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Our goal is to optimize regularized image reconstruction for emission tomography with respect to lesion de-
tectability in the reconstructed images. We consider model observers whose decision variable is the maximum
value of a local test statistic within a search area. Previous approaches have used simulations to evaluate the
performance of such observers. We propose an alternative approach, where approximations of tail probabilities
for the maximum of correlated Gaussian random fields facilitate analytical evaluation of detection perfor-
mance. We illustrate how these approximations, which are reasonably accurate at low probability of false
alarm operating points, can be used to optimize regularization with respect to lesion detectability. © 2007 Op-

tical Society of America
OCIS codes: 110.3000, 100.3010.

1. INTRODUCTION

Several applications of emission tomography involve the
detection of a spatially localized target signal in an image
reconstructed from noisy data. When choosing among dif-
ferent reconstruction methods or tuning the parameters
of individual methods, a reasonable approach is to seek
the choice that leads to optimal performance in such de-
tection tasks. In this work we focus on penalized-
likelihood reconstruction methods for emission tomogra-
phy. These methods involve one or more regularization
parameters that control the noise-resolution trade-off in
the reconstructed images. Instead of choosing the regular-
ization parameters by numerical criteria, such as cross
validation or L-curves [1,2], we would like to optimize
these parameters analytically with respect to signal de-
tectability.

In clinical practice, detection tasks are usually per-
formed by human observers. The performance of humans
can be evaluated empirically by tracing their receiver op-
erating characteristic (ROC) in simple detection tasks
[3-5], or their localization ROC (LROC) in tasks that in-
volve both detection and localization [6]. However, the ex-
periments required for such an evaluation are too time-
consuming to perform for many values of a reconstruction
parameter or to repeat every time that some aspect of the
imaging process changes. Thus we turn to the mathemati-
cal observers that have been proposed in the literature to
model human performance [7] and that allow analytical
treatment.

Detection tasks where the observer knows the possible
location of the target signal a priori have been analyzed
with respect to optimal regularization methods [8-12].
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Known-location tasks are also the ones for which model
and human observer correlation has been investigated
most extensively. In these tasks human observers appear
to be effective in compensating for second-order image
statistics. As a result, they are modeled well by math-
ematical observers that perform prewhitening, such as
the channelized Hotelling observer (CHO) [13—-18]. How-
ever, optimizing regularization parameters has less of an
effect on the detection performance of such observer mod-
els, as has been concluded both experimentally [17] and
analytically [19]. Thus it is of interest to optimize such
parameters with respect to detection performance in
tasks where the prewhitening capabilities of humans de-
grade. Such a degradation seems to occur in tasks where
the location of the target signal is not known a priori
[20,21].

Location uncertainty complicates the analysis of detect-
ability. Observer models that have been compared to hu-
mans in unknown-location tasks usually base their deci-
sions on the maximum value of a local test statistic over
all possible signal locations. The exact distribution of the
maximum of a correlated random field has the form of a
multiple integral that is intensive to compute. A “brute-
force” approach to evaluating the performance of such an
observer model would be to perform a large number of
time-consuming tomographic reconstructions of Monte
Carlo—simulated projection data and produce realizations
of the maximum test statistic from the reconstructed im-
ages. When optimizing some reconstruction parameter
with respect to detection performance, this simulation
would have to be repeated for every value of the param-
eter of interest.

© 2007 Optical Society of America
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To avoid performing multiple reconstructions, investi-
gators have proposed analytical approximations of the
moments of the local test statistics and used them to pro-
duce Monte Carlo—simulated realizations of the maxi-
mum test statistic directly [22,23]. This approach results
in very significant time savings when compared to the
brute-force method, but it still requires performing mul-
tiple simulations when the evaluation of detection perfor-
mance needs to be repeated for various values of one or
more parameters of interest.

We propose an alternative approach that does not re-
quire simulations. Although the exact expression for the
distribution of the maximum is complicated, simple ap-
proximations of this distribution at high thresholds for
correlated Gaussian random fields have been proposed by
Adler [24]. These approximations assume (local) station-
arity, so they are more accurate under the signal-absent
than the signal-present hypothesis. The latter requires a
different treatment, and we adopt the approach of Sieg-
mund and Worsley to analyze it [25]. We illustrate how
these analytical results, which are accurate at low prob-
ability of false alarm operating points, can be combined to
approximate the performance of the observer models of
interest as a function of regularization parameters.

This paper is structured as follows: Section 2 estab-
lishes the models that we will consider for the object, im-
aging system, reconstruction method, and observer. Sec-
tion 3 reviews the tail probability approximations that we
apply in Section 4 to analyze the detection performance of
the observer models of interest in unknown-location
tasks. Section 5 illustrates how these analyses can be
used to optimize regularized reconstruction methods with
respect to detection performance, and Section 6 discusses
these results.

2. DETECTION TASK

A. Object Model

Let f denote the true object being imaged (or its approxi-
mation in R"p, where n;, is the number of coefficients in a
discrete representation of f). The object f consists of a
background f;, and it may or may not also contain a spa-
tially localized signal of interest f,. We assume that, when
the target signal is present within the object, it is cen-
tered at one of a finite set of locations €=1, ... ,n;. We de-
note the target signal centered at location ¢ by f; ;.

In emission tomography, where the object f is a radio-
activity distribution, the background could represent the
distribution of radioactivity in the absence of disease and
the signal could represent the additional radioactivity ab-
sorbed in the area of a lesion. Thus an additive model for
the background and signal is reasonable. The detection/
localization task at hand is then a decision among the fol-
lowing np,+1 hypotheses:

Hyf=f

(signal absent)

Hef=fy+fsq
(signal present at location ¢,¢=1,...,n). (1)

The background f; and the signal f; ; are random due to
patient variability. We assume that they are statistically
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independent under any of the signal-present hypotheses
H,,€=1,...,n1. We denote the expectations of f;, and f; ,
by f,2E[f,] and ?s,gé Elf..(]=E[f;|H,], respectively. We
denote  their covariances by K,=Cov{f;} and
ICs ¢ = Covif; (}=Covif;|H }, respectively. The covariances
Ks,€=1,...,n1, express variability in the shape of the
target signal and not in its location.

B. Image Reconstruction

To reflect medical practice, we assume that the decision is
made by an observer applied on a reconstructed image f‘
The image £ is reconstructed from a measurement y that
is acquired by a tomographic imaging system. For a given
object f, ¥ is random due to imaging noise. Specifically, the
entries in y are statistically independent and Poisson-
distributed conditionally on f with moments

Elylf]=Af+r, 2)

Coviyl|f} = diag{.Af + 1}, (3

where the linear operator .A models the tomographic im-
aging system and the vector r models scatter and/or ran-
dom coincidences. We assume that the reconstructed im-
age is given by

fly) = Zy (4)

for some linear reconstructor Z. The linearity assumption
holds either exactly or approximately for several common
tomographic reconstruction techniques.

Here we are interested in regularized image recon-
structors. A simple example that satisfies the linearity as-
sumption is the quadratically penalized weighted least
squares (QPWLS) family of reconstructors:

Z=(F+R)AI, (5)

where “ '” denotes the adjoint of an operator (or the trans-
pose of a matrix), R is a (linear) regularization operator,
FL2AMLA, and M2diag{AE[f]+r}~diag{Afy+r}.
(Since we are interested in detecting small perturbations
on the object background, we can assume that the signal
intensity is weak with respect to the background inten-
sity.) The QPWLS reconstruction strategy [Eq. (5)] yields

an estimated image that satisfies fly)=arg maxd —(y
-Af)'IIYy- Af)—f Rf]. Note that, when the measure-
ment likelihood is Poisson, QPWLS does not correspond
to maximum a posteriori (penalized-likelihood) recon-
struction. Although in the following we consider the QP-
WLS reconstructor for simplicity, it is straightforward to
extend our analysis to more general penalized-likelihood
reconstructors using linearization approximations [12].

A commonly used form for the regularizer R is that of
a quadratic roughness penalty, such that

"'p
FRf=B2 2 (- (6)
J=1 kEA/j
where f; is the intensity of the object f at the jth pixel, V;
is a neighborhood of pixels around the jth pixel, and B
=0 is a regularization parameter. Regularizers of the
form of Eq. (6) penalize differences between neighboring
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image pixels, thus favoring smoother images. For simplic-
ity, we consider a first-order neighborhood A/, consisting
of the four closest (top, bottom, left, and right) neighbor-
ing pixels. Then g is the only free parameter in R.

C. Observer Model
Following the literature, we consider observers whose de-
cision rule relies on computing some scalar local test sta-

tistic t(=t((f‘(y)) for each of the candidate locations and
then comparing the maximum test statistic,

tmax = Max i, (7)
t=1,...,np,

to a data-independent threshold 7. If ¢, > 7, it is decided
that the signal is present; otherwise, it is decided that the
signal is absent.

Local test statistics that have been used to model the
suboptimality of human observers are linear, and they in-
volve a set of M bandpass filters, attempting to mimic the
visual system [13]. These test statistics sample the output
of the M bandpass filters at a location of interest ¢, to ob-
tain a local feature vector ¢, € R¥, to which a local tem-
plate w, € RM is then applied:

te=wié,  é=Ci(f-Elf)) +e, (8)

where C(=[C;,...,Cy,] consists of M operators. The
mth of these operators applies the impulse response of the
mth bandpass filter and samples the output at location ¢.
The internal noise vector e, € RM models inherent uncer-
tainty in the observer’s decisions and is typically assumed
to contain independent, zero-mean, Gaussian-distributed
entries. The mean of the reconstructed background,

f, 2 Z(Af,+r), is subtracted from the reconstructed im-
age in Eq. (8) to signify that the observer determines the
most suspicious location by comparing intensities relative
to the background, rather than absolute intensities
[22,23].

Two such models have been proposed in the literature
to model the performance of human observers in detecting
unknown-location lesions in tomographic images: The
maximum channelized Hotelling observer (MaCHO),
which includes both the first- and second-order statistics
of the channel outputs in its template, and the maximum
channelized nonprewhitening observer (MaCNPW) ob-
server, which includes the first-order statistics only. In
particular, the MaCNPW observer has been found to be
well correlated with humans in simple unknown-location
tasks [20,21]. This indicates that humans may not be ef-
fective at compensating for correlations in the images
when they have to search for a lesion in more than one
location.

Here we consider a generalization of these models that
allows for an intermediate degree of prewhitening accu-
racy. For lack of a better term, we call this generalized
model a maximum channelized partially prewhitening
(MaCPPW) observer and define its local template at some
location ¢ as
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w2 [(1- I+ y(3Covie|H } + ;Covie|H}) |
- (E[¢|H (] - E[¢|H,]), 9)

where “ % denotes the pseudoinverse and ye[0,1]. For
vy=0 and y=1, the above becomes equal to the well-known
MaCNPW and MaCHO models respectively. An interme-
diate value of y yields an observer with intermediate pre-
whitening accuracy. The expression in Eq. (9) is only one
of several ways in which a prewhitening deficiency could
be introduced in the channelized observer’s template. We
use Eq. (9) here simply to evaluate our performance ap-
proximations, without making any claims about correla-
tion with human observers.

D. Detection Performance

Our goal is to optimize the reconstructor Z in general, or
B in the particular case of QPWLS, with respect to the de-
tection performance a specific observer. Since we are ulti-
mately interested in optimizing reconstruction param-
eters locally, we focus on an ROC curve as a metric of the
observer’s signal detection performance within a search
area around a given location ¢ e{1,...,ny}. Specifically,
we consider the ROC curve that is obtained by plotting
the probability of detection (deciding that the signal is
present when it is actually present at ¢),

PD,{’(T) £ P{tmax = TIHf}’ for some ¢ {15 >nL}’

(10)

versus the probability of false alarm (deciding that the
signal is present when it is actually absent),

Pya(7) £ Pltmay = 1Ho}. (11)

The curve is traced by varying the threshold 7. To trace an
ROC or LROC curve for the test statistic ¢, in Eq. (7),
we need the cummulative distribution function (CDF) of
tmax, from which we can compute the threshold-exceeding
probabilities (10) and (11).

We are interested in an observer model that searches
for the signal within an area consisting of n, voxels
around some voxel of interest €. As seen in Eq. (10), we
use the probability of detection at the voxel ¢ to quantify
detection performance. Our motivation for this analysis is
optimizing the regularization parameter for some voxel €
to maximize detectability at that voxel, an optimization
that is to be repeated for each voxel in the image. An al-
ternative approach would be to consider the overall prob-
ability of detection within the search area, which would
require defining a priori probabilities of the signal pres-
ence at each location in the search area, but this is not the
approach that we follow here.

If the local test statistics ¢, €=1,...,n, were statisti-
cally independent, then the CDF of their maximum would
be simply equal to the product of their individual CDFs.
Thus, under the assumption of independent, Gaussian-
distributed local test statistics, it is possible to derive the
area under the LROC curve for observer models of the
form of Eqgs. (7) and (8) [26]. Furthermore, even with a
somewhat weaker statistical independence assumption,
one can show that maximizing the area under the ROC
curve (AUC) of ¢, would be equivalent to maximizing
the area under its LROC curve [6].
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Typical image reconstruction methods, and regularized
ones in particular, produce images where the intensities
at neighboring locations are correlated. Thus local test
statistics at neighboring locations are also correlated,
with more regularization leading to wider autocorrelation
functions. Analyses that use independence assumptions
can be applied to tasks where the candidate locations are
at a distance from each other that is greater than the au-
tocorrelation width. For tasks where all the pixels within
some search area are candidate locations, correlations be-
tween the local test statistics must be taken into account.

Threshold-exceeding probabilities such as (10) and (11)
are difficult to obtain in closed form when the ¢,’s are cor-
related, even if their joint distribution is available, since
the exact distribution of the maximum of correlated ran-
dom variables has the form of a multiple integral. As a re-
sult, investigators have proposed to trace the LROC of
tmax for images reconstructed from tomographic data us-
ing regularized methods via simulations [22,23]. We pro-
pose an alternative approach to evaluating the perfor-
mance of the ¢,,,, observer in the presence of correlations.
Although closed-form expressions for the threshold-
exceeding probabilities of ¢, are generally not available
for correlated Gaussian random fields, approximations of
these probabilities for high values of the threshold 7 have
been developed. We use them here to trace a portion of the
ROC curve.

3. THRESHOLD-EXCEEDING PROBABILITIES
OF THE MAXIMUM TEST STATISTIC

By analyzing the Euler characteristic of excursion sets,
Adler has derived approximations for the distribution
tails of the maximum of a correlated random field [24,27].
In particular, if ¢, =max, gT(x) is the maximum value
of a 2-D stationary random field T'(x)=T'(x,x5) over a set
S, then the probability of ¢,,,, exceeding a high threshold
7is approximately

2
Pltmax = 7= 2, Ra(S)pa(7), 12)
d=0

where the factors R4(S), d=0,1,2, depend on the geom-
etry of the search area S and the functions py(7), d
=0,1,2, depend on the distribution of T'(x).
Approximation (12) is most accurate for search areas
that are convex with sufficiently smooth boundaries [24].
If the search area S is a disk of radius r, then Ry(S)=1,
Ri(S)=mr, Ryo(S)=nr2. If the stationary field T(x) is
Gaussian-distributed with zero mean, variance o2, and
autocovariance function Rp(x)=Rp(x,x5), then we can de-
note the dependence of py(-) on the moments of the field
by writing py(7)=py(7;07, A1), where Ap is the 2X2
matrix with the ijth element equal to {Ag};
=-R7(0,0)/dx;dx;, 1,j=1,2. In particular, we have [28]

pO(T;UT:AT)é]-_q)(T/UT), (13)

|det Ag|V4
p1(r;07,Ag) = We_#/%;’ (14)
T
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|det A2 )
po(T; 00, A7) = —(277_)3/20?% Te_’z/z‘TT, (15)

where ®(-) is the standard normal CDF. Approximations
of the form of (12) have been applied to the problem of de-
tecting activation in functional neuroimaging [28,29]. Ac-
cording to Worsley et al., they lead to satisfactory accu-
racy for tail probabilities as high as 0.2 [28].

The analysis leading to approximation (12) assumes a
continuous random field. When the field is defined on a
lattice, the results hold asymptotically as the lattice be-
comes finer [24]. Thus, expression (12) can be applied to
approximate the tail distribution of the maximum test
statistic in Eq. (7) when the discrete local test statistics
te,£=1,...,n1, can be considered stationary and their
mean and autocovariance is known.

Under the signal-absent hypothesis, the #,s may be
considered stationary to within the accuracy of some local
shift-invariance approximations discussed in the follow-
ing section. The same can be said in terms of the second-
order statistics of the ¢,’s under the signal-present hy-
pothesis, assuming that the contribution of the signal
profile variability to the covariance of the ¢,’s is insignifi-
cant. However, the mean of the ¢,’s cannot be considered
constant throughout the search area in the presence of a
spatially localized target signal such as the ones that we
are interested in. Thus, expression (12) is not appropriate
for the signal-present hypothesis.

An alternative approach for approximating threshold-
exceeding probabilities in the signal-present case follows
an argument by Siegmund and Worsley [25]. This ap-
proach decomposes the probability of detection at some lo-
cation x, as

P{tmax = T|H€} = P{T(xe) = TIH{f} + P{tmax = TyT(x(’,) < 7'|I{€}

(T—MT(xe)>
=1-®( —

ar

+f P{tmax = 7T (%) = 7—s,H }
0

<T—S‘MT(x€)>
Xp| —— |ds, (16)

ar

where ®(-) and ¢(-) are the standard normal CDF and
probability distribution function (PDF), respectively, and
wp(x)2E[T(x)|H,]. Assuming that the maximum is most
likely to occur near x;, i.e., near the center of the target
signal, the integrand in Eq. (16) will be nonnegligible only
for small values of s.

To derive an expression for the conditional probability
inside the integral, Siegmund and Worsley also assume
that the field T'(x), in the signal-present case and in the
immediate neighborhood of the target signal, can be ap-
proximated as quadratic in x. Under these assumptions,
they show that the conditional probability in the inte-
grand of Eq. (16) is approximately
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P{tmax = TIT(x() =7 37H€}

~P{- T(x)) E[T(x))|T(x,) = 7= s]'T(x() = 25},  (17)

where T(-) and 7(-) denote the gradient and Hessian with
respect to x, respectively, evaluated at x,. For Gaussian
random fields, the conditional expectation in Eq. (17) can
be obtained using

T(x) - E[T(x)]
Var{T(x)}
(18)

E[T(x)|T(x)] = E[T(x)] + Cov{T'(x), T(=)}

and the linearity of derivatives. Approximating the field
around the center of the target signal as quadratic and
circularly symmetric yields a conditional expectation in
Eq. (18) that is proportional to the identity matrix, and
thus Eq. (17) corresponds to a x> CDF. Substituting this
CDF in Eq. (16) results in the following approximation for
the probability of detection:

Pt > HH} ~ 1 ®<ﬂ)
ar
7— pp() i 5’2RT(0) 92MT(xe)
te or ar &zxi (92xi .

(19)

In the following, we will combine expressions (12) and
(19) with locally shift-invariant approximations to com-
pute, respectively, the probabilities of false alarm and de-
tection for observers of the form of Eq. (8).

4. APPROXIMATIONS OF DETECTION
PERFORMANCE

A. Moments of the Local Test Statistics

Let ¢ € R™ be a vector whose components are the local
test statistics ¢, €=1,...,n1. Let V=[vq,... ,an] be a ma-
trix whose columns consist of the image-domain tem-
plates v, 2 Caw,. The latter are vectors in the same space

as the reconstructed object f’ and are formed by linear
combinations of the channel responses.

To derive the moments of the test statistic vector ¢ un-
der each of the hypotheses in Eq. (1), we combine Eq. (8)
with the moments of the tomographic data y from Eqgs. (2)
and (3), the linear reconstructor of Eq. (4), and the as-
sumption that f; and f; ; are independent. This yields the
following expressions for the mean u; and covariance II;
of the test statistic vector under each of the signal-absent
and signal-present hypotheses:

i, =0, (20)

g, = V' ZAf,,  €=1,...,n, (21)
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Wy, =V ZILZ'V
+ diag{wéHg{w(, €=1,...,n1}, €=0,...,ng,
(22)

where II,, is the M XM covariance matrix of the internal
noise vector s, and I1,2 Cov{y|H/}, i.e.,

11, = diag{.Af, + r} + AK,A’, (23)

I, = I, + diag{Af, } + AKC, (A, €=1,...,np.
(24)

For typical problem sizes, applying the operators Z.A4
and ZII,Z' explicitly to compute the moments of ¢ in
Egs. (21) and (22) is time-consuming for common statisti-
cal image reconstruction methods. Therefore, this ap-
proach would be impractical when one needs these mo-
ments to compute measures of detectability for many
values of some reconstruction parameter that is to be op-
timized.

We use locally shift-invariant analysis to derive
Fourier-domain approximations to the moments in Egs.
(21) and (22). A similar approach to computing the mo-
ments of the local test statistics has been followed and
evaluated by others [22,23]. In this work we will combine
such moment approximations with expressions (12) and
(19) to speed up the computation of the ROC-related prob-
abilities (11) and (10), respectively.

B. Locally Shift-Invariant Moment Approximations

For the Fourier analysis that follows, we will assume that
we have a discrete representation of the object fe R"r. Let
U be a discrete Fourier operator, mapping an object in R"p
to some vector in C"r known as the spectrum of the object.
The Fourier operator U is linear and, due to the shift
property of the Fourier transform, it can be defined
through its action on an object e, that consists of an im-
pulse centered at the origin:

1
/_
\V1p

Uey=—1, (25)

where 1 is the vector of n, ones. Without loss of general-
ity, we choose the origin of the Fourier transform to coin-
cide with the location where the signal £, is centered. (The
1/ \fnp factor ensures orthonormality.)

We consider tasks where the mean target signal?s,( has
the same shape at all candidate locations ¢=1,...,n1.
Then ?s’( is a copy of a common mean signal profile f,
shifted to location ¢. We also assume that the observer’s
channel responses at different image locations are shifted
copies of each other. Thus we write

foo=U'EX,, (26)

c€=u_1E€To, (27)

where E 2 \e’nT) diag{te,} consists of the complex exponen-
tial that corresponds to a circular shift from the origin
(0,0) to location €, and e, is an impulse centered at loca-
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tion €. Finally, X, is the spectrum of f,, when the latter is
assumed centered at (0,0), and the M columns of T, con-
tain the frequency responses of the observer’s M chan-
nels, when their impulse responses are assumed centered
at (0,0).

We now assume that the mean target signal profile f, is
localized in space. In general, the operator F is shift-
variant for typical tomographic systems. However, if F is
applied to an object that is contained within a small spa-
tial extent around the origin, we can approximate F as
shift-invariant within the spatial extent of this object.
The closer the object comes to resembling an impulse, the
greater the accuracy of this approximation. Thus we ap-
proximate the operator F (and similarly R) within a
small spatial extent as

F~U'AU, (28)

R=U'QU, (29)

where  AZdiag{\,,k=1,...,n,} and Q=diag{w,,k
=1,...,n,}. The N\}’s and w,’s contain the local frequency
response of F and R, respectively, computed at the loca-
tion of the signal. Such local diagonalization approxima-
tions have been used by other investigators to analyze ob-
server performance with penalized-likelihood
reconstruction [9,10,22,23].

Similarly, we assume that under any single hypothesis
the object can be approximated as locally stationary
around each of the locations ¢=1,...,n;. This is more
likely to be accurate when the signal profile is determin-
istic under all signal present hypotheses (i.e., IC; (=0, ¢
=1,...,np) or when the signal profile variability is negli-
gible when compared to the background variability. Thus
we approximate the object covariance within some small
spatial extent by

Ky =~U'NU, (30)
Ky+ Ko =U'NU, €=1,...,n, (31)
where N 2 diag{v;,k=1,... ,np}. The v4’s contain the local

power spectrum of f for hypothesis H,.

We take A, Q, and N, to contain the local frequency re-
sponses of the respective operators at location €., where
€. e{1,...,ny} corresponds to the center of the observer’s
search area. Thus we assume that these frequency re-
sponses capture the approximate behavior of the respec-
tive operators throughout the search area, if the latter is
not too big.

We present here only the final expressions and refer
the reader elsewhere for step-by-step derivations [19, Sec-
tion 4.C]. Substituting the Fourier representations
(26)—(31) into the MaCPPW local template in Eq. (9)
yields

w =~ [(1- NI+ A{THA + QI 2[A + AN T, +10,)]F
-THA + Q) AX,, (32)
where Ngé%Nﬁ%No. By using the same A, Q, and N,

(i.e., the ones computed at the center ¢,) for every w, ¢
=1,...,ny, we are approximating the templates as locally
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shift-invariant within the search area, i.e., we=wg, 14
=1,...,n5. Then we can write

V= n U diag{VoUZsy, (33)

where VOéTOw(C is a linear combination of the channel
responses and Zga2[eq]... len, ] has as its columns the im-
pulses e;, €=1,...,n;, corresponding to the nj, locations
in the search area.

Finally, substituting the frequency-domain representa-
tions (26)—(33) into the moments of the test statistic vec-
tor from Eqgs. (21) and (22) yields the following locally
shift-invariant approximations of these moments:

i, = npZsad ' OUe,,  €=1,...,ny, (34)

Wy, = n, TeU " WUTg + (w gcng(rw(c)z,

€=0,...,ny, (35)
where
AL ST
b= d|ag 5 = 1’ ’np )
)\k + wy,
VARV ER WA
¥ 2 diag) ————, k=1,...,n,(,

(N + @p)?

and V,, X, are the kth elements of V, X|;, respectively.

C. Approximations of Pg, and Pp

Regardless of the exact distribution of the data y, the
term of ¢, in Eq. (8) that is linear in f can be considered
approximately Gaussian due to the central limit theorem.
Thus the local test statistics can be considered approxi-
mately Gaussian. Assuming that the #,’s form a correlated
Gaussian random field, we will use the approximations in
(12) and (19) to evaluate the probabilities of false alarm
and detection in Egs. (11) and (10).

Approximation (12) assumes stationarity. For a typical
shift-variant tomographic system, the ¢,’s are not globally
stationary. However, as discussed above, we will consider
the system to be locally shift-invariant and the object to
be locally stationary over a small area around each of the
candidate locations €=1,...,n1. This implies that the ¢,’s
are approximately stationary locally around each candi-
date location.

We use approximation (12) to calculate the probability
of false alarm in Eq. (11) for channelized linear local test
statistics and high detection thresholds 7. In particular,
we write

2

Pya(7) = X, Ry(S)palT30710, A1), (36)
d=0

where we use the notation o7y, Arj¢ to refer to moments
under hypothesis H,. These moments can be computed
fast from the Fourier approximation (35). In particular,

n

P
Tho = 20 [VAPAR(L+ Nl (N + ) + wi I, w, .
k=1 c

(37)
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It would be possible to use an approximation like (36)
for the probability of detection (10) as well, simply replac-
ing py(7; 0710, ATi0) With py(7= ) ;070 ,A7ie) [30]. This
would be satisfactory if the mean of the test statistic field,
wrp(x)2E[T(x)|H,], were constant throughout the search
area under each of the signal-present hypotheses. How-
ever, the mean cannot be considered constant throughout
the search area in the presence of a spatially localized tar-
get signal. In this case, using a constant MT(x)=MT(x€C)
would lead to an overestimation of the probability of de-
tection. Instead, we will use the signal-present approxi-
mation (19) for the probability of detection, combining it
with Fourier approximations of the local test statistic mo-
ments:

T MTle, 7= MTe,
Pp,(n=1-® +é
¢ aTie, aTie,

1 |: !72RT40(0):| |: 32#T|fc(xfc):|

O'T‘gc (72.7Ci (92xi

(38)

We compute ury, and o7y, from the locally shift-invariant
approximations (34) and (35), respectively:

'p
Mg, = D VXN O + ), (39)
=1

n

p
¢
U%\ec ~ D IVAPN(L+ Ny ) (g + )2 + w I, w .
i .

(40)

In the special case where the target signal is variable in
its location only and not in its shape, i.e., ICS,Q:O, we
have V]{;L': V(]:, which lmplles O'TMCZO'T‘O and ATMC:ATl(]' Fi-
nally, we obtain the two derivatives in approximation (38)
by applying finite differences to approximations (34) and
(35).

In the following, we will use the approximations of the
probability of false alarm and detection given in (36) and
(38), respectively, to compute high-threshold points of the
ROC curves corresponding to various observer models of
interest.

5. SIMULATION RESULTS

We present an example of using the above approxima-
tions to evaluate the effect of regularization on the detec-
tion performance of channelized observers applied to
QPWLS-reconstructed images. In this example, A corre-
sponds to a 2-D PET system model with the characteris-
tics of a CTI ECAT 931 scanner (matrix size 128X 128,
pixel size 4.7 mm, 192 radial samples with 3.1 mm spac-
ing, 160 projection angles over 180°), as implemented in
the ASPIRE software package [31]. We scale .A to produce
measurements with a total of 10% counts. We simulate the
background events r by adding 10% of the total counts
uniformly distributed over all measurement bins. The ob-
ject background f, has a Gaussian autocorrelation func-
tion with a full width at half-maximum (FWHM) of
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Fig. 1. PSfrag replacements. Mean background 7‘}, with the tar-
get signal f, superimposed (a) and a profile through them (b). The
largest of the search areas considered (diameter of 23 pixels) is
indicated as a black circle in (a).

12 pixels and a standard deviation of 0.075. The mean

background £, is the anthropomorphic phantom shown in
Fig. 1, which corresponds to a slice of the Zubal phantom
[32]. The target signal f; ; has a known Gaussian profile
with a FWHM of 4 pixels and an amplitude of 0.3, but un-
known location €. The search area is assumed to be a
disk. Any pixel inside the disk is a candidate location for
the target signal. Figure 1 shows the mean background,
the signal profile, and the largest of the concentric disk
search areas that we consider in this example.

We assume a channelized observer model that involves
four circularly symmetric, square-profile channels, as de-
fined by Abbey et al. [17]. We consider local templates of
the form of Eq. (9), where the CHO or CNPW templates
are limiting cases. We evaluate detection performance for
QPWLS reconstruction with the uniform quadratic regu-
larizer in Eq. (6) and various values of the regularization
parameter 8. We compare results obtained from the pro-
posed analytical approximations to results obtained from
simulations.

(i) Proposed analytical approach. Using the analytical
approximations (38) and (36), respectively, we calculate
the probabilities of detection and false alarm for different
values of the threshold 7. We repeat this for each value of
B. Then we apply interpolation to these results to find the
probability of detection at a fixed value of the probability
of false alarm (0.02 in this example) for every 3.

(it) Empirical approach. We obtain the moments of the
local test statistics for a range of different g’s from the lo-
cal shift-invariant approximations (34) and (35). We then
produce 5 X 10° realizations of the local test statistics, ¢,
€=1,...,n1, under each of the signal-present and signal-
absent hypotheses, drawing from a Gaussian distribution
with the respective moments. This yields multiple real-
izations of ¢, under each hypothesis. For each B, we
compare the realizations of ¢, to a range of different
thresholds 7 to estimate the probabilities of detection and
false alarm at every threshold. We then compute, as with
the analytical approach, the probability of detection at a
fixed value of the probability of false alarm for every g.
We also compute the AUC for each 8 by numerical inte-
gration of the empirical probability of detection versus the
empirical probability of false alarm.

Both the analytical and empirical methods perform a
fast computation of the moments of the local test statis-
tics based on local shift-invariance approximations.
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Khurd and Gindi followed a similar approach to compute
the area under the LROC curve, using local shift-
invariant moment approximations for CHO and CNPW
local templates [22]. They compared the results to those
produced by applying the observer templates to recon-
structions of multiple noisy data sets. They reported very
good agreement (for a range of signal contrasts) and a
103-fold reduction in computation time when using local
shift-invariant analysis. Thus, we do not repeat such an
evaluation of local shift-invariance approximations. The
comparison herein focuses on the approximation intro-
duced by (38) and (36), rather than the approximation in-
troduced by assuming a shift-variant system to be locally
shift-invariant.

We compute the above analytical and empirical metrics
for MaCPPW observers, including the MaCHO (y=1),
MaCNPW (y=0), and three intermediate values of y. Fig-
ure 2 shows results for these observers with a search area
diameter of 9 pixels and QPWLS reconstruction with the
roughness penalty in Eq. (6) and various values of 8. The
abscissa of the plots shows the resolution of the QPWLS
reconstruction at the center of the search area, defined as
the FWHM (in pixels) of the local impulse response [33] at
that location. This local FWHM is a measure of the
amount of smoothing imposed by QPWLS. It equals
1 pixel for 8=0, which corresponds to unregularized WLS,
and it increases as 3 increases.

Figure 3(a) shows how the optimal QPWLS resolution
varies with the size of the search area. Figure 3(b) shows
the maximum increase in the AUC of the MaCNPW ob-
server versus the diameter of the search area. The in-
crease is defined as the ratio (AUC"-AUC?%)/AUC?, where
AUC" and AUC? denote the AUC achieved by the observer
when regularized QPWLS with optimal 8 and unregular-
ized WLS is used, respectively.
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Fig. 2. Detection performance of MaCPPW observers versus
QPWLS reconstruction resolution: P, obtained analytically (a),
P, obtained empirically (b), and AUC obtained empirically (c).
Results are shown for five different degrees of prewhitening ac-
curacy. The search area is a disk with a diameter of 9 pixels.

A. Yendiki and J. A. Fessler

)
_§ 6 0.3
5 )
c OO
o5 =)
5 <C
2 pah e ey 02
g ©
ﬂ 3 ; PD {anal.) 2
LT 02
g 5 —n—PD {emp.) 8 X
G —e—aAucemp) || £
E 0.15
g 5 10 15 20 5 10 15 20

Search area diameter {pixels) Search area diameter (pixels)
(&) (b}

Fig. 3. QPWLS resolution that maximizes the Pp (obtained ana-

lytically and empirically) or AUC (obtained empirically) versus

search area diameter (a). AUC improvement with optimally regu-

larized QPWLS over unregularized WLS versus search area di-

ameter (b). Results are shown for the MaCNPW observer.
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Fig. 4. QPWLS reconstructions of a noisy Poisson data set with
a resolution of 3 pixels (a), 4 pixels (b), or 5 pixels (¢), and profiles
through the three images (d). The signal is present in the center
of the search area.

As seen in Fig. 3(a), the optimal QPWLS resolutions for
different search area sizes are around 4 pixels in this ex-
ample. For reference, Fig. 4 shows QPWLS-reconstructed
images with resolutions of 3, 4, and 5 pixels, all from the
same data set with Poisson noise and the signal present
in the center of the search area.

Figure 5 compares the analytical and empirical prob-
abilities of detection and false alarm for the MaCNPW ob-
server with two different search area sizes. Figures 5(a)
and 5(b) show the probabilities of false alarm and detec-
tion, respectively, for a search diameter of 7 pixels and a
fixed QPWLS resolution of 3 pixels. Figures 5(d) and 5(e)
show the same probabilities for a search diameter of
15 pixels and a fixed QPWLS resolution of 3 pixels. The
interpolated probability of detection at a fixed probability
of false alarm (Ppp=0.02), with varying QPWLS resolu-
tion, is shown in Figs. 5(c) and 5(f) for a search diameter
of 7 and 15 pixels, respectively.
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Fig. 5. Empirical and analytical probabilities of false alarm and detection for the MaCNPW observer with a search area diameter of
7 pixels [(a)—(c)] and 15 pixels [(d)—(f)]. The plots show the Py, versus detection threshold [(a),(d)], the Pp versus detection threshold
[(b),(e)], and the Py, (with error bars) versus QPWLS resolution for a fixed Ppy=0.02 [(c),(f)]. (The error bars are small enough to fit in the

plot markers.)

6. DISCUSSION

The plots of Fig. 2 show that for the MaCHO observer, the
peak detection performance achieved with regularized
QPWLS is very close to the performance achieved with
unregularized WLS. However, as the prewhitening capa-
bilities of the observer deteriorate, the improvement
achieved at the optimal amount of regularization becomes
more and more significant. The MaCNPW observer is the
most affected by the amount of regularization. The same
trend is captured by all metrics, i.e., the analytical and
empirical probability of detection at a fixed low probabil-
ity of false alarm, as well as the empirical AUC. The op-
timal resolution was slightly lower for the AUC.

As indicated by these results, the observer’s prewhiten-
ing capabilities are important in determining whether op-
timized regularization can improve detectability signifi-
cantly over unregularized reconstruction. This is in
agreement with some prior results from the analysis of
known-location tasks. In particular, we have shown that
the gains in known-location detectability between opti-
mized regularization and no regularization increase as
the prewhitening deficiency of the observer increases [19,
Section 3.4]. This occurs because, for an intermediate
amount of regularization, the observer’s channel outputs
are closest to white; hence prewhitening is less crucial for
achieving good detection performance. Results by Qi also
show that optimizing regularization parameters with re-
spect to known-location detection performance has a more
dramatic effect for a nonprewhitening (“maximum-
constrast”) observer than the CHO [10]. Thus it seems
that the effect of regularization depends less on whether
the signal location is known or unknown to the observer
and more on whether the observer can perform prewhit-
ening. However, these two aspects of the observer model
are not entirely unrelated in practice, since experimental

results indicate that the prewhitening capabilities of hu-
man observers may deteriorate in unknown-location
tasks [20,21]. In the simulations presented here, the size
of the search area also played a role, with regularization
being somewhat less beneficial for observers with very
small or very large search areas. Although we show plots
only for observers with square-profile channels, we obtain
similar results with the difference-of-Gaussians channel
sets from Abbey et al. [17]

Considering the range of QPWLS resolutions that
achieve near-peak AUC for the MaCNPW observer, as
seen in Fig. 2, the variation in optimal QPWLS resolution
versus search diameter, as seen in Fig. 3(a), is small.
Thus, a moderate uncertainty about the observer’s search
area would not result in a significantly different conclu-
sion about the optimal amount of regularization.

As seen in Fig. 3(b), the improvement in the AUC of the
MaCNPW observer afforded by optimal regularization
varies somewhat with the size of the search area. The
maximum improvement is achieved for an intermediate
search diameter (in this case, 9 pixels).

Approximation (38) for the probability of detection as-
sumes that the test statistic field is quadratic around the
target signal location. This quadratic approximation is
more accurate for a search diameter of 7 pixels, as shown
in Fig. 5(b), since this search area size is comparable to
the support of the target signal. For a larger search area,
however, this approximation breaks down, as shown in
Fig. 5(e).

Even if the analytical approximations are not always
accurate at predicting the value of the probability of de-
tection, they follow the trends of the empirical curves and
are maximized at the same or nearly the same QPWLS
resolution. Thus, analytically computed plots like the
ones in Figs. 2(a), 5(b), and 5(e) can be useful for choosing
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the regularization parameter B to optimize the probabil-
ity of detection for a given low probability of false alarm
within a small search area around some pixel.

For the small search diameter of 7 pixels, the analyti-
cal approach offers a tenfold reduction in computation,
when compared to the empirical approach of simulating
the local test statistics from the Fourier approximations
of their moments. The computational savings increase
with the size of the search area. They also increase with
the number of realizations produced for the empirical ap-
proach. This tenfold reduction in computation augments
the 103-fold reduction, which is afforded by the use of lo-
cally shift-invariant approximations instead of image re-
constructions and which was reported by Khurd and
Ghindi [22]. The additional savings can be important
when detectability needs to be evaluated at every voxel in
the image to optimize regularization parameters locally.

The limitation of the proposed method is that analyti-
cal approximations (36) and (38) apply only to high
thresholds 7. Thus these approximations are useful when
a partial area under the curve or a single point on the
curve (at low false-positive rates) is the desired figure of
merit for observer performance. However, they cannot be
used to trace the entire ROC and find the AUC. In the ex-
ample of Section 5, the probability of detection at a low
probability of false alarm behaved similarly to the AUC
with respect to the regularization parameter (see Fig. 2).
In general, however, the ranking of ROC curves at low
probabilities of false alarm may not predict their ranking
at high probabilities of false alarm, as ROC curves for dif-
ferent regularization parameters may cross. If one is in-
terested in optimizing regularization with respect to per-
formance at high probabilities of false alarm, one should
check for crossing ROC curves by applying the simulation
method for at least one voxel in the image before applying
the analytical method to optimize regularization for the
rest of the image. The analytical approach could also
complement the empirical approach by providing an ini-
tial estimate of the optimal resolution, around which
simulations can then be performed if more accuracy is
needed.

We have considered observers that search for the target
signal within a local search area, rather than within the
entire image. We have made this choice for two reasons.
First, locally shift-invariant approximations to the mo-
ments of the local test statistics are accurate within a lo-
cal region. If the system is shift-variant and/or the object
background is not stationary, these approximations are
not accurate within the entire image. Second, our ulti-
mate goal is to use the analyses above to optimize the
amount of regularization locally at each pixel in the im-
age. It seems reasonable for the optimal amount of regu-
larization at some pixel to be determined by the image
statistics within a local area around that pixel.

For the example presented above, we did not include
internal noise in the observer model. The reason is that
internal noise would manifest itself as an impulse at the
center Rp(0) of the autocovariance function. In this case,
the analytical approximations would break down, because
they require the autocovariance function to be smooth so
that its second derivative can be computed. In particular,
the analytical approximations would deteriorate for large
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B, where the internal noise dominates. This issue arises
because the observer models with internal noise that
have been proposed in the literature assume that this
noise is uncorrelated between different candidate loca-
tions. Whether this assumption is crucial, however, must
ultimately be validated by human observer studies. In
general, internal noise is intended to model the phenom-
enon that a human observer may make different decisions
when presented with the same image on different occa-
sions. An alternative way to express this uncertainty that
would make the model more amenable to analysis would
be to add noise to the maximum test statistic itself in-
stead of adding noise to the local test statistics individu-
ally. Once again, the usefulness of such a model would
have to be tested by studies with human observers.

The analytical approximations can also be applied to
optimize anisotropic regularization, which has been re-
ported to yield greater performance improvement than
isotropic regularization in known-location tasks [12]. In
addition to lesion detectability, the proposed method can
be applied to the optimization of regularization with re-
spect to the detectability of activations in functional neu-
roimaging. Improving the accuracy of the approximations
for a wider range of search area sizes and for nonzero in-
ternal noise, as well as relaxing the assumption of a cir-
cularly symmetric signal shape, are topics for future in-
vestigation. Furthermore, since the threshold-exceeding
probability approximations used here have been derived
for continuous random fields, the analysis can be applied
naturally to tomographic reconstruction methods that

yield continuous-space images f.

Finally, it would be of interest to extend the analysis of
the probability of detection to the probability of correct lo-
calization, thus considering a LROC instead of a ROC
curve. Under certain assumptions of statistical indepen-
dence on the local test statistics, it has been shown that
maximizing the AUC is equivalent to maximizing the
area under its LROC curve [6]. However, further investi-
gation is needed to analyze the probability of correct lo-
calization for the correlated local test statistics considered
here.
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