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Abstract—Detection of a finite-state Markov signal in additive
white Gaussian noise (AWGN) can be done in an intuitive manner
by applying an appropriate filter and using an energy detector.
One might not expect this heuristic approach to signal detection
to be optimal. However, in this paper, we show that for a certain
type of finite-state Markov signal, namely, the discrete-time (DT)
random telegraph, this filtered energy detector is approximately
optimal under the following conditions of: symmetric transition
probabilities, low signal-to-noise ratio (SNR), long observation
time, and small probability of transition between two consecutive
time instances. When these last three conditions hold, but the
transition probabilities are not symmetric, we show that a variant
of the filtered energy detector is approximately optimal. It is also
shown, under low SNR conditions, that the likelihood ratio test
(LRT) for a finite-state DT Markov signal in AWGN reduces to
the matched filter statistic with the minimum mean-squared-error
(MMSE) predictor signal values used in place of the known signal
values. Using this result, we propose a general methodology for ob-
taining an approximation to the LRT of a finite-state DT Markov
signal in AWGN. Specifically, instead of the conditional mean (also
MMSE) estimators, affine estimators with lowest mean squared
error are used. This work is relevant to magnetic resonance force
microscopy, an emerging technology that uses ultrasensitive force
sensing to detect magnetic resonance. Sensitivity down to the
single spin level was demonstrated in a recent experiment.

Index Terms—Approximation methods, likelihood ratio test,
magnetic resonance force microscopy, Markov processes, signal
detection.

I. INTRODUCTION

DETECTION of a finite-state discrete-time (DT) Markov
signal in additive white Gaussian noise (AWGN) is wide-

spread in many different fields. Detection of a random telegraph
signal is used in the study of particle tunnelling [1] and in the
study of low-frequency noise characteristics of light-emitting
diodes [2]. Markov chains are used in [3] for the purpose of
statistical network anomaly detection and in [4] for the purpose
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of land mine detection. The focus application of this paper
is magnetic resonance force microscopy (MRFM), which is
a promising technique for three-dimensional imaging on the
nanometer scale. Recent experiments at IBM have shown that
MRFM is capable of detecting and localizing individual elec-
tron spins associated with subsurface atomic defects in silicon
dioxide [5]. This single-spin detection milestone represents
a factor of 10 improvement over conventional electron spin
resonance detection and was achieved using energy detection
methods similar to those described in this paper. Other recent
MRFM experiments have demonstrated the ability to detect and
manipulate naturally occurring statistical fluctuations in small
spin ensembles [6]. With further development, single-spin
MRFM may eventually lead to atomic-resolution magnetic
resonance imaging and find application in quantum computing
experiments [7].

The recursive structure of the likelihood ratio test (LRT) for
a finite-state DT Markov signal is given in [8]. In this paper, we
specialize the noise to AWGN and derive a new interpretation of
the optimal LRT for a finite-state DT Markov signal under low
signal-to-noise ratio (SNR) conditions. It is shown that, under
low SNR, the LRT reduces to the matched filter statistic with the
minimum mean-squared-error (MMSE) predictor values used
in place of the known signal values. Current single spin ex-
periments operate under conditions of very low SNR; conse-
quently, we are interested in the performance of detectors in
the regime of low SNR and long observation time. Our results
are applicable to [1]–[4] under conditions of low SNR. When
applied to the LRT of the DT random telegraph, the result is
an estimator-correlator detector. This estimator-correlator struc-
ture appears in the LRT of problems whose probability density
functions have an exponential form [9]. In particular, it applies
when detecting a Gaussian signal in AWGN. This first result has
a continuous-time (CT) analog: in CT, the LRT for detecting
a random signal in AWGN has the form of the matched filter
statistic with the MMSE predictor used in place of the known
signal values. The first difference between CT and DT is that the
CT form is exact under all SNR conditions [10]–[12]. There is
another difference: in the CT form, the square of the conditional
expectation of the random process is used instead of the condi-
tional expectation of the squared value of the random process.

The second result is that, when used to detect the DT random
telegraph in AWGN, the filtered energy (FE) detector is approxi-
mately optimal under the following four conditions: symmetric
transition probabilities, low SNR, long observation time, and
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a small probability of transition between two consecutive in-
stances. The FE detector is no longer approximately optimal
when the transition probabilities are asymmetric. We extend the
FE detector to a hybrid second-order detector which combines
the filtered energy, amplitude, and energy statistics. It is shown
that the hybrid detector is approximately optimal for the DT
random telegraph model under only the last three conditions.
This is an intuitively pleasing result, as the idea of performing
detection of a finite-state Markov signal by filtering the noisy
observations and applying an energy detector is one that comes
naturally.

Third, the first result is used to obtain an approximation to the
LRT of a general finite-state DT Markov signal in AWGN. Sub-
optimal affine estimators of the random process and the squared
value of the random process are used instead of the optimal
conditional mean (also MMSE) estimators. When this general
methodology is applied to the LRT of the DT random telegraph
in AWGN, an approximation is obtained that closely matches
the result that was obtained using a straightforward analysis. It
has been noted in [13] that linear MMSE estimates of the CT
symmetric random telegraph process are as efficient as the non-
linear MMSE estimates as the SNR . We also present simu-
lations that suggest the optimality of a similar approximation for
the DT random walk process. It would be interesting to inves-
tigate whether affine MMSE estimators are as efficient as non-
linear MMSE estimators for a general finite-state DT Markov
signal in AWGN as the SNR .

The outline of this paper is as follows. In Section II, we briefly
review the basic principles of MRFM. This is followed by a
discussion in Section III of two finite-state DT Markov signal
models: the random telegraph and random walk models. In Sec-
tion IV, we describe existing detectors that are commonly used,
namely, the amplitude and filtered energy detectors, and com-
pare them to the optimal detectors. We derive a new interpre-
tation of the LRT under low SNR conditions. As well, the FE
detector is extended to a hybrid version, and a general method-
ology to obtain an approximation to the LRT of a finite-state DT
Markov process in AWGN is presented. Simulation results are
presented in Section V.

II. BASIC PRINCIPLES OF MRFM SPIN DETECTION

MRFM experiments, in general, involve the measurement of
magnetic force between a submicrometer-size magnetic tip and
spins in a sample. The details of spin manipulation and signal
detection depend on the exact MRFM protocol used. One par-
ticularly successful protocol is called OSCAR, which stands
for oscillating cantilever-driven adiabatic reversal [14], [15].
A variation of this protocol, “interrupted OSCAR” (iOSCAR),
was used in recent single spin experiments [5].

A schematic diagram of an OSCAR-type MRFM experiment
is shown in Fig. 1. As shown in the figure, a submicrometer
ferromagnet is placed on the tip of a cantilever and positioned
close to an unpaired electron spin contained within the sample.
An applied radio-frequency (RF) field serves to induce magnetic
resonance of the spin when the condition is met.
Here, is the magnitude of the magnetic field from the tip,
plus any externally applied static field that may be present. The

Fig. 1. Schematic of an OSCAR-type MRFM experiment.

constant s is the gyromagnetic ratio, and
is the (single) frequency of the applied RF field. Because the

magnetic field emanating from the tip is highly inhomogeneous,
magnetic resonance is confined spatially to a thin bowl-shaped
region called the “resonant slice.”

In an OSCAR experiment, a gain-controlled positive feed-
back loop is used to oscillate the cantilever with a preset ampli-
tude (typically 10–20 nm). The cantilever oscillation frequency
is determined by the cantilever itself (specifically, by the funda-
mental flexural mode eigenfrequency), as well as by tip-sample
interactions. As the tip of the cantilever vibrates, the resonant
slice passes back and forth through the spin and, as a result, the
spin direction is cyclically inverted due to an effect called adia-
batic rapid passage [14], [16], [17]. The cyclic inversion is syn-
chronous with the cantilever motion and affects the cantilever
dynamics by slightly shifting the cantilever resonant frequency.
The frequency shift depends on the angle of the spin with re-
spect to a vector called the “effective field in the rotating frame.”
See [15] and [16] for further details. The frequency shift can be
written as

(1)

where [15]. Here is the unper-
turbed cantilever frequency, is the gradient of the magnetic
field from the tip as measured at the spin location, is the mag-
netic moment of the spin, is the cantilever spring constant, and

is the peak amplitude of the cantilever vibration. The factor
represents the normalized projection of the spin in the di-

rection of the effective field.
There are several impediments to single spin detection.

First, because the force from a single spin is so tiny (a few
attonewtons), the maximum cantilever frequency shift is only
about one part per million for typical experimental parameters.
This small frequency shift must be detected in the presence of
the cantilever phase (or frequency) noise that originates from
cantilever thermal vibrations and sample-induced force fluc-
tuations. The resulting low SNR necessitates long integration
times for signal detection. Second, the detection is complicated
by environmental disturbance to the spin (i.e., relaxation ef-
fects) that can randomly flip the spin orientation and reverse
the signal polarity during the signal integration time. A low
operating temperature, on the order of 1 K, can help reduce
both the cantilever thermal excitations and the random spin
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flip rate. Nevertheless, the signal processing methodology must
take these effects into account.

We consider two models for the spin behavior in the presence
of environmental disturbances. In a quantum mechanical mea-
surement model, the spin is always found to be either aligned or
anti-aligned with the effective field, so that . Thus
the frequency shift signal has only two levels: ,
and the time sequence of the frequency shift is a random tele-
graph signal with a transition rate that depends on the spin relax-
ation rate. In a classical measurement model (which we consider
for the sake of completeness), can take arbitrary values be-
tween 1 and 1. As a result of environmental disturbance,
will be uniformly distributed between and .
For this case, a bounded random walk model is appropriate.
Recent results strongly favor the random telegraph model [18].
Other publications of interest include [19] and [20].

III. MRFM SIGNAL MODELS

A. Model 1: Discrete-Time Random Telegraph Model

In the quantum measurement model, the frequency shift is
characterized by random transitions between two discrete levels.
The transition times are taken to be Poisson distributed [18].
Denote the DT random telegraph signal by , where
are the sampling times, and is the sampling time interval. In
this paper, a Markovian process with a finite number of states
will have a state space denoted by , where

is the number of states. Let the state space of the DT random
telegraph be ; it has states and we shall take ,

, where is the amplitude of the random telegraph (
corresponds to for the case of an MRFM signal). As an
initial condition, is equally likely to be either . Then, a
probability transition matrix can be associated with such
that the th value of equals for

, , and . Assume that has the form

(2)

where , . If , we say that the transition probabil-
ities are symmetric, whereas if , we shall say that they are
asymmetric. Define the signal vector , the
noise vector , and the observation vector

, where the superscript denotes the
transpose operator, and is the number of observations. The

s are modeled as independent identically distributed Gaussian
random variables (r.v.) with zero mean and variance . The de-
tection problem is then to decide between

spin absent

spin present (3)

Let be the density of induced under hypothesis for
,1. Similarly, let and denote the expectation and

variance respectively under hypothesis for .

In this paper, we shall define the SNR of a finite-state DT
Markov process in AWGN as

SNR

(4)

Note that the above definition is a function of if the random
process is not wide-sense stationary. In that case, we shall
take the SNR to be the steady-state value obtained by letting

. Then, using (4), the SNR of the DT random telegraph
process in AWGN is

SNR (5)

where , , and
. Note that , implies that .

The parameter indicates the mismatch between the transi-
tion probabilities and . The symmetric case when
results in . For the DT random telegraph,

. So implies that the DT random tele-
graph is zero mean. The parameter is the ratio of the steady-
state variance of the random telegraph process to the noise
variance.

Definition (4) is motivated by [21, (3)] with ,
which is related to the error exponent of the optimum de-
tector in a binary hypothesis test. See [21] and [22] for more
details. The SNR in decibels is defined in the usual way as
SNRdB SNR.

Reference [5] uses another definition of SNR. Let
, , be the mean-corrected version of . The 3 dB

bandwidth of the random process is

(6)

In the symmetric case when and , (6) is approxi-
mately 2 1 . The 3 dB bandwidth is then proportional to
the mean number of transitions per second, which is 1 .
The definition of SNR used in [5] is

SNR (7)

Under definition (7), the SNR in the single electron spin exper-
iment was reported to be 6.7 dB [5]. In this paper, we shall
use the SNR definition of (5) for the DT random telegraph.
Under symmetric transition probabilities and , the
two SNRs are related as follows: SNR SNR . The con-
dition of low SNR for the DT random telegraph will be taken to
mean .

Examples of noiseless and noisy random telegraph signals are
given in Fig. 2.
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Fig. 2. (a) Noiseless random telegraph signal with symmetric transition probabilities p = q = 0:98. (b) Noisy version of (a) at SNR = 7:09 dB. (c) Noiseless
random telegraph signal with asymmetric transition probabilities p = 0:98, q = 0:6. (d) Noisy version of (c) at SNR = 13:9 dB.

B. Model 2: Discrete-Time Random Walk Model

In the classical spin detection model, the frequency shift
signal is well approximated by a one dimensional random walk
confined to the interval , where for
the case of a MRFM signal. We discretize into (2 1) states
using a step size of , where and , and define
to be the random walk restricted to the discretized ; we shall
refer to this model as the DT random walk model. The state
space of the DT random walk will then have
states, where for .
Associate with the probability transition matrix , so that,
as before, the th element of is
for , , and . is defined such that,
at each time step, changes by either . This implies that

is a tridiagonal matrix. We assume reflecting boundary
conditions, and is equally likely to be either . The initial
condition on was arbitrarily chosen. The regime of interest
that we will focus on is large , and so the effect of the initial
condition will not be significant.

The detection problem is now to test (3) when is modeled by
a random walk. Note that the DT random walk model can almost
be regarded as a multistate generalization of the DT random
telegraph model. There are, however, important differences. The
DT random walk process cannot remain in the same state for
two consecutive time instances. In contrast, it is possible for the
DT random telegraph process to do so. Additionally, the DT
random walk process has reflecting boundary conditions. The
DT random telegraph process does not have this. In the limit
as , , the random walk converges to Brownian
motion over the interval [23].

Analogous to the DT random telegraph, the condition of low
SNR for the DT random walk will be taken to mean
for . An example of a noiseless and noisy random

walk signal is given in Fig. 3, where, at each state, a change of
is equally likely.

IV. DETECTION STRATEGIES

The detectors considered here can be placed into three cat-
egories: versions of existing detectors that are currently in use
for MRFM, LRTs, and approximations to the LRT. The LRT is
a most powerful test that satisfies the Neyman–Pearson crite-
rion: it maximizes the probability of detection subject to a
constraint on the probability of false alarm [24], which
is set by the user. Consequently, it can be used as a bench-
mark with which to compare the other detectors. When the ini-
tial state value, the random transition times, and all subsequent
state values are known, the optimal LRT is the matched filter,
called the omniscient matched filter (MF) in this paper. Al-
though unimplementable, the MF detector provides an absolute
upper bound when comparing the various detectors’ receiver op-
erating characteristic (ROC) curves.

A. Amplitude, Energy, Filtered Energy Detectors

The DT amplitude detector is

(8)

where is set to satisfy the constraint on . This is the optimal
test under the assumption that is the sum of an unknown con-
stant and AWGN. This assumption would be true if there were
no random spin flips. However, as the number of random transi-
tions in increases, the performance of the amplitude detector
degrades. An intuitive explanation can be obtained by consid-
ering the detection of the DT random telegraph process and
omitting the absolute value bars in the amplitude detector. Under
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Fig. 3. (a) Noiseless random walk signal with 5 levels. (b) Noisy version of (a) at SNR = �7:33 dB.

, . If for ,
. In contrast, . However, if

is equally likely to be , then , which is the
same value as . In this case, it would be harder to dis-
tinguish between the two hypotheses, as the test statistic has the
same expected value under both hypotheses.

An alternative test statistic is the DT signal energy, i.e., the
sum of the squares of the instead of the magnitude of the
sum in (8). As the signal and noise are assumed to be indepen-
dent, under hypothesis , one would expect to have a higher
energy on average than under hypothesis . This can be reli-
ably detected under a sufficiently high SNR. A natural improve-
ment to the energy detector is to reject out-of-band noise by pre-
filtering over the signal passband. If the signal is baseband,
a low-pass filter (LPF) is appropriate. In particular, one might
use a simple first-order single-pole filter given by

(9)

where we require for stability [25]. The time constant
dictates the bandwidth of the LPF. If is the desired 3

dB bandwidth of the filter, one should set

(10)

The 3 dB bandwidth used depends on the bandwidth of the
random process . For example, the 3 dB bandwidth of the
DT random telegraph is given by (6). Suppose we have sym-
metric transition probabilities. The CT random telegraph model
is typically characterized by the rate parameter , which corre-
sponds to the mean number of transitions per second. One can
equate the mean number of transitions per second in both DT
and CT models to obtain

(11)

Since , we require in order to use (11). In
practice, (or equivalently ) is only approximately known to
the experimenter. As a result, a bank of LPFs with different s
is used to perform detection [5].

Let “ ” be the convolution operator, so that is
defined to be . The energy and filtered energy
detector can be expressed as

(12)

where is taken to be the th value of . For the energy
detector, is taken to be the unit impulse function , while for
the filtered energy detector , the impulse response of

in (9).
Note that the computational complexity for the amplitude,

filtered energy, and energy detectors is .

B. Recursive Equations for the Optimal LRT Detector of a
General Finite-State DT Markov Signal in AWGN

In this section, we shall consider the detection of a general
finite-state DT Markov process in AWGN and derive the LRT.
The formulas that provide an initial starting point are given in
[8]. We shall use the notation in [8]: while it is slightly different,
the differences are superficial.

The hypothesis test that we consider is (3), where the DT
Markov process has possible states. Let , be the
probability transition matrix associated with at the th time
step, so that . The noise is
denoted by and is independent Gaussian r.v. with mean zero
and variance , .

Let for . We shall define ,
and , as

(13)
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Define , as

otherwise
(14)

Proposition 1: , : Examine the th ele-
ment of . By the Markov assumption

...

th column of

Proposition 2: , : Using [8, (39)]

Proposition 2 is derived in [8]. From Propositions 1 and 2

(15)

This result is incorrectly given in [8, (38)].
Define , i.e.,

a Gaussian r.v. with mean and variance . Let ,
, denote the initial probability density of

and . Define

(16)

For a vector , is defined to be the -by- matrix
with along its main diagonal. Since ,
(15) can be written as

(17)

If we define , the log LRT for (3) is given by

(18)

Equations (17) and (18) are a recursive way to compute the LRT
for a general finite-state DT Markov signal in AWGN. See [22]
for more details; note that this result does not appear in [8]. We
see that the running time of (17) and (18) is of order
for general matrices . If each were tridiagonal, for ex-
ample, the running time would be .

The detection test would then be

(19)

One can also take the log of both sides of (19). As the log func-
tion is strictly monotone increasing, the threshold would be al-
tered but the performance of the detector would be unaffected.
The threshold can be determined via simulation, if all of the
parameters of the signal and noise models were known. The
ROC curve could be generated, and the value of that cor-
responded to the desired could be obtained. Alternatively,
the ROC curve could be generated via experimentation and the
threshold selected in a similar fashion.

Define the transition likelihood ratio , , as

. Note that

(20)

In [9], , is given when
belongs to a class of exponential functions of the form

for functions
which give rise to a valid density. The expression for

involves the conditional mean estimate

(21)

and the function

(22)

For the hypothesis testing problem considered here

(23)

where . It is possible to apply Propo-
sitions 1 and 2 to obtain a recursive equation for and solve
for a closed-form expression. It would be difficult, however, to
evaluate (22).

C. Approximation of the LRT Under Low SNR

Let us consider the log LRT under low SNR. Each transition
likelihood ratio can be simplified as follows: for

(24)

where the approximation for small was used. Next,
we shall use the approximation for small . This
is justified if the SNR is low so that for all

. So

(25)
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The same approximation can be applied to ,
so that

(26)

Define the conditional mean (also MMSE) predictor of
under as follows: for and

. Use a similar notation for , so that
for and . Using (20), (25), and (26), the log
LRT can be approximately written under low SNR as

(27)

The right-hand side (RHS) of (27) is similar to the matched filter
statistic, but with the MMSE predictors of and used instead
of the known values. Note that the conditional mean estimate of

used in (27) is different from that defined in (21). Schwartz’s
version in (21) includes the observation , whereas ours does
not. This makes our estimate of a one-step predictor.

In [8], it is shown that in detecting a finite-state DT Markov
signal, the LRT is in general not expressible as the known form
LRT with an estimator of used, i.e., the RHS of (27) but with

used instead of for .

D. Comparison to the CT Analog

Consider the CT analog of the hypothesis test problem (3)
when the noise variances are all equal. One has to decide
between the following two hypotheses:

(28)

Define . Here, is a random process (not nec-
essarily finite state) such that and is
AWGN with

(29)

The LRT is given by [10]–[12]

(30)

where is the conditional mean
estimate under hypothesis given the previous observations,
and the first integral in (30) is an Itô stochastic integral.

There are three noteworthy differences between (27) and (30).
First, (27) approximately holds only under low SNR, whereas
(30) is exact under all SNR conditions. Secondly, is not
constrained to be a Markov process, whereas its DT counterpart

is Markovian. Lastly, in the second term of (27), the expected
value of conditioned on the past observations is used. On the
other hand, the square of the expected value of conditioned
on the past observations is used in the CT version. In general,
for , . Indeed, for an r.v.

(31)

By the Chebyshev inequality, for ,
. So (31) holds iff is some value with

probability (w.p.) 1. As a result
iff is a function of w.p. 1.

E. Application to the Detection of the DT Random Telegraph
Process

Under the regime of low SNR, long observation time
, and (the probability of transition between

consecutive samples is small), the second-order expansion of
is approximately equal to the hybrid detector with

the test statistic

(32)

where the constants and
are given in (59) of the Appendix and . There-
fore, in the aforementioned regime, one expects the hybrid de-
tector to have performance similar to the optimal LRT. When

, the second-order expansion of the LRT is approximately
equal to the filtered energy detector, which is given by (12) with

and . See the Appendix for more details.
The previous result did not make use of the approximation

under low SNR obtained in Section IV-C. Equation (27), how-
ever, provides a general approach to deriving an approximation
to the LRT for a finite-state DT Markov signal in AWGN. We
shall illustrate by deriving an approximation to the LRT for the
DT random telegraph using this general approach.

Let us specialize the result of Section IV-C to the DT random
telegraph processes, so that ,
and , . Since and

for , the second term of (27) will be a
constant and can be omitted. Then

(33)

under low SNR conditions. We see that the log LRT for the
random telegraph is an estimator-correlator detector. The esti-
mator-correlator structure is known to be optimal for detecting
Gaussian signals in AWGN [9].

Now, the conditional mean predictor ,
is a function of . Its exact form will be dictated by
the conditional probability mass function and will
be nonlinear in general. Suppose that we would like to find the
predictor of with smallest MSE that lies in the linear span
of . Let be this pre-
dictor. It is also known as the best affine estimator of given

. One can apply the projection theorem [26] to ob-
tain the well-known result that

(34)

for , where is
the covariance of the random vectors , under hypothesis
and is the covariance matrix of
under hypothesis . The MSE achieved with cannot be
smaller than the MSE achieved with , as the
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conditional mean achieves the smallest MSE out of all possible
estimators.

For , since is inde-
pendent of . As well,
and . Sub-
stituting these into (34) results in

(35)

It remains to compute the various quantities in (35). Recalling
that and

(36)

(37)

Using (36) and (37) in (35) and plugging the resulting expres-
sion of into (33), one obtains

(38)

and we shall take .
Unfortunately, (38) is not in a form that can be compared

to the approximation derived previously without the benefit of
(37). In order to do this, we have to explicitly evaluate (35).
As the inversion of a matrix without any special structure is
required, this will be difficult. Make the approximation that

(39)

This will be a good approximation when is large.
Moreover, since we are assuming a low SNR condition,

, so

(40)

With (39) and (40)

(41)

where .
As , as , and

. Apply these to (41); then, using the subsequent result
in (38)

(42)

(43)

(44)

The expressions (42)–(44) are similar to those in (49)–(51).

F. General Methodology for Obtaining an Approximation to
the LRT of a Finite State DT Markov Signal in AWGN Under
Low SNR

In the previous section, the affine predictor of , , with
the smallest MSE was used in place of the conditional mean

, , in order to obtain an approximation to the
LRT of the DT random telegraph. This was obtained by finding
the estimator of with smallest MSE that lay in the linear span
of . The best affine predictor of is neces-
sarily suboptimal, as the conditional mean achieves the lowest
MSE out of all estimators.

For the general case when the second term of (27) is present,
one could also find a suboptimal predictor of , , in terms
of the previous observations . Following the idea
with regard to , a suboptimal predictor can be obtained by
finding the estimator of with smallest MSE that lies in the
linear span of .

The suboptimal predictors of and can then be used
in (27).

V. SIMULATION RESULTS

The objective in this section is to compare the detection
methods discussed in the previous section. The class of LRT
detectors is optimal for their respective signal models and
provides a good comparison benchmark. Comparison of the
various detectors is done using 1) ROC curves, each of which
is a plot of versus , and 2) power curves, each of which
is a plot of versus SNR at a fixed . Recall that is the
probability of detection and is the probability of false alarm.
To generate each ROC curve, 20 simulations were generated.
Then, the average and the error bars of one standard deviation
were plotted. In a similar fashion, the data plotted in each
power curve are the average over the 20 simulations at each
SNR value, along with error bars of one standard deviation.

Some of the parameters used in the simulation of the DT
random telegraph and random walk models are as follows:

Nm , rad s , m .
The sampling period was ms, and signal durations of

s and s were used. The amplitude of the RF
field was mT. The performance of the detectors varies
as a function of ; in general, a larger results in better perfor-
mance. Values of used in iOSCAR MRFM experiments are
on the order of tens of hours [5]. Nevertheless, the comparative
results obtained from using the two values of above are rep-
resentative of larger values. Indeed, our approximations to the
optimal detectors improve with increased .

A. Discrete-Time Random Telegraph Model

First, consider the DT random telegraph. Fig. 4 depicts the
simulated ROC curves at SNR dB, s , and
with symmetric transition probabilities . With

ms, this results in . We examine the matched
filter, DT random telegraph LRT (RT-LRT), filtered energy, hy-
brid [given by (32)], amplitude, and unfiltered energy detectors.
The RT-LRT, filtered energy, and hybrid detector curves are vir-
tually identical, which is consistent with our analysis. The un-
filtered energy and amplitude detectors have performance that
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Fig. 4. Simulated ROC curves (P versus P ) for the DT random telegraph
model with symmetric transition probabilities at SNR = �34:3 dB, T = 60 s,
and � = 0:5 s for the omniscient matched filter, DT random telegraph LRT
(RT-LRT), filtered energy, hybrid, amplitude, and unfiltered energy detectors.
The RT-LRT is theoretically optimal.

Fig. 5. Simulated power curves (P versus SNR) for the DT random telegraph
model with P fixed at 0.1 and � = 0:5 s , T = 60 s. The RT-LRT is
theoretically optimal.

is poorer than the RT-LRT, as it should be since the RT-LRT
is the optimal detector. The unfiltered energy detector has the
worst performance out of the five detector methods considered.
Lastly, the omniscient MF detector has the best performance.

A power curve was generated over a range of SNR’s under
the same conditions as before with a fixed ; it is illus-
trated in Fig. 5. For spin detection, an acceptable range for
is on the order of 0.05 to 0.1. The RT-LRT, filtered energy, and
hybrid detector have similar performance from 25 to 55 dB.
With this particular value of and , the RT-LRT, filtered en-
ergy, and hybrid detector perform from 10 to 20 dB worse than
the MF detector. Although the amplitude detector has worse per-
formance than the RT-LRT and filtered energy detector, all three
have comparable performance at 55 dB.

Fig. 6. Simulated power curves for the DT random telegraph model with P

fixed at 0.1 and � = 0:5 s , T = 150 s. The RT-LRT is theoretically optimal.

Fig. 7. Simulated ROC curves for the DT random telegraph model
with asymmetric transition probabilities (p = 0:9998, q = 0:9992) at
SNR = �6:71 dB, T = 150 s. The RT-LRT is theoretically optimal.

Fig. 6 shows the power curves generated using the bigger
value of s. The RT-LRT, filtered energy, and hybrid
detectors have the same performance from 20 to 50 dB.
Note that the definition of SNR we use scales with .
As a result, a larger increases the SNR. It is intuitively
pleasing that the same SNR results in similar values in
Figs. 5 and 6.

The ROC and power curve simulations were repeated with
different values of , and the same relative performance was ob-
served. In the interest of space, however, they will not be shown.
Note that performance degrades as increases. From (11),
the probability of transition between consecutive time samples
is . A higher value of results in a higher prob-
ability of transition, which decreases performance.

In the second set of simulations, we investigate the case in
which the transition probabilities are asymmetric, i.e., .
Consider the scenario where , , and
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Fig. 8. Simulated power curves for the DT random telegraph model with P

fixed at 0.1, p = 0:9998, q = 0:9992, and T = 150 s. The RT-LRT is
theoretically optimal.

all of the other parameters values are unchanged. The ROC
curves for these parameter values are presented in Fig. 7.
There are noticeable differences between the curves of the
RT-LRT and filtered energy detectors. The hybrid detector’s
curve is slightly below that of the LRT, and it is better
than that of the filtered energy detector. In fact, the filtered
energy detector has worse performance than the amplitude
detector. An asymmetry in , leads to a nonzero mean signal,
which is why the amplitude detector’s performance improves.
Indeed, for the DT random telegraph model,

for the values of and used
here. Asymmetric transition probabilities can arise in some
situations, e.g., the feedback-cooling-of-spins MRFM protocol
proposed by Budakian [6].

Power curves from SNR to dB were generated
for the asymmetric case in Fig. 8. We used s for sim-
ulations of the asymmetric random telegraph model. A larger
value of is required when for the hybrid detector to be
a good approximation to the optimal LRT. It is important to re-
call that the hybrid detector given by (57) was derived for large

. An estimation of the error between (57) and the LRT of the
DT random telegraph has not been conducted. It is likely, how-
ever, that when , (57) is not as accurate as approximation
(53). The hybrid detector has better performance than the am-
plitude and filtered energy detectors. It has performance that is
comparable to the RT-LRT for lower SNR values.

B. Discrete-Time Random Walk Model

Recall that for the DT random walk model, is tridi-
agonal. For the simulations, a particular subset of tridiagonal
matrices was studied. Suppose for the moment that is even.
Recall that the random walk is confined to the interval

. Define the lower quartile transition probabilities
as , and the upper quartile transition probabilities as

, . Let be the th element of . Here, we
examine the performance of the detectors assuming the fol-
lowing reflecting boundary conditions: ,

for and , for .
The rest of is

(45)
Let be an matrix that looks like

. . .
. . .

. . .

where the unspecified parts of the matrix are taken to be all
zeros. In this section, the following subset of transition matrices
for the DT random walk was studied:

where . Note that since each row of a
probability transition matrix must sum to one, one has

and .
In the case of odd, the ranges for the indexes , would

change in an obvious way. When (or equivalently
), we say that the transition probabilities are sym-

metric, and if not, that they are asymmetric. The matched filter,
DT random walk LRT (RW-LRT), RT-LRT, filtered energy, am-
plitude, and unfiltered energy detectors were compared. In order
to run the RT-LRT in the case of the symmetric DT random
walk, an average autocorrelation function of the random walk
was empirically generated; then was selected (and choosing

) so that the autocorrelation function of the symmetric DT
random telegraph matched the empirical result. From this, the
optimal for the LPF of the filtered energy detector was also
obtained.

The ROC curves for two symmetric cases are illustrated in
Figs. 9 and 10. In the former, ,
while in the latter, and

. In both cases, the performance of the RW-LRT, RT-LRT,
and filtered energy detector are all approximately the same, i.e.,
the latter two detectors are nearly optimal. When the transition
probabilities of the DT random walk are asymmetric, however,
as in the case of Fig. 11, the DT random walk LRT is noticeably
better than the filtered energy detector.

VI. CONCLUSION AND DISCUSSION

We have developed and compared optimal and nonoptimal
detectors under two single spin MRFM signal models. Recent
experiments using the approximately optimal filtered energy
detector have resulted in the successful detection of a single
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Fig. 9. Simulated ROC curves for the DT symmetric random walk p =

p = p = p = 0:5 at SNR = �44:0 dB, T = 60 s for the matched
filter, RW-LRT, RT-LRT, filtered energy, amplitude, and unfiltered energy
detector. The RW-LRT is theoretically optimal.

Fig. 10. Simulated ROC curves for the DT symmetric random walk p =

p = 0:52, p = p = 0:48 at SNR = �39:1 dB, T = 60 s. The
RW-LRT is theoretically optimal.

electron spin. This is strong evidence that the random telegraph
signal model accurately describes the cantilever-single spin
interaction.

The results of this paper lend strong theoretical and prac-
tical support to the use of the simple filtered energy detector
for the current MRFM single spin research community. It has
been shown that the existing baseband filtered energy detector
that is in current use is approximately optimal in the case of the
symmetric DT random telegraph model under the regime of low
SNR, long observation time, and close to one. The last con-
dition can be achieved by sampling at a sufficiently fast rate as
compared to the rate of random transitions. This result has been
extended to the case of the asymmetric DT random telegraph by
using a hybrid filtered energy/amplitude/energy detector. Sim-
ulations were presented showing that the near optimality of the

Fig. 11. Simulated ROC curves for the DT asymmetric random walk p =

p = 0:45, p = p = 0:55 at SNR = �2:50 dB, T = 60 s. The
RW-LRT is theoretically optimal.

baseband filtered energy detector extends to the case of the sym-
metric DT random walk model. In the case of the asymmetric
DT random walk, the filtered energy detector does not perform
as well as the optimal LRT. We expect that a hybrid detector
along the lines of that formulated for the DT random telegraph
will perform close to the optimal for the asymmetric DT random
walk. Mathematical analysis of the DT random walk model will
be presented in a future paper.

A new interpretation of the LRT for a finite-state DT Markov
signal in AWGN under low SNR conditions was presented.
Specifically, the LRT is approximately the matched filter
statistic with the MMSE predictor signal values used in place
of the known signal values.

The previous result can be used to obtain an approximation to
the LRT for a general finite-state DT Markov signal in AWGN
under low SNR conditions. For ease of computation, we have
proposed the use of affine estimators as suboptimal versions of
the conditional mean predictors in (27). In particular, the subop-
timal estimators of and for can be computed as the
affine estimators with lowest MSE that lie in the linear span of

and , respectively. We apply
this methodology to compute an approximation to the LRT for
the DT random telegraph process in AWGN. The approximation
matches the result previously obtained using a straightforward
analysis.

APPENDIX

Define , to be the element of that corresponds
to the state . From (17) and (18), one can obtain the LRT for
the DT random telegraph as

(46)

Let denote the log LRT function of the DT
random telegraph, i.e., the log of (46). Let be
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the filtered energy detector function in (12). Let us analyze the
two functions and under the regime of low SNR

and long observation time .
We want to obtain the approximate Taylor series expansion

of about and compare that with . Define

for . A recursive equation for can be derived based on
(17). Its approximate solution is

(47)

and . Define . Then

(48)

By solving for in terms of and using (47), one obtains
the approximate Taylor series expansion of as

(49)

with

(50)

(51)

(52)

Recall that . In (49), “h.o.t.” denotes the
higher order terms; specifically, terms of degree three or higher.

Let be the function under symmetric transition probabil-
ities, i.e., . Then

(53)

For sufficiently large , it can be shown that

(54)

where is a constant. Note that plays no
role in the performance of the test statistic. Indeed, the detection
test

has the same performance as

for a constant not dependent on the observations.
In order to compare the performance of and , we

consider their normalized versions and
. Denote these statistics by and , respectively.

Both and are a weighted sum of two terms: an energy
term of the form and a second-order term of the form

, where for and for
. If , then

(55)

Now, . On the other
hand, for large

(56)
where . When

, .
For close to one, and .
So to the first moment, the difference of between

and does not represent a significant difference when
. Under these conditions, we expect the performance of the

filtered energy detector and the DT random telegraph LRT to
be similar.
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It is possible to obtain an approximation to the DT random
telegraph LRT that holds when we make no assumption about
being equal to . When , we have , and there are
terms of the form and in (50)–(52). Since ,

in the limit as . So drop these terms to get

(57)

where is a constant. Define

and
. In order to equate the coefficients of the cross-terms

between (57) and (54), we require . In
, the ratio of the energy terms to the cross-terms is

. For . The
idea is to add the energy and amplitude statistics to so that all
three statistics are in the same ratio as in (57). Let be the
“extended” version of , which we shall call the hybrid filtered
energy/amplitude/energy detector

(58)

We expect to perform similar to under the conditions
of large , low SNR, and . The constants in (58) can be
further simplified. Let and

. As , one obtains after
some algebra

(59)
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