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Analysis of Observer Performance in
Known-Location Tasks for Tomographic
Image Reconstruction
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Abstract—We consider the task of detecting a statistically
varying signal of known location on a statistically varying back-
ground in a reconstructed tomographic image. We analyze the
performance of linear observer models in this task. We show
that, if one chooses a suitable reconstruction method, a broad
family of linear observers can exactly achieve the optimal de-
tection performance attainable with any combination of a linear
observer and linear reconstructor. This conclusion encompasses
several well-known observer models from the literature, in-
cluding models with a frequency-selective channel mechanism
and certain types of internal noise. Interestingly, the “optimal”
reconstruction methods are unregularized and in some cases quite
unconventional. These results suggest that, for the purposes of
designing regularized reconstruction methods that optimize lesion
detectability, known-location tasks are of limited use.

Index Terms—Emission tomography, lesion detection, observer
models, channelized Hotelling observer, penalized maximum-like-
lihood.

1. INTRODUCTION

BJECTIVE evaluation of the quality of an image requires
O specifying the goal that the image will be used to achieve.
Typical uses of medical images can be categorized into estima-
tion, where the goal is to measure the value of some param-
eter of interest (e.g., radioactivity distribution), and classifica-
tion, where the goal is to decide among several possible states
of the truth (e.g., the presence or absence of a tumor) [1]. By
evaluating images with respect to a task of interest, one can
compare and rank the imaging systems or reconstruction algo-
rithms that produce these images. In the case of classification
tasks, such evaluations can be performed directly by applying
ROC analysis to experiments that record the classification per-
formance of human observers [2]-[4]. However, not only are
such experiments time-consuming, but also the performance of
human observers does not lend itself to optimization through
analytical tools. The alternative is to turn to mathematical ob-
server models.
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The ideal observer models that are well-known from statis-
tical decision theory [5] exploit all available statistical informa-
tion on the classification task at hand. However, researchers have
found that human observers do not perform ideally and have
proposed observer models that account for human suboptimality
[6]-[9]. As aresult, various popular linear observer models exist
in the literature, either in their ideal form [10], or with the ad-
dition of frequency-selective channels and internal noise [11,
Section 14.2.2]. The channelized Hotelling observer (CHO) [9]
in particular, has been found to predict human observer perfor-
mance in several detection tasks [12]—[17]. Furthermore, strate-
gies have been proposed for estimating the template of a linear
observer model directly from human observer data [18], [19].

Since the performance of the ideal observer is invariant to
any nonsingular data transformation, it cannot be used to eval-
uate and rank image reconstruction methods. Therefore, one can
optimize reconstruction methods with respect to detectability
only for suboptimal observer models such as the ones mentioned
above. Significant attention has been focused on analyzing the
performance of several such linear observers for the task of
detecting a signal of known location in tomographic images
[20]-[25]. One can use these analytical performance approxi-
mations to tune user-specified parameters involved in image re-
construction methods, such as regularization parameters in pe-
nalized-likelihood reconstruction [26].

In this paper, we extend our analysis from [22] to show that
a broad family of linear observer models and their channelized
counterparts can exactly achieve optimal performance (for a
certain internal noise model) in the detection of a statistically
varying signal on a statistically varying background without
the need for regularization. Further insight into the perfor-
mance of channelized observers can be gained through local
shift invariance analysis. Using such an analysis, we present
evidence of more situations where the CHO in particular can
achieve approximately optimal performance in this task without
regularization.

The paper is structured as follows. Section II defines the
detection task and the general form of the observers and re-
construction methods that we will be considering. Section III
analyzes the detection performance of several well-known
observers, with the objective of finding reconstruction methods
that allow each of these observers to achieve optimal perfor-
mance. We show that there is a broad family of linear observers
that can achieve the optimum with unregularized reconstruc-
tion. Section IV summarizes the conclusions of our analysis.
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II. THE DETECTION TASK
A. Object Model

Let f denote the true object being imaged (or an approxima-
tion of the true object in R™»). To express our uncertainty about
the object, we allow it to be a random process parameterized by
two spatial coordinates. The object f consists of a background
f, and it may or may not also contain a signal of interest f,
which we assume to be localized in space. The detection task is
to determine whether the signal f, is present or not in the object
f, 1.e., to decide between the following pair of hypotheses:

Hy: f=1f, (signal absent)
Hl : f = fb + fs

In emission tomography, for example, where the object f is a
radioactivity distribution, the background f, could correspond
to normal radioactivity and the signal f, to additional radioac-
tivity absorbed in the area of a lesion.

The background f, and the signal f, are random and statis-
tically independent. We denote their expectations by f;, and f.,
respectively. We denote their covariances by K, and K, respec-
tively. In the general case where both background and signal
are random, K, and K are positive definite. In the special case
known as the signal known exactly (SKE) detection task, we
have K; = 0 and, thus, a deterministic signal f, = fs. Sim-
ilarly, in the background known exactly (BKE) task, we have
K, = 0 and, thus, a deterministic background f, = }'b. In all

cases, we assume that f,, f., Ky, and K, are known.

(signal present). (1)

B. Measurement Model

In the applications that interest us, the true object f cannot be
observed directly. The decision between hypotheses Hy and H;
has to be based on a noisy measurement y € R™ that depends
on f. For a given instance of the object f, the measurement y is
random due to noise inherent in the imaging system.

In the following, we use E[-] to denote expectation and
Cov{ - } to denote covariance. All moments are averages over
both y and f, except when they are accompanied by the sub-
script f, in which case they are averages only over f, or when
they are conditional averages over y for a given instance of f,
in which case the usual - | f notation is used. Finally, we use
the notation - | H; when referring to moments conditional on
the event that hypothesis H; is true. We assume knowledge of
the following moments of the measurement y:

y 2 Ely| Hi] - Ey| Ho] )
II; £ Cov{y|H;}, i=0,1 3)

wh oy

where we use to denote definitions.

In emission tomography, the measurement y is a noisy sino-
gram, whose elements are independent and Poisson-distributed
conditional on the object f. The conditional mean and covari-
ance of the sinogram y are, respectively

Ely|fl=Af +r
Covly| f] = diag{Af +r}
where we use the notation diag{wv} for a diagonal matrix with

diagonal elements equal to the elements of vector v. The linear
operator A models the tomographic imaging system and the

vector r € R™ represents “background events” such as scatter
and/or random coincidences [27], [28]. Both A and r are as-
sumed to be deterministic and known. The moments of the sino-
gram y under hypothesis H;,7 = 0,1 are then given by

Ely| H] = Ef[Ely | f]| Hi] = AEf[f | Hi] +7 (4
Cov{y| H;} = Ef[Cov{y| f}| Hi] + Covs{E[y|f]| H:}
= diag{AEs[f | Hi] +}

+ ACov,{f | H:} A )
where we use “/”” to denote the adjoint of an operator or equiva-
lently the complex transpose of a matrix. Under the assumption
that f, and f, are independent, using (4) and (5) for each of the

two hypotheses in (1) and substituting in (2) and (3) yields, for
emission tomography

AL

y=Af, (6)
I, = diag{Af, +r} + A, A (7
IT; = I, + diag{ Af,} + AC A’ (8)

C. Image Reconstruction Methods

An image reconstruction method is a mapping of the mea-
surements g into an estimated image f. We focus here on linear
reconstruction methods, as several common tomographic recon-
struction techniques either are or can be approximated as linear.
We denote a generic linear reconstructor by an operator Z. The
reconstructed image is then given by

fly) =2y ©9)
We may view the reconstruction } either as a vector in a Hilbert
space, in which case Z is a general linear mapping from R"
to that Hilbert space, or as a discrete representation in R™», in
which case Z is a matrix in R™»*"4, Combining the linear re-
construction method in (9) with the data moments from (2) and
(3) yields the following expressions for the moments of the re-
constructed image:

E[f| Hi| - E[f | Ho] = Zy (10)
Cov{f|H;} = ZIL,Z', (11)

An example of a well-known family of reconstruction
methods that can be approximated as linear is the penal-
ized-likelihood family. These methods obtain the estimated
image by maximizing an objective function

fy) = arg max[D(y, Af) = R(f)]

where the objective function is composed of a data-fit term
D(-,-) and a regularization term R(-). The nonnegativity
constraint f > 0 is used in emission tomography, where f is
a radioactivity distribution. A subset of penalized-likelihood
methods to which we will refer later are penalized weighted
least-squares (PWLS) methods. These make use of a data-fit
term that is quadratic in the object f

D(y, Af) = —(y — Af)W(y — Af) (13)
for some measurement-domain weighting matrix W. When the
regularization term is also quadratic in f, i.e.,

R(f) = f'Rf (14)

for some linear operator R, we have quadratically penalized
WLS (QPWLS) reconstruction.

i=0,1.

12)
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In general, penalized-likelihood tomographic reconstruction
can be approximated as linear, except maybe when enforcing the
nonnegativity constraint [29]. Here, we assume that the signal
of interest appears on a background that is sufficiently high to
render the nonnegativity constraint inactive around the signal
location, so these reconstructors can be considered linear near
the signal. For example, if the nonnegativity constraint is ig-
nored, one can show that QPWLS reconstruction with data-fit
term (13) and regularization term (14) is equivalent to taking
f(y) = (AWA+R)LA'Wy, which corresponds to the linear
reconstructor

Z=(AWA+R) 'AW. (15)
For R = 0, we get the unregularized WLS reconstructor, which
simply maximizes the data-fit term (13).

D. Observer Models

The term observer refers to the entity making the decision
between hypotheses Hy and H;. Observers acting directly on
the measurement y would be very likely to grossly overestimate
human observer performance, since humans have difficulty
distinguishing small features in a sinogram. In the following,
we will focus on observers that are applied to the reconstructed
image f, since this situation better corresponds to common
imaging practice.

We consider observers that decide between hypotheses Hy
and H; based on the reconstructed image f and a decision rule
that, similarly to Neyman-Pearson tests, compares some scalar
test statistic

t=t(f) = t(Z2y) (16)

to some threshold T

Decide Hy if t(f) > T, otherwise decide Hy,

where t( - ) is the discriminant function and T is independent of
the data. The specific form of the discriminant function depends
on the observer model considered. Our goal is to optimize the
reconstructor Z with respect to the performance of various ob-
server models of interest in the detection of f..

E. Figures of Merit

One can quantify the detection performance of an observer
by tracing its receiver operating characteristic (ROC) curve, a
plot of the probability of a frue positive (deciding that H; is
true when H; is actually true) versus the probability of a false
positive (deciding that H; is true when H is actually true). The
curve is traced by varying the decision threshold 7" and the area
under the curve (AUC) is a common figure of merit for observer
performance. Another figure of merit is the signal-to-noise ratio
(SNR), defined as

g EILIH] — Elt] o]

- . (17)
\/ IVar{t| Hy} + LVar{t| Hy}

In the case where the test statistic ¢ is Gaussian-distributed under
both hypotheses, the SNR is especially useful, since it is mono-
tonically related to the AUC [11, p. 819].
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III. OPTIMAL RECONSTRUCTION FOR SIGNAL DETECTION
A. Ideal Observer

The discriminant function of the ideal observer in a Bayesian
sense is the well-known likelihood ratio [5, p. 26], or any mono-
tonic function, such as the logarithm, of the likelihood ratio

to(f) =log (p(f(y) | Hy)/p(F(y) | Ho)).

The ideal discriminant is generally nonlinear in f Even if the re-
constructed image f is assumed to be Gaussian-distributed, the
log-likelihood ratio is quadratic in f and, thus, not Gaussian-dis-
tributed itself. Therefore, one would have to optimize the AUC
of this test statistic directly rather than work with the SNR. How-
ever, the ideal observer is generally not used to evaluate recon-
struction methods, since its performance is invariant to any non-
singular data transformation [30, Section 10.1]. The observer
models commonly used in the literature to evaluate image re-
construction methods are linear.

B. Generic Linear Observers

Linear observer models facilitate analysis and they have been
found to capture the suboptimality of human observers [31],
[32]. Therefore, we focus hereafter on observers with a general
linear discriminant of the form

t(y) = w' f(y)

for some template w, which is a real vector in the same space
as f Combining the linear discriminant in (18) with the recon-
struction moments from (10) and (11) yields the following ex-
pressions for the moments of ¢ = ¢(y) :

(18)

E[t| H1] — E[t| Ho) = w' 2y
Var{t | Hl} = ’lUIZHZ'Z/'lU,

(19)
1=0,1. (20)
Hereafter, we assume that the test statistic ¢ is Gaussian-dis-
tributed and focus on maximizing the SNR, in which case
the AUC is also maximized. For a linear observer w and a
linear reconstructor Z, the test statistic ¢ is a weighted sum
of the elements of the measurement vector y, so usually ¢ can
be approximated as Gaussian-distributed by the central limit
theorem. Furthermore, the probability distribution of an image
f reconstructed from Poisson data y through a penalized-likeli-
hood method of the form (12) can be approximated as Gaussian
[33]. This is an additional argument for considering £ to be
Gaussian-distributed when it is the product of a linear observer
w applied on an image f reconstructed by a penalized-likeli-
hood algorithm.
Substituting the moment expressions (19) and (20) into (17)
yields the SNR of the generic linear observer in (18)

(w'Zy)>  w'Z(yy)Z'w

SNR}; = Z
w' ZI1Z'w

tin = w ZINZ'w

2n

where

1 1
II 2 51'[1 + EHO (22)

is the unconditional covariance of the data. The left-hand side of
the SNR expression (21) has the form of a generalized Rayleigh
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quotient. This form is maximized with respect to Z’w when
(e.g., see [34, p. 120])

Z'wx Iy (23)
When the observer template w and the reconstructor Z satisfy
the condition (23), the observer at hand achieves the maximum
SNR that is attainable with any combination of a linear observer

and linear reconstruction method. Substituting the optimality
condition (23) into the SNR expression (21) yields:

SNRZ < g'II"'y = SNR?

lin, - (24
The upper bound on the right-hand side of (24) is the maximum
SNR attainable by any linear observer and linear reconstructor
in the detection task at hand.
For emission tomography, substituting (7) and (8) into (22)
yields
I =11+ AKC; A’ (25)
where II 2 diag{A(f, + (1/2)f,) + r} is the imaging noise
covariance for the unconditional mean object and K 2K, +
(1/2)K, is the unconditional covariance of the object. Since
II, K} and K, are positive definite, so is IIin (25), thus the ratio
in (21) is well-defined provided Z'w is nonzero. Substituting (6)
and (25) into (24) yields the optimal SNR for the detection task
at hand in emission tomography

SNR,, = f.Ff, (26)

where we define
FEAMM A=A (I + AKC;A) 1A (27)
=T+ FKy) 'F=FIT+K;F)! (28)

where Z is the identity operator, and ¥ = A'TI~'A. From
(27) we derive (28) using the “push-through” identity A(Z +
BA)' = (T + .AB)'A [35]. The operators F and F have
a form analogous to that of the Fisher information matrix [5,
p. 80] for estimation problems that involve a linear system and
additive Gaussian noise. In the SKE/BKE case, we have F=F

A simple combination that satisfies the optimality condition
(23) is Z = Z (which is not a reconstruction method) and
w = II7'g, which corresponds to the Hotelling observer (see
Section III-C1) for detection in the raw measurement domain
rather than the reconstruction domain. However, even when we
restrict attention to observers that are applied to reconstructed
images, usually there are still many ways to satisfy (23), as the
analysis that follows indicates.

C. Fisher Observers and Reconstructors

As shown in more detail later, several of the mathematical
observers that have been proposed in the literature can achieve
the optimal SNR when paired with simple reconstructors that
correspond to some power of the Fisher information operator

F applied to a backprojection of the data. For lack of a better
term we refer to this family of reconstruction methods as Fisher
reconstructors and we allow them to include a regularization
component

Z,AHIAN ! = (F+R)WATT! (29)
for some ¢ € R and H 2 F + R for some regularization
operator R. We use the notation

@0 2 | H, g0
" {<HT>Q, 4<0

where “” denotes a pseudoinverse.! Typically the regularizer R
is chosen so that H is nonsingular. The reason we allow H to
be singular in the analysis that follows is to accommodate the
unregularized case R = 0, since F itself may be singular.

The estimated image produced by the Fisher reconstructor
(29) is

}' =Zy= H(Q)A/ﬂ_ly = H(Q)AI(H + .A]Cf.AI)_ly

which is a kind of weighted backprojection with a (perhaps
somewhat unusual) postfilter. For ¢ < 0, this postfilter is some-
thing like a regularized deconvolver. For ¢ = —1 in particular,
the Fisher reconstructor yields
f=HATT 'y (30)
SO it isv equivalent to the QPWLS estimator from (15) with
W =111
Interestingly, for any Fisher reconstructor, even an unregular-
ized one, there is a corresponding linear observer that achieves
optimal detection performance. We refer to this observer family
as Fisher observers
w, 2 HPf, 31)
for some p € R. For a reconstructor of the family (29) and an
observer of the family (31) we have
Zlw, =11 TAHOHPf . (32)
By comparing (32) with (23) for § = Af, we see that the
choice p = —q leads to the optimal SNR, i.e., the observer w_,
achieves optimal SNR when applied to images produced by the
reconstructor Z,. This is true even for R = 0 and singular F,
as we can show by using the fact that B(B'B)(9)(B'B)(-9) = B
for any B, which we obtain by singular value decomposition of
B. Substituting B = IT~'/2.A yields the desired result. Fig. 1
shows template profiles for some of the observers in (31). The

profile shape for p = 0.5 especially is reminiscent of those es-
timated from human observers (e.g., see [19]).

'We follow [36, Definition 6.2.1 of the pseudoinverse]. An immediate result
of this definition is that for nonsingular matrices the pseudoinverse is the same
as the inverse [36, Theorem 6.2.13]. In this notation, we have H-D =H =
H~" whenever H is nonsingular.
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Fig. 1. Profiles through the center of (normalized) Fisher observer templates

w, forp = 0,0.5,1. Note that wg = f_.
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Fisher reconstructors with R = 0 appear to be largely de-
void of regularization. 2 However, even for these reconstructors,
there are corresponding observers that can achieve optimal per-
formance in the detection task considered here. As shown in
the following sections, some well-known observers from the lit-
erature fall within this category. This means that, if the recon-
structed images are meant to be interpreted by these observers,
regularization is not essential in the reconstruction process, at
least for the simple detection task at hand.

1) Hotelling Observer (HO): The HO utilizes the optimal
linear discriminant in a maximum-SNR sense, which, similarly
to (23), can be shown to be proportional to

who = ’C}(E[} | Hi] — E[f | Hy)) (33)

where K; £ (1/2)Cov{ FIH:} + (1/2)Cov{f | Ho}. Substi-
tuting the moments of f from (10) and (11) into (33) yields

wro = (ZNZ) 2y (34)

and, thus

Z'wyo = Z2/(ZNZ) 2y = T2 Py, 1 5 (T %)
(35)

where Ppy1/2 7/ ( - ) denotes the orthogonal projection of a vector
onto Ryy1/2 z, the range space of IT'/2Z’. By comparing (35)
with (23) we find that the HO achieves optimal SNR for any Z
that satisfies T~ /2§ € Rpq1/2 5 or, equivalently

II'geRz. (36)

2For R = 0 and ¢ > —1, one could construe the Fisher reconstructor as
being marginally regularized since it entails somewhat “less deconvolution”
than the unregularized WLS reconstructor. However, this type of “regulariza-

tion” does not improve the condition number in the case of singular ¥, and it is
unlike most regularization methods described in the literature.
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There are a multitude of choices of Z that satisfy the mild
condition in (36). For example, any Z, of the Fisher recon-
structor family (29) satisfies (36), as long as ¥ is in the range
space of A (e.g., y = Af,). This is true even for a Z, with
R = 0 and singular F, following an argument similar to the
previous section. Thus, the HO achieves the ideal SNR for any
Fisher reconstructor, regularized or not. This result is consistent
with the fact that linear transformations of the data do not af-
fect the performance of the optimal linear observer [30, Section
10.2] (except when the transformation operator does not have
a right inverse, in which case performance degrades). Note that
fory = Af,,R = 0, and ¢ # 0 the HO template in (34) be-
comes wyo = F (_q)fs, which is the Fisher observer template
in (31) with p = —q, and the optimality of Z, for this observer
follows the previous section.

2) Prewhitening (PW) Observer: The template of the PW
observer is given by

wpw 2 Cov{f | Ho}'(E[f | Hi] - E[f | Ho]).  (37)
Substituting the moments of }' from (10) and (11) into (37)
yields

wpw = (ZH(]ZI>TZ§_/

and, thus

Z'wpw = Z/(Z,2") 2y = T, > Puse (Hg 1 2@) .
0
(38)

By comparing (38) with (23) we find that the PW observer
achieves optimal SNR for any Z that satisfies

—1/2- 1/2¢5—1~
PH:)/QZ, (Ho /y) ocHO/ 'y

which in turn implies that H(;l/?;i/ — cHé/QfI_lg’/ must be or-
thogonal to RH; /2 g, for any constant c. This finally leads to the
requirement that

Zy x ZII, I 'y

i.e., that the sinograms ¢ and IToII~'g yield the same recon-
structed image but for a scaling constant. Thus, in general there
is no linear reconstructor Z that leads to optimal SNR for the
PW observer.

An exception to this is the SKE case, where II = I, and the
PW observer is the same as the HO, so it can achieve optimal
SNR for infinitely many choices of Z. The minimal dependence
of the SNR on Z for the HO is consistent with the observation
of Qi et al. that performance of the PW observer in the SKE task
is independent of smoothing method in the MAP case [21].

3) Nonprewhitening (NPW) Observer: The template of the
NPW observer is given by

wxpw = E[f | Hi] — E[f| Ho). (39
Substituting the moments of f from (10) into (39) yields
wnpw = 2y (40)
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TABLE 1
FISHER RECONSTRUCTORS THAT ALLOW COMMON OBSERVER MODELS TO ACHIEVE OPTIMAL SNR IN KNOWN-LOCATION DETECTION TASKS
Observer q R Best estimator | Interpretation
Hotelling R =0 | (F+R)WATI 'y | Any Fisher reconstructor (e.g., WLS)
NPW —1/2 0 F= Z>A’ﬂ‘1y Partly deconvolved backprojection
ROI 0 - A'TI'y | Backprojection

and, thus, by (23) the NPW observer achieves optimal SNR for
any Z that satisfies
Z'Zy x I 3. 41)
For a Z, of the Fisher reconstructor family (29) and § =
Af., we have Z'Zy = IITLAHZDFF_, so the optimal SNR
is achieved when R = 0 and ¢ = —1/2. This corresponds to
the somewhat unusual Fisher reconstructor
z=FP L 42)
Whether there are other solutions that se}tisfy (41) is an open
problem. (There is also the choice Z = IT~/2, which is not a
reconstruction method. It is equivalent to the HO for sinogram-
based detection.) Note that for the reconstructor (42) the NPW
template in (40) becomes wnpw = F ! 2fs, which is the Fisher

observer template in (31) with p = 1/2.
The reconstructor in (42) yields the estimated image

}: _7_-(—1/2)A/1:I—1y: fl/z(fTA'ﬂ_ly)

which is the unregularized WLS estimate, given in (30) for R =
0, followed by the unusual shift-variant postfilter F 1/2. This es-
timator is impractical for two reasons. First, even if .A happens
to have full rank, F is usually very ill-conditioned, so computing
the WLS solution (30) will require a multitude of iterations
for any practical iterative algorithm. Secondly, the shift-variant
.1 /2 . . . .

postfilter F °~ would be computationally intensive to imple-
ment for typical problem sizes.

4) Region-of-Interest (ROI) Observer: The template of the
ROI observer is given by

wror = E[f, | Hi] = f.. 43)

Then, by (23) the ROI observer achieves optimal SNR for any
Z that satisfies

Z'f. x Iy
Since the ROI template corresponds to the Fisher observer in

(31) with p = 0, the optimal SNR for § = Af, is achieved by
the Fisher reconstructor with ¢ = 0, i.e.,
Z=A1" (44)

Curiously, in this case

This is a very blurry estimate of f, being simply unfiltered back-
projection. Yet for the ROI observer it is optimal, and no amount
of deconvolution will improve the SNR for this detection task,
which is an indication that the task is too simple. The optimality
of this blurry estimate is consistent with the demonstration in
Qi et al. of the ROI observer (for a penalized-likelihood recon-
structor with R = (T) approaching the PW observer’s perfor-
mance as § — oo [21].

Alternatively to (43), the ROI template may be defined as con-
taining ones wherever f, is nonzero and zeroes everywhere else.
In this case, the optimal Z would be the backprojector in (44)
followed by a diagonal operator that weighs the reconstructed
image by the shape of f,, i.e., Z = diag{f,}.A'TI"!. This
weighting does not improve the resolution of the backprojec-
tion, so for either definition of the ROI template the conclusion
remains that optimal performance is achieved with a very blurry
estimator.

5) Summary of Fisher Observers and Reconstructors: For
three of the specific observer models considered above, at least
one reconstructor of the Fisher family (29) was found to achieve
the highest SNR possible for linear observers and linear recon-
structors. Table I summarizes these findings. Thus, the linear
reconstructors Z that yield optimal detection performance for
the HO, NPW, and ROI models need not include any form of
regularization. This is true even if the system operator A is a
matrix with less than full column rank. We conclude on theo-
retical grounds that regularization is not absolutely essential for
the HO, NPW, and ROI observer models in the task of detecting
a statistically varying signal of known location on a statistically
varying background.

The optimality of blurry backprojections with respect to de-
tection performance for the HO, NPW, and ROI models im-
plies that spatial resolution is not important for these known-lo-
cation tasks. This is consistent with the findings of Wagner et
al., who attempted to optimize imaging systems with respect to
performance in a SKE/BKE task, only to find that a pinhole of
very large size would be optimal [37]. The authors later found
that the presence of background variability decreased the op-
timal aperture size [38]. Our analysis shows that, for a given
imaging system A, there are reconstructors that degrade the spa-
tial resolution of the system but lead to the optimal detection
performance attainable with any combination of a linear ob-
server, a linear reconstructor, and the specific system. As we
have shown, this holds even in the presence of signal and back-
ground variability. The optimal reconstructors depend on the
degree of signal and background variability through F and II,
which depend on the object covariance K.

Furthermore, there is a strong dependence of the optimal re-
construction method on the specific observer model considered.
This implies that there is no universally optimal reconstruction
method, even for the simple detection task considered here. As
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we mentioned in Section I, the apparent premise of human-ob-
server studies in the literature is that humans do not perform as
well as the ideal observer. Therefore, the fact that there exist
“simple” reconstruction methods that allow the HO, NPW, and
ROI observer models to achieve the ideal linear-detection SNR
(which is also the overall ideal SNR for SKE tasks) suggests that
these observer models, the tasks, or both are somehow inappro-
priate. We proceed with analyzing the effect of regularization
on the performance of channelized observer models, which are
known to correlate well with human observers for known-loca-
tion tasks.

D. Channelized Linear Observers

1) Overview: Channelized observer models include a set of
frequency-selective channels in an attempt either to construct an
efficient basis for the approximation of the ideal linear observer
[39], or to model the frequency selectivity that is believed to
characterize human visual perception [9]. Here, we are inter-
ested primarily in the latter type of channel, since suboptimal
observers are the focus for the purpose of image reconstruction
optimization. However, the analysis that follows applies to ei-
ther channel flavor.

Conceptually, channelized observers first pass the recon-
structed image f through a set of M bandpass filters. The new
feature vector ¢ € CM is formed from the values of the filter
outputs at the known location of the target signal center and
can include additive noise

c(y) =C' f(y) + €int

where C = [Cy,...,Cy] consists of M operators. The rnth of
these operators applies the impulse response of the mth band-
pass filter and samples the output at the center of the target
signal. Typically this filtering step is not invertible and it greatly
reduces the dimensionality of the detection problem (e.g., M =
4 in [40]). The internal noise vector €;,; models inherent un-
certainty in the observer’s decisions and is assumed to be zero-
mean Gaussian with covariance matrix IT;,;.

A generic channelized linear observer forms its test statistic
ten by applying a template w € CY to the output of the filter
bank

ten(y) = w'e(y). (45)
For a linear reconstruction method Z, combining the recon-
struction moments from (10) and (11) with the channelized
linear discriminant in (45) yields the following expressions for
the moments of ¢, :

E[ten | H1] — Eten | Ho) = w'C' 2y (46)
Var(ta, | H;] = w'(C'ZILZ'C + I )w (47)

1 = 0, 1. Combining expressions (46) and (47) with (17) yields
the SNR of the channelized observer

SNR2 _ v(wlcl‘zg)z .
T W ZIZ Cw + w'Ilcw

(48)
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We would like to find a reconstructor Z that optimizes the SNR
in (48). However, if IT;,; # O is independent of Z, then a Z of
infinitely large norm would be optimal. Thus, one would need
some constraint on Z to optimize the SNR in its most general
form (48), but it is unclear what constraints would be suitable.

A special case occurs if we assume that the covariance of the
internal noise in the channels is proportional to the covariance
of C' f due to imaging noise and object variability. Specifically,
we assume

IL, = cinC' Z'TIZC (49)

for some constant of proportionality c;,¢, which includes the
special case of no internal noise for ¢;y = 0. The model (49) is
similar to the one proposed in [16], except that (49) does not pre-
sume independence of the internal noise in individual channels.
Under the assumption (49) the SNR of the channelized linear
observer in (48) becomes

1 (w'C2y)

SNth = / ~ /
' 1+ cine w'C' ZIIZ'Cw
1 . SNR?Z
< gy = —0 50
1+ Cinty y 1+ cine 0

The SNR upper bound in (50) is achieved for any Z that satisfies

Z'Cw x I 'y (51)
similarly to the nonchannelized version in (21) and (23).

2) Channelized Hotelling Observer (CHO): As mentioned
in Section I, the CHO has been shown to be particularly suc-
cessful in predicting human observer performance. It applies
the optimal linear discriminant with respect to the output ¢ of
the M -channel filter bank. This corresponds to the template

weno £ T (E[¢| Hy] - E[é] Ho])

= (C'ZNZ'C + My, )'C' 2y (52)
where IT; £ (1/2)Cov{e|H 1} + (1/2)Cov{e¢| Ho}. (The fil-
ters involved in C typically correspond to distinct frequency
bands. If this is the case, then the covariance Il can be assumed
to be nonsingular even when IT;,; = 0, so its pseudoinverse is
the same as its inverse. Nevertheless, we use a pseudoinverse
in the interest of generality.) By substituting the CHO template
from (52) into the SNR expression (48), we find this observer’s
SNR

SNR&po = ¥ 2'C(C'ZTZ2'C + 1, 'C' 27. (53)

In the special case of the internal noise model (49), we have

Z'Cwcno x Z'C(C'2ZT1Z'C)'C' 2y

=T Y *Pprj2gie(IT2y). (54)
By comparing (54) to the optimality condition (51), we find
that the SNR upper bound in (50) is achieved when Z satisfies
II-/2g € Ry1/2 ¢ or, equivalently

II''geRze (55)
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which is similar to (36). To find a Z that satisfies (55), consider
a reconstructor of the form
Z=wc(c'we) g AT ! (56)
where W is any image-domain weighting operator and G is a
mapping from CM to object space. For the Z in (56), we have
2'C = I AG, so the optimality condition (55) is satisfied if
Y € Rag- &)
As long as G can be chosen to satisfy (57), the unregularized
reconstructor Z given in (56) allows the CHO to achieve the
optimal SNR. For emission tomography, where g = Af,, there
is always a way to choose G to satisfy (57); choosing G so that
one of its “columns” is proportional to f, is the most obvious
way.

The rather unconventional family of reconstructors in (56),
although ensuring optimal SNR for the CHO under the internal
noise model (49), does not produce what we usually consider to
be reconstructed images. In essence, the HO template for detec-
tion in the raw measurement domain (w = II~'g) is hidden
in one of the rows of such a reconstructor. Thus, it is of in-
terest to know whether reconstructors that are more conven-
tional than (56) can be combined with the CHO to achieve SNR
values close to the optimal and, if so, whether these reconstruc-
tors must include regularization. As shown below, such insight
can be gained by using approximations to the SNR expression
in (53) that are based on local Fourier-domain analysis. Such
approximations also facilitate analysis of internal noise models
other than (59). In the following, we first provide a brief review
of local Fourier-domain approximations and we then use them
to analyze the SNR of the CHO for one unregularized and one
regularized reconstructor example.

3) Local Fourier Analysis of CHO Performance: For the
purposes of the Fourier analysis that follows, we will assume to
have a discrete representation of the object® f € R"». Let U be
a discrete Fourier operator, mapping an object in R™» to some
vector in C"» known as the spectrum of the object. The Fourier
operator Y is linear and, due to the shift property of the Fourier
transform, it can be defined through its action on an object ey
that consists of an impulse centered at the origin

er =

1 (58)
Ve
where 1 is the vector of n;, ones. Without loss of generality, we
choose the origin of the Fourier transform to coincide with the
location where the signal f is centered. (The (1/,/m;) factor
results simply from using the orthonormal form of the DFT.)
Let A € C" be the local frequency response of the Fisher
information operator F at the origin, defined by

A2 VU Fey.

In general, the operator F is shift-variant, so its behavior when
applied to an object other than the impulse ey cannot be fully
defined through A. However, if the operator F is applied to an
object that is contained within a small spatial extent around the

3Nevertheless, it is possible to generalize this analysis for an infinite-dimen-
sional object space.

origin, we can approximate the behavior of F using A, i.e., we
can approximate J as shift-invariant within the spatial extent
of the object. The closer the object comes to resembling an im-
pulse, the greater the accuracy of this approximation. Thus, we
approximate the operator F within a small spatial extent around
the origin as
F~UTAU (59)

where A £ diag{\}. The elements of A\, \;, k = 1,... M
contain the local frequency response of F. Since F is symmetric
nonnegative definite, we force the A;’s to be real and nonnega-
tive by discarding imaginary parts and setting negatives to zero.
Locally shift-invariant approximations of F have proven to be
useful and accurate in several cases [20], [21], [33], [41]-[45].

We also use a locally shift-invariant approximation of the ob-
ject covariance

K;~U 'Nu (60)

where N £ diag{v;, k = 1,...,n,}. The v’s contain the
local frequency response of Ky (i.e., the local power spectrum
of the object f) around the location of f_. Although it may
be reasonable to approximate the background f, as locally sta-
tionary within the spatial extent of the signal, approximating the
signal f, itself as locally stationary would be less reasonable.
That is, the approximation in (60) is much more accurate when
the signal f, is deterministic or when the signal covariance K
is negligible in comparison to the background covariance K;.

Using the approximations (59) and (60), we can start from
(28) to derive the following locally shift-invariant approxima-
tion for the Fisher information operator F

F=FI+K;F)*

~UTTAT+NA)U=UTAU (61)
where A = diag{\x., k = L,...,np} and
M 2 (M\)/(1+wvpAg), which reduces to A = A in

the SKE/BKE case.

As in [22]-[24], we also use the fact that C is a collection of
filters to get its frequency-domain representation. Let £ € C"»
denote the frequency response of the mth bandpass filter. Then,
the mth operator in C has the form C,, = U~ 'diag{t" }Ue,
and, using (58), we get

1

Vp

c=u"'‘r, T-= ... tM]. (62)

4) CHO and Fisher Reconstructors: For an unregularized
Fisher reconstructor Z,, given by (29) with R = 0, we can
use the Fourier decompositions (61) and (62) along with (6) to
obtain the approximations

C'Zyg~TAMDX
C'ZMZ,C~T AT

(63)
(64)

where X = UF, is the spectrum of the mean target signal.
The approximation (63) assumes that f is highly localized in
space. The accuracy of the approximation (64) depends on how
localized in space the channel responses are. However, when A
is positive definite, the expression (64) is exact for ¢ = —1/2,
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so it may also be reasonable for ¢ near —1/2 (including ¢ = —1
and ¢ = 0, which are the two cases of greatest practical interest).
Approximation error plots for some values of g were presented
in [22].

Substituting the approximations (64) and (63) into (53) yields
the following approximation for the SNR of the CHO when
combined with an unregularized Fisher reconstructor

SNRZyo p ~ X' AMHOT(T ACT2OT 4 10, ) ' AU+ X
(65)

5) Channels With Disjoint Passbands: The CHO filters are
sometimes assumed to be bandpass filters with disjoint pass-
bands. In that case, the vectors £”* have disjoint nonzero entries
and the M x M matrix on the right-hand side of (64) is diag-
onal, so we have

[A0x] = \/2_ S o

P keT,,

[T’_/VX(IH’I)T} _— Z i

mm np keT,,
where
< (1 $(142
B 2 () X AT, gy 2 P AT

T = {k : t}* # 0} is the passband of the mth filter and “*”
denotes complex conjugate.

If we furthermore combine the assumption of disjoint pass-
bands with the internal noise model (49), the covariance II;, ¢
becomes diagonal (to within approximation (64)) and the model
(49) coincides with the one proposed in [16]. Under these as-
sumptions the SNR approximation in (65) simplifies to

M
1 |Zke7’m P
1+ cine oy ZkeTm -

We now examine the conditions under which the approximate
SNR in (66) can reach the SNR upper bound in (50).

6) Achievability of the Optimal SNR: To determine how
closely the approximate SNR in (66) can approach the SNR
upper bound, define vectors 4™ and v"" with elements

|2
(66)

SNR&y0.r ~ SNR} £

upt £ Xk}‘llcﬂl{ke?’m}v
v’rk'n, é t’]r:]X](Cq—i—l/Z)

respectively. Then, rewriting (66) and using Cauchy’s inequality
yields

M M M
! (w0

L Cine 2= [lo™|?

M

1 m||2
>

c:
int m=1

1 .
= X [* Ak
1+Cint kEZT| |

1 .
PILVIRE
1+ Cint k

SNR7,.
1 + Cint

SNR? =

IN

IN

1

67
1+ Cint ( )

[ Ff. =

Q
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where 7 = UM_, T, denotes the combined passband of all M
channels. If the combined passband 7" does not contain all of the
signal energy, then the SNR will be strictly less than the optimal
SNR. This suboptimality is expected due to the dimensionality
decrease caused by the channels.

Is there an unregularized Fisher reconstructor Z, for which
the upper bound in (67) can be achieved? Suppose that each
channel filter has a flat passband, i.e., t]' = LikeT,}- Then,
there are two obvious cases where the SNR upper bound in (67)
is achieved, as can be verified by substitution or by using the
requirement ™ < v™ Vm.

e [If the X}’s are constant over each passband, then ¢ = 0
(the unfiltered backprojector) will be optimal.

o Ifthe \;’s are also constant over each passband, then any
q € R will be optimal.

In practice, it may be unlikely that either the \j,’s or the X},’s are
exactly uniform over each channel’s passband, but if the pass-
bands are reasonably narrow, then it is likely that these spectra
will be approximately uniform over each passband. So to within
the accuracy of the approximations considered above, one or
more of these unregularized reconstructors will nearly achieve
the highest SNR obtainable for the given CHO channels and in-
ternal noise model. Once again, regularization does not seem to
play a crucial role, even for the CHO.

7) CHO and QPWLS Reconstructors: The analysis in the
previous section showed some situations in which one or more
unregularized reconstructors allow the CHO to achieve (approx-
imately) optimal SNR in the detection task at hand. We next
examine the QPWLS family of regularized reconstructors, de-
scribed in Section II-C, to explore how closely the CHO can ap-
proach the optimal SNR with a practical regularized reconstruc-
tion method and to examine the optimal choice of regularizer.

The general form of a QPWLS reconstructor is given in (15)
and the commonly used weighting matrix W' is the one corre-
sponding to MAP estimation, i.e., W = (Cov{y| f = f}) ! =
I~ ', where ]_‘ is the unconditional mean of the object. For this
W, the reconstructor in (15) becomes

Z=(F+R)'ATT . (68)
Note that the QPWLS reconstructor in (68) is the same as the
Fisher reconstructor (29) with ¢ = —1 only if K¢ = 0, i.e., only
if there is no object variability. We assume throughout that the
regularization operator R is chosen such that F + R is positive
definite. We would like to design R to optimize CHO detection
performance in the QPWLS-reconstructed images.

To analyze CHO performance with QPWLS reconstruction,
we assume that both F and R are diagonalized locally by a
common operator (the Fourier operator U ). Specifically, we use
(59), (60), (62) and also assume that

R~U'QU (69)

where @ £ diag{wi, k = 1,... ,mp}. The real, nonnega-
tive wy, s contain the local frequency response of the regularizer
around the location of f_. Approximations of simultaneous di-
agonalization of F and R have been used by other investigators
to analyze observer performance with penalized-likelihood re-
construction [20], [23], [24].
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Substituting the QPWLS reconstructor (68) and the emission

tomography measurement moments (6) and (25) into the SNR
of the CHO from (53) yields

where

c2CH'FT,
I 2 CH Y (F+FK;F)YH'C + Iy

andH2 F+R. Similarly to Section III-D4, we use the local
Fourier approximations (59), (60), and (69) to obtain

(71)
(72)

where H 2 A + Q = diag{\y + wi. k = 1,. .. ,Mp . Substi-
tuting (71) and (72) into (70) yields the following approxima-
tion for the SNR of the CHO when combined with a QPWLS
reconstructor:

SNREno.qpwrs & X'AH™'T
(T'H (A + A2N)H 'T + L, )
T'"H'AX. (73)

8) Channels With Disjoint Passbands: Similarly to Sec-
tion III-D5, when the CHO channels have disjoint frequency
responses, the M x M matrix on the right-hand side of (72)
becomes diagonal. We assume that its diagonal elements are
nonzero, i.e., the system has some nonzero \j for each pass-
band. (If not, the noninformative passband could be eliminated.)

As in Section III-D5, we combine the assumption of disjoint
passbands with the internal noise model (49). Then, the approx-
imate SNR expression in (73) becomes

M
1 |Eke']’m ¢k|2

1+ cint oo ZkeTm i,
(74)

SNR%}HO,QPVVLS ~ SNR; 2

where

Ak

A
/\k+wk/ k

A m\*
or = Xi(17") SO+ o)
We now examine the conditions under which the approximate
SNR in (74) can reach the SNR upper bound in (50).

9) Achievability of the Optimal SNR: To determine how
closely the approximate SNR in (74) can approach the SNR
upper bound, define vectors ™ and ¥ with elements

up £ ij\llg/Zl{keTm}v
’U;Cn 2 fzn)\k/j\i/2()\k + wk)

respectively. Then, rewriting (74) and using Cauchy’s inequality
yields

M m om
L [(u™, v™) [

SNR2 =
27 1+ Cime = [l

=1
M

1 m||2
e Ol

C:
1nt m=1

1 .
= Xie|* Ak
1+ Cint l; | |

1 .
X2\
1+Cint;| k| k

B SNR,. 75)
N 1 + Cint ’

IN

IN

1
1+ Cint

-

}sffs

Q

Once again, if the combined passband 7 = UM_, 7,, does not
contain all of the signal energy, then the SNR will be strictly
less than the optimal SNR.

The intermediate inequality in (75) becomes an equality if
u™ o v"Vm. Suppose that each channel filter is an ideal band-
pass filter over some frequency band, i.e., ¢} = l(zer7,, - Then,
for A\, # 0, X} # 0, the intermediate upper bound in (75) is
achieved for example when

(76)

where the constant & # 0 can be chosen arbitrarily. Using o 2
2maxy, XA, would keep the wy,’s positive. To within approxi-
mations (59), (60), and (69), the local frequency response in (76)
corresponds to the following nonnegative definite regularizer

R =T +FK;)(U "diag{X}~U)-F. (77)

The R in (77) usually has a high-pass characteristic, so it could
be construed as a regularization operator, but it is quite different
from standard forms of regularization studied in the literature.
Furthermore, substituting the R from (77) into the QPWLS re-
constructor in (68) yields the estimator

f= é(u_ldiag{X}u)A'ﬂ‘ly. (78)

Therefore, this “optimal” choice of R results in an unregularized
estimator that is simply a weighted backprojection followed by
the application of a “matched” filter (convolution with f.). This
agrees with the conclusion from Section III-D6 that regulariza-
tion is not essential for the CHO, if the passbands of the CHO
channels are flat, nonoverlapping and with internal noise covari-
ance of the form (49).

Similarly to Section III-D6, a degenerate case occurs when
the channel passbands are flat and the mean signal spectrum
{ X%}, system spectrum { )\ }, and object power spectrum {vy, }
are all constant over each channel’s passband. Then, the first
upper bound in (75) is achieved for any choice of regularization
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{wp} that is also constant over each passband, including wy, =
0. Once again, under the internal noise model (49), the choice
of regularization is not important in this detection task if there is
little within-passband variation of the mean signal spectrum, the
system spectrum, the object power spectrum, and/or the channel
response itself.

10) CHO and QPWLS With a Roughness Penalty: In the
previous section, where we placed no constraints on the form
of the regularizer R, we ended up with an “optimal” R that
yielded the unregularized estimator in (78). We now constrain
the regularizer to the commonly used form of a quadratic rough-
ness penalty. In this case, the regularization operator R in (14)
is such that

Np

R(H=BDY (i —fr)’

J=1keN]

(79)

where f; is the jth sample of the object f, N a neighborhood
of pixels around the jth pixel, and 8 > 0 a regularization
parameter. A regularization term of the form (79) penalizes
differences between neighboring image pixels, thus favoring
smoother images. For simplicity, we consider here a first-order
neighborhood /\/J consisting of the four closest (top, bottom,
left and right) neighboring pixels. The only free parameter in
the regularizer (79) is, thus, the regularization parameter 3.

We now provide an example of how [ affects the SNR of
the CHO with overlapping or nonoverlapping passbands in the
presence of internal noise. We consider the case where A cor-
responds to a 2-D PET system model with the characteristics
of a CTI ECAT 931 scanner (matrix size 128 x 128, pixel size
4.7 mm, 192 radial samples with 3.1 mm spacing, 160 pro-
jection angles over 180°), generated by the ASPIRE software
package [46]. We assume that the target signal f, has a known
Gaussian shape with full-width at half-maximum (FWHM) 4
pixels and amplitude 0.1, the background f, has a Gaussian au-
tocorrelation function with FWHM 8 pixels and standard devia-
tion 0.05, and the mean background f, is the anthropomorphic
phantom shown in Fig. 2, which corresponds to a slice of the
Zubal phantom [47]. We determine measurement variance by
assuming a total of 5 x 10° counts.

We consider three different models for the CHO channels:
Nonoverlapping square channels with M = 4 (SQR) and
overlapping difference-of-Gaussians channels with M = 3
(§-DOG) and M = 10 (D-DOG), as defined by Abbey et al.
[16]. Fig. 3 shows plots of the SNR for QPWLS reconstruction
with the roughness penalty in (79) and various values of 5. The
SNR is plotted for each of the three channel sets mentioned
above and internal noise covariance

I, = 021 (80)

with 2 = 0.005. All the SNR values in these plots are normal-
ized with respect to the ideal SNR in (26). The abscissa of the
plots represents the resolution of the QPWLS reconstruction,
defined as the FWHM (in pixels) of the reconstructed image
when the true object is a noiseless impulse. This FWHM is a
measure of the amount of smoothing imposed by QPWLS. The
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Fig. 2. Mean background and profile through the mean background with the
target signal superimposed. (a) Mean background and (b) profile with signal.

resolution equals 1 pixel for 5 = 0, which corresponds to un-
regularized WLS, and it increases as (3 increases.

For all three channel sets, Fig. 3 shows a sharp SNR drop for
very large amounts of regularization. Similar behavior was re-
ported by Qi [24], who also shows that this SNR drop occurs
only when internal observer noise is present. Apparently, in-
ternal noise is an important factor to consider when optimizing
regularization methods with respect to detectability.

However, no similar drop in SNR occurs for very small
amounts of regularization. In Fig. 3, for all three channel sets
and with internal noise present, the peak SNR achieved by
QPWLS is only slightly higher than the SNR achieved by
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Fig. 3. SNR of CHO versus QPWLS reconstruction resolution for three
different channel sets. The exact and approximate SNR is computed from
(70) and (73), respectively. All SNR values are normalized with respect to the
upper bound (ideal SNR for the internal-noise-free observer) in (26). (a) SQR
channels, (b) S-DOG channels, and (¢c) D-DOG channels.

unregularized WLS (3 = 0). We also investigated different
amounts of imaging noise and/or background variability and
obtained very similar results (not shown here). That is, unregu-
larized WLS led to SNR very close to the peak SNR attainable
with QPWLS and the roughness penalty in (79). Once again, we
have a situation in which regularization is of minimal benefit
in the known-location detection task—even with a CHO model
that includes overlapping channel passbands and internal noise.

Fig. 3 also compares the exact SNR, computed from (70),
to the approximate SNR, computed from (73). The agreement
between the two confirms the accuracy of our Fourier-domain
approximations.

IV. CONCLUSION

Our analysis shows that, for the task of known-location signal
detection, there are unregularized reconstruction methods that
allow several well-known observer models to achieve exactly
the optimal SNR attainable with any combination of a linear ob-
server and linear reconstructor. As mentioned in Section II-C,
several popular reconstruction methods can be approximated
as linear, especially around the signal location, where the non-
negativity constraint can be assumed inactive. It is plausible
that a nonlinear reconstructor could improve the SNR. In the
SKE tasks, however, the ideal linear SNR in (24), which can be
achieved with unregularized reconstruction, is the overall ideal
SNR and no nonlinear reconstruction method can improve it.
This also holds approximately in the case of weak, spatially lo-
calized signals, whose shape variability can be assumed small
in comparison to the background variability.

Even for the CHO with internal noise, there are situations
where unregularized reconstruction leads to SNR very close to
the peak SNR attainable with the given channels and internal
noise level. For the proportional internal covariance model (49),
we showed this analytically in Sections III-D6 and III-D9. For
the constant internal covariance model (80), we presented an ex-
ample in Section III-D10. The appropriate internal noise model
would have to be determined from experiments with human ob-
servers. For the models considered here, we conclude that op-
timizing regularized reconstruction does not lead to any sig-
nifi-cant improvement of SNR performance in comparison to
unregularized reconstruction in known-location detection tasks.
This conclusion concurs with experimental results showing that
the postsmoothing of noisy images has little benefit for human
observers as far as performance in a known-location task is con-
cerned [16].

It is interesting to contrast this to the results of Qi and Leahy,
who analyzed the effect of regularization on the contrast-to
noise ratio (CNR) [43]. As opposed to the SNR, the CNR
exhibits a pronounced peak for an intermediate amount of
regularization. This may be explained by the fact that the CNR
is equivalent to the SNR of an observer that utilizes an impulse
as its template. Since this template performs no smoothing of its
own, the optimal reconstructor must perform some smoothing.
On the other hand, the templates of the observers that we
considered here are all weighted versions of the mean signal f
(typically not an impulse), so they do perform some smoothing
on the reconstructed image and, as a result, there is little benefit
in terms of the SNR from additional smoothing performed by
the reconstructor.
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The relatively small significance of regularization throughout
our analysis indicates that detection performance in tasks where
the target signal location is known exactly is of limited use as
a criterion for optimizing the free parameters of regularized
reconstruction methods. Furthermore, the finding that some
form or another of unfiltered backprojection is an optimal re-
constructor for several of the observer models considered here,
shows that resolution is not an essential image quality as far
as known-location detectability is concerned. Since known-lo-
cation tasks are easy enough to perform optimally with poor
resolution, it is important to examine whether there are more
complicated tasks where regularization has a more significant
effect. As discussed in detail in [48], regularization is more
important for channelized observers that cannot prewhiten than
it is for the CHO. Some preliminary experimental results indi-
cate that humans may be less able to prewhiten in tasks where
the location of the signal is unknown [49], [50]. The analysis
of regularized image reconstruction methods with respect to
unknown-location detectability is a promising direction that
recent work is in the process of exploring [51]-[53].
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