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Abstract—Accurate predictions of image variances can be useful
for reconstruction algorithm analysis and for the design of regular-
ization methods. Computing the predicted variance at every pixel
using matrix-based approximations [1] is impractical. Even most
recently adopted methods that are based on local discrete Fourier
approximations are impractical since they would require a forward
and backprojection and two fast Fourier transform (FFT) calcu-
lations for every pixel, particularly for shift-variant systems like
fan-beam tomography. This paper describes new “analytical” ap-
proaches to predicting the approximate variance maps of 2-D im-
ages that are reconstructed by penalized-likelihood estimation with
quadratic regularization in fan-beam geometries. The simplest of
the proposed analytical approaches requires computation equiv-
alent to one backprojection and some summations, so it is com-
putationally practical even for the data sizes in X-ray computed
tomography (CT). Simulation results show that it gives accurate
predictions of the variance maps. The parallel-beam geometry is
a simple special case of the fan-beam analysis. The analysis is also
applicable to 2-D positron emission tomography (PET).

Index Terms—Fan-beam tomography, local discrete Fourier
analysis, penalized-likelihood image reconstruction, variance
approximation.

I. INTRODUCTION

STATISTICAL methods have obtained increasing attention
in tomographic image reconstruction due to improved noise

and resolution properties. These methods are usually nonlinear
and shift-variant. To analyze the statistical characteristics of the
reconstructed images, one would like to be able to predict the
variances and covariances of estimated pixel values. The vari-
ance information provides an uncertainty measure of the recon-
structed image and may aid regularization parameter selection.

The existing noise analysis methods can be divided into
two categories: iteration based and estimator based. The itera-
tion-based variance predictions are studied in e.g., [2] and [3] as
a function of the iteration number for the maximum-likelihood
expectation maximization algorithm based on the “stopping
rule” to terminate the iterations before convergence. The
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estimator-based variance predictions are independent of the
particular algorithm and iterations, [1], [4], [5]. Our proposed
method falls in the estimator-based category. We will give a
brief overview on the existing estimator-based methods and our
proposed method.

The estimator-based analysis for the mean and variance pro-
posed in [1] uses the partial derivatives of the cost function and
Taylor approximations. The approximations are in matrix form
and give accurate results. However, the predictions involve the
inversion of the Hessian matrices and therefore are computa-
tionally expensive. Based on this work, a great deal of effort has
been given to simplify these matrix methods [4], [5]. All these
methods, that we refer to the discrete Fourier transform (DFT)
approximations, are based on a factorization of the system ma-
trix and circulant approximations to the Hessian matrices to pre-
compute and store a great portion of the calculations. The fac-
torization of the system matrix into geometric and object-depen-
dent portions is specially useful for the shift-varying imaging
systems. However, these DFT approximations still require in
precomputation one forward and backprojection and two fast
Fourier transform (FFT) calculations, one for likelihood Hes-
sian and one for penalty Hessian, for each location of interest.
Moreover, the expressions are still in matrix form and provide
little direct insight into the noise properties.

Our proposed approximations in this paper are still based on
the results given in [1], but turn to a very different analysis ap-
proach. Instead of working in the discrete space, we use the dis-
crete space Fourier transform (DSFT) and Parseval’s theorem to
bridge from the discrete space to the continuous space. Using
local shift-invariance approximations and local Fourier analysis,
we derive “analytical” closed-form expressions for the local im-
pulse response and local frequency response of the Gram oper-
ator and the regularization operator. The final approximations
eliminate the need of FFTs for variance predictions, greatly re-
ducing computation for cases where the variance is to be pre-
dicted at numerous pixel locations. Furthermore, these approxi-
mations provide insight into the resolution and noise properties
of the reconstructed images.

Because our analysis is built on the previous work in [1], we
briefly repeat its main results here. The goal of transmission
image reconstruction is to estimate an attenuation image
from projection data , where is a vector denoting the 2-D
image pixel location. We focus here on penalized-likelihood es-
timators obtained by minimizing a cost function as follows:
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Fig. 1. A N �M lattice with approximately circular FOV. Only the pixels
with indices are estimated. In this example, p = jSj = 12.

where ( -dimensional real
space). The cost function includes a negative log-likelihood
term and a regularization term

(1)

As a concrete example, for transmission tomography under the
Poisson noise model, the log-likelihood is

(2)

For mono-energetic transmission scans, the measurement
means are modeled by

(3)

where is the system matrix, denotes the blank scan, and
denotes the additive contribution of scatter to the th ray.

We focus on regularization terms of the following form:

(4)

(5)

where denotes the
subset of the lattice that is estimated and

. The roughness penalty
(4) involves the horizontal, vertical, and diagonal neighbors and
allows for the possibility of using regularization coefficients

that vary both with spatial location and direction [6],
[7]. In general, and because the
physical field-of-view (FOV) is a subset of the lattice (see
Fig. 1).

The goal of this work is to approximate the covariance matrix
efficiently yet accurately, motivated by the problem

of designing the regularizer . The proposed prediction
methods can be generalized to other log-likelihood terms
including 2-D emission tomography by modifying in (6).

The following approximation to the covariance matrix
of was derived in [1]:

(6)

where is the Hessian matrix of the roughness penalty. For
transmission tomography with the models (1) and (2),

. In practice is unknown, so we plug in as an
approximation [8]. The covariance between pixels and

can be approximated using (6) as follows:

(7)

where denotes the th unit column vector of length .
The matrix method described in (6) and (7) has been used in

various applications [5], [9]. Simulation and experimental re-
sults have confirmed the accuracy of this covariance approxi-
mation in image regions where the nonnegativity constraint is
usually inactive. However, evaluating (7) is relatively expensive.
In this paper, we introduce “continuous space analysis” and use
“local stationarity” to develop fast approximations for the vari-
ance and covariance of the reconstructed image .

The paper is organized as follows. Section II briefly reviews
the matrix method and the local shift-invariance approxima-
tions. Section III proposes the general analytical approach
for the variance approximation. Sections IV and V apply this
method to fan-beam geometry and quadratic regularization.
Sections VI and VII analyze the single integral approach used
and give simulation results for two types of quadratic regular-
ization, including a comparison of the predicted, DFT-based
and empirical standard deviation images. Finally, discussion
and conclusions are in Section VIII.

II. LOCAL SHIFT-INVARIANCE APPROXIMATIONS

The matrix method described in (6) and (7) is very expensive
to compute, even for the variance at a single pixel. To accelerate
computation, local shift-invariance approximations are usually
used in practice, (e.g., [4], [5], and [9]–[11] ).

Let denote one of the matrices in (6), such as
or , or inverses or sums thereof. Then a matrix-vector opera-
tion can be expressed equivalently as

(8)

where is an indicator function of defined as follows:

otherwise
(9)

In other words, the elements of correspond to
.

Near a given location of interest, we define a local impulse
response of as follows1:

(10)

1Throughout the paper we use the subscript “0” to indicate dependence on a
given pixel location ~n .
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where , denotes the set of integers. Usually we choose
. However, sometimes we can approximate even for

non-integer arguments, in which case may also be
useful [12, p. 870].

We say that is locally shift invariant near if
for and close to . The approxi-

mation should be accurate provided and are “sufficiently
close” to relative to the width of . Thus, if the operator
is approximately locally shift invariant near , then we can ap-
proximate the superposition sum (8) by (almost) a convolution
sum

(11)

or equivalently , where the matrix is defined
by . The expression (11) is almost a con-
volution sum, except for the “edge conditions” of the indicator
functions. If the point is not “too close” to the boundaries of
the support mask , then we may able to disregard the indicator
functions and treat the expression as a convolution.

Let be the matrix such that

otherwise

for and . The purpose
of is to embed the elements of (as shown in Fig. 1 )
back to the 2-D lattice. Then , where

is an matrix that is block
Toeplitz with Toeplitz blocks BTTB. Thus, we can make a cir-
culant approximation to , (see [13]). Such approximations
are often reasonably accurate except near the edges of the FOV,
where the differences between “Toeplitz” and “circulant” end
conditions are largest. The local impulse response (10) and the
corresponding circulant approximation are two key tools for
analysis.

III. THE ANALYTICAL VARIANCE PREDICTION

In the spirit of the local shift-invariance approximations pre-
sented in Section II, we approximate the covariance matrix in
(6) near a given location by

where and are the BTTB approximations
corresponding to and , respectively. Then we approx-
imate the covariance between pixels and in (7) by the
following inner product:

(12)

where is th unit vector of length .
Two useful approximations to (12) follow from Parseval’s

theorem. One option is to interpret the arguments in (11) with

a suitable modulo or . In this case, the inner product de-
fined in (12) is in the form of circulant convolution and can be
approximated by FFTs

(13)

for , where ,
and

with

where is the 2-D -point orthonormal DFT matrix. The
diagonal matrices and have diagonal elements and

that are the 2-D DFT coefficients of the local impulse
response of and near , respectively. This DFT/FFT
approximation has been used in [4], [14], and [15] to predict
variance at a single pixel

(14)

Generally, evaluating this expression for a single pixel requires a
forward and backprojection and two FFTs. Computation of this
DFT approximation is still expensive for realistic image sizes
when the variance must be computed for many or all pixels,
particularly for shift-variant systems like fan-beam tomography.

An alternative option is to consider to be defined over
all of (two-dimensional integer space), in which case (12) is
in the form of ordinary convolution that can be expressed using
the DSFT as follows:

(15)

where is the local spectrum of , given as follows:

(16)

where is the local frequency response of the Gram ma-
trix and is the local frequency response of
near . To our knowledge, this paper is the first to use (15) to
develop analytical variance approximations as a faster alterna-
tive to the DFT approach (14).

For regularizer design, the standard deviation map of the re-
constructed image is one quantity of interest, and our numer-
ical investigation will focus on variance prediction. However,
the methodology applies readily to approximate covariances.
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Using the DSFT approximation (15), we approximate the
variance at pixel as follows:

(17)

Let denote the sample spacing in the reconstructed image.
By making the change of variable, where

, we rewrite (17) in terms of polar frequency co-
ordinates as follows:

(18)

where , and we de-
fine

(19)
We defined and similarly in terms of and . The
variance prediction (18) applies to any 2-D geometry. The Sec-
tion IV specializes (18) by finding analytical approximations to
the local frequency response for the fan-beam geom-
etry.

IV. FAN-BEAM GEOMETRY

The following analysis is focused on equiangular fan-beam
transmission tomography with an arc detector. However, the
method generalizes readily to flat detectors, i.e., equidistant
sampling and to parallel-beam geometries. As illustrated in
Fig. 2, fan-beam rays are indexed by coordinates , where

is the angle of the source relative to the axis, and is the
arc length along the detector. For the case where the detector
focal point is at the source position, , where is
the angle of the ray relative to the source and is the source
to detector distance. The relation between parallel-beam and
fan-beam coordinates is [16]

(20)

(21)

where is the source-to-rotation center distance.

A. Local Impulse Response

To predict variance images in fan-beam transmission tomog-
raphy using (18), we need to determine the local frequency re-
sponse , or equivalently . We first find the local
impulse response.

Consider the 2-D object model based on a common basis
function superimposed on a Cartesian grid as fol-
lows:

(22)

where denotes the 2-D coordinates of the continuous
image space, and denotes the center of the basis function.
Typically

where and the user-selectable parameter de-
notes an optional spatial offset for the image center.

For simplicity, we assume here that the detector blur is
locally shift invariant, independent of source position , and acts
only along the coordinate. Then we model the mean projec-
tions as follows:

(23)

for and , where is the
sample spacing in , is defined akin to , and is the
2-D Radon transform of

Substituting the basis expansion model in (22) for the object
into the measurement model (23) and simplifying leads to the
linear model

where the fan-beam system matrix elements are samples of the
following fan-beam projection of a single basis function cen-
tered at

(24)

where is the Radon transform of at angle and

with .
Then the elements of the Gram matrix are given exactly by

otherwise

(25)

where

(26)

and denotes the weighting associated with and
denotes the number of samples of the source position . To
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Fig. 2. Angular coordinates in fan-beam geometry.

simplify (25), we first use an integral to approximate the sum-
mation in (26) as follows:

(27)

where is the source angular sampling interval. Notice that
in (27) is not shift invariant.

We develop locally shift-invariant approximations to
in (27) by reparameterizing variables , using

analogs of fan-to-parallel beam rebinning. The following lo-
cally shift-invariant approximation to is derived in
detail in Appendix I:

(28)
where the following 1-D autocorrelation is with respect to

and is a locally parallel-beam version of the system
model defined in (52) (see Appendix I). The angle-dependent
weighting is associated with pixel , accounting for the
position-dependent magnification as follows:

(29)

(30)

where and are the inverse of (20) and (21). The
shape of the local impulse response (28) is a modification of

(cf. [17]) with statistically modulated angular weighting.
The key property of (28) is that it is locally shift invariant, ex-
cept for edge effects. This approximation should be reasonably
accurate provided that and are “sufficiently close” to ,
the coordinates of the pixel of interest.

B. Local Frequency Response

Having found the local impulse response approximation (28),
the next step is to find the local frequency response. This re-
quires consideration of the edge effects in (25).

The following local frequency response near a point is
derived in detail in Appendix II:

(31)

where the following function captures both detector response
effects and edge effects:

(32)

denotes the length of the chord through through the
FOV at angle , and is the 1-D Fourier trans-
form (FT) of with respect to .

C. Further Approximations of Local Frequency Response

The local frequency response of the Gram operator in (31)
is very accurate. However, direct implementation of (31) is still
computationally demanding. We present here two types of fur-
ther approximations to simplify (31).

1) Type I Nonseparable Form: As , one can
show that for large

Therefore, the term is sharply peaked near and
, so we consider the further simplifying approximation

(33)

where

(34)

Substituting into (31) leads to the “Type I” approximation

(35)
Although is not separable, we can precompute
and tabulate once for all pixels for coarsely sampled

. Accurately computing is crucial, therefore, finely
sampled is necessary in (33).

2) Type II Separable Form: We can simplify further by using
the sifting property of the Dirac impulse

Because typically varies slowly, we also consider
the following further approximation:

(36)
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Fig. 3. Type I and Type II local frequency responses H (�; 0) and H (�; 0)
for ~n at image center in unweighted case: w(s; �) = 1. H (0;0) is not
shown because it is infinite.

Combining all the above approximations yields the following
separable approximation to the local frequency response:

(37)

This “Type II” separable form agrees with the familiar FT of
. Fig. 3 shows the profiles of two types of local frequency

responses for at image center in unweighted case. We can see
that two profiles agrees with each other closely. The discrepancy
is mainly at low frequencies.

V. QUADRATIC REGULARIZATION:

To evaluate the variance using (18) and (19), we also need the
local frequency response of quadratic regularization, ,
[7], [8], [18], [19].

Practical regularization methods are based on the differences
between neighboring pixel values. For a discrete-space 2-D ob-
ject , a typical quadratic roughness penalty is given in (4)
and (5) for first-order differences. The values are possibly
space variant. For the purpose of local frequency response anal-
ysis, we examine the characteristics of near a pixel of
interest, so we define assuming values vary
smoothly. Then, the quadratic roughness penalty near a pixel
has the following form:

The values are design parameters that affect the direction-
ality of the regularization and hence the shape of the PSF. Each

is a (typically) high-pass filter. For a first-order difference

or for a second-order difference

where , denotes the spatial offsets
to the neighboring pixels, and is the power of weights for
diagonal neighbors that can be chosen by the user. For example,
common practice chooses [20], [21].

Applying Parseval’s theorem, we can rewrite as fol-
lows:

(38)

where and the DSFT of a -order (where
) difference has the following magnitude:

In the polar coordinates of (19):

(39)
Thus, the Type I local frequency response for the regularization
operator is

(40)

Applying the approximation to (39) yields

where the angle between the th neighbors is

With this simplification, the Type II local frequency response of
the regularizer is approximately separable in

(41)

where

This separable form agrees with the familiar FT of the differen-
tiation operation.

VI. VARIANCE PREDICTION IMPLEMENTATION

Having obtained the approximations to , the local
frequency response of the Gram operator given in (35) and (37),
and to , the local frequency response of the regularizer
given in (40) and (41), we can discretize the integral (18) again
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to compute the variance image. There are two variance predic-
tion expressions for fan-beam transmission tomography based
on the Type I given in (35) and given in
(40), and the Type II given in (37) and
given in (41).

A. Double Integral Approach

The variance prediction using in (35) and
in (40) involves a double integral and can be im-

plemented by a double summation. We call this prediction
the double integral (DI) approach. The location-dependent
weighting function can be precomputed, with the com-
putation equivalent to one back-projection. We can coarsely
sample because is fairly smooth along .

B. Single Integral Approach

The separability properties of in (37) and
in (41) enable us to carry out the inner integral over

analytically. Therefore, the double-integral in (18) is reduced
to one single integral over . Substituting (37) and (41) into
(18) yields the remarkably simple expression

(42)
where . We call this prediction the
single integral (SI) approach. We evaluate this integral using a
finite summation, with and precomputed. There-
fore, computing (42) is equivalent to one back-projection.

C. Implementation of the Single Integral Prediction

We found empirically that the SI approach (42) gave predic-
tions that could be improved by including a single global scale
factor, presumably because the SI approach (42) uses many ap-
proximations to achieve its simple form. In particular, we found
that the SI method underestimates the variance, presumably be-
cause the “Fisher information” implied by Type II local fre-
quency response in (37) is too large for low spatial frequencies.
To determine the scale factor, we assumed that the DFT-based
approach and the analytical approach should produce equivalent
results at the image center. Specifically, we used the predicted
variance for unweighted least squares estimator with standard
quadratic penalty (QPULS) for unit variance data.

For QPULS estimator for unit variance data, the statistical
weighting, becomes 1. Consider the standard quadratic
penalty with first-order differences and second-order
neighborhood , for which and

and . We used both in calibra-
tion and reconstruction as is the common practice in quadratic
regularization. For these choices, the Type II in (41)
becomes independent of

(43)

Finally, to determine the scale factor, we computed the ratio
of the variance predicted by the DFT approach over that pre-
dicted by (42). For the parameters used in our simulations, this

factor was . This value would need to recomputed for
different system geometries or regularization parameters, but is
otherwise patient independent.

VII. SIMULATION RESULTS

To evaluate the performance of the proposed methods, we im-
plemented the variance predictions for fan-beam tomographic
images reconstructed by quadratically penalized likelihood
algorithm. We simulated 1000 realizations of fan-beam trans-
mission scans using a 256 256 Zubal phantom [22] and a
blank scan of counts/detector. The corresponding sinogram
size was 444 samples in , spaced by mm and 492
source positions over 360 . We simulated the geometry of the
GE LightSpeed Pro CT scanner with the source-to-detector
distance around 949 mm, the isocenter-to-detector distance 408
mm and mm. We used distance-driven (DD)
projectors developed by DeMan et al. [34].

An elliptical support was used for , with . For
simplicity, in (34) we used the width of the central profile
through the FOV

(44)

where mm and mm are the semi-major
and semi-minor axes of the ellipse. This approximation is exact
when is at the ellipse center. The approximation to be-
comes less accurate as approaches the edge of the ellipse
support.

For simplicity, we use and model the
detector response2 in (23) by a shift-invariant rectangle of width

In the case of a square pixel basis 3, we have
from (52) (see Appendix I)

(45)
which we substitute into (32). In our simulation, we make the
following simplification:

where is the value of at the image center.
We chose the regularization parameter to give

, i.e., 3.4
mm, at the center of the image. For each realization, was
reconstructed using 70 iterations of the convergent incremental
optimization transfer algorithm (PL-IOT) [23] with 41 subsets
and no nonnegativity constraint. The initial images were the
filtered back-projection (FBP) images with equivalent spatial
resolution, obtained by post-filtering ramp-filtered FBP images

2A more accurate model could include detector deadspace and crosstalk ef-
fects.

3rect (~x) rect(x)rect(y) is a 2-D square function.
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Fig. 4. Predicted and empirical standard deviation images (in HU) and central profiles for Zubal phantom for PL fan-beam transmission image reconstruction
using the standard quadratic penalty: ~R = (1 +

p
2)� .

with the designed PSF. We computed the sample standard
deviation pixel by pixel within the finite support used in
reconstruction. All images and profiles are shown in Hounsfield
unit (HU).

Two prediction approaches are investigated here: the DI ap-
proximation (18) with Type I in (35) and
in (40), and the SI approximation (42) with in (41). The
former formula was derived with fewer approximations while
the latter formula involves more approximations. The accuracy
and computation time are compared below.

We considered two types of regularization: standard and
certainty-based [24]. In both cases, we implemented (40) and
(41) for regularization with first-order differences
and second-order neighborhood . In both cases, the
standard deviation images predicted by the DI approach are

displayed while both DI and SI predictions are compared in the
profile plots.

A. Standard Quadratic Penalty Function

We first considered a standard quadratic penalty where

and is the value of at the image center in (46). This
choice assures that the resolution of the two studies is matched
at the image center. In this case, is a
constant for all pixels.

Fig. 4 shows the reconstructed images and empirical stan-
dard deviation images. The empirical standard deviation image
for FBP is also shown. The average of FBP standard deviations



ZHANG-O’CONNOR AND FESSLER: FAST PREDICTIONS OF VARIANCE IMAGES 343

Fig. 5. Predicted and empirical standard deviation images (in HU) and central profiles for Zubal phantom for PL fan-beam transmission image reconstruction
using the certainty-based quadratic penalty.

is around 2.2 HU, approximately 1.8 times higher than that of
PL-IOT, 1.2 HU, illustrating the noise advantage of the statis-
tical reconstruction methods at matched resolution.

Fig. 4 also shows the central horizontal and vertical profiles
of the standard deviation maps. The analytical, the FFT-based
and the empirical standard deviations agree with one another
very closely within the object. The largest discrepancy within
the object was about 10% in the left lung for unknown reasons.

B. Certainty-Based Quadratic Penalty Function

We next investigate a more complicated regularizer that was
designed to achieve nearly uniform spatial resolution [24]. In
this case, we used space-varying regularizer

where

(46)

Here, is still independent of , but varies spatially. Com-
puting the “certainty map” (46) requires a simple backprojection
with fan-to-parallel beam rebinning.

Fig. 5 shows the reconstructed images, standard deviation im-
ages and central horizontal and vertical profiles. In this case,
the average of FBP standard deviations is around 2.2 HU, ap-
proximately 1.8 times higher than that of PL-IOT, 0.7 HU. The
analytical, the FFT-based and the empirical standard deviations
agree with one another very closely within the object.

In both cases, the analytical and the FFT-based predictions
are somewhat less accurate near the edge of the finite support
used in image reconstruction. This is probably due to the fact
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that the “local stationarity” approximation is less accurate in this
area where the statistical weights can vary rapidly. The
approximation (44) may also vary rapidly in our study, so it may
be possible to improve accuracy near the edges of the FOV by
using .

C. Computation Time and Accuracy

In our calculations, we used 123 samples in and 128
samples in in (18) to predict a 256 256 standard deviation
image. Both DI and SI predictions precompute and

. The precomputation time for was about 19
s on dual Intel Xeon 3.40 GHz CPU. The precomputation
time for with 492 samples in was 2.3 s. The DI
prediction requires no scale factor precomputation and the com-
putation time was about 135 s. The SI prediction requires the
scale factor precomputation that is in our case, and the
computation time for prediction was about 0.6 s. In contrast, the
FFT-based prediction needed about 374 s to compute only one
single central profile. As expected, the DI prediction is slightly
more accurate than the SI prediction, particularly near edges.
The SI prediction matches a bit better with the FFT-based
prediction because the scale factor calibration was based on
FFT-predicted values. For the purposes of regularization design
or noise exploration, we believe that the very fast SI approach
is adequate.

Because we only compute two central profiles of the FFT-
based prediction in each case, we compute the normalized root-
mean square (NRMS) percent errors only for these two central
profiles. For case, the NRMS percent errors for FFT, DI and
SI are 6.6%, 6.8%, and 6.6%; for case, the NRMS percent er-
rors for FFT, DI and SI are 6.5%, 6.0%, and 8.3%, respectively.

VIII. CONCLUSION AND DISCUSSION

This paper has developed analytical variance approximations
for 2-D tomography. The double integral (18) with (35) and
(40), and the single integral (42) provide fast and accurate
variance predictions for a quadratically penalized likelihood
estimator in fan-beam tomography. The simplest of the pro-
posed approaches (42) requires one backprojection with some
additional summations, which is much less computation than
previous FFT-based methods. In fact, using the proposed
methods, we can predict the variance map in much less time
than it takes to reconstruct a single image. The proposed ap-
proximations are especially useful in the case that the variance
information is needed for many or all pixels, such as when
choosing space-varying regularization parameters [6]. The
empirical results from the simulated fan-beam CT transmission
scans demonstrate that the proposed variance approximations
are very accurate. Future work will explore using these predic-
tions for regularization design.

Although we focused on variance prediction, by using (15)
we could also easily predict covariances and thus predict the
covariance of a region of interest whose size is small enough
that the local approximations are sufficiently accurate. How-
ever, if only a single local autocorrelation function is needed,
then the FFT approach is probably easier to use. For analysis
of detectability of lesions with unknown locations, autocorrela-
tions at many spatial positions may be needed [10], [25]–[28],

in which case the proposed approach based on (15) can save
computation. The matrix method described in (6) and (7) is also
applicable to other imaging modalities, such as positron emis-
sion tomography (PET) and single-photon-emission computed
tomography (SPECT) [1]. Therefore, the proposed methods are
also readily extended to those imaging modalities, with different
considerations of the weighting function.

The proposed analytical variance approximations are only in-
vestigated in the case of the shift-invariant detector blur. We can
also generalize the analysis to shift-variant detector blur where
the local shift-invariance approximation is applicable, e.g., for
varifocal collimators in SPECT. In this case, is re-
placed by in (24) and in (53) becomes

where

This paper has focused on 2-D fan-beam geometry. Three-di-
mensional generalization of these methods can be done by ap-
plying the same principles [29]. This paper has also focused on
analytical variance approximations for the case of quadratic reg-
ularization. An interesting challenge for future work is to gen-
eralize the analysis to the case of edge-preserving nonquadratic
regularization. The analysis in [30] may be a useful starting
point.

APPENDIX I
DERIVATION OF LOCAL IMPULSE RESPONSE

Reparameterize variables and in (27) according to the
inversion of (20) and (21)

Then the fan-to-parallel beam rebinning of is

(47)

because and for .
A first-order Taylor expansion of around yields

Substituting into (47), the system matrix elements become

(48)
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(50)

Substituting (48) into (27) and changing variables from
to using (20) and (21) yields the local impulse approxi-
mation

(49)

where is the determinant of Jacobian matrix,
and see equation (50) at the top of this page.

Let . Because is fairly smooth, we make
the following approximation for :

(51)

Substituting (51) into (48) and simplifying yields

(52)

with and

(53)

Therefore, we further simply (49) as follows:

(54)
where because often varies slowly in relative to the
typically sharp peak of at

(55)

where denotes a 1-D autocorrelation with respect to .

APPENDIX II
DERIVATION OF LOCAL FREQUENCY RESPONSE

The simplest approach to finding the local frequency response
would be to take the 2-D Fourier transform of the local impulse

response in (28), while ignoring the “edge effects” caused by
the support functions in (25). We found this approach to yield
suboptimal accuracy. One way to consider the edge effects is to
use a triangular function with the angular-dependent width

where

(56)

and denotes the length of the chord through through
the FOV at angle . This approach is inspired by circu-
lant approximations for Toeplitz matrices [13], [31], [32], pre-
serving the nonnegative definite property of . This choice
might not be optimal in our application, and further investiga-
tion may be beneficial.

One alternative way to consider edge effects is to use the co-
ordinate transformation recommended for analyzing quasi-sta-
tionary noise in [12, p. 870] as follows:

where , and denotes the support of the image

(57)

This approach yields a local impulse response that is symmetric
in , thus ensuring that its spectrum is real.

Another alternative is to refer all displacements relative to the
point as follows:

where
(58)

This choice is not symmetric in but it better corresponds to
the local Fourier analysis based on the DFT of . For
simplicity, we could also approximate (58) as follows:

(59)

This choice also yields a local impulse response that is sym-
metric in provided is symmetric itself.

We focus on in (56) hereafter because it preserves the
property of nonnegative definiteness [33]. Define the following



346 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 3, MARCH 2007

“strip like” function:

and . Taking the DSFT of (54) yields the
following result:

(60)

where is the spectrum of , as fol-
lows:

(61)

The 2-D FT of is easiest to see for the case

where is associated with the detector response and
basis effect, given in (45). By the rotation property of the 2-D
FT

Therefore, using (55) and (61), the local frequency response
around a point is

(62)
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