiological noise
correction.

I. INTRODUCTION

The most common method of imaging brain activation in

functional MRI (fMRI) is through the blood oxygen level

dependent (BOLD) contrast mechanism. This contrast comes

from changes in cerebral hemodynamics, such as blood flow

(CBF), blood volume (CBV) and blood oxygenation (CMRO2)

that microscopically distorts the magnetic field. This intro-

duces dephasing of the spatially local magnetization, causing

temporally varying contrast changes in T ∗

2 -weighted magni-

tude images [1], [2]. While the hemodynamics are not a

direct measure of neuronal activity, a strong relationship exists

between the two [3]–[5]. Hence, brain function can be spatially

mapped by acquiring multiple T ∗

2 -weighted time frames of a

subjects brain, that has been instructed to perform some task,

followed by statistical detection.
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While T ∗

2 -weighted magnitude images give a qualitative

measure of BOLD contrast, they are not quantitative in terms

of the cerebral hemodynamics. However, the BOLD contrast

can also be represented by the signal relaxation rate map R∗

2 ,

1/T ∗

2 [6], [7]. The R∗

2 map expresses the signal relaxation

that occurs during readout due to intra-voxel dephasing of

magnetization. It is quantifiable, i.e., has units of 1/sec, and can

be related to cerebral hemodynamics such as CBF, CBV and

CMRO2 [8]–[10]. This makes it an attractive method to map

the observed BOLD contrast to the underlying mechanisms

that drive it.

A complication of using R∗

2 maps for fMRI is the nonlinear

relationship it has to the acquired MR data. Models for R∗

2

relaxation in the MR signal equation have included a bi-

exponential relaxation model [11] and, in the presence of

background gradients, a mono-exponential with a quadratic

exponent [12] or a logspline density function [13]. However

in the absence of these gradients and for conventional res-

olutions and acquisition times used in current fMRI studies,

R∗

2 relaxation has been shown both in simulations [6] and

in vivo experiments [7], [14]–[16] to approximate a mono-

exponential behavior. Although this models the relaxation

adequately, the relationship between R∗

2 and acquired MR data

is still nonlinear. This makes the problem of reconstructing R∗

2

maps more difficult than if the relationship were linear, as is

the case for T ∗

2 -weighted images.

To simplify R∗

2 calculation, most studies that have used R∗

2

maps for fMRI [7], [14], [17]–[20] have assumed models in

which mono-exponential R∗

2 relaxation occurs instantaneously

at the echo time (TE), ignoring R∗

2 relaxation during the MR

signal readout. Hence, conventional R∗

2 mapping involves mul-

tiple readouts with different echo times from which multiple

T ∗

2 -weighted images are reconstructed followed by voxel-wise

exponential decay fits. This process requires time consuming

data collection and limits the spatial coverage and/or temporal

resolution for R∗

2 based fMRI. This can be improved by using

partial parallel imaging such as SENSE [21] or GRAPPA [22]

but with some loss of SNR. In contrast, conventional T ∗

2 -

weighted images require only a single readout which, along

with the inability of conventional fMRI analysis tools to handle

multi-echo fMRI data, has made R∗

2 estimates less popular

than T ∗

2 -weighted images for fMRI.

Areas in the brain that have high susceptibility differences,

such as air and tissue interfaces, are a source of off-resonance

in fMRI imaging. This can lead to distortions in reconstructed

T ∗

2 -weighted MR images. These degradations can be partially

corrected using field map corrected reconstruction algorithms

[23]–[27]. Prior to employing these reconstructions the field
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map is conventionally estimated from additional data [28],

[29], collected at the beginning of the fMRI study. This “static”

field map is then used to reconstruct all the images collected

during the study.

While acquiring fMRI data the magnetic field can drift and

fluctuate causing temporal changes in the field map that are

ignored in “static” field map corrected image reconstruction.

Such temporal changes arise from heating in passive shim ele-

ments in the scanner bore, motion and physiological processes

such as respiration [30], [31]. These temporal changes can

be partially corrected in real time while collecting the MR

data using navigators [32] or in the image reconstruction by

updating the field map either before reconstructing each time

frame or jointly [33]–[38]. However, the navigators correct

only for spatially global off-resonance changes and even

though updating the field map gives a voxel-based correction

of the off-resonance, the image reconstruction methods are

based on nonlinear iterative algorithms that can converge

slowly.

Recently fast iterative field map corrected image recon-

struction algorithms to solve linear problems have grown

in popularity within the MRI community [26], [27]. These

algorithms are versatile in dealing with non-cartesian sampled

MR data, with no need to estimate density compensation

functions (DCF), and are easily extendable to correct for

R∗

2 relaxation and off-resonance. Also, iterative reconstruction

algorithms can include regularization functions to control

for bias and variance of the reconstructed images. Local

point spread functions [39] have been used to investigate the

local resolution properties of the reconstructed images. This

information can be used to design regularizers for which the

reconstructed images have a predetermined resolution that

is spatially uniform [40]. The design must precede image

reconstruction so it is desirable for it to be computationally

efficient.

Here, we propose a method for fast joint reconstruction

of R∗

2 and field maps from MR data collected during an

fMRI study. We use the mono-exponential relaxation model

for R∗

2 enabling us to combine R∗

2 and field map into a single

complex-valued map (Section II). We then linearize the MR

signal equation relative to the temporal dynamics of this map

and employ fast regularized iterative algorithms to reconstruct

the complex-valued map (Section III). We also analyze the

resolution properties of the reconstruction method and design

a penalty to achieve approximately spatially uniform resolution

for the reconstructed images (Section IV). We then simulate

fMRI data for analysis and collect in vivo fMRI data for

qualitative purposes (Section VI and VII). For simplicity,

motion is excluded from the reconstruction algorithm and the

simulations.

II. JOINT RECONSTRUCTION OF R∗

2 AND FIELD MAP

In fMRI the received complex-valued and discrete T ∗

2 -

weighted MR data y = [y1, . . . , yM ], including effects of

mono-exponential relaxation and off-resonance, can be mod-

eled as follows [6]:

ym = s(tm) + ǫm, m = 1, . . . , M, (1)

s(t) =

∫
f(~r) e−tz(~r) e−i2π(~k(t)·~r) d~r, (2)

where ǫm denotes complex-valued iid Gaussian noise [41] and

s(tm) is a sample of the MR signal equation defined in (2).

In (2), ~r is a 2D or 3D image space coordinate, f(~r) is the

magnetization of the object directly after RF excitation, ~k(t)
is the k-space trajectory used to acquire the MR data and z(~r)
is a complex-valued spatial map:

z(~r) = zR(~r) + izI(~r) ,

where the R∗

2 map zR(~r) and the field map zI(~r) characterize

the relaxation rate and off-resonance effects respectively for

T ∗

2 -weighted images. Here, we would like to reconstruct z(~r)
from y.

Reconstructing the continuous-space map z(~r) from the

discrete MR data y using (2) is an ill-posed inverse problem.

To simplify the problem we parametrize f(~r) and z(~r) with

the following approximations [26]:

z(~r) ≈
∑N

n=1 z(~rn) b(~r − ~rn),

f(~r) ≈ ∑N
n=1 f(~rn) b(~r − ~rn),

(3)

where b(·) is the voxel basis function, chosen here as the 2D

or 3D rect function. Using this in (2) gives:

s(t; z, f) , Φ(~k(t))

N∑

n=1

f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn) , (4)

z , [z(~r1) , . . . , z(~rN )] , f , [f(~r1) , . . . , f(~rN )] ,

where s(t; z, f) is the discrete-space MR signal equation and

Φ(~k(t)) is the Fourier transform of b(·). This form of the signal

equation can now be used to reconstruct a discrete image z

from y. Note that f is generally not known and thus either

needs to be determined before z is reconstructed or jointly

reconstructed with z using (4).

In an fMRI study, a series of time frames are collected in

an MRI scanner, where a frame can either be an image slice

(2D) or volume (3D). Using (1) and (4) we model the received

fMRI data for time frame j as follows:

yj = s(zj , f) + ǫj , j = 1, . . . , J, (5)

s(zj , f) , [s(t1; zj , f ) , . . . , s(tM ; zj , f)] ,

where yj is the received MR data, s(zj , f ) is the discrete MR

signal from (4) and ǫj is iid Gaussian noise. An assumption in

(5) is that f is not time frame dependent, which in the absence

of motion is reasonable for single shot MR data acquired using

low-flip angles and/or long TRs to control for blood inflow

enhancement [7]. Since f is time frame independent, it can

be reconstructed from specifically collected MR data y0 prior

to the fMRI acquisition. The reconstructed f is denoted f̂ .

Using f̂ we can reconstruct zj from yj for j = 1, . . . , J by

minimizing a penalized likelihood cost function as follows:

Ψ(zj) =
1

2
‖yj − s(zj)‖2

+ R(zj) ,

ẑj = arg min
zj

Ψ(zj) ,
(6)
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where s(zj) , s
(
zj , f̂

)
, ẑj is the reconstructed zj and

R(zj) is an appropriately chosen roughness penalty (see Sec-

tion III-A) that controls the tradeoff between spatial resolution

and noise in ẑj . The cost function Ψ(zj) is non-convex and

would require a nonlinear iterative minimization algorithm,

e.g., [35], [36], [38]. Any algorithm used to minimize it is

likely to return a local minimum and thus needs to be carefully

initialized.

We propose to solve (6) by converting it to a sequence of

quadratic optimization problems so that fast iterative recon-

struction algorithms can be used. The idea is to use a linear

approximation to the dynamic temporal changes between zj

and a carefully chosen reference ž. The advantage of using a

sequence of quadratic approximations is that for each one, we

can precompute temporal interpolators required for fast field-

corrected image reconstruction [26], and then minimize that

quadratic by NUFFT or Toeplitz methods [27]. In contrast, if

we apply gradient descent or CG directly to (6), each gradient

calculation would need new temporal interpolator coefficients,

significantly increasing the computation time per iteration.

III. DYNAMIC zj RECONSTRUCTION

This section describes an efficient algorithm for (6). Sup-

pose a previously reconstructed reference map ž is available

(see discussion later in this section) in addition to f̂ . Under

this assumption, adding and subtracting ž in the exponent

containing zj in (4) gives the following:

s(t; zj) = Φ(~k(t))
N∑

n=1

f̂(~rn) e−tž(~rn)

· e−t(zj(~rn)−ž(~rn)) e−i2π(~k(t)·~rn) , (7)

where the exponential has been split into two separate expo-

nentials with one containing the difference of ž and zj . When

this difference is small, that term can be approximated using

a first-order Taylor expansion, as follows:

e−t(zj(~rn)−ž(~rn)) ≈ 1 − t (zj(~rn) − ž(~rn)) . (8)

Substituting this in (7) yields:

s(t; zj) ≈ s(t; ž) + Φ(~k(t))

N∑

n=1

f̂(~rn) e−tž(~rn)

· (−t) (zj(~rn) − ž(~rn)) e−i2π(~k(t)·~rn) . (9)

Using the approximation in (8) the relationship of s(t; zj)
to zj is now approximately linear (or more precisely affine)

according to (9). This allows us to rewrite (9) in a matrix-

vector form as follows:

s(zj) ≈ s(zj ; ž) , (10)

s(zj ; ž) , s(ž) + A(ž) (zj − ž) ,

where A(·) is the system matrix of size M×N , with elements

written as follows:

amn(ž) = Φ(~k(tm))f̂(~rn) e−tmž(~rn) (−tm) e−i2π(~k(tm)·~rn) .
(11)

Using the approximation in (10), we can now approximate

the difference of yj and s(zj), as follows:

yj − s(zj) ≈ yj − s(zj ; ž)

= ỹj(ž) − A(ž)zj , (12)

where,

ỹj(ž) , yj − s(ž) + A(ž) ž.

Using the approximation in (12) we can form a new cost

function as follows:

Ψ(zj ; ž) =
1

2
‖ỹj(ž) − A(ž)zj‖2

+ R(zj) , (13)

where Ψ(zj ; ž) is quadratic in terms of the objective zj .

By minimizing Ψ(zj ; ž) one can then reconstruct zj using

fast iterative reconstruction algorithms such as [26], [27].

How well that matches to the result of (6) depends on the

approximation made in (8), i.e., we must find a ž that is close

enough to the true zj so that (8) does not introduce too much

error in (12).

As previously discussed, the MR data y0 is already needed

to get f̂ . This data could be acquired so that z0 and f are

jointly reconstructed from y0 [35], [36]. Thus, one might

choose ž to be the reconstructed map ẑ0. This reference map

would approximate the baseline state of R∗

2 and field map.

However, in an fMRI study at 3T the voxels showing acti-

vation have zR and zI showing maximum temporal changes

of approximately -2s−1 [15] and 3Hz [38] respectively for

a 3 minute scan relative to baseline. By using z0 as the

reference map and for a typical single shot acquisition with

a TE = 30ms the NRMS error for the approximation in (8)

would at worst be ∼15%, which would be undesirably large.

A more appropriate choice is to dynamically update ž

using a previous estimate of zj , where the estimate then gets

gradually refined. To differentiate between the refinements we

denote them as ẑ
(l)
j , where l is the refinement index. Thus, we

choose ž as ẑ
(l−1)
j when reconstructing ẑ

(l)
j , and if the total

number of refinements are L we set:

ẑ
(0)
j = ẑj−1 = ẑ

(L)
j−1.

With this choice of ž, (8) should have a smaller approximation

error as l increases, and thus the approximation in (12) should

improve when used in (13).

Including the refinement concept into the reconstruction

algorithm, we rewrite (12) as follows:

yj − s(zj) ≈ ỹj

(
ẑ

(l−1)
j

)
− A

(
ẑ

(l−1)
j

)
zj .

Using this we reconstruct ẑj for j = 1, . . . , J by minimizing

a quadratic cost function as follows:

ẑ
(l)
j = arg min

zj

Ψ
(
zj ; ẑ

(l−1)
j

)
, l = 1, . . . , L, (14)

where Ψ(zj ; ·) was defined in (13) and ẑj = ẑ
(L)
j . This

form of the reconstruction algorithm is very flexible and

should approximate well the results of the original nonlinear

reconstruction problem given in (6).
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A. Roughness Penalty R(zj) and Its Implications on ẑj

We must choose a roughness penalty R(zj) in (14). The

conventional choice is given as follows:

1

2
β ‖Czj‖2 ,

where β is the regularization parameter and C is a real-valued

first-order difference matrix that evaluates the differences of

neighboring pixels within a user specified neighborhood. If

R(zj) were defined as this penalty the real and imaginary

parts of zj would be penalized equally. However, because the

field map zI is usually smoother than the R∗

2 map zR, we

choose to regularize these maps separately, as follows:

R(zj) =
1

2

(
β1‖CzRj‖2 + β2‖CzIj‖2

)
, (15)

where C is the first-order difference matrix and zRj and zIj

are respectively the real and imaginary parts of zj . Note that

C can be defined separately for zRj and zIj . This can have

some advantages, e.g., defining C for zIj as a second-order

difference matrix as suggested in [29] while C for zRj is a

first-order difference matrix. However, for simplicity we chose

to use the same matrix for both parameters.

As evident from (11) the elements of A
(
ẑ

(l−1)
j

)
depend on

f̂ , which has values near 0 outside the object. This relationship

has the following consequences:

∀n s.t. f̂(~rn) ≈ 0 ⇒
[
A

(
ẑ

(l−1)
j

)
zj

]

n
≈ 0, ∀zj ∈ C

N .

This implies that the roughness penalty R(zj) becomes the

dominant factor in Ψ
(
zj ; ẑ

(l−1)
j

)
for spatial positions outside

the object.

B. Implementation of the Fast Iterative Algorithm

For fast minimization of Ψ
(
zj ; ẑ

(l−1)
j

)
in (14) we use the

Conjugate Gradient (CG) method [42]. To reduce memory we

never explicitly form the large matrix A(·), rather we use a

software object to represent this matrix.1 This software uses

fast methods such as FFT (for cartesian k-space trajectories) or

NUFFT (for noncartesian k-space trajectories) [43] and tem-

poral segmentation [26], [27] to greatly decrease computation

time. The total compute time of the reconstruction algorithm

is then roughly L times longer than previous fast iterative

algorithms used to reconstruct T ∗

2 -weighted images [26], [27].

The convergence of CG depends on how it is initialized.

A common CG initialization is to set all the elements of

the initial solution to zero. This is a convenient initialization,

but does not exploit any prior knowledge of the solution of

(14). Another CG initialization would be to use the conjugate

phase (CP) [24] reconstructed zj . This initializer was shown to

improve the convergence of CG, compared to initializing with

all zeros, when used to iteratively reconstruct an off-resonance

corrected T ∗

2 -weighted image [26]. However, since A
(
ẑ

(l−1)
j

)

also includes R∗

2 relaxation, CP is ineffective here.

As previously stated, zj should change only slightly be-

tween neighboring time frames and across refinements. Thus,

1Software available at http://www.eecs.umich.edu/∼fessler/

it is advantageous to exploit this relatively gradual temporal

change to initialize the CG algorithm sensibly. Hence, when

we reconstruct ẑ
(l)
j the previous refinement ẑ

(l−1)
j is used to

initialize CG.

IV. RESOLUTION PROPERTIES: REGULARIZATION DESIGN

The resolution properties of ẑ
(l)
j are important to further un-

derstand the relationship of the regularization function in (15)

and the spatial smoothness of ẑ
(l)
j . Local point spread func-

tions (LPSF) [39] have been previously used to analyze this

relationship, using the approximate local resolution properties

of regularized reconstruction algorithms with parametrized

object models [40] as in (3). This analysis will be used first,

to check if the penalized reconstruction in (14) has uniform

spatial resolution and, if needed, design a penalty to achieve

such uniformity. Then it will be used to set β values to achieve

a predetermined resolution that is quantified using the full-

width half-max (FWHM) of the LPSF.

A. Resolution Analysis

We estimate ẑ
(l)
j by minimizing Ψ

(
zj ; ẑ

(l−1)
j

)
in (14) with

separate regularization of the real and imaginary parts per

(15). The appendix derives the LPSF for such reconstruction

problems. If the LPSF can be shown to be shift invariant then

the spatial resolution of ẑ
(l)
j is uniform and the resolution

properties of the algorithm can be quantified approximately

by evaluating the LPSF in (26) at a single spatial location.

If both A′A and C ′C are Toeplitz, then using (26) one can

show that the LPSF is approximately locally shift invariant.

For the reconstruction method used in this paper C ′C is

Toeplitz but A′A is not as seen from (11). Thus the LPSF is

shift variant, which makes the resolution nonuniform for the

usual first-order difference matrix C in (15). Next we propose

a spatially variant penalty design that leads to approximately

uniform local spatial resolution.

B. Spatially Variant Penalty Design

Although A′A is not Toeplitz, using methods similar to

those proposed in [40] we can find an approximation of the

form:

A′A ≈ D′G′GD, (16)

where G′G is Toeplitz and D is a real-valued and invertible

matrix. Having found such an approximation, we introduce a

spatially variant differencing matrix C̃ , as follows:

C̃ = CD. (17)

By replacing C with C̃ in (15) the stacked LPSF in (26)

becomes as follows:

lSn =
(
A′

SAS + C̃
′

SC̃S

)
−1

A′

SASeSn (18)

≈ dnD−1
S (G′

SGS + C ′

SCS)
−1

G′

SGSeSn,

≈ (G′

SGS + C ′

SCS)
−1

G′

SGSeSn, (19)
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where AS and eSn are shown in (27), C̃S is a block diagonal

matrix with
√

β1C̃ and
√

β2C̃ forming the diagonal blocks,

dn is the nth diagonal element of D and

G′

SGS =

[
ℜ (G′G) −ℑ (G′G)
ℑ (G′G) ℜ (G′G)

]
, DS =

[
D 0

0 D

]
.

Thus even though A′A is not Toeplitz we can still make

the LPSF to be approximately locally shift invariant by in-

troducing a spatially variant penalty of the form (17) in the

reconstruction.

We use a diagonal matrix D such that the diagonal of

A′A and D′G′GD are equal. This equality constraint when

estimating ẑ
(l)
j can be written as follows:

M∑

m=1

∣∣∣amn

(
ẑ

(l−1)
j

)∣∣∣
2

= dn

(
ẑ

(l−1)
j

)2

·
M∑

m=1

|gmn|2 . (20)

To find dn we need to define gmn such that G′G is Toeplitz

and yet ensure (16) is a good approximation. The term in

A that makes A′A non-Toeplitz is f̂(~rn) e−tmẑ
(l−1)

j
(~rn)

. Even

though f̂(~rn) can be separated from A′A as proposed in (16)

the same cannot be said for e−tmẑ
(l−1)
j

(~rn)
because of its spatio-

temporal structure. However, by approximating the elements

of ẑ
(l−1)
j with the median value of ẑ0, denoted z, we define

the elements of G as follows:

gmn , Φ(~k(tm)) e−tmz (−tm) e−i2π(~k(tm)·~rn) , (21)

This definition of G makes G′G Toeplitz and the diagonal

elements of D
(
ẑ

(l−1)
j

)
= D are then given as follows:

dn

(
ẑ

(l−1)
j

)
= |f(~rn)|

√√√√
∑M

m=1 c2
m e−2tmẑR

(l−1)

j (~rn)

∑M
m=1 c2

m e−2tmzR

, (22)

with cm , Φ(~k(tm))tm. Note that this form of D allows us

to use (19) to find a single pair of regularization parameters

to achieve a desired resolution that depends only on ẑ0.

C. Spatially Variant Penalty Implementation

To implement the penalty designed in (22) there were

some issues regarding computational speed and stability of

the reconstruction that needed to be addressed:

• For stability, we find D according to (22) at the beginning

of the algorithm after estimating ẑ0 and use that for

subsequent j and l, i.e., D
(
ẑ

(l−1)
j

)
, D(ẑ0) for all

(l, j).
• Calculating (22) for all n is computationally expensive

due to the spatio-temporal dependence of the numerator.

However, since an R∗

2 map generally has values within

a fairly tight range we approximate the numerator by

histograming ẑ0.

• Our implementation of the penalty suggested in (17) uses

the modification given in equation (35) in [40].

• Equation (19) is implemented efficiently using FFTs [44].

This allows us to evaluate it for multiple β values, cal-

culate the FWHM of the resulting LPSFs and interpolate

that to the desired FWHMs and their associated β values

in a fast manner.

V. RECONSTRUCTION ALGORITHM – OVERVIEW

We can now summarize the proposed reconstruction

algorithm as follows:

• Find f̂ and ẑ0 from multi-echo MR data y0 that is

collected at the beginning of the fMRI study.

• Using (19), find β1 and β2 that yield the desired

resolution for the real and imaginary parts of ẑj .

• Generate D for the regularizer using (22) with ẑ0.

• Reconstruct ẑj for all j = 1, . . . , J as follows:

for j = 1, . . . , J [time]

Set ẑ
(0)
j = ẑj−1.

for l = 1, . . . , L [refinement]

Form A
(
ẑ

(l−1)
j

)
and generate s

(
ẑ

(l−1)
j

)
.

Solve ẑ
(l)
j = arg minzj

Ψ
(
zj ; ẑ

(l−1)
j

)
using

CG.

end

Set ẑj = ẑ
(L)
j .

end

VI. SIMULATIONS

We simulated k-space data using the exact form of the signal

equation given in (4), with no temporal interpolation. We used

a 4713 sample spiral-out k-space trajectory with a readout of

18.8ms, field of view of 22cm and maximum gradient ampli-

tude and slew rate of 22mT/m and 180mT/m/ms respectively.

The simulation maps were 128 × 128 but reconstructed as

64 × 64, unless otherwise noted, with the baseline maps f

and z0 shown in Fig. 1(a) - 1(c). For simulations corrupted

by noise, we found the variance of the iid Gaussian noise to

make the SNR 80, 55 or 30 for the baseline k-space data with

TE = 30ms, where:

SNR =
‖s(z0, f)‖

‖ǫ0‖
.

This noise variance was then used to generate iid Gaussian

noise for k-space data of other time frames and TEs.

For the iterative algorithm parameters we used 9 segments

for the temporal segmentation of e−tz(~rn), which were inter-

polated using min-max interpolation coefficients [26]. When

comparing the exact and interpolated complex exponential the

maximum error and normalized RMS error (NRMSE) were

on the order of 10−7 and 10−8 respectively for the simulation

maps shown in Fig. 1(b) - 1(c). For the NUFFT parameters

we used 2× oversampling and a 5 × 5 neighborhood [43].

We ran 20 iterations of CG for each (l, j) pair to get ẑ
(l)
j

and used a reconstruction mask to reduce the number of

reconstructed voxels from 4096 to 2404. Fig. 1(a) shows the

edge of the reconstruction mask. All reconstructions were run

on a 2.13Ghz Intel Core 2 Duo with 2GB of memory.

A. Initialization: Estimating f̂ and ẑ0

The proposed reconstruction needs f̂ and ẑ0 for initial-

ization. These spatial maps were reconstructed from mul-

tiple fully sampled readouts, i.e., multi-echo data. Here,
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Fig. 1. True and reconstructed maps (SNR = 55) used in the simulations. (a) f with the edge of the reconstruction mask for reference; (b) zR0; (c) zI0;

(d) f̂; (e) ẑR0; (f) ẑI0. The reconstructed maps for simulated k-space data are only shown for voxels within the reconstruction mask and the (N)RMSE is
the (normalized) RMS error of the reconstructed map relative to the true map within the mask |f| > 0 for SNR = (80, 55, 30).

we simulated 5 echos with noise, where the readouts had

TE = [6.5, 4.5, 24.3, 44.1, 63.8]ms. We reconstructed two T ∗

2 -

weighted images from the 4.5ms and 6.5ms readouts using

iterative reconstruction [26] and then estimated ẑI0 from the

phase difference of these two images [28], [29]. This was

repeated two times, where after estimating ẑI0 the first time

it was used in the iterative reconstruction to correct for off-

resonance during readout.

Using ẑI0, we reconstructed an off-resonance corrected T ∗

2 -

weighted image for each echo of the multi-echo data using

the same iterative reconstruction. The reconstructed images

have different T ∗

2 -weighting which is assumed to occur at

TE. This allowed us to fit the decay of each voxel in the

reconstructed images to a mono-exponential model [14], which

gave ẑR0. Since this fit is highly sensitive to noise in voxels

with low SNR, spatially weighted smoothing was performed

that applied low smoothing to ẑR0 in areas inside the object

and higher smoothing where there are signal voids and outside

the object, similar to [29]. We chose the weights as the

magnitude image with TE = 4.5ms. This was repeated three

times, where after estimating ẑR0 each time it was used in

the iterative reconstruction to correct for R∗

2 relaxation during

readout.

From [14], we know that f̂ could also be reconstructed

using the mono-exponential fitting method. However, due to

the poor fitting performance in voxels with low SNR, we chose

to reconstruct f̂ iteratively using the signal model in (4) as

follows:

f̂ = arg min
f

1

2
‖y0 − B(ẑ0)f‖2

+ R(f) ,

where y0 is the concatenated multi-echo data, R(f) is a

roughness penalty and the elements of B(ẑ0) are given as

follows:

bmn(ẑ0) = Φ(~k(tm)) e−tmẑ0(~rn) e−i2π(~k(tm)·~rn) ,

where tm are the concatenated time vector samples of the

simulated readouts and ẑ0 is formed using ẑR0 and ẑI0. We

chose the spatial regularization for f̂ so that the LPSF of the

center voxel had a FWHM of approximately 1.25 voxels.

The results for simulated k-space data with SNR = 55 are

shown in Fig. 1(d) - 1(f) and the (N)RMSE shown below the

images is the (normalized) RMS error of the reconstructed

map relative to the true map within the mask |f | > 0 for all

SNRs.

B. Resolution: Properties and Nonuniformity Correction

Here we analyze the performance of the proposed spatially

variant penalty. All the analysis is based on the true simulation

maps in Fig. 1(a) - 1(c). We started by finding β1 and β2 to

achieve a desired resolution. We chose the desired resolution

such that the LPSF for the center voxel gave a FWHM of

1.35 and 1.5 voxels for the real and imaginary parts of ẑ
(l)
j
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Fig. 2. Voxel positions where the LPSFs in (18) were evaluated. The positions
are split into 2 groups, indicated by the x’s and o’s, where each group are at
locations where the value of f is the same.

respectively. This was done by evaluating the LPSF in (19) for

100 pairs of β1 and β2, where z was the median of the true z0

in Fig. 1(b)-1(c). Using FFTs [44] it took 19.2s to evaluate the

LPSFs for all 100 pairs. The FWHMs of those LPSFs were

then used to interpolate the desired FWHM to their associated

β values.

Using those β values, we calculated the exact LPSF using

(18) at the voxel positions shown in Fig. 2. We investigated

the resolution properties by evaluating (18) for ẑ1, with AS

formed by stacking A(z0) and using the true f in place of

f̂ . The spatially variant penalty was formed in 4.7s using

(22), where the true simulation maps were again used and

the numerator was calculated by histograming zR0 with 100

bins. For comparison, we also designed a spatially nonvariant

penalty by making a diagonal matrix using the mean of dn(z0)
in (22) across all voxels where |f | > 0. This made the

nonvariant penalty approximately have the desired FWHM

using the previously calculated β values.

Fig. 3 shows both FWHM scatter plots and the average

profile of the LPSF for the voxel positions in Fig. 2 of

the real and imaginary parts of ẑ1 for both penalties. The

calculated FWHM values are more concentrated around the

desired FWHM values when using the spatially variant penalty

compared to the nonvariant one. This is further confirmed in

the profile plots of the LPSFs averaged over each group for

both the real and imaginary parts of ẑ1. This indicates the im-

portance of compensating for spatial resolution nonuniformity

in the reconstruction algorithm.

Table I shows the mean and the standard deviation of

the FWHM for both the real and imaginary parts of ẑ1. It

shows further evidence of the effect of f in causing resolution

nonuniformity in the reconstructed zj . The mean FWHM

(a) (b)

(c) (d)

Fig. 3. FWHM scatter plots and average profile of the LPSF for the
two groups of voxel positions in Fig. 2. Results are shown for the real
and imaginary parts of ẑ1 when using the spatially variant and nonvariant
penalty. (a) Scatter plot for spatially nonvariant penalty; (b) Scatter plot for
spatially variant penalty; (c) Average profile for spatially nonvariant penalty;
(d) Average profile for spatially variant penalty.

of the two groups from Fig. 2 deviate more when using a

spatially nonvariant penalty compared to the proposed penalty.

Repeating these measurements for A(ẑj) for a time frame

j during activation the numbers did not change significantly

while still using dn(z0) to form D. This indicates that it is

sufficient to find D based on f̂ and ẑ0 and use that for all

time frames.

C. Simulated fMRI Data

To analyze the proposed reconstruction in (14) for fMRI

time series we compared its activation detection and R∗

2

estimation performance to an iterative T ∗

2 -weighted recon-

struction [26] and a multi-echo R∗

2 reconstruction [14]. We

simulated a 70 time frame four-echo fMRI data with TE
= [10.2, 30, 49.8, 69.6]ms. The TE = 30ms readouts were

used for the proposed and the T ∗

2 -weighted reconstructions.

For the multi-echo R∗

2 reconstruction we iteratively recon-

structed four T ∗

2 -weighted images [26], one for each readout,

and estimated both R∗

2 and f by fitting a mono-exponential

decay to each voxel of the T ∗

2 -weighted magnitude images.

Fig. 4 shows the simulated fMRI spatial activation map

and the temporal changes. Fig. 4(a) shows the spatial weights

for four enumerated activation clusters, along with the edges

TABLE I
AVERAGE FWHM FOR BOTH ẑR1 AND ẑI1 WITH ITS STANDARD DEVIATION FOR BOTH THE SPATIALLY NONVARIANT AND PROPOSED PENALTIES.

Spatially Nonvariant Penalty Spatially Variant Penalty Desired

x’s o’s x’s o’s

ẑR1 FWHM 1.28 ± 0.04 1.36 ± 0.03 1.31 ± 0.04 1.31 ± 0.05 1.35

ẑI0 FWHM 1.45 ± 0.04 1.55 ± 0.03 1.50 ± 0.03 1.50 ± 0.03 1.50
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Fig. 4. Simulated spatial and temporal activations. (a) Map of the spatial
weights for four enumerated activation clusters, along with the edges of f
in Fig. 1(a) shown for reference; (b) Additive task waveform for R∗

2
for all

clusters. Additionally, in clusters 2 and 3 we added task related changes in
f and zI respectively (maximum change of 1% and 0.15rad/s); (c) Additive
spatially global drift in the field map to simulate the effects of magnetic field
drift and respiration.

of f in Fig. 1(a) shown for reference. Fig. 4(b) shows the

task related temporal changes in zR that were simulated in

all the clusters. Additionally, in clusters 2 and 3 we added

task correlated changes in f and zI respectively (maximum

change of 1% and 0.15rad/s). Cluster 1 was placed where the

in-plane field map gradient of zI0 was large, while cluster 4

was placed along the edge of f . Fig. 4(c) shows the spatially

global drift in zI that simulates the effects of magnetic field

drift and respiration. The k-space time series was generated by

adding these spatio-temporal changes to z0 and f in Fig. 1,

using the exact MR signal equation (4) and noise.

To choose L for the proposed reconstruction, we generated

noiseless k-space data from 64× 64 images to reconstruct ẑj

with L = 1, . . . , 5 by solving (14). The desired resolution

was set as described in the first paragraph in Section VI-B

and we used the true f and z0 to exclude any effect from

the initialization of the reconstruction. With the exception of

the first time frame the algorithm had similar temporal RMSE

for L ≥ 2 (average temporal RMSE was 0.197). Hence we

chose to use L = 5 for the first time frame and L = 2 for

subsequent time frames when reconstructing the k-space data

from 128× 128 images. We also initialized the reconstruction

using f̂ and ẑ0 from Section VI-A.

All the T ∗

2 -weighted reconstructed readouts used 20 CG

iterations, with CG initialized using the conjugate phase re-

construction [24], and corrected for off-resonance in all time
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Fig. 5. Overlaid z-score of the voxels inside f that were above the
threshold (Bonferroni corrected P-value of 0.01) for SNR = 80 (left) and SNR
= 30 (right). (a)&(b) Dynamic ẑRj reconstruction; (c)&(d) T ∗

2
-weighted

reconstruction; (e)&(f) Multi-echo R∗

2
reconstruction.

frames using ẑI0 in Fig. 1(f). The regularization parameter

was chosen to have a LPSF with FWHM of 1.35 so that

the resolution was comparable to ẑRj from the proposed

reconstruction.

We reconstructed all the time frames for all SNRs. We did

the time series analysis using a GLM model with the task

waveform as a regressor and generated z-score maps that were

thresholded with a Bonferroni corrected P-value of 0.01. Fig. 5

shows the overlaid z-score of the voxels inside f that were

above the threshold for SNR = 80 (left) and SNR = 30 (right).

Voxels with true positives are shown with a color coded z-score

and false negatives with a square. Fig. 5(a) - 5(b) shows the

results from the dynamically reconstructed ẑj , Fig. 5(c) - 5(d)

from the T ∗

2 -weighted reconstruction and Fig. 5(e) - 5(f) from

the multi-echo R∗

2 reconstruction.

Fig. 5 shows that in terms of total number of true positives

the four-echo R∗

2 reconstruction performs the worst. This is

especially apparent in cluster 1 due to the high in-plane field

map gradient. Compared to the T ∗

2 -weighted reconstruction,
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Fig. 6. Estimated R∗

2
time series (SNR = 55) for all the reconstructions, which was spatially averaged over each cluster, along with the true zRj . (a)

Results from cluster 1; (b) Results from cluster 2; (c) Results from cluster 3.

the proposed reconstruction performs slightly better for both

SNRs, especially for voxels that have low functional CNR.

This is particularly evident in cluster 3, that has the task

correlated changes in the field map, and cluster 4. However,

both these reconstructions are sensitive to the task correlated

changes in f for cluster 2. The multi-echo R∗

2 reconstruction

is more robust to this effect. Similar trends are seen for

SNR = 55 as for the other SNRs.

Fig. 6 shows R∗

2 time series from the three reconstructions,

spatially averaged over cluster 1-3 as shown in Fig. 6(a) - 6(c)

respectively. For reference the plots show the true spatially

averaged zRj time series. To convert the T ∗

2 -weighted time

series to R∗

2 we calculated its ∆R∗

2 time series using ∆R∗

2 ≈
− (Sj − S1) /S1/TE, where Sj is the T ∗

2 -weighted magnitude

image of time frame j. This time series was then shifted by

ẑR0. The plots show that the multi-echo R∗

2 reconstruction

performs the worst and the proposed reconstruction the best in

estimating the R∗

2 time series. This is obvious in Fig. 6(a) due

to the high in-plane field map gradient of cluster 1. Fig. 6(b)

shows how the simulated inflow changes in cluster 2 affect

the R∗

2 estimates during activation for both the proposed and

T ∗

2 -weighted reconstructions. Additionally, all plots indicate a

slight linear drift in the ∆R∗

2 time series, as clearly seen in

Fig. 6(c). All the clusters have <2% error in estimating R∗

2

time series for the proposed reconstruction.

VII. EXPERIMENTAL DATA

We scanned a single subject in an fMRI experiment to

demonstrate the proposed reconstruction for in vivo data and

compared with T ∗

2 -weighted and multi-echo R∗

2 reconstruc-

tions. The data had 102 time frames, four-echo spiral-out

readouts, FOV = 24cm, TR = 3.2s and FA = 90◦. The first

time frame had TE = [4.6, 23.2, 41.8, 60.4]ms, the second

time frame the same TEs shifted by 2ms and subsequent time

frames had TE = [11.4, 30, 48.6, 67.2]ms. The subject was

instructed to repeat 5 times 32s of rest followed by 32s of

bilateral finger tapping prompted by a flickering checkerboard.

We collected 26 axial slices that covered the visual and motor

cortices.

The four readouts from the first time frame and the first

readout of the second time frame were used to form a five-echo
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Fig. 7. Z-scores of voxels above the threshold for 2 slices overlaid on
anatomical images for all the reconstructions. Left column shows the results
of a superior slice with motor activation and right column shows the results
of an inferior slice with visual activation. (a)&(b) Dynamic ẑj reconstruction;
(c)&(d) T ∗

2
-weighted reconstruction; (e)&(f) Four-echo R∗

2
reconstruction.
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k-space data with TE = [4.6, 6.6, 23.2, 41.8, 60.4]ms. This

five-echo data was used to estimate f̂ and ẑ0 identically to

the procedure described in Section VI-A. For the proposed and

T ∗

2 -weighted reconstructions we used only the TE = 30ms

readout while the multi-echo R∗

2 reconstruction used all the

readouts. All the reconstructions were set up identically to

what was described in Section VI.

The fMRI analysis was applied to all the reconstructions, us-

ing a GLM model with a gamma-variate regressor [45] for the

task and a linear regressor for the linear drift. We generated z-

score maps that were thresholded using a Bonferroni corrected

P-value of 0.01 followed by a clustering constraint [46] of at

least one neighboring voxel above the threshold. Fig. 7 shows

2 slices with overlaid z-scores of voxels above the threshold

for all the reconstructions. The left column of Fig. 7 shows

a superior slice with motor activation and the right column

shows an inferior slice with visual activation. Fig. 7(a) - 7(b)

shows the results from the proposed reconstruction, Fig. 7(c) -

7(d) from the T ∗

2 -weighted reconstruction and Fig. 7(e) - 7(f)

from the four-echo R∗

2 reconstruction.

Fig. 7 shows clear activations in the motor cortex, supple-

mentary motor area and the visual cortex for all the reconstruc-

tions. Also, f estimates from the four-echo R∗

2 reconstruction

showed only 3 voxels in the visual cortex having minor

task correlated inflow and none in the motor cortex. The

results from the superior slice follows the trend shown in the

simulations, where the proposed reconstruction has the most

number of voxels classified as active and the four-echo R∗

2

reconstruction the fewest. However, this is not the case for

the inferior slice, where the T ∗

2 -weighted reconstruction has

the most active voxels. This difference may be due to the

stronger field gradients in the inferior slice that currently are

not included in the signal model in (4).

VIII. CONCLUSION AND DISCUSSION

We have proposed a method for reconstructing dynamic R∗

2

and field maps for fMRI data with the same temporal reso-

lution as T ∗

2 -weighted imaging. This was done using a linear

approximation to the temporal changes in R∗

2 and field maps

relative to a previously determined reference map. Simulations

showed the reconstruction outperformed both T ∗

2 -weighted and

four-echo R∗

2 reconstructions in detecting active voxels. For

the quantitative R∗

2 estimation the proposed reconstruction

did considerably better than the four-echo R∗

2 reconstruction

but about the same as the T ∗

2 -weighted reconstruction after

converting it to ∆R∗

2 and excluding the ẑR0 shift. However,

there was a slight drift present in the ∆R∗

2 time series, which

may explain the lower detection performance of the T ∗

2 -

weighted reconstruction compared to the proposed reconstruc-

tion. Adding a linear drift regressor into the GLM model did

improve the performance of the T ∗

2 -weighted reconstruction,

but still not to the level of the proposed reconstruction.

For the in vivo data all the reconstructions showed a similar

trend to the simulation results for the superior slice, less so for

the inferior slice. Since the inferior slice is closer to the sinuses

it is more affected by field gradients than the superior slice.

The effects of the gradients are not in the signal equation for

any of the reconstructions used here. However, when compared

to T ∗

2 -weighted reconstruction, the proposed reconstruction

does rely on a mono-exponential relaxation model which can

introduce model bias in areas with high gradients [12], [13].

Adding gradients in the signal equation in (4) [47] may also

alleviate this model mismatch for the proposed reconstruction.

This is something that needs further investigation. Any further

comparisons in terms of detection performance for the in vivo

data would need more acquisitions and estimation of test-retest

reliability [48].

The compute time and the performance of the algorithm

depends mainly on the number of refinements used to find

ẑj . It was shown in the simulations that L = 5 for the first

time frame and L = 2 for other time frames was adequate.

The compute time for the first time frame was 60.3s, which

includes forming D (4.7s) and finding the β values to satisfy

our desired resolution (19.2s), and subsequent time frames

took 17.7s. This time could be reduced by reusing common

parts of A for all time frames. The reconstruction is then two

times longer than T ∗

2 -weighted reconstruction since L = 2, but

with the added benefit of correcting for field drift and getting

R∗

2 estimates.

Currently, the algorithm does not include any motion cor-

rection. Since all the simulations were done without motion

the performance of the algorithm with motion has not been

assessed. However, since it relies on the reconstructed map

f̂ , one would assume that any motion in the data is going to

translate into changes in f̂ . This may make the algorithm more

sensitive to motion induced errors than T ∗

2 -weighted image

reconstruction, where all the frames can be reconstructed

independent of past or future time frames.

One simple method for motion correction would be to

estimate rigid body motion parameters from T ∗

2 -weighted

images, using the first time frame as the reference frame. We

would then use those motion parameters when reconstructing

ẑj for the same data to correct f̂ in the system matrix for

any motion. This method and others need to be investigated

further but ultimately motion correction must be included in

the algorithm for it to be robust.

In addition to excluding motion there is also an assumption

of blood inflow being limited. Under this assumption f̂ should

be time frame invariant when reconstructing ẑj for all j. One

way to limit the effects of inflow enhancement is to acquire

the data by either increasing TR or decreasing the flip angle

[7], which respectively puts limitations on the data acquisition

and lowers SNR. This effect could also be decreased by

jointly reconstructing f̂ and ẑj . However, due to the higher

dimensionality of this ill-conditioned reconstruction of both

spatial maps, longer readouts and further regularization of f̂

would be needed. This would potentially be at a cost of higher

compute times due to the increased complexity.

In our nonuniform regularization design there are mainly

three limitations. Firstly, we form the spatially nonuniform

penalty once and then only based on ẑR0. This can result

in time frame varying resolution for voxels with significant

temporal changes in zj . Additionally, any spatial resolution

variations due to ẑIj are not compensated since we only

account for spatial variations in R∗

2. Secondly, we chose
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the regularization parameter arbitrarily to satisfy a desired

FWHM. There are alternative methods available to choose

this parameter [49], such as cross validation. Thirdly, since∣∣∣f̂
∣∣∣ is multiplicative in D, voxels with low

∣∣∣f̂(~rn)
∣∣∣ will have

very little regularization. This could be alleviated by smoothly

extending high

∣∣∣f̂(~rn)
∣∣∣ voxels over the low valued voxels to

decrease the variance of the estimates. These design limitations

need further investigation, especially with respect to resolution

uniformity, reconstruction compute time and bias/variance

trade-off.

The simulated and in vivo k-space data was acquired using a

single shot spiral-out trajectory. The accuracy of the algorithm

does depend on the readout length of the trajectory that is used

to acquire the data. For instance, a fully sampled single shot

spiral-in followed by an undersampled spiral-out was shown

to have higher correlation values than using only spiral-in data

[50]. Further investigation of the behavior of the algorithm for

various trajectories and readout lengths is needed.

To initialize the algorithm we used data collected at the start

of the fMRI study to reconstruct zI0, then zR0, and finally

f . The reconstruction of f̂ may be sensitive to errors in ẑ0,

which may especially come from ẑR0 since log fitting is very

sensitive to noise. An alternative solution would be to use a

joint reconstruction algorithm [35], [36], where ẑ0 and f̂ are

simultaneously reconstructed by minimizing one regularized

cost function instead of minimizing separate cost functions

for each spatial map.

APPENDIX A

STACKED LPSF

It has been previously shown [40] that for a quadratic

penalized likelihood (QPL) reconstruction using a roughness

penalty that penalizes the real and imaginary parts equally,

ẑ = arg min
z

1

2
||y − Az||2 +

1

2
β||Cz||2,

the local point spread function (LPSF) at spatial position n is

given by,

ln = (A′A + βC ′C)
−1

A′Aen, n = 1, . . . , N (23)

where ln is the LPSF and en is a vector with 1 at vector

element position n and zeros elsewhere (Kronecker impulse).

However, for a QPL reconstruction using our preferred rough-

ness penalty given in (15), where the real and imaginary parts

are penalized separately,

ẑ = argmin
z

1

2
||y − Az||2 +

1

2

(
β1||CzR ||2 + β2||CzI ||2

)
,

(24)

the same analysis used in [40] to derive the LPSF does not

apply. To analyze this situation, we introduce a “stacked”

formulation in which the matrices and vectors are rewritten

as follows:

yS =

[
yR

yI

]
, AS =

[
AR −AI

AI AR

]

zS =

[
zR

zI

]
, CS =

[
C1 0

0 C2

]
,

where the subscripts R and I refer to the real and imaginary

part of the variable respectively and C1 =
√

β1C and C2 =√
β2C, where β1 and β2 can be chosen independently. Using

these definitions for the stacked matrices and vectors we can

write the stacked QPL reconstruction in (24) as follows:

ẑS = argmin
zS

1

2
||yS − ASzS||2 +

1

2
||CSzS||2. (25)

Using the analysis that led to (23), the stacked LPSF lSn for

ẑS at spatial position n can be written as follows:

lSn = (A′

SAS + C ′

SCS)
−1

A′

SASeSn, n = 1, . . . , N, (26)

with,

lSn =

[
lRn

lIn

]
, A′

SAS =

[
ℜ (A′A) −ℑ (A′A)
ℑ (A′A) ℜ (A′A)

]
,

C ′

SCS =

[
C ′

1C1 0

0 C ′

2C2

]
, eSn =

[
(1 − α) en

αen

]
,

(27)

where ℜ (A′A) and ℑ (A′A) are the real and imaginary parts

of A′A respectively and α ∈ {0, 1} is used to select the

stacked LPSF of the real or imaginary parts of z.
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