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Abstract—The majorize-minimize (MM) optimization technique
has received considerable attention in signal and image processing
applications, as well as in statistics literature. At each iteration
of an MM algorithm, one constructs a tangent majorant function
that majorizes the given cost function and is equal to it at the cur-
rent iterate. The next iterate is obtained by minimizing this tan-
gent majorant function, resulting in a sequence of iterates that re-
duces the cost function monotonically. A well-known special case
of MM methods are expectation-maximization algorithms. In this
paper, we expand on previous analyses of MM, due to Fessler and
Hero, that allowed the tangent majorants to be constructed in iter-
ation-dependent ways. Also, this paper overcomes an error in one
of those earlier analyses. There are three main aspects in which our
analysis builds upon previous work. First, our treatment relaxes
many assumptions related to the structure of the cost function, fea-
sible set, and tangent majorants. For example, the cost function can
be nonconvex and the feasible set for the problem can be any convex
set. Second, we propose convergence conditions, based on upper
curvature bounds, that can be easier to verify than more standard
continuity conditions. Furthermore, these conditions allow for con-
siderable design freedom in the iteration-dependent behavior of
the algorithm. Finally, we give an original characterization of the
local region of convergence of MM algorithms based on connected
(e.g., convex) tangent majorants. For such algorithms, cost func-
tion minimizers will locally attract the iterates over larger neigh-
borhoods than typically is guaranteed with other methods. This
expanded treatment widens the scope of the MM algorithm de-
signs that can be considered for signal and image processing appli-
cations, allows us to verify the convergent behavior of previously
published algorithms, and gives a fuller understanding overall of
how these algorithms behave.

Index Terms—Expectation-maximization (EM), majorize-mini-
mize (MM), optimization transfer, SAGE.

I. INTRODUCTION

THIS paper pertains to the majorize-minimize (MM) opti-
mization technique1 as applied to minimization problems

of the form

(1)
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1The term MM was coined in [24].The technique has gone by various other
names as well, such as optimization transfer, SAGE, and iterative majorization.

Fig. 1. One-dimensional illustration of an MM algorithm.

Here, is a continuously differentiable, but possibly nonconvex
cost function, and is a convex feasible subset of , the space
of real, length column vectors.

The MM technique has a long history in a range of fields.
In the statistics literature, a prominent example is the expecta-
tion-maximization (EM) methodology [10] which is an applica-
tion of MM to maximum likelihood estimation. Further exam-
ples can be found in [16], [17], [22], and [24]. The interest in
maximum likelihood estimation for tomographic image recon-
struction subsequently led to many examples of EM, and more
general MM algorithms, in image processing (e.g., [7]–[9], [23],
[34], [36], and [38]). MM has also received considerable atten-
tion in the signal processing literature, including [4], [5], [21],
[26], and [28].

An MM algorithm reduces monotonically by minimizing
a succession of approximations to , each of which majorizes

in a certain sense. An MM algorithm uses what we call a
majorant generator to associate a given expansion point

with a tangent majorant . In the simplest case, illus-
trated for a 1-D cost function in Fig. 1, a tangent majorant sat-
isfies for all and .
That is, majorizes with equality at . The constrained
minimizer of satisfies . Re-
peating these steps iteratively, one obtains a sequence of feasible
vectors such that is monotone nonincreasing.

A more elaborate form of MM was introduced in [14] that al-
lows an iteration-dependent sequence of majorant gen-
erators to be used, rather than just a single . This general-
ization allows considerable freedom in choosing the form of the
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majorant generator at a given iteration. For example, its form
can be adaptively determined based on the observed progress of
the algorithm over previous iterations. In addition, one can allow
the tangent majorants to be functions of -dependent
subsets of the components of . The latter results in iterative
steps that, similar to coordinate descent, reduce as a func-
tion of subsets of the optimization variables. This technique,
called block alternation, can simplify algorithm design, because
the majorization requirement need be satisfied only with respect
to the variables being updated. Furthermore, because the ma-
jorization requirement is easier to satisfy, there is empirical ev-
idence that tangent majorants obtained this way may approxi-
mate better (leading to faster convergence) than nonblock al-
ternating alternatives. An example of where block alternation
led to faster convergence was presented in [14]. Block alter-
nating MM has also seen subsequent use in [4], [5], [12], [21],
[26], [28], and [30].

The reasons why the MM technique has been attractive to
algorithm designers are mixed, and some of the work in this
paper may motivate some new reasons. Historically, the main
appeal of MM is perhaps that it often leads to algorithms in
which the iteration updates are given by simple closed-form for-
mulas (e.g., [7], [8], [11], and [34]) and, hence, in these cases,
tend to be easy to implement. This is in contrast to standard
gradient descent methods that employ numerical line searches
to ensure global convergence. For large-scale problems, the effi-
cient implementation of line search operations can require com-
plicated customized software implementation, as well as spe-
cial hardware resources. For example, consider the minimiza-
tion of the Poisson loglikelihood function encountered in fully
3-D positron emission tomography (PET) image reconstruction,
e.g., [30]. There, efficiency demands that line searches be imple-
mented in sinogram space. Doing so, in turn, necessitates con-
siderable RAM, such as would be available on a parallel com-
puting platform. It is likely that, for this reason, investigators in
the field of 3-D PET have looked to MM alternatives such as [8]
and [34]. A related reason why MM is attractive is that, when
the tangent majorants are computationally simple to manipu-
late, one might hope for reduced overall CPU time. This benefit
is harder to guarantee, because it demands not only that the tan-
gent majorants have a simple form, but also that they provide ac-
curate approximations to , and these two design requirements
can conflict. Hence, one sometimes sees examples of MM in
the literature that, although easy to implement, converge quite
slowly (e.g., [34]). Conversely, a successful instance of MM ac-
celeration was presented in a logisitic regression example in [24,
Example 11]. There, the MM algorithm was found to compare
favorably, in terms of convergence rate, with Newton’s method.
In this paper (see Section VI), we suggest what might be a third
benefit of MM. Namely, we discuss how the unusual local con-
vergence properties of MM might be harnessed by certain non-
convex minimization strategies.

The overall endeavour of this paper is to revisit and expand
the MM convergence analysis of [15]. The scope of [15] is the
only one that we know of that includes simultaneously the case
where the majorant generator sequence can vary non-
trivially with and, furthermore, where minima may lie at con-
straint boundaries. Our treatment makes three principal contri-

butions to the work begun there (in the course of our analysis,
we also remedy an error in [15]; see Remark 4.5).

Our first contribution is to rework the analysis of itera-
tion-dependent MM while relaxing many specific structural
assumptions made in [15] on the form of the constraints, the
cost function , and the tangent majorants. For example, in
[15], only non-negativity constraints were considered, whereas
in this paper, can be any convex set or, in the case of block
alternating MM, any convex set appropriately decomposable
into a Cartesian product. Furthermore, in [15], and the
tangent majorants were both assumed to be strictly convex.
Here, we consider cases in which neither of the two are even
convex. Flexibility is also introduced in the domain over which
the tangent majorants are defined. In [15], the tangent majorant
domains were assumed to be all of , whereas, here, the
domains can be strict subsets of . It is not uncommon for
tangent majorants to have smaller domains than . It is true,
for example of the ML-EM algorithm of [34] (see Section V)
and also for the algorithm designs that we proposed (see [19]
and [18, Section 6.6]) for a motion-corrected PET image re-
construction application. Last, in [15], the tangent majorants
were assumed twice-differentiable, whereas in our analysis,
only once-differentiability is assumed. These generalizations
widen the range of applications to which [15] is applicable
and provide a more flexible framework for algorithm design.
Moreover, they allow us to verify the convergence (or at least
the asymptotic stationarity) of some previously published
block alternating MM algorithms not encompassed by the
convergence analysis in [15]. Among these are the algorithm
proposed in [12, Section 6] and those in [19] and [18, Section
6.6]. The convergence analysis in [15] does not apply to these
examples at minimum because they involve nonconvex .
The line of proof used in [15] depended critically on the strict
convexity of the cost function. Also, as discussed above, some
of these algorithms use tangent majorants having domains that
are not the entire set . Further motivating examples for these
generalizations are discussed in [20, Section 6].

Our second contribution is an alternative set of convergence
conditions requiring local upper curvature bounds. In the MM
literature involving iteration-independent majorant generators
(e.g., [23], [29], and [35]), convergence proofs usually invoke an
assumption that the are continuous (jointly in both ar-
guments). This continuity assumption admits an analysis using
Zangwill’s convergence theorem [37, p. 91]. In [15], this line of
analysis was generalized to iteration-dependent majorant gener-
ators under certain additional conditions, and the present paper
continues to study these. In addition, however, we show that the
continuity condition can be relaxed in favor of a requirement
that the tangent majorant curvatures are uniformly locally upper
bounded in the region of the expansion points. This latter condi-
tion is sometimes more easily verifiable than the standard conti-
nuity-based ones. Furthermore, this alternative condition admits
considerable freedom in the iteration-dependent behavior of the
algorithm (see Remark 4.6).

Our third contribution is an original characterization of the
local region of convergence of MM algorithms to local minima.
This branch of our analysis is restricted to tangent majorants that
are connected (e.g., convex), which is a common practical case.



JACOBSON AND FESSLER: EXPANDED THEORETICAL TREATMENT 2413

Usually, algorithm developers design tangent majorants that are
convex to facilitate their minimization. Our results show that
the associated MM algorithm will be attracted to a strict local
minima from essentially any point within a basin-like region
surrounding that minimum. The same is not generally true of
standard gradient algorithms. This property has important im-
plications for the tendency of common kinds of MM designs
to become trapped at local minima in nonconvex minimization
problems. However, we also discuss how this property might be
harnessed by some established nonconvex minimization strate-
gies.

The rest of the paper is organized as follows. In Section II,
we formalize the class of MM algorithms considered in this
paper. Next, in Section III, we give a few additional mathe-
matical preliminaries and describe various conditions imposed
in the subsequent analysis. Our analysis begins in Section IV,
where we study the global convergence of both block alternating
and nonblock alternating MM. In this section, the principal step
is showing the stationarity of MM limit points under conditions
alluded to above (this asymptotic stationarity property is often
used as a definition for convergence in the nonlinear optimiza-
tion literature). Once asymptotic stationarity is established, con-
vergence of MM in norm can be proved (Theorem 4.4) in a stan-
dard way by imposing discreteness assumptions2 on the set of
stationary points of (1). In Section V, we discuss EM algorithms
as a special case of MM algorithms and how certain EM al-
gorithms from the tomographic imaging literature relate to our
framework. Finally, Section VI gives our analysis of the local re-
gion of convergence for MM, and its relation to capture basins.
A concluding summary follows in Section VII.

II. MATHEMATICAL DESCRIPTION OF MM ALGORITHMS

In this section, we describe the class of MM algorithms con-
sidered in this paper. With no loss of generality, we assume that
the feasible set is a Cartesian product of convex sets,
i.e.,

(2)

where and .
Since is assumed convex, such a representation is always at
least trivially accomplishable with . To facilitate dis-
cussion, we first introduce some indexing conventions. Given

, we can represent as a vertical con-
catenation3 of vector partitions where

. We shall refer to any subsequence
of as a block index, and use

the notation

2Nondiscrete stationary points are not generally stable (cf. [1, p. 22]) under
perturbations of 	, and so are mainly of theoretical interest.

3In this paper, (a; b; c; . . .) will always denote the vertical concatentation of
vectors/scalars a; b; c; . . .

to indicate certain Cartesian subproducts and their elements.
Thus, one has . The block index formed from
the complement of in shall be denoted . It will
be necessary at times to view as a function of only with
the components of held fixed. We use the notation

for this purpose, where and .
Given a block index and a point-to-set mapping such

that for all , we define a majorant
generator as a function mapping each to what we
call a tangent majorant, a function
satisfying

(3)

We call the expansion point of the tangent majorant. We then
also have , in which

denotes the domain of the majorant generator. The simplest case
is when and .

To design an MM algorithm, one selects an initial point
, a sequence of block indices , and a sequence of ma-

jorant generators with domains

where the are point-to-set mappings of the type
described above. Once the majorant generators are chosen, the
MM algorithm is implemented by generating an iteration se-
quence satisfying

(4)

(5)

Here, we assume that the set of minimizers in (4) is nonempty.
We shall refer to the sequence produced this way as
an MM sequence. In the simplest case, in which one chooses

for all , (4) and (5) become a generaliza-
tion of block coordinate descent (e.g., [1, p. 267]), in which the
coordinate blocks are not necessarily disjoint. By virtue of (3)
and (4), is monotonically nonincreasing.

When the block indices are not all equal to ,
we say that the algorithm is block alternating (cf. [14], [15]).
When the algorithm is not block alternating, i.e., if all

, then (3) simplifies to

(6)
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while (4) and (5) reduce to

(7)

Observe in (6) that when [something we could
always ensure by adding a -dependent constant to ], one
has with equality at . That is, ma-
jorizes and is tangent to it at . This is the reason for our
choice of the terminology tangent majorant.

The technique of block alternation can be advantageous be-
cause it can be simpler to derive and minimize tangent majorants
satisfying (3), which involve functions of fewer variables, than
tangent majorants satisfying (6). Block alternation can also pro-
vide faster alternatives to certain nonblock alternating algorithm
designs [14]. To apply block alternation, must be decompos-
able into the Cartesian product form (2) with .

III. MATHEMATICAL PRELIMINARIES AND ASSUMPTIONS

In this section, we overview mathematical ideas and assump-
tions that will arise in the analysis to follow.

A. General Mathematical Background

A closed -dimensional ball of radius and centered at
is denoted

where is the standard Euclidean norm. For the minimization
problem (1), we shall also use the notation

to denote certain constrained balls. Given a set , the no-
tation and shall denote the closure, relative
interior, and affine hull of , respectively. For a more leisurely
discussion of these concepts, see [1] and [33]. The notation
will denote the relative boundary, .

A function is said to be connected on a set
if (see [31, p. 98]), given any , there exists

a continuous function such that ,
, and

for all . A set is said to be path-connected
if, given any there exists a continuous function

such that and . Convex and quasi-
convex functions are simple examples of connected functions
with . Also, it has been shown (e.g.,
Theorem 4.2.4 in [31, p. 99]) that a function is connected if and
only if its sublevel sets are path-connected.

A key question in the analysis to follow is whether the limit
points of an MM algorithm (i.e., the limits of subsequences of

) are stationary points of (1). By a stationary point of (1),
we mean a feasible point that satisfies the first order neces-
sary optimality condition

(8)

Here, is the usual Euclidean inner product. If an algorithm
produces a sequence whose limit points (if any exist) are
stationary points of (1), we say that the algorithm and the se-
quence are asymptotically stationary.

B. Assumptions On MM Algorithms

Throughout the article, we consider cost functions and
tangent majorants that are continuously differentiable
throughout open supersets of and respectively. For
every , the domain is assumed convex. In addition, for
a given MM algorithm and corresponding sequence ,
we impose conditions that fall into one of two categories.
Conditions in the first category, listed next, are what we think
of as regularity conditions. In this list, a condition enumerated
(Ri.j) denotes a stronger condition than (Ri), i.e., (Ri.j) implies
(Ri). Typical MM algorithms will satisfy these conditions to
preclude certain degenerate behavior that could otherwise be
exhibited.

(R1) Feasibility of the algorithm. We assume that the se-
quence lies in a closed subset of . Thus, any limit
point of is feasible. There are a variety of standard
conditions under which (R1) will hold. The simplest case is
if is itself closed. Alternatively, (R1) will hold if one can
show that the sublevel sets

of are closed, which is often a straightforward exer-
cise. For example, the closure of sublevel sets often follows
if is coercive, i.e., tends to infinity at the boundary of
and at infinity. In such cases then, with , the
sublevel set is closed, and because is
montonically nonincreasing, it follows that the entire se-
quence is contained in this set.

(R1.1) Feasibility/boundedness of the algorithm. The
sequence is contained in a compact subset of .
Similar to (R1), if (or just ) is compact,
then (R1.1) holds. This again is often the case when
is coercive.

(R2) Agreement and continuity of first derivatives. The gra-
dient of every tangent majorant agrees with that of at its
expansion point. Formally, for every and

(9)

Because is continuously differentiable, it follows from
(9) that is continuous with respect to .
(R3) Minimum size of tangent majorant domains. Each tan-
gent majorant is defined on a feasible neighborhood of
some minimum size around its expansion point. Formally,
there exists an such that for
all . The simplest scenario is when for all
and , in which case (R3) holds with any .

Remark 3.1: Equation (9) is, in fact, implied by (3) whenever
and . For details, see

[20, Note A.2].
Remark 3.2: As discussed in [20, Note A.3], Condition (R2)

can be weakened when is of measure zero in .
Aside from the above regularity conditions, most results will

require specific combinations of the following technical condi-
tions. Similar to before, a condition denoted (Ci.j) implies (Ci).
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(C1) Connected tangent majorants. Each tangent majorant
is connected on its respective domain . The

typical case is when the tangent majorants are convex.
(C2) Finite collection of majorant generators. The ele-
ments of the sequence are chosen from a finite
set of majorant generators.
(C3) Continuity of majorant generators in both arguments.
For each , the majorant generator is continuous on
its domain . In addition, for any closed subset of ,
there exists an such that the set

lies in a closed subset of . This
is a generalization of the joint continuity condition for EM
proposed in [35].
(C4) Regular updating of coordinate blocks. Every sub-
vector of is updated by the
algorithm at least once in every sequence of iterations.
Formally, for each , there exists a block index con-
taining , so that the set satisfies

A simple case is when the block indices simply cycle over
according to .

(C5) Diminishing differences. The sequence satisfies
. This condition has frequently been

encountered in the study of feasible direction methods
(e.g., [31, p. 474]). In the MM context, this condition is
implied by the following, often readily verifiable condi-
tion.

(C5.1) Uniform strong convexity. The sequence
has at least one feasible limit point. Also, there exists
a , such that for all and

In other words, the are strongly convex with
curvatures that are uniformly lower bounded in . The
fact that (C5.1) implies (C5) is proved in [20, Section
6.3.3]. Essentially, the proof is done by using Lemma
3.3(b) in this paper with , , and

. Condition (C5.1) generalizes [15, Condition 5].
(C6) Uniform upper curvature bound. In addition to
(R3), there exists a , such that for all and

[here is as in (R3)]

In other words, the curvatures of the tangent majorants are
uniformly upper bounded along line segments emanating
from their expansion points. The line segments must ex-
tend to the boundary of a feasible neighborhood of size
around the expansion points. When the tangent majorants
are twice differentiable, this is equivalent to saying that the
second derivatives are locally bounded by .

C. Lemmas

We now give several lemmas that facilitate the analysis in
this paper. Most of these lemmas are slight generalizations of
existing results. Their proofs are straightforward and are given
in [20, Section 6.3.3].

Lemma 3.3 (Functions With Curvature Bounds): Suppose
is a continuously differentiable function on a

convex set and fix .
(a) If for some

and , then likewise

(b) If , for some
and , then likewise

Lemma 3.4 (Implications of Limit Points): Suppose that
is an MM sequence with a limit point . Then

(a) .
(b) If is another limit point of , then

.
(c) If (C5.1) also holds then, .

Lemma 3.5 (Convergence to Isolated Stationary Points):
Suppose is a sequence in a compact set and whose
limit points are stationary points of (1). Let denote the
set of all stationary points of (1) in . If either of the following
is true:

(a) is a singleton, or
(b) condition (C5) holds and is a discrete set

then in fact converges to a point in .

IV. ASYMPTOTIC STATIONARITY AND CONVERGENCE

TO ISOLATED STATIONARY POINTS

In this section, we establish conditions under which MM al-
gorithms are asymptotically stationary. Convergence in norm
is then proved under standard supplementary assumptions that
the stationary points are isolated (see Theorem 4.4). Theorem
4.1, our first result, establishes that nonblock alternating MM se-
quences are asymptotically stationary under quite mild assump-
tions. Two sets of assumptions are considered. One set involves
(C3), a continuity condition similar to that used in previous MM
literature (e.g., [15], [29], and [35]). The continuity condition is
motivated by early work due to Zangwill [37, p. 91], which es-
tablished a broadly applicable theory for monotonic algorithms.
In the second set, the central condition is (C6), which requires a
uniform local upper bound on the tangent majorant curvatures.
To our knowledge, we are the first to consider such a condition
in the context of MM methods.4 Condition (C6) can be easier
to verify than (C3). For example, the algorithm of [11] is an ex-
ample of MM based on separable quadratic tangent majorants.
The optimal choice of curvatures for these quadratics is derived
in [11], and is given by a complicated formula. It is much easier

4Curvature bounds also arise in the convergence theory of trust-region
methods, e.g., [6, pp. 121–122].
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to show that these curvatures are uniformly bounded than to
show that they are continuous.

Theorem 4.1 (Stationarity Without Block Alternation): Sup-
pose that all , that is an MM sequence
generated by (7), and that the regularity conditions (R1), (R2),
and (R3) hold. Suppose further that either (C6) or the pair of
conditions {(C2), (C3)} holds. Then any limit point of is a
stationary point of (1).

Proof: Suppose is a limit point of (it must lie
in due to (R1)) and, aiming for a contradiction, let us assume
that it is not a stationary point. Then there exists
such that

(10)

Since is continuous, then, with (R2) and (R3), it follows
that there exists a constant and a subsequence
satisfying, for all

(11)

where is as in (R3), and

(12)

Define the unit-length direction vectors

and, for , the scalar functions

(13)

Due to (R3) and (11), all are well defined on this common
interval. The next several inequalities follow from (7), (6), and
Lemma 3.4(a), respectively

(14)

(15)

The remainder of the proof addresses separately the cases where
{(C6)} and {(C2), (C3)} hold.

First, assume that (C6) holds. This, together with Lemma
3.3(a), implies that for

However, , while due to (12). These
observations, together with (15), lead to

Passing to the limit in

Finally, dividing this relation through by and letting
yields , contradicting the assumption that , and
completing the proof for this case.

Now, assume {(C2), (C3)}. In light of (C2), we can rede-
fine our subsequence so that, in addition to (11) and (12),

equals some fixed function for all . That and (14)
give, for

(16)

(17)

From (R1), we know that lies in a closed subset of
. With (C3), there exists, therefore, a positive such

that , as given in (16), converges as to
for all . Letting

in (17), therefore, yields

(18)

The function is differentiable at due to (R2). Now,
, so that in the limit, . Thus,

we have that (18) holds with equality at , from which it
follows that

(19)

However, due to (12). Furthermore, since
is continuous in due to (R2), we have that converges
to as . With (19), these observations lead to

, contradicting again the assumption that
.
The following example provides a simple illustration of how

an MM algorithm can be nonasymptotically stationary when the
assumptions of Theorem 4.1 are not met.

Example 4.2: Consider the 1-D problem , and
. Take and let be the sequence

generated via (7) with majorant generator

The resulting sequence of iterates and tangent majorants
are depicted for several iterations in Fig. 2. By induction,

one can show that . Hence, converges to 1
which is not a stationary point. This presents no conflict with
Theorem 4.1, however. The tangent majorants do not satisfy
condition (C6), since the tangent majorant curvatures

tend to infinity. Also, is discontinuous at , so
(C3) is not satisfied. Consequently, the hypothesis of Theorem
4.1 does not hold.

The next result addresses the block alternating case, but re-
quires additional conditions, namely (C4) and (C5). These con-
ditions, however, are no stronger than those invoked previously
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Fig. 2. Illustration of Example 4.2. The MM sequence fx g converges to a
nonstationary point. This is possible since the conditions of Theorem 4.1 are
not satisfied.

in [15]. Condition (C4) is a generalization of [15, Condition
6]. Condition (C5) is an implied condition in [15], as shown in
Lemma 3 in that paper.

Theorem 4.3 (Stationarity With Block Alternation): Suppose
that is an MM sequence generated by (4) and (5). As in
Theorem 4.1, assume that (R1), (R2), (R3), and either (C6) or
the pair of conditions {(C2), (C3)} hold. In addition, suppose
that (C4) and (C5) hold. Then any limit point of is a sta-
tionary point of (1).

Proof: Suppose is a limit point of (it must
lie in due to (R1)) and, aiming for a contradiction, let us
assume that it is not a stationary point. In light of (2), there
exists, therefore, and , such
that

(20)

and such that , . Then, with as in (C4),
it follows from (20) that

(21)

Now, consider a subsequence converging to . We can
assume that , for otherwise, in light of (C4), we
could construct an alternative subsequence
which does have this property. Furthermore, this alternative sub-
sequence would also converge to due to (C5).

Similar to the proof of Theorem 4.1, we can also choose
so that

and, in light of (21) and (R2), so that

for some . Now define

and, for

Manipulations of this verbatim to those in the proof of
Theorem 4.1 lead to the contradiction , and complete the
proof of this theorem, as well.

The following theorem establishes convergence in norm by
adding discreteness assumptions on the stationary points of (1).

Theorem 4.4 (Convergence in Norm): Suppose is an
MM sequence satisfying (R1.1) and the conditions of either
Theorem 4.1 or Theorem 4.3. Suppose, in addition, that either
of the following is true.

a) The problem (1) has a unique solution as its sole stationary
point, or

b) Condition (C5) holds and (1) has a discrete set of sta-
tionary points.

Then converges to a stationary point. Moreover, in case
a), the limit is the unique solution of (1).

Proof: Under (R1.1), lies in a compact subset of .
Moreover, the limit points of are all guaranteed to be sta-
tionary by either Theorem 4.1 or Theorem 4.3. The result then
follows from Lemma

Remark 4.5 (An Error Remedied): The analysis in [15] of
MM convergence is less general than stated there due to an error
in the proof of Lemma 6 in that paper. The error occurs where
it is argued if “ then ”. This
argument would be valid only if, in addition to what was already
assumed, were a function of a single variable. Due to
the analysis in the present paper, however, we can claim that
the conclusions of [15] are indeed valid, even if the arguments
are not. This follows from Theorem 4.4(a) above, which implies
convergence under conditions no stronger than those assumed in
[15].

Remark 4.6 (Curvature and Iteration-Dependence): In The-
orems 4.1 and 4.3, when the curvature upper bound (C6) holds,
there is very little restriction on how can depend on ,
as compared to when {(C2), (C3)} are invoked.

This is useful, for example, if one wishes to use majorant gen-
erators that change adaptively based on several previous itera-
tions of the algorithm sequence . For example, one strategy
that can be helpful for certain cost functions is to use a block
alternating MM algorithm that monitors the gradient sequence

. When certain gradient components are persistently
larger than others over several iterations, one switches to a ma-
jorant generator that updates only the variables corresponding to
those components, thereby conserving computation. Such ma-
jorant generator sequences will not generally satisfy
Condition (C2), and so one could not invoke Theorem 4.3 with
{(C2), (C3)}. However, could well be made to satisfy
(C6).
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V. EM AS A SPECIAL CASE OF MM

As discussed in Section I, the family of Expectation Maxi-
mization (EM) algorithms is a prominent special case of MM
algorithms for minimizing the negative loglikelihood

of a random measurement vector . In the classical
set-up, one develops an EM algorithm by devising a so-called
complete data random vector whose joint distribution with
is of the form5

(22)

i.e., the conditional distribution of given is independent of
the unknown parameter vector . An EM algorithm is then just
an MM algorithm based on the majorant generator

(23)

where is the Kullback-Leibler (KL) divergence be-
tween two probability distributions and . For discrete and

, this is

(24)

For continuous random variables, the sum is to be replaced by an
integral. A straightforward consequence of Jensen’s inequality
is that with equality iff . It follows that (23)
satisfies the majorization property (6), which in turn ensures the
monotonicity of the algorithm.

The term Expectation Maximization comes from the fact that

which one can readily show by combining (23) with (22). Thus,
processing the tangent majorant in each iteration is equivalent
to taking a conditional expectation and maximizing the result.

A well established convergence condition for EM is the joint
continuity assumption proposed in [35], a forerunner to our
Condition (C3). A hazard in the design of MM algorithms can
arise due to the singularity in the log in (24) at . Thus,
unless is bounded away from zero as a function of ,
this singularity may translate into singularities in the tangent
majorant (23), so that Condition (C3) is violated. Algorithms
such as these, therefore, do not satisfy standard regularity
conditions for EM (or MM) convergence. Such algorithms
would also violate Condition (C6), since curvatures in the
neighbourhood of a singularity are unbounded.

Examples of these pathological cases are to be seen in cer-
tain EM algorithms that have been proposed for emission to-
mographic imaging. A widely considered statistical model for
emission tomography projection measurements is

5This form was the one considered in [10]. Generalizations have been pro-
posed in [14], [25], and [27].

where denote unknown image voxel values,
are system matrix elements, and are mean background
radiation measurements. An EM algorithm investigated in [32]
was based on the complete data choice

for which (23) becomes

(25)

(26)

In the particular case , this algorithm reduces to the
ML-EM algorithm of [34]. Clearly this can approach sin-
gularities as , and, hence, (C3) and (C6) are
violated. Although the algorithm has been proven to converge
for , existing analyses (e.g., [3]) are difficult and very
specific to the structures of and . The algorithm has not, to
our knowledge, been shown to converge for the more general
case , although some relevant analysis was done in [13].

Another consequence of the singularities in is that, when
all , the domain of the tangent majorant (26) is the
interior of the non-negative orthant, which is normally a strict
subset of the feasible set . Normally, there are feasible images

in which some of the voxel values are zero (e.g., when for all ,
the mean background radiation terms ) and such images
are excluded from the domain of (26). From similar considera-
tions, one can also see that the tangent majorant fails to satisfy
Condition (R3) at near the boundary of the non-negative or-
thant.

A modification called ML-EM-3 was proposed in [15] that
remedies the singularity issue in most practical cases. ML-EM-3
is based on complete data

where are parameters chosen to satisfy .
With this complete data, (23) becomes

In practice, one generally has for all and, hence, can
choose for all . In this case, satisfies both (C3)
and (C6). Moreover, the domain of these tangent majorants is
the entire non-negative orthant. So, by Theorem 4.1, we can
conclude that ML-EM-3 is asymptotically stationary.
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In summary, although EM algorithms are special cases of
MM, the applicability of the MM theory of this paper and its
forerunners (e.g., [35]) depends on the choice of complete data.

VI. REGION OF LOCAL CONVERGENCE FOR

CONNECTED TANGENT MAJORANTS

In the study of minimization algorithms, one often wishes to
know over what surrounding region of a strict local minimizer
an algorithm is guaranteed to converge to that minimizer. In
this section, we characterize regions of capture and convergence
for MM algorithms that use connected (e.g., convex) tangent
majorants. It is a prevalent design choice to make the tangent
majorants convex, since this facilitates their minimization. We
show in Theorem 6.4 that such algorithms are captured in any
basin-shaped region in the graph of . If the basin contains a
minimizer, then with suitable additional conditions (see The-
orem 6.5), the entire basin is a region of convergence to that
minimizer.

This is to be contrasted with the standard theory of gradient
methods (e.g., steepest descent, Newton’s, Levenberg-Mar-
quardt). General gradient methods are driven by the minimiza-
tion of quadratic approximations to . These approximations
may not majorize as tangent majorants do. Standard analyses
of regions of capture for gradient methods (e.g., [1, p. 51,
Proposition 1.2.5] and [1, p. 90, Proposition 1.4.1(a)]) guar-
antee capture only in a neighbourhood where the derivatives of

are sufficiently similar to the derivatives at the minimum. In
Example 6.6, we illustrate how this region of capture can be
a strict subset of a basin-shaped region around the minimizer.
Thus, our findings suggest that connected tangent majorants
lead to larger regions of capture/convergence for MM than
for (non-MM) gradient methods. This property has various
practical implications that we shall discuss.

To proceed with our analysis, we require a formal mathemat-
ical definition of a basin. The following definition generalizes
usual notions of a basin-shaped region.

Definition 6.1: We say that a set is a generalized
basin (with respect to the minimization problem (1)) if, for some

, the following is never violated

(27)

Moreover, we say that is well contained in .
Thus, a point is well contained in if it has lower cost than

any point in the common boundary between
and its complement.
Remark 6.2 (Special Cases of Basins): Definition 6.1 is

worded so that can be empty. Thus, for
example, the whole feasible set always constitutes a gener-
alized basin, provided that it contains some . This is because

is empty, implying that (27) can never be
violated by any .

Any sublevel set is a generalized
basin so long as is not the global minimum value of over .
Moreover, any global minimizer is well contained in . For
further discussion of the basic properties of generalized basins,
see [18, pp. 104–5,136–7].

The following proposition lays the foundation for the results
of this section. It asserts that, if the expansion point of a con-
nected tangent majorant is well contained in a generalized basin

, then any point that decreases the cost value of that tangent
majorant (relative to the expansion point) is likewise well con-
tained in .

Proposition 6.3: Suppose that is a tangent majorant that
is connected on its domain and whose expansion
point is well contained in a generalized basin . Sup-
pose, further, that satisfies

(28)

Then is likewise well contained in .
Proof: It is sufficient to show that . For taking any

, and then combining (28), (3), and the
fact that is well contained in

(29)

implying that is also well contained in . Aiming for a con-
tradiction, suppose that . Since is connected on

, there exists a continuous function with
and such that, for all , one has

(30)

where the equality in (30) is due to (28). Also, since

is well defined. Finally, let . Combining the defi-
nitions of and , the continuity of , and the fact that

, one can readily show that .
Therefore, from the rightmost inequality in (29), we have,

with

(31)

With (3), this implies that , contra-
dicting (30).

The following consequence of Proposition 6.3 articulates a
capture property for MM sequences.

Theorem 6.4 (Capture Property of MM): Suppose that is
an MM sequence generated by (4) and (5). In addition, suppose
that some iterate is well contained in a generalized basin

and that the tangent majorant sequence satisfies
(C1). Then likewise is well contained in for all .

Proof: The result follows from Proposition 6.3 and an ob-
vious induction argument.

Finally, we obtain the principal result of this section.
Theorem 6.5 (Region of Convergence): In addition to the as-

sumptions of Theorem 6.4, suppose that the conditions of either
Theorem 4.1 or Theorem 4.3 are satisfied. Suppose further that
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Fig. 3. Comparing the capture properties of MM with gradient methods.

is bounded and contains a single stationary point .
Then converges to .

Proof: Since is bounded, it follows from Theorem 6.4
that the sequence lies in the compact set .
Moreover, all limit points of are stationary, as assured by
either Theorem 4.1 or Theorem 4.3. The conclusions of the the-
orem then follow from Lemma 3.5(a).

Example 6.6 (Gradient Methods With Ad Hoc Steps): Here,
we illustrate how gradient algorithms with ad hoc step size
choices may have a radius of capture that does not cover the
entire basin surrounding a minimum. Consider the following
1-D cost function, also depicted in Fig. 3

From Fig. 3, one can see that the open interval is a
generalized basin in which all points are well contained. It will
be useful to also note that

(32)

Consider now the family of quadratic expansions

(33)

The minimizer of is given by the gradient al-
gorithm step

(34)

Suppose we choose an arbitrary and constant step size param-
eter . From (32), it then follows that if lies in the in-
terval , the gradient step (34) cannot cross the origin
to a point more distant from the origin than . Consequently,
all subsequent iterations of (34) remain trapped in the region

and, hence, also in the larger basin-like interval
. (One can also show that the algorithm converges

monotonically to the minimum when initialized in ,
but this is tangential to the point of this example).

This capture property does not hold, however, for all
starting points in . In particular, if , then

. With , this means that the gradient step
(34) will be large enough to put in the region .
Not only does this step escape from the basin ,
but the gradient algorithm will also never return there. For
once , the direction of the gradient will carry all
subsequent iterations of (34) off toward infinity.

This example is to be contrasted with the choice . The
iterations are then driven by the minimizations of the functions

which are not only convex, but are also tangent ma-
jorants. The latter can be verified, for instance, using Lemma
3.3(a) with and . Theorem 6.4, therefore, applies
and shows that if lies in , then all subsequent it-
erations of the algorithm will as well.

The distinction between these two cases is also illustrated
graphically in Fig. 3 with . There, we see that, since

majorizes , its minimum is constrained by the graph
of to lie in . Conversely, since does not
majorize , its minimum is not constrained in this way.

The above example illustrates how non-MM gradient
methods with constant step sizes can escape from a basin.
However, it is also easy to see how this would be true even
when conventional line search algorithms are used. Generally,
line search methods can find any 1-D stationary point along the
search line and different 1-D stationary points can lie in dif-
ferent generalized basins. For example, in Fig. 1, the stationary
points in the intervals and clearly lie in different
generalized basins. The MM steps in Fig. 1 respect the basin
boundaries, consistent with Theorem 6.4, whereas a line search
algorithm would not be expected to.

There are both positive and negative practical implications to
Theorem 6.5. Since it is common to use convex (and, hence,
connected) tangent majorants, it is essential for MM algorithm
designers to be aware of these implications. A positive conse-
quence is that global minimizers will, as a special case, attract
the iterates over larger distances. Thus, if a moderately good
initial guess of the solution is available, the chances of getting
pulled toward the global solution may be higher. A negative con-
sequence is that suboptimal local minimizers will also attract
the iterates over larger distances. Thus, if not even a moderately
good initial guess is available, the chances of becoming trapped
at a suboptimal local minimum can be high, depending on the
preponderance of different minima in the graph of .

A potential application of Theorem 6.5 is to nonconvex opti-
mization strategies that decompose the problem into a sequence
of local minimization steps. These include a method due to [2]
called graduated nonconvexity (GNC), in which a parametric
family of approximations to the cost function are locally min-
imized at successive increments of the parameter. Another ex-
ample is the strategy of selecting a mesh of initial points and
locally minimizing around each point so as to probe for the
global minimum. In these strategies, MM with connected tan-
gent majorants seems an appropriate tool for implementing the
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local minimization steps since, of course, local minimization
tasks benefit from a wide region of convergence.

VII. SUMMARY

In this paper, we have revised the analysis of [15] in an
expanded framework, introduced alternative convergence
conditions, and provided original insights into the locally
convergent behavior of iteration-dependent MM. In the course
of doing so, we also remedied an error in the previous con-
vergence proof (see Remark 4.5). The core results of our
global convergence analysis were Theorems 4.1 and 4.3, which
proved asymptotic stationarity for nonblock alternating and
block alternating MM, respectively. The core result of our
local convergence analysis was Proposition 6.3, which proved
a fundamental property of MM algorithms employing con-
nected tangent majorants, namely that they remain in basin-like
regions of the cost function. Our treatment here, we believe,
provides enhanced insight into the behavior of MM, as well as a
highly broad and flexible framework for MM algorithm design.
The results have been useful in verifying the convergence of
previously proposed algorithms for different PET imaging
applications [12], [18], [19].

An unresolved theoretical question is whether MM will con-
verge in norm when the stationary points of the optimization
problem are nonisolated. It is rare to be able to prove this be-
havior for iterative optimization algorithms in general. How-
ever, it has been proven for the EM algorithm of Shepp and
Vardi [34], a prominent example of MM in the field of emis-
sion tomography. Thus, it is tempting to think that this behavior
may be provable in wider generality within the class of MM al-
gorithms. Our preliminary work on this question in [20] may be
a starting point for future analysis.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for the time
that they have invested in this paper and for their many helpful
suggestions for its improvement.

REFERENCES

[1] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, CA:
Athena Scientific, 1999.

[2] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge, MA:
MIT Press, 1987.

[3] C. Byrne, “Likelihood maximization for list-mode emission tomo-
graphic image reconstruction,” IEEE Trans. Med. Imag., vol. 20, no.
10, pp. 1084–1092, Oct. 2001.

[4] N. Cadalli and O. Arikan, “Wideband maximum likelihood direction
finding and signal parameter estimation by using tree-structured EM
algorithm,” IEEE Trans. Signal Process., vol. 47, no. 1, pp. 201–206,
Jan. 1999.

[5] P. J. Chung and J. F. Böhme, “Comparative convergence analysis of
EM and SAGE algorithms in DOA estimation,” IEEE Trans. Signal
Process., vol. 49, no. 12, pp. 2940–2949, Dec. 2001.

[6] A. R. Conn, N. Gould, and P. Toint, Trust-Region Methods, ser. Opti-
mization. Philadelphia, PA: MPS/SIAM, 2000.

[7] A. R. De Pierro, “On the relation between the ISRA and the EM al-
gorithm for positron emission tomography,” IEEE Trans. Med. Imag.,
vol. 12, no. 2, pp. 328–333, Jun. 1993.

[8] A. R. De Pierro, “A modified expectation maximization algorithm for
penalized likelihood estimation in emission tomography,” IEEE Trans.
Med. Imag., vol. 14, no. 1, pp. 132–137, Mar. 1995.

[9] A. R. De Pierro, “On the convergence of an EM-type algorithm for
penalized likelihood estimation in emission tomography,” IEEE Trans.
Med. Imag., vol. 14, no. 4, pp. 762–765, Dec. 1995.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Statist. Soc. B,
vol. 39, no. 1, pp. 1–38, 1977.
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[12] H. Erdoğan, “Statistical image reconstruction algorithms using
paraboloidal surrogates for PET transmission scans,” Ph.D. disserta-
tion, Univ. Michigan, Ann Arbor, MI, 1999.

[13] J. A. Fessler, N. H. Clinthorne, and W. L. Rogers, “On complete data
spaces for PET reconstruction algorithms,” IEEE Trans. Nucl. Sci., vol.
40, no. 4, pp. 1055–1061, Aug. 1993.

[14] J. A. Fessler and A. O. Hero, “Space-alternating generalized expecta-
tion-maximization algorithm,” IEEE Trans. Signal Process., vol. 42,
no. 10, pp. 2664–2277, Oct. 1994.

[15] J. A. Fessler and A. O. Hero, “Penalized maximum-likelihood image
reconstruction using space-alternating generalized EM algorithms,”
IEEE Trans. Image Process., vol. 4, no. 10, pp. 1417–1429, Oct.
1995.

[16] W. J. Heiser, “Convergent computation by iterative majorization:
theory and applications in multidimensional data analysis,” in Recent
Advances in Descriptive Multivariate Analysis, W. J. Krzanowski,
Ed. New York: Oxford Univ. Press, 1995.

[17] P. J. Huber, Robust Statistics. New York: Wiley, 1981.
[18] M. Jacobson, “Approaches to motion-corrected PET image reconstruc-

tion from respiratory gated projection data,” Ph.D. dissertation, Univ.
Michigan, Ann Arbor, MI, 2006.

[19] M. W. Jacobson and J. A. Fessler, “Joint estimation of image
and deformation parameters in motion-corrected PET,” in Proc.
IEEE Nuclear Science Symp. Medical Imaging Conf., 2003, vol.
5, pp. 3290–3294.

[20] M. W. Jacobson and J. A. Fessler, “Properties of MM algorithms on
convex feasible sets: Extended version,” Tech. Rep. 353, Commun.
Signal Process. Lab., Dept. EECS, Univ. Michigan, Ann Arbor, 2004.

[21] L. A. Johnston and V. Krishnamurthy, “Finite dimensional smoothers
for map state estimation of bilinear systems,” IEEE Trans. Signal
Process., vol. 47, no. 9, pp. 2444–2459, Sep. 1999.

[22] K. Lange, “A gradient algorithm locally equivalent to the EM algo-
rithm,” J. Roy. Statist. Soc. B, vol. 57, no. 2, pp. 425–437, 1995.

[23] K. Lange and R. Carson, “EM reconstruction algorithms for emission
and transmission tomography,” J. Comput. Assist. Tomogr., vol. 8, no.
2, pp. 306–316, Apr. 1984.

[24] K. Lange, D. R. Hunter, and I. Yang, “Optimization transfer using sur-
rogate objective functions,” J. Comput. Graph. Statist., vol. 9, no. 1,
pp. 1–20, Mar. 2000.

[25] C. H. Liu and Y. N. Wu, “Parameter expansion scheme for data aug-
mentation,” J. Amer. Statist. Assoc., vol. 94, no. 448, pp. 1264–1274,
Dec. 1999.

[26] A. Logothetis and C. Carlemalm, “SAGE algorithms for multipath de-
tection and parameter estimation in asynchronous CDMA systems,”
IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3162–3174, Nov.
2000.

[27] X. L. Meng and D. v. Dyk, “The EM algorithm - an old folk song sung
to a fast new tune,” J. Royal Statist. Soc. B, vol. 59, no. 3, pp. 511–567,
1997.

[28] L. B. Nelson and H. V. Poor, “Iterative multiuser receivers for CDMA
channels: An EM-based approach,” IEEE Trans. Commun., vol. 44, no.
12, pp. 1700–1710, Dec. 1996.

[29] D. Nettleton, “Convergence properties of the EM algorithm in con-
strained parameter spaces,” Canad. J. Statist., vol. 27, no. 3, pp.
639–648, 1999.

[30] J. M. Ollinger and A. Goggin, “Maximum likelihood reconstruction in
fully 3D PET via the SAGE algorithm,” in Proc. IEEE Nuclear Science
Symp. Medical Imaging Conf., 1996, vol. 3, pp. 1594–1598.

[31] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables. New York: Academic, 1970.

[32] D. G. Politte and D. L. Snyder, “Corrections for accidental coinci-
dences and attenuation in maximum-likelihood image reconstruction
for positron-emission tomography,” IEEE Trans. Med. Imag., vol. 10,
no. 1, pp. 82–89, Mar. 1991.

[33] R. T. Rockafellar, Convex Analysis. Princeton, NJ: Princeton Univ.
Press, 1970.

[34] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography,” IEEE Trans. Med. Imag., vol. MI-1, no. 2, pp.
113–122, Oct. 1982.

[35] C. F. J. Wu, “On the convergence properties of the EM algorithm,” Ann.
Statist., vol. 11, no. 1, pp. 95–103, Mar. 1983.



2422 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

[36] D. F. Yu, J. A. Fessler, and E. P. Ficaro, “Maximum likelihood trans-
mission image reconstruction for overlapping transmission beams,”
IEEE Trans. Med. Imag., vol. 19, no. 11, pp. 1094–1105, Nov. 2000.

[37] W. Zangwill, Nonlinear Programming, a Unified Approach. Engle-
wood Cliffs, NJ: Prentice-Hall, 1969.

[38] J. Zheng, S. Saquib, K. Sauer, and C. Bouman, “Parallelizable
Bayesian tomography algorithms with rapid, guaranteed conver-
gence,” IEEE Trans. Image Process., vol. 9, no. 10, pp. 1745–1759,
Oct. 2000.

Matthew W. Jacobson received the B.Sc. degree
from Brown University, Providence, RI, in 1994, the
M.Sc. degree from The Technion—Israel Institute
of Technology, Haifa, in 1999, and the Ph.D. degree
from the University of Michigan, Ann Arbor, in
2006, all in electrical engineering.

From 1998 to 2000, he was a Research Associate
in the Minerva Optimization Center, The Technion.
He is currently a Research Scientist at Xoran Tech-
nologies, Inc., Ann Arbor. His research interests are
in the design of optimization algorithms for medical

imaging applications.

Jeffrey A. Fessler (F’06) received the B.S.E.E.
degree from Purdue University, West Lafayette,
IN, in 1985, and the M.S.E.E. degree, the M.S.
degree in statistics, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 1986, 1989, and 1990, respectively.

From 1985 to 1988 he was a National Science
Foundation Graduate Fellow at Stanford University,
and he has been with the University of Michigan,
Ann Arbor, since then. From 1991 to 1992, he
was a Department of Energy Alexander Hollaender

Postdoctoral Fellow in the Division of Nuclear Medicine. From 1993 to 1995,
he was an Assistant Professor in the Nuclear Medicine and the Bioengineering
Program. He is now a Professor in the Departments of Electrical Engineering
and Computer Science, Radiology, and Biomedical Engineering. His research
interests are in statistical aspects of imaging problems, and he has supervised
doctoral research in PET, SPECT, X-ray CT, MRI, and optical imaging
problems.

Dr. Fessler received the Francois Erbsmann award for his IPMI93 presen-
tation. He is an Associate Editor of the IEEE TRANSACTIONS ON MEDICAL

IMAGING and a past Associate Editor for the IEEE TRANSACTIONS ON IMAGE

PROCESSING and the IEEE SIGNAL PROCESSING LETTERS. He was Co-Chair of
the 1997 SPIE Conference on Image Reconstruction and Restoration, technical
program Co-Chair of the 2002 IEEE International Symposium on Biomedical
Imaging (ISBI), and General Chair of ISBI 2007.


