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Our goal is to optimize regularized image reconstruction for emission tomography with respect to lesion de-
tectability in the reconstructed images. We consider model observers whose decision variable is the maximum
value of a local test statistic within a search area. Previous approaches have used simulations to evaluate the
performance of such observers. We propose an alternative approach, where approximations of tail probabilities
for the maximum of correlated Gaussian random fields facilitate analytical evaluation of detection perfor-
mance. We illustrate how these approximations, which are reasonably accurate at low probability of false
alarm operating points, can be used to optimize regularization with respect to lesion detectability. © 2007 Op-
tical Society of America
OCIS codes: 110.3000, 100.3010.
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. INTRODUCTION
everal applications of emission tomography involve the
etection of a spatially localized target signal in an image
econstructed from noisy data. When choosing among dif-
erent reconstruction methods or tuning the parameters
f individual methods, a reasonable approach is to seek
he choice that leads to optimal performance in such de-
ection tasks. In this work we focus on penalized-
ikelihood reconstruction methods for emission tomogra-
hy. These methods involve one or more regularization
arameters that control the noise-resolution trade-off in
he reconstructed images. Instead of choosing the regular-
zation parameters by numerical criteria, such as cross
alidation or L-curves [1,2], we would like to optimize
hese parameters analytically with respect to signal de-
ectability.

In clinical practice, detection tasks are usually per-
ormed by human observers. The performance of humans
an be evaluated empirically by tracing their receiver op-
rating characteristic (ROC) in simple detection tasks
3–5], or their localization ROC (LROC) in tasks that in-
olve both detection and localization [6]. However, the ex-
eriments required for such an evaluation are too time-
onsuming to perform for many values of a reconstruction
arameter or to repeat every time that some aspect of the
maging process changes. Thus we turn to the mathemati-
al observers that have been proposed in the literature to
odel human performance [7] and that allow analytical

reatment.
Detection tasks where the observer knows the possible

ocation of the target signal a priori have been analyzed
ith respect to optimal regularization methods [8–12].
1084-7529/07/120B99-11/$15.00 © 2
nown-location tasks are also the ones for which model
nd human observer correlation has been investigated
ost extensively. In these tasks human observers appear

o be effective in compensating for second-order image
tatistics. As a result, they are modeled well by math-
matical observers that perform prewhitening, such as
he channelized Hotelling observer (CHO) [13–18]. How-
ver, optimizing regularization parameters has less of an
ffect on the detection performance of such observer mod-
ls, as has been concluded both experimentally [17] and
nalytically [19]. Thus it is of interest to optimize such
arameters with respect to detection performance in
asks where the prewhitening capabilities of humans de-
rade. Such a degradation seems to occur in tasks where
he location of the target signal is not known a priori
20,21].

Location uncertainty complicates the analysis of detect-
bility. Observer models that have been compared to hu-
ans in unknown-location tasks usually base their deci-

ions on the maximum value of a local test statistic over
ll possible signal locations. The exact distribution of the
aximum of a correlated random field has the form of a
ultiple integral that is intensive to compute. A “brute-

orce” approach to evaluating the performance of such an
bserver model would be to perform a large number of
ime-consuming tomographic reconstructions of Monte
arlo–simulated projection data and produce realizations
f the maximum test statistic from the reconstructed im-
ges. When optimizing some reconstruction parameter
ith respect to detection performance, this simulation
ould have to be repeated for every value of the param-
ter of interest.
007 Optical Society of America
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To avoid performing multiple reconstructions, investi-
ators have proposed analytical approximations of the
oments of the local test statistics and used them to pro-

uce Monte Carlo–simulated realizations of the maxi-
um test statistic directly [22,23]. This approach results

n very significant time savings when compared to the
rute-force method, but it still requires performing mul-
iple simulations when the evaluation of detection perfor-
ance needs to be repeated for various values of one or
ore parameters of interest.
We propose an alternative approach that does not re-

uire simulations. Although the exact expression for the
istribution of the maximum is complicated, simple ap-
roximations of this distribution at high thresholds for
orrelated Gaussian random fields have been proposed by
dler [24]. These approximations assume (local) station-
rity, so they are more accurate under the signal-absent
han the signal-present hypothesis. The latter requires a
ifferent treatment, and we adopt the approach of Sieg-
und and Worsley to analyze it [25]. We illustrate how

hese analytical results, which are accurate at low prob-
bility of false alarm operating points, can be combined to
pproximate the performance of the observer models of
nterest as a function of regularization parameters.

This paper is structured as follows: Section 2 estab-
ishes the models that we will consider for the object, im-
ging system, reconstruction method, and observer. Sec-
ion 3 reviews the tail probability approximations that we
pply in Section 4 to analyze the detection performance of
he observer models of interest in unknown-location
asks. Section 5 illustrates how these analyses can be
sed to optimize regularized reconstruction methods with
espect to detection performance, and Section 6 discusses
hese results.

. DETECTION TASK
. Object Model
et f denote the true object being imaged (or its approxi-
ation in Rnp, where np is the number of coefficients in a

iscrete representation of f). The object f consists of a
ackground fb and it may or may not also contain a spa-
ially localized signal of interest fs. We assume that, when
he target signal is present within the object, it is cen-
ered at one of a finite set of locations �=1, . . . ,nL. We de-
ote the target signal centered at location � by fs,�.
In emission tomography, where the object f is a radio-

ctivity distribution, the background could represent the
istribution of radioactivity in the absence of disease and
he signal could represent the additional radioactivity ab-
orbed in the area of a lesion. Thus an additive model for
he background and signal is reasonable. The detection/
ocalization task at hand is then a decision among the fol-
owing nL+1 hypotheses:

H0:f = fb �signal absent�

H�:f = fb + fs,�

�signal present at location �,� = 1, . . . ,nL�. �1�

he background fb and the signal fs,� are random due to
atient variability. We assume that they are statistically
ndependent under any of the signal-present hypotheses
� ,�=1, . . . ,nL. We denote the expectations of fb and fs,�

y f̄b�E�fb� and f̄s,��E�fs,��=E�fs �H��, respectively. We
enote their covariances by Kb=Cov�fb� and

s,��Cov�fs,��=Cov�fs �H��, respectively. The covariances
s,� ,�=1, . . . ,nL express variability in the shape of the

arget signal and not in its location.

. Image Reconstruction
o reflect medical practice, we assume that the decision is
ade by an observer applied on a reconstructed image f̂.
he image f̂ is reconstructed from a measurement y that

s acquired by a tomographic imaging system. For a given
bject f, y is random due to imaging noise. Specifically, the
ntries in y are statistically independent and Poisson-
istributed conditionally on f with moments

E�y�f� = Af + r, �2�

Cov�y�f� = diag�Af + r�, �3�

here the linear operator A models the tomographic im-
ging system and the vector r models scatter and/or ran-
om coincidences. We assume that the reconstructed im-
ge is given by

f̂�y� = Zy �4�

or some linear reconstructor Z. The linearity assumption
olds either exactly or approximately for several common
omographic reconstruction techniques.

Here we are interested in regularized image recon-
tructors. A simple example that satisfies the linearity as-
umption is the quadratically penalized weighted least
quares (QPWLS) family of reconstructors:

Z = �F + R�−1A��−1, �5�

here “ �” denotes the adjoint of an operator (or the trans-
ose of a matrix), R is a (linear) regularization operator,
�A��−1A, and ��diag�AE�f�+r��diag�Af̄b+r�.

Since we are interested in detecting small perturbations
n the object background, we can assume that the signal
ntensity is weak with respect to the background inten-
ity.) The QPWLS reconstruction strategy [Eq. (5)] yields
n estimated image that satisfies f̂�y�=arg maxf�−�y
Af���−1�y−Af�−f�Rf�. Note that, when the measure-
ent likelihood is Poisson, QPWLS does not correspond

o maximum a posteriori (penalized-likelihood) recon-
truction. Although in the following we consider the QP-
LS reconstructor for simplicity, it is straightforward to

xtend our analysis to more general penalized-likelihood
econstructors using linearization approximations [12].

A commonly used form for the regularizer R is that of
quadratic roughness penalty, such that

f�Rf = �	
j=1

np

	
k�Nj

�fj − fk�2, �6�

here fj is the intensity of the object f at the jth pixel, Nj
s a neighborhood of pixels around the jth pixel, and �

0 is a regularization parameter. Regularizers of the
orm of Eq. (6) penalize differences between neighboring
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mage pixels, thus favoring smoother images. For simplic-
ty, we consider a first-order neighborhood Nj, consisting
f the four closest (top, bottom, left, and right) neighbor-
ng pixels. Then � is the only free parameter in R.

. Observer Model
ollowing the literature, we consider observers whose de-
ision rule relies on computing some scalar local test sta-
istic t�= t��f̂�y�� for each of the candidate locations and
hen comparing the maximum test statistic,

tmax � max
�=1,. . .,nL

t�, �7�

o a data-independent threshold �. If tmax��, it is decided
hat the signal is present; otherwise, it is decided that the
ignal is absent.

Local test statistics that have been used to model the
uboptimality of human observers are linear, and they in-
olve a set of M bandpass filters, attempting to mimic the
isual system [13]. These test statistics sample the output
f the M bandpass filters at a location of interest �, to ob-
ain a local feature vector ĉ��RM, to which a local tem-
late w��RM is then applied:

t� = w��ĉ�, ĉ� = C���f̂ − E�f̂b�� + ��, �8�

here C�= �C1,� , . . . ,CM,�� consists of M operators. The
th of these operators applies the impulse response of the
th bandpass filter and samples the output at location �.
he internal noise vector ���RM models inherent uncer-
ainty in the observer’s decisions and is typically assumed
o contain independent, zero-mean, Gaussian-distributed
ntries. The mean of the reconstructed background,

b�Z�Afb+r�, is subtracted from the reconstructed im-
ge in Eq. (8) to signify that the observer determines the
ost suspicious location by comparing intensities relative

o the background, rather than absolute intensities
22,23].

Two such models have been proposed in the literature
o model the performance of human observers in detecting
nknown-location lesions in tomographic images: The
aximum channelized Hotelling observer (MaCHO),
hich includes both the first- and second-order statistics
f the channel outputs in its template, and the maximum
hannelized nonprewhitening observer (MaCNPW) ob-
erver, which includes the first-order statistics only. In
articular, the MaCNPW observer has been found to be
ell correlated with humans in simple unknown-location

asks [20,21]. This indicates that humans may not be ef-
ective at compensating for correlations in the images
hen they have to search for a lesion in more than one

ocation.
Here we consider a generalization of these models that

llows for an intermediate degree of prewhitening accu-
acy. For lack of a better term, we call this generalized
odel a maximum channelized partially prewhitening

MaCPPW) observer and define its local template at some
ocation � as
w� � ��1 − ��I + �� 1
2Cov�ĉ�H�� + 1

2Cov�ĉ�H0���†

· �E�ĉ�H�� − E�ĉ�H0��, �9�

here “ †” denotes the pseudoinverse and �� �0,1�. For
=0 and �=1, the above becomes equal to the well-known
aCNPW and MaCHO models respectively. An interme-

iate value of � yields an observer with intermediate pre-
hitening accuracy. The expression in Eq. (9) is only one

f several ways in which a prewhitening deficiency could
e introduced in the channelized observer’s template. We
se Eq. (9) here simply to evaluate our performance ap-
roximations, without making any claims about correla-
ion with human observers.

. Detection Performance
ur goal is to optimize the reconstructor Z in general, or
in the particular case of QPWLS, with respect to the de-

ection performance a specific observer. Since we are ulti-
ately interested in optimizing reconstruction param-

ters locally, we focus on an ROC curve as a metric of the
bserver’s signal detection performance within a search
rea around a given location �� �1, . . . ,nL�. Specifically,
e consider the ROC curve that is obtained by plotting

he probability of detection (deciding that the signal is
resent when it is actually present at �),

PD,���� � P�tmax � ��H��, for some � � �1, . . . ,nL�,

�10�

ersus the probability of false alarm (deciding that the
ignal is present when it is actually absent),

PFA��� � P�tmax � ��H0�. �11�

he curve is traced by varying the threshold �. To trace an
OC or LROC curve for the test statistic tmax in Eq. (7),
e need the cummulative distribution function (CDF) of

max, from which we can compute the threshold-exceeding
robabilities (10) and (11).
We are interested in an observer model that searches

or the signal within an area consisting of nL voxels
round some voxel of interest �. As seen in Eq. (10), we
se the probability of detection at the voxel � to quantify
etection performance. Our motivation for this analysis is
ptimizing the regularization parameter for some voxel �
o maximize detectability at that voxel, an optimization
hat is to be repeated for each voxel in the image. An al-
ernative approach would be to consider the overall prob-
bility of detection within the search area, which would
equire defining a priori probabilities of the signal pres-
nce at each location in the search area, but this is not the
pproach that we follow here.
If the local test statistics t�, �=1, . . . ,nL, were statisti-

ally independent, then the CDF of their maximum would
e simply equal to the product of their individual CDFs.
hus, under the assumption of independent, Gaussian-
istributed local test statistics, it is possible to derive the
rea under the LROC curve for observer models of the
orm of Eqs. (7) and (8) [26]. Furthermore, even with a
omewhat weaker statistical independence assumption,
ne can show that maximizing the area under the ROC
urve (AUC) of tmax would be equivalent to maximizing
he area under its LROC curve [6].
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Typical image reconstruction methods, and regularized
nes in particular, produce images where the intensities
t neighboring locations are correlated. Thus local test
tatistics at neighboring locations are also correlated,
ith more regularization leading to wider autocorrelation

unctions. Analyses that use independence assumptions
an be applied to tasks where the candidate locations are
t a distance from each other that is greater than the au-
ocorrelation width. For tasks where all the pixels within
ome search area are candidate locations, correlations be-
ween the local test statistics must be taken into account.

Threshold-exceeding probabilities such as (10) and (11)
re difficult to obtain in closed form when the t�’s are cor-
elated, even if their joint distribution is available, since
he exact distribution of the maximum of correlated ran-
om variables has the form of a multiple integral. As a re-
ult, investigators have proposed to trace the LROC of
max for images reconstructed from tomographic data us-
ng regularized methods via simulations [22,23]. We pro-
ose an alternative approach to evaluating the perfor-
ance of the tmax observer in the presence of correlations.
lthough closed-form expressions for the threshold-
xceeding probabilities of tmax are generally not available
or correlated Gaussian random fields, approximations of
hese probabilities for high values of the threshold � have
een developed. We use them here to trace a portion of the
OC curve.

. THRESHOLD-EXCEEDING PROBABILITIES
F THE MAXIMUM TEST STATISTIC
y analyzing the Euler characteristic of excursion sets,
dler has derived approximations for the distribution

ails of the maximum of a correlated random field [24,27].
n particular, if tmax=maxx�ST�x� is the maximum value
f a 2-D stationary random field T�x�=T�x1 ,x2� over a set
, then the probability of tmax exceeding a high threshold
is approximately

P�tmax � �� � 	
d=0

2

Rd�S��d���, �12�

here the factors Rd�S�, d=0,1,2, depend on the geom-
try of the search area S and the functions �d���, d
0,1,2, depend on the distribution of T�x�.
Approximation (12) is most accurate for search areas

hat are convex with sufficiently smooth boundaries [24].
f the search area S is a disk of radius r, then R0�S�=1,
1�S�=�r, R2�S�=�r2. If the stationary field T�x� is
aussian-distributed with zero mean, variance 	T

2 , and
utocovariance function RT�x�=RT�x1 ,x2�, then we can de-
ote the dependence of �d�·� on the moments of the field
y writing �d���=�d�� ;	T ,
T�, where 
T is the 2�2
atrix with the ijth element equal to �
T�ij
−�2RT�0,0� /�xi�xj, i , j=1,2. In particular, we have [28]

�0��;	T,
T� � 1 − ���/	T�, �13�

�1��;	T,
T� �
�det 
T�1/4

2�	T
e−�2/2	T

2
, �14�
�2��;	T,
T� �
�det 
T�1/2

�2��3/2	T
3 �e−�2/2	T

2
, �15�

here ��·� is the standard normal CDF. Approximations
f the form of (12) have been applied to the problem of de-
ecting activation in functional neuroimaging [28,29]. Ac-
ording to Worsley et al., they lead to satisfactory accu-
acy for tail probabilities as high as 0.2 [28].

The analysis leading to approximation (12) assumes a
ontinuous random field. When the field is defined on a
attice, the results hold asymptotically as the lattice be-
omes finer [24]. Thus, expression (12) can be applied to
pproximate the tail distribution of the maximum test
tatistic in Eq. (7) when the discrete local test statistics
� ,�=1, . . . ,nL can be considered stationary and their
ean and autocovariance is known.
Under the signal-absent hypothesis, the t�’s may be

onsidered stationary to within the accuracy of some local
hift-invariance approximations discussed in the follow-
ng section. The same can be said in terms of the second-
rder statistics of the t�’s under the signal-present hy-
othesis, assuming that the contribution of the signal
rofile variability to the covariance of the t�’s is insignifi-
ant. However, the mean of the t�’s cannot be considered
onstant throughout the search area in the presence of a
patially localized target signal such as the ones that we
re interested in. Thus, expression (12) is not appropriate
or the signal-present hypothesis.

An alternative approach for approximating threshold-
xceeding probabilities in the signal-present case follows
n argument by Siegmund and Worsley [25]. This ap-
roach decomposes the probability of detection at some lo-
ation x� as

P�tmax � ��H�� = P�T�x�� � ��H�� + P�tmax � �,T�x�� 
 ��H��

= 1 − �
 � − �T�x��

	T
�

+�
0

�

P�tmax � ��T�x�� = � − s,H��

��
 � − s − �T�x��

	T
�ds, �16�

here ��·� and ��·� are the standard normal CDF and
robability distribution function (PDF), respectively, and
T�x��E�T�x� �H��. Assuming that the maximum is most

ikely to occur near x�, i.e., near the center of the target
ignal, the integrand in Eq. (16) will be nonnegligible only
or small values of s.

To derive an expression for the conditional probability
nside the integral, Siegmund and Worsley also assume
hat the field T�x�, in the signal-present case and in the
mmediate neighborhood of the target signal, can be ap-
roximated as quadratic in x. Under these assumptions,
hey show that the conditional probability in the inte-
rand of Eq. (16) is approximately
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�tmax � ��T�x�� = � − s,H��

� P�− Ṫ�x���E�T̈�x���T�x�� = � − s�−1Ṫ�x�� � 2s�, �17�

here Ṫ�·� and T̈�·� denote the gradient and Hessian with
espect to x, respectively, evaluated at x�. For Gaussian
andom fields, the conditional expectation in Eq. (17) can
e obtained using

E�T̈�x��T�x�� = E�T̈�x�� + Cov�T̈�x�,T�x��
T�x� − E�T�x��

Var�T�x��

�18�

nd the linearity of derivatives. Approximating the field
round the center of the target signal as quadratic and
ircularly symmetric yields a conditional expectation in
q. (18) that is proportional to the identity matrix, and

hus Eq. (17) corresponds to a �2 CDF. Substituting this
DF in Eq. (16) results in the following approximation for

he probability of detection:

P�tmax � ��H�� � 1 − �
 � − �T�x��

	T
�

+ �
 � − �T�x��

	T
� 1

	T

 �2RT�0�

�2xi
�� 
 �2�T�x��

�2xi
� .

�19�

In the following, we will combine expressions (12) and
19) with locally shift-invariant approximations to com-
ute, respectively, the probabilities of false alarm and de-
ection for observers of the form of Eq. (8).

. APPROXIMATIONS OF DETECTION
ERFORMANCE
. Moments of the Local Test Statistics
et t�RnL be a vector whose components are the local
est statistics t�, �=1, . . . ,nL. Let V= �v1 , . . . ,vnL

� be a ma-
rix whose columns consist of the image-domain tem-
lates v��C�w�. The latter are vectors in the same space
s the reconstructed object f̂ and are formed by linear
ombinations of the channel responses.

To derive the moments of the test statistic vector t un-
er each of the hypotheses in Eq. (1), we combine Eq. (8)
ith the moments of the tomographic data y from Eqs. (2)
nd (3), the linear reconstructor of Eq. (4), and the as-
umption that fb and fs,� are independent. This yields the
ollowing expressions for the mean �t and covariance �t
f the test statistic vector under each of the signal-absent
nd signal-present hypotheses:

�t�H0
= 0, �20�

�t�H�
= V�ZAf̄s,�, � = 1, . . . ,nL, �21�
�t�H�
= V�Z��Z�V

+ diag�w�����
w�, � = 1, . . . ,nL�, � = 0, . . . ,nL,

�22�

here ���
is the M�M covariance matrix of the internal

oise vector �� and ���Cov�y �H��, i.e.,

�0 = diag�Af̄b + r� + AKbA�, �23�

�� = �0 + diag�Af̄s,�� + AKs,�A�, � = 1, . . . ,nL.

�24�

For typical problem sizes, applying the operators ZA
nd Z��Z� explicitly to compute the moments of t in
qs. (21) and (22) is time-consuming for common statisti-
al image reconstruction methods. Therefore, this ap-
roach would be impractical when one needs these mo-
ents to compute measures of detectability for many

alues of some reconstruction parameter that is to be op-
imized.

We use locally shift-invariant analysis to derive
ourier-domain approximations to the moments in Eqs.

21) and (22). A similar approach to computing the mo-
ents of the local test statistics has been followed and

valuated by others [22,23]. In this work we will combine
uch moment approximations with expressions (12) and
19) to speed up the computation of the ROC-related prob-
bilities (11) and (10), respectively.

. Locally Shift-Invariant Moment Approximations
or the Fourier analysis that follows, we will assume that
e have a discrete representation of the object f�Rnp. Let
be a discrete Fourier operator, mapping an object in Rnp

o some vector in Cnp known as the spectrum of the object.
he Fourier operator U is linear and, due to the shift
roperty of the Fourier transform, it can be defined
hrough its action on an object e0 that consists of an im-
ulse centered at the origin:

Ue0 =
1

�np

1, �25�

here 1 is the vector of np ones. Without loss of general-
ty, we choose the origin of the Fourier transform to coin-
ide with the location where the signal f̄s is centered. (The
/�np factor ensures orthonormality.)
We consider tasks where the mean target signal f̄s,� has

he same shape at all candidate locations �=1, . . . ,nL.
hen f̄s,� is a copy of a common mean signal profile f̄s
hifted to location �. We also assume that the observer’s
hannel responses at different image locations are shifted
opies of each other. Thus we write

f̄s,� = U−1E�X0, �26�

C� = U−1E�T0, �27�

here E���np diag�Ue�� consists of the complex exponen-
ial that corresponds to a circular shift from the origin
0,0) to location �, and e is an impulse centered at loca-
�
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ion �. Finally, X0 is the spectrum of f̄s, when the latter is
ssumed centered at (0,0), and the M columns of T0 con-
ain the frequency responses of the observer’s M chan-
els, when their impulse responses are assumed centered
t (0,0).
We now assume that the mean target signal profile f̄s is

ocalized in space. In general, the operator F is shift-
ariant for typical tomographic systems. However, if F is
pplied to an object that is contained within a small spa-
ial extent around the origin, we can approximate F as
hift-invariant within the spatial extent of this object.
he closer the object comes to resembling an impulse, the
reater the accuracy of this approximation. Thus we ap-
roximate the operator F (and similarly R) within a
mall spatial extent as

F � U−1�U, �28�

R � U−1�U, �29�

here ��diag��k ,k=1, . . . ,np� and ��diag��k ,k
=1, . . . ,np�. The �k’s and �k’s contain the local frequency
esponse of F and R, respectively, computed at the loca-
ion of the signal. Such local diagonalization approxima-
ions have been used by other investigators to analyze ob-
erver performance with penalized-likelihood
econstruction [9,10,22,23].

Similarly, we assume that under any single hypothesis
he object can be approximated as locally stationary
round each of the locations �=1, . . . ,nL. This is more
ikely to be accurate when the signal profile is determin-
stic under all signal present hypotheses (i.e., Ks,�=0, �
1, . . . ,nL) or when the signal profile variability is negli-
ible when compared to the background variability. Thus
e approximate the object covariance within some small

patial extent by

Kb � U−1N0U, �30�

Kb + Ks,� � U−1N�U, � = 1, . . . ,nL, �31�

here N��diag��k
� ,k=1, . . . ,np�. The �k

�’s contain the local
ower spectrum of f for hypothesis H�.
We take �, �, and N� to contain the local frequency re-

ponses of the respective operators at location �c, where
c� �1, . . . ,nL� corresponds to the center of the observer’s
earch area. Thus we assume that these frequency re-
ponses capture the approximate behavior of the respec-
ive operators throughout the search area, if the latter is
ot too big.
We present here only the final expressions and refer

he reader elsewhere for step-by-step derivations [19, Sec-
ion 4.C]. Substituting the Fourier representations
26)–(31) into the MaCPPW local template in Eq. (9)
ields

w� � ��1 − ��I + ��T0��� + ��−2�� + �2Ň��T0 + ���
��†

· T0��� + ��−1�X0, �32�

here N̆�� 1
2N�+ 1

2N0. By using the same �, �, and N�

i.e., the ones computed at the center �c) for every w�, �
1, . . . ,n , we are approximating the templates as locally
L
hift-invariant within the search area, i.e., w��w�c
, �

1, . . . ,nL. Then we can write

V � �npU−1 diag�V0�UISA, �33�

here V0�T0w�c
is a linear combination of the channel

esponses and ISA� �e1� . . . �enL
� has as its columns the im-

ulses e�, �=1, . . . ,nL, corresponding to the nL locations
n the search area.

Finally, substituting the frequency-domain representa-
ions (26)–(33) into the moments of the test statistic vec-
or from Eqs. (21) and (22) yields the following locally
hift-invariant approximations of these moments:

�t�H�
� npISA� U−1�Ue�, � = 1, . . . ,nL, �34�

�t�H�
� npISA� U−1�UISA + �w�c

� ���c
w�c

�I,

� = 0, . . . ,nL, �35�

here

� � diag�Vk
*Xk�k

�k + �k
, k = 1, . . . ,np� ,

� � diag� �Vk�2�k�1 + �k�k
��

��k + �k�2 , k = 1, . . . ,np� ,

nd Vk, Xk are the kth elements of V0, X0, respectively.

. Approximations of PFA and PD
egardless of the exact distribution of the data y, the

erm of t� in Eq. (8) that is linear in f̂ can be considered
pproximately Gaussian due to the central limit theorem.
hus the local test statistics can be considered approxi-
ately Gaussian. Assuming that the t�’s form a correlated
aussian random field, we will use the approximations in

12) and (19) to evaluate the probabilities of false alarm
nd detection in Eqs. (11) and (10).
Approximation (12) assumes stationarity. For a typical

hift-variant tomographic system, the t�’s are not globally
tationary. However, as discussed above, we will consider
he system to be locally shift-invariant and the object to
e locally stationary over a small area around each of the
andidate locations �=1, . . . ,nL. This implies that the t�’s
re approximately stationary locally around each candi-
ate location.
We use approximation (12) to calculate the probability

f false alarm in Eq. (11) for channelized linear local test
tatistics and high detection thresholds �. In particular,
e write

PFA��� � 	
d=0

2

Rd�S��d��;	T�0,
T�0�, �36�

here we use the notation 	T��, 
T�� to refer to moments
nder hypothesis H�. These moments can be computed
ast from the Fourier approximation (35). In particular,

	T�0
2 � 	

k=1

np

�Vk�2�k�1 + �k�k
0�/��k + �k�2 + w�c

� ���c
w�c

.

�37�
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It would be possible to use an approximation like (36)
or the probability of detection (10) as well, simply replac-
ng �d�� ;	T�0 ,
T�0� with �d��−�T��c

;	T��c
,
T��c

� [30]. This
ould be satisfactory if the mean of the test statistic field,
T�x��E�T�x� �H��, were constant throughout the search
rea under each of the signal-present hypotheses. How-
ver, the mean cannot be considered constant throughout
he search area in the presence of a spatially localized tar-
et signal. In this case, using a constant �T�x�=�T�x�c

�
ould lead to an overestimation of the probability of de-

ection. Instead, we will use the signal-present approxi-
ation (19) for the probability of detection, combining it
ith Fourier approximations of the local test statistic mo-
ents:

PD,�c
��� � 1 − �
 � − �T��c

	T��c

� + �
 � − �T��c

	T��c

�
·

1

	T��c


 �2RT��c
�0�

�2xi
�� 
 �2�T��c

�x�c
�

�2xi
� .

�38�

e compute �T��c
and 	T��c

from the locally shift-invariant
pproximations (34) and (35), respectively:

�T��c
� 	

k=1

np

Vk
*Xk�k/��k + �k�, �39�

	T��c

2 � 	
k=1

np

�Vk�2�k�1 + �k�k
�c�/��k + �k�2 + w�c

� ���c
w�c

.

�40�

n the special case where the target signal is variable in
ts location only and not in its shape, i.e., Ks,�c

=0, we
ave �k

�c=�k
0, which implies 	T��c

=	T�0 and 
T��c
=
T�0. Fi-

ally, we obtain the two derivatives in approximation (38)
y applying finite differences to approximations (34) and
35).

In the following, we will use the approximations of the
robability of false alarm and detection given in (36) and
38), respectively, to compute high-threshold points of the
OC curves corresponding to various observer models of

nterest.

. SIMULATION RESULTS
e present an example of using the above approxima-

ions to evaluate the effect of regularization on the detec-
ion performance of channelized observers applied to
PWLS-reconstructed images. In this example, A corre-

ponds to a 2-D PET system model with the characteris-
ics of a CTI ECAT 931 scanner (matrix size 128�128,
ixel size 4.7 mm, 192 radial samples with 3.1 mm spac-
ng, 160 projection angles over 180°), as implemented in
he ASPIRE software package [31]. We scale A to produce
easurements with a total of 106 counts. We simulate the

ackground events r by adding 10% of the total counts
niformly distributed over all measurement bins. The ob-

ect background fb has a Gaussian autocorrelation func-
ion with a full width at half-maximum (FWHM) of
2 pixels and a standard deviation of 0.075. The mean
ackground f̄b is the anthropomorphic phantom shown in
ig. 1, which corresponds to a slice of the Zubal phantom

32]. The target signal fs,� has a known Gaussian profile
ith a FWHM of 4 pixels and an amplitude of 0.3, but un-
nown location �. The search area is assumed to be a
isk. Any pixel inside the disk is a candidate location for
he target signal. Figure 1 shows the mean background,
he signal profile, and the largest of the concentric disk
earch areas that we consider in this example.

We assume a channelized observer model that involves
our circularly symmetric, square-profile channels, as de-
ned by Abbey et al. [17]. We consider local templates of
he form of Eq. (9), where the CHO or CNPW templates
re limiting cases. We evaluate detection performance for
PWLS reconstruction with the uniform quadratic regu-

arizer in Eq. (6) and various values of the regularization
arameter �. We compare results obtained from the pro-
osed analytical approximations to results obtained from
imulations.

(i) Proposed analytical approach. Using the analytical
pproximations (38) and (36), respectively, we calculate
he probabilities of detection and false alarm for different
alues of the threshold �. We repeat this for each value of
. Then we apply interpolation to these results to find the
robability of detection at a fixed value of the probability
f false alarm (0.02 in this example) for every �.

(ii) Empirical approach. We obtain the moments of the
ocal test statistics for a range of different �’s from the lo-
al shift-invariant approximations (34) and (35). We then
roduce 5�105 realizations of the local test statistics, t�,
=1, . . . ,nL, under each of the signal-present and signal-
bsent hypotheses, drawing from a Gaussian distribution
ith the respective moments. This yields multiple real-

zations of tmax under each hypothesis. For each �, we
ompare the realizations of tmax to a range of different
hresholds � to estimate the probabilities of detection and
alse alarm at every threshold. We then compute, as with
he analytical approach, the probability of detection at a
xed value of the probability of false alarm for every �.
e also compute the AUC for each � by numerical inte-

ration of the empirical probability of detection versus the
mpirical probability of false alarm.

Both the analytical and empirical methods perform a
ast computation of the moments of the local test statis-
ics based on local shift-invariance approximations.

ig. 1. PSfrag replacements. Mean background f̄b with the tar-
et signal fs superimposed (a) and a profile through them (b). The
argest of the search areas considered (diameter of 23 pixels) is
ndicated as a black circle in (a).
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hurd and Gindi followed a similar approach to compute
he area under the LROC curve, using local shift-
nvariant moment approximations for CHO and CNPW
ocal templates [22]. They compared the results to those
roduced by applying the observer templates to recon-
tructions of multiple noisy data sets. They reported very
ood agreement (for a range of signal contrasts) and a
03-fold reduction in computation time when using local
hift-invariant analysis. Thus, we do not repeat such an
valuation of local shift-invariance approximations. The
omparison herein focuses on the approximation intro-
uced by (38) and (36), rather than the approximation in-
roduced by assuming a shift-variant system to be locally
hift-invariant.

We compute the above analytical and empirical metrics
or MaCPPW observers, including the MaCHO ��=1�,

aCNPW ��=0�, and three intermediate values of �. Fig-
re 2 shows results for these observers with a search area
iameter of 9 pixels and QPWLS reconstruction with the
oughness penalty in Eq. (6) and various values of �. The
bscissa of the plots shows the resolution of the QPWLS
econstruction at the center of the search area, defined as
he FWHM (in pixels) of the local impulse response [33] at
hat location. This local FWHM is a measure of the
mount of smoothing imposed by QPWLS. It equals
pixel for �=0, which corresponds to unregularized WLS,

nd it increases as � increases.
Figure 3(a) shows how the optimal QPWLS resolution

aries with the size of the search area. Figure 3(b) shows
he maximum increase in the AUC of the MaCNPW ob-
erver versus the diameter of the search area. The in-
rease is defined as the ratio �AUC*−AUC0� /AUC0, where
UC* and AUC0 denote the AUC achieved by the observer
hen regularized QPWLS with optimal � and unregular-

zed WLS is used, respectively.

ig. 2. Detection performance of MaCPPW observers versus
PWLS reconstruction resolution: PD obtained analytically (a),
D obtained empirically (b), and AUC obtained empirically (c).
esults are shown for five different degrees of prewhitening ac-

uracy. The search area is a disk with a diameter of 9 pixels.
As seen in Fig. 3(a), the optimal QPWLS resolutions for
ifferent search area sizes are around 4 pixels in this ex-
mple. For reference, Fig. 4 shows QPWLS-reconstructed
mages with resolutions of 3, 4, and 5 pixels, all from the
ame data set with Poisson noise and the signal present
n the center of the search area.

Figure 5 compares the analytical and empirical prob-
bilities of detection and false alarm for the MaCNPW ob-
erver with two different search area sizes. Figures 5(a)
nd 5(b) show the probabilities of false alarm and detec-
ion, respectively, for a search diameter of 7 pixels and a
xed QPWLS resolution of 3 pixels. Figures 5(d) and 5(e)
how the same probabilities for a search diameter of
5 pixels and a fixed QPWLS resolution of 3 pixels. The
nterpolated probability of detection at a fixed probability
f false alarm �PFA=0.02�, with varying QPWLS resolu-
ion, is shown in Figs. 5(c) and 5(f) for a search diameter
f 7 and 15 pixels, respectively.

ig. 4. QPWLS reconstructions of a noisy Poisson data set with
resolution of 3 pixels (a), 4 pixels (b), or 5 pixels (c), and profiles

hrough the three images (d). The signal is present in the center
f the search area.

ig. 3. QPWLS resolution that maximizes the PD (obtained ana-
ytically and empirically) or AUC (obtained empirically) versus
earch area diameter (a). AUC improvement with optimally regu-
arized QPWLS over unregularized WLS versus search area di-
meter (b). Results are shown for the MaCNPW observer.
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. DISCUSSION
he plots of Fig. 2 show that for the MaCHO observer, the
eak detection performance achieved with regularized
PWLS is very close to the performance achieved with
nregularized WLS. However, as the prewhitening capa-
ilities of the observer deteriorate, the improvement
chieved at the optimal amount of regularization becomes
ore and more significant. The MaCNPW observer is the
ost affected by the amount of regularization. The same

rend is captured by all metrics, i.e., the analytical and
mpirical probability of detection at a fixed low probabil-
ty of false alarm, as well as the empirical AUC. The op-
imal resolution was slightly lower for the AUC.

As indicated by these results, the observer’s prewhiten-
ng capabilities are important in determining whether op-
imized regularization can improve detectability signifi-
antly over unregularized reconstruction. This is in
greement with some prior results from the analysis of
nown-location tasks. In particular, we have shown that
he gains in known-location detectability between opti-
ized regularization and no regularization increase as

he prewhitening deficiency of the observer increases [19,
ection 3.4]. This occurs because, for an intermediate
mount of regularization, the observer’s channel outputs
re closest to white; hence prewhitening is less crucial for
chieving good detection performance. Results by Qi also
how that optimizing regularization parameters with re-
pect to known-location detection performance has a more
ramatic effect for a nonprewhitening (“maximum-
onstrast”) observer than the CHO [10]. Thus it seems
hat the effect of regularization depends less on whether
he signal location is known or unknown to the observer
nd more on whether the observer can perform prewhit-
ning. However, these two aspects of the observer model

ig. 5. Empirical and analytical probabilities of false alarm an
pixels [(a)–(c)] and 15 pixels [(d)–(f)]. The plots show the PFA

(b),(e)], and the PD (with error bars) versus QPWLS resolution fo
lot markers.)
re not entirely unrelated in practice, since experimental o
esults indicate that the prewhitening capabilities of hu-
an observers may deteriorate in unknown-location

asks [20,21]. In the simulations presented here, the size
f the search area also played a role, with regularization
eing somewhat less beneficial for observers with very
mall or very large search areas. Although we show plots
nly for observers with square-profile channels, we obtain
imilar results with the difference-of-Gaussians channel
ets from Abbey et al. [17]

Considering the range of QPWLS resolutions that
chieve near-peak AUC for the MaCNPW observer, as
een in Fig. 2, the variation in optimal QPWLS resolution
ersus search diameter, as seen in Fig. 3(a), is small.
hus, a moderate uncertainty about the observer’s search
rea would not result in a significantly different conclu-
ion about the optimal amount of regularization.

As seen in Fig. 3(b), the improvement in the AUC of the
aCNPW observer afforded by optimal regularization

aries somewhat with the size of the search area. The
aximum improvement is achieved for an intermediate

earch diameter (in this case, 9 pixels).
Approximation (38) for the probability of detection as-

umes that the test statistic field is quadratic around the
arget signal location. This quadratic approximation is
ore accurate for a search diameter of 7 pixels, as shown

n Fig. 5(b), since this search area size is comparable to
he support of the target signal. For a larger search area,
owever, this approximation breaks down, as shown in
ig. 5(e).
Even if the analytical approximations are not always

ccurate at predicting the value of the probability of de-
ection, they follow the trends of the empirical curves and
re maximized at the same or nearly the same QPWLS
esolution. Thus, analytically computed plots like the

ction for the MaCNPW observer with a search area diameter of
detection threshold [(a),(d)], the PD versus detection threshold
d PFA=0.02 [(c),(f)]. (The error bars are small enough to fit in the
d dete
versus
r a fixe
nes in Figs. 2(a), 5(b), and 5(e) can be useful for choosing



t
i
w

c
w
t
o
w
t
p
t
c
c
G
w
t

c
t
a
c
m
u
a
p
w
I
p
a
f
t
f
c
m
t
r
c
t
s
n

s
e
F
m
c
b
n
m
a
a
l
s

i
i
c
t
t
t
t

�
b
h
n
t
u
g
e
w
s
w
b
s
a
h

o
p
i
a
b
s
r
f
t
c
v
p
f
n
y

t
c
c
d
m
a
g
c
h

A
T
C
p
f

R

B108 J. Opt. Soc. Am. A/Vol. 24, No. 12 /December 2007 A. Yendiki and J. A. Fessler
he regularization parameter � to optimize the probabil-
ty of detection for a given low probability of false alarm
ithin a small search area around some pixel.
For the small search diameter of 7 pixels, the analyti-

al approach offers a tenfold reduction in computation,
hen compared to the empirical approach of simulating

he local test statistics from the Fourier approximations
f their moments. The computational savings increase
ith the size of the search area. They also increase with

he number of realizations produced for the empirical ap-
roach. This tenfold reduction in computation augments
he 103-fold reduction, which is afforded by the use of lo-
ally shift-invariant approximations instead of image re-
onstructions and which was reported by Khurd and
hindi [22]. The additional savings can be important
hen detectability needs to be evaluated at every voxel in

he image to optimize regularization parameters locally.
The limitation of the proposed method is that analyti-

al approximations (36) and (38) apply only to high
hresholds �. Thus these approximations are useful when

partial area under the curve or a single point on the
urve (at low false-positive rates) is the desired figure of
erit for observer performance. However, they cannot be

sed to trace the entire ROC and find the AUC. In the ex-
mple of Section 5, the probability of detection at a low
robability of false alarm behaved similarly to the AUC
ith respect to the regularization parameter (see Fig. 2).

n general, however, the ranking of ROC curves at low
robabilities of false alarm may not predict their ranking
t high probabilities of false alarm, as ROC curves for dif-
erent regularization parameters may cross. If one is in-
erested in optimizing regularization with respect to per-
ormance at high probabilities of false alarm, one should
heck for crossing ROC curves by applying the simulation
ethod for at least one voxel in the image before applying

he analytical method to optimize regularization for the
est of the image. The analytical approach could also
omplement the empirical approach by providing an ini-
ial estimate of the optimal resolution, around which
imulations can then be performed if more accuracy is
eeded.
We have considered observers that search for the target

ignal within a local search area, rather than within the
ntire image. We have made this choice for two reasons.
irst, locally shift-invariant approximations to the mo-
ents of the local test statistics are accurate within a lo-

al region. If the system is shift-variant and/or the object
ackground is not stationary, these approximations are
ot accurate within the entire image. Second, our ulti-
ate goal is to use the analyses above to optimize the

mount of regularization locally at each pixel in the im-
ge. It seems reasonable for the optimal amount of regu-
arization at some pixel to be determined by the image
tatistics within a local area around that pixel.

For the example presented above, we did not include
nternal noise in the observer model. The reason is that
nternal noise would manifest itself as an impulse at the
enter RT�0� of the autocovariance function. In this case,
he analytical approximations would break down, because
hey require the autocovariance function to be smooth so
hat its second derivative can be computed. In particular,
he analytical approximations would deteriorate for large
, where the internal noise dominates. This issue arises
ecause the observer models with internal noise that
ave been proposed in the literature assume that this
oise is uncorrelated between different candidate loca-
ions. Whether this assumption is crucial, however, must
ltimately be validated by human observer studies. In
eneral, internal noise is intended to model the phenom-
non that a human observer may make different decisions
hen presented with the same image on different occa-

ions. An alternative way to express this uncertainty that
ould make the model more amenable to analysis would
e to add noise to the maximum test statistic itself in-
tead of adding noise to the local test statistics individu-
lly. Once again, the usefulness of such a model would
ave to be tested by studies with human observers.
The analytical approximations can also be applied to

ptimize anisotropic regularization, which has been re-
orted to yield greater performance improvement than
sotropic regularization in known-location tasks [12]. In
ddition to lesion detectability, the proposed method can
e applied to the optimization of regularization with re-
pect to the detectability of activations in functional neu-
oimaging. Improving the accuracy of the approximations
or a wider range of search area sizes and for nonzero in-
ernal noise, as well as relaxing the assumption of a cir-
ularly symmetric signal shape, are topics for future in-
estigation. Furthermore, since the threshold-exceeding
robability approximations used here have been derived
or continuous random fields, the analysis can be applied
aturally to tomographic reconstruction methods that
ield continuous-space images f̂.

Finally, it would be of interest to extend the analysis of
he probability of detection to the probability of correct lo-
alization, thus considering a LROC instead of a ROC
urve. Under certain assumptions of statistical indepen-
ence on the local test statistics, it has been shown that
aximizing the AUC is equivalent to maximizing the

rea under its LROC curve [6]. However, further investi-
ation is needed to analyze the probability of correct lo-
alization for the correlated local test statistics considered
ere.
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