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Incorporation of System Resolution Compensation
(RC) 1n the Ordered-Subset Transmission (OSTR)
Algorithm for Transmission Imaging in SPECT

Bing Feng* , Jeffrey A. Fessler, and Michael A. King

Abstract—In order to reconstruct attenuation maps with
improved spatial resolution and quantitative accuracy, we devel-
oped an approximate method of incorporating system resolution
compensation (RC) in the ordered-subset transmission (OSTR)
algorithm for transmission reconstruction. Our method approx-
imately models the blur caused by the finite intrinsic detector
resolution, the nonideal source collimation and detector collima-
tion. We derived the formulation using the optimization transfer
principle as in the derivation of the OSTR algorithm. The for-
mulation includes one forward-blur step and one back-blur step,
which do not severely slow down reconstruction. The formulation
could be applicable to various transmission geometries, such
as point-source, line-source, and sheet-source systems. Through
computer simulations of the MCAT phantom and transmission
measurements of the air-filled Data Spectrum Deluxe single
photo emission computed tomography (SPECT) Phantom on
a system which employed a cone-beam geometry and a system
which employed a scanning-line-source geometry, we showed that
incorporation of RC increased spatial resolution and improved
the quantitative accuracy of reconstruction. In simulation studies,
attenuation maps reconstructed with RC correction improved the
quantitative accuracy of emission reconstruction.

Index Terms—Ordered-subset transmission (OSTR), resolution
compensation, transmission imaging.

I. INTRODUCTION

N single photo emission computed tomography (SPECT)
I attenuation and finite distance-dependent resolution of the
imaging system are two sources of image degradation [1]-[4].
High-quality patient-specific attenuation maps are needed
to perform accurate attenuation compensation (AC) [5], [6].
Attenuation maps are normally obtained from transmission
acquisition using various transmission sources (Ba-133, Tc-99
m, Gd-153, etc.) and imaging geometries (point source, line
source, sheet source, etc.) [7]-[14]. The finite intrinsic spatial
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resolution of the camera and nonideal photon collimation
cause an imprecision in the detected location and assumed
origin of the transmission photons, which results in the blurred
attenuation maps [15], [16]. Herein, when we speak of system
resolution we will be referring to the combination of the
intrinsic resolution of the Nal(Tl) camera, and geometric reso-
lution provided by collimation. For a point source transmission
system, Manglos et al. [17] showed that the spatial resolution
of the system is close to the intrinsic camera resolution. For
extended sheet source transmission system, Cao and Tsui [18]
showed that the spatial resolution is further decreased by the
nonideal source and camera collimation. For line-source [7],
[15] or scanning line-source [12], [19] transmission systems,
the spatial resolution can be different between the transverse
and axial directions, since in one direction the position of the
source is well-defined or the source is well-collimated via elec-
tronic collimation and in the other direction it should be treated
as the extended source [20] since typically no added source
collimation is provided along the line. As the finite resolution
of the imaging system causes image degradation in emission
reconstruction, it also causes degradation of attenuation maps
obtained from transmission reconstructions [15], [16].
Ollinger et al. [21] developed a method of modeling camera
intrinsic resolution in the transmission expectation-maximiza-
tion (EM) algorithm [22]. In their work, a static convolution
kernel was utilized to describe the intrinsic resolution. No mod-
eling of the collimation was included in their work. An extended
transmission source could be divided into small elements and
modeled as overlapping beams to model source and camera
collimation [14]. The reconstruction could be performed with
the transmission algorithm for overlapping beams [13]. One
concern for this approach is the computation cost. The recon-
struction time is approximately proportional to the number of
overlapping sources. Thus modeling a sheet-source system as
1000 or more overlapping point-sources would mean three or
more orders longer reconstruction time compared with the case
of no resolution compensation. As an alternative, we extended
Ollinger’s approach to approximate both the intrinsic camera
blur and the blur due to collimation by a static convolution
kernel, which describes the average blur of the object in a trans-
mission system with an extended transmission source. We still
trace photons along the well-defined path(s) as in the ideal case,
but model the blur along each path on average as a static (in-
dependent of image space indexes) convolution kernel. There-
after, we call the convolution kernel the system-blur-function
(SBF). The approximation of using the average blur enables the
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use of the system matrix as for an ideal system with perfect spa-
tial resolution. This alleviates the necessity of using the overlap-
ping beams and tracing all possible photon paths, thus greatly
reducing the cost of computation. In Section III-B, we will show
how to estimate the SBF for a transmission system with sheet
source and parallel-hole collimation. Extension to other geome-
tries is also possible. We would like to emphasize that though
a static kernel is utilized, this static kernel could be adjusted
by the average distance of the object from the camera (or the ra-
dius of rotation employed). For transmission systems with point
sources, the blur is mainly caused by the camera intrinsic reso-
lution [17]. Thus, the SBF is the blurring kernel that describes
the intrinsic camera resolution.

Erdogan and Fessler [23] proposed a monotonic transmis-
sion reconstruction algorithm called the “separable paraboloidal
surrogates” (SPS) algorithm, which models Poisson statistics
in transmission imaging and can be easily incorporated with a
piece-wise smoothness prior. The ordered-subset transmission
(OSTR) algorithm [24] is the ordered-subset version of SPS
which accelerates efficiently the reconstruction. Herein, we in-
corporate system resolution compensation (RC) into the OSTR
algorithm. Similar to the derivation of the SPS and OSTR algo-
rithms, we adopted the optimization transfer principle [25], [26],
which transfers the original optimization task to another easier
optimization task or series of easier tasks. We derived the for-
mulation for RC in the frame of the SPS algorithm and adapted
it to the OSTR algorithm. It turned out that incorporation of the
RC requires only minor modification to the OSTR algorithm.

II. METHODS

In transmission imaging, the measurement model is

y; ~ Poisson{y; }

where 7 = 1,...,n4 denotes the detector index. The measure-
ment means for an imaging system with ideal spatial resolution
are

7(x) = bie A 4, (D
where x = [z1,...,2;,...,2,,]" is a vector describing the
three-dimensional (3-D) distribution of the linear attenuation
coefficient, n,, is the number of voxels, A = {a,;} € R"**"»
denotes the system matrix for the transmission system, @?, b;,
and r; are the ideal counts, flood, and average background (i.e.,
scatter or crosstalk) at sth detector bin, respectively. For a real-
istic imaging system with system-blur-function G = {gim} €
Rnaxna where g;,, denotes the detection probability of 7, in
ith detector due to the average blur along the photon path as-
sociated with mth detector bin, the measurement means for a
realistic imaging system are

= i gimg(r)n = i 9im (bme_[Ax]m + rm)
m=1 m=1

= i gimbmei[Ax]m + i imTm, (2)
m=1 m=1
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where g, # 0 only for rays within the same projection view,
since there is no blurring from one projection view into another.
If we define biy, = Gimbm, and R; = 31", gimT'm, We have

ng
7;(x) = Z bime A L R, 3
m=1
The negative log-likelihood is
nd
B(x) = > k(Y Ti(%) “
n=1

where the KL divergence defined as k(u, v) = ulog(u/v)—u+
v. Thus, the gradient can be obtained according to the following:

£ (- %

— Yi
(i) O

Instead minimizing ) (x) directly, we tried to construct the
separable surrogate function of ¥ (x) [23], [24]. By minimizing
or decreasing the surrogate function at each iteration, the opti-
mization transfer principle will guarantee a monotonic decrease
of 1)(x) at each iteration and convergence to at least a local min-
imum [23]. From (3) and (4), we have

- i'ﬂ <yz', i bime ™17 + Ri) ¢
i=1 m=1

To simplify the notation, we define u;,,(x) = bime  AXlm 4

Tim» and 7, = R;/ng, then we have

() = Z </ Z uim<x>)
ng (n) y(n)
= ZK (yv Z <_(n)> Uam( )uz(n)> @)
(n) ()

U,
where u}) = wim(x™), y yi(x(™), and x(™) is the
linear attenuation coefficient vector at the n'" iteration. Since
u’™) /5™ is nonnegative, "¢ (ul™ /7{™) = 1, and since
K(u,v) = K. (v) is convex for v, we applied De Pierro’s multi-
plicative trick [25], and generated the following surrogate func-
tion:

na o () —(n)
n — m yz
A =YY S (yhuim(x) (n)> > )(x). (8)
i=1 m=1Y; WUim
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Using the scaling property ax(u,v/a) = k(au,v), we have

na (n)
905">(x) = Z Z K (y(n) yl,ulm(x))
1=1 m=1 i
nNg  Nqg
= z_: Z: (yzm ,uzm ))
= Z ([AX]WH yLm ’ bim7 7nirn) (9)
=1 m=1

where yf;) = ufﬁf/@ﬁ")yl and h(t;y,b,7) = k(y,be t + 7).

The surrogate function for A(t; y, b, r) [23] is

q(t;y,b,m,8) =h(s;y,b,7) + h(S;y,b,T)(t b))
+ ¢(s;y,b, 7") (t - 5)2

> h(t;y,b.r) (10)

for Vs € R, where iz(s;y,b,r) = (9/0t)h(t;y,b,r), and

c(s;y,b,r) is defined in [23]. Substituting (10) into (9), we
have the following inequality:

o (x Z Z ( [AX]m; 450 i Tims [Ax(")}m)

i=1 m=1
_(pg")()
;n;h([Ax }mwlm,b r )

+ i i h ([Ax(n)} ’yz(:;): bv‘,m,mm)
i=1 m=1 m
(s [ax],)

— 1 2<(n)
- _ (n) =
+m§::1 5 ([Ax]m [Ax ]m) e (11
where :0:52 ) = o Ef:lrl), and Ef;? =
Zd E([Ax(n)]ma yfsl), bima Tz'm)~
i1

Further, we can rewrite cp( )( ) as

90§"’)(x) =1 (x(n)) + <V1/1 (x(")))T (x x(n))
+% (x —~ x<">)T ATdiag {%f:)} A (X - X(n)) (12)

where (Va)(x(™)T, (x — x(™)", and AT are transposes of
V'z/ng(")), (x —x(™), and A, respectively, and diag{%sz)} =

{cn;1 Omj} € R"4*"4 where 6,,; = 1 for m = j, otherwise
6mj = 0. Using the inequality from [23] B diag{w;}B <
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diag{zgl U)ibi]’bi}, for any matrix B = {bL]} € RraXnp,
where b; = 2?21 |b;;|, we have

AT diag {J )} A<d1ag{2 Cm am]am}Ediag{dgn)}
(13)

where a,, = Zﬁi1|amj| — Z?ilamj’ and d§”) =
N(n)

Sord  Cp Gmj@m. Substituting (13) into (12), we obtained a
separable surrogate function

o700 = (x) + (v (x)) " (x - x)

+% (x - x("))T diag {dgn)} (x - x(")) > cpén)(x). (14)

Minimizing @én) (x) and enforcing the nonnegativity constraint,

we obtained the (n + 1)** update as

9 (n)
ng.n-i—l) = |f::§"> — LM] (15)

& O

where the operator [a]4 = a for a > 0, and zero otherwise.
From (5), we have the gradient

9 (n) ng o
) 3 i
Lj

Yi
X E 1— ——— | gim- (16)
= ( Y, (X(n))>

To calculate the gradient as in (16), one should Perform one
forward-blur in 7;(x™) = 3" g (b e~ A 4y
and one back-blur in 37, (1 — (y;/7;(x™))) gim- Taking into
account g;,,, 7 0 only for rays within the same projection view,
these blurring steps are performed frame-by-frame within pro-
jection/backprojection and do not affect severely reconstruction
time. Thus, far the monotonicity still holds.

To adapt our method to the OSTR algorithm, we replaced the
sum over m in (16) with the sum over subsets of the rays, and
approximated dg-") with d;, which is independent of the iteration
number thus achieving a fast implementation [24]. From (13),
we have

< ~(n)

Cry QO =

dg-n) = Z A j Oy Z

m=1 m=1

= Z A jm Z ([Ax(" }m ;y,g,:b]??bim,rim)
~ 3 Zym)

m=1

(n)
- Z Amjam Z (n) oy Yi-

a7)
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Since the blur caused by the finite detector resolution is small,
we approximated uLm /yLn R Oim, where 0, = 1if ¢ = m,
otherwise 0;,, = 0. Making use of (17), we have

" ~ (18)

Z amjamzyz m — Z AmjOmYm = d

Finally, we obtained the formulation for incorporating system
resolution compensation in the OSTR algorithm

$§n+1)

M S a5 8 (1)

meS

+
19)

where S is one of M subsets of the rays. For simplicity we
omitted the usual terms for regularization [23] in (19). Taking
into account g;,,, 7 0 only for rays within the same projection
view, we rewrite (19) explicitly as

$§n+1)

MY amjbme 2 )]mz< w)gbm

meS €S
d;

where yi(x(n)) = Zm'es(bm’ei[Ax(n)]m’Jrr’"’).

III. COMPUTER SIMULATIONS AND TRANSMISSION
MEASUREMENTS

We evaluated our method for two transmission imaging
geometries. The first is a modified Beacon system [10] on an
IRIX SPECT system (Philips Medical Systems, Cleveland,
OH), which employs cone-beam imaging of medium-energy
photons from point sources that penetrate the septa of opposed
low-energy parallel-hole collimators. The second is a scan-
ning-line-source system on a PRISM 2000 (Philips Medical
Systems, Cleveland, OH). Based on each system, computer
simulations were performed with MCAT phantom [27], with
clinically equivalent noise levels. These levels were determined
from clinical transmission scans acquired with each of these
systems. To evaluate our approach with more realistic trans-
mission data, transmission measurements of the air-filled Data
Spectrum Deluxe SPECT Phantom were also performed on
each system.

To investigate the impact of modeling system resolution in
transmission reconstruction on attenuation compensation with
emission reconstruction, we generated transmission and emis-
sion projection data of the MCAT phantom. We then performed
attenuation compensation as part of iterative reconstruction of
simulated MCAT emission projections. We compared the emis-
sion slices resulting from use of the true MCAT attenuation map,
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and the attenuation maps reconstructed with and without RC in-
corporated in transmission reconstruction. Since we expected
the most difference to occur when using RC in transmission re-
construction for the case of the scanning-line-source system, we
evaluated attenuation compensation with attenuation maps sim-
ulated solely for the scanning-line-source system.

A. Point Source With Cone-Beam Geometry (Modified
BEACON)

We modified the BEACON transmission system in our clinic
and turned the original scanning point source system (fan-beam
geometry) into a stationary point source system (cone-beam ge-
ometry) [10]. To cover a wider axial extent, each of the two point
sources irradiating opposite heads are axially separated by 7 cm.
Using such a cone-beam geometry, fast sequential transmission
scan can be performed in 2 min. The axial coverage of the mod-
ified BEACON is about 15.4 cm, which is adequate for cardiac
imaging. If the size of the point source is negligible, the spatial
resolution of the modified BEACON system at camera plane is
equal to the intrinsic resolution of the gamma camera, which is
a sigma of about 0.2 cm (o; = 0.2 cm) for the 356-keV photons
of Ba-133, as imaged by the 1.9-cm-thick crystals of the system.

A ray-driven numerical projector and a flood measured on the
modified BEACON system were utilized to simulate the trans-
mission projection data of the MCAT attenuation map. The pro-
jection data contain 120 views of 128 x 128 images for each
head, covering 360°. The radius-of-rotation (ROR) was 30 cm.
The pixel size was 0.416 cm. The projection data were con-
volved with a two-dimensional (2-D) Gaussian with a 0.2-cm
sigma, to simulate blurring due to the intrinsic resolution of
the camera. Then Poisson noise was added. The total number
of counts on each head was about 1.5 million, simulating a
two-minute acquisition. The projection data were reconstructed
by 50 iterations of the OSTR algorithm, with and without RC.
The same 3-D edge-preserving smoothness prior [28] was used
in both reconstructions. No post smoothing was applied. The
root-mean-square error (RMSE) in a region of interest (ROI)
was calculated to evaluate the quantitative accuracy of recon-
structions, according to the following formula:

> (ai— i)’

1€ROIT

RMSE = Q1)

N
where the ROI contains the entire 3-D volume of the attenuation
map within the axial coverage, IV is the number of voxels inside
the ROI, and z; and zgwc are the reconstructed and true values
of the linear attenuation coefficient at voxel 7, respectively.

In addition, two 30-min transmission acquisitions of an air-
filled Data Spectrum Deluxe phantom were performed on the
modified BEACON system. The two acquisitions differed from
each other by the ROR employed. The ROR was 25 cm for the
first acquisition and 32 cm for the second acquisition. The 25-cm
ROR was selected as the shortest which might be used with a pa-
tient, and the 32-cm ROR was selected as the longest. The com-
bination allowed use to investigate changes which might occur
over this range of RORs. Each acquisition was reconstructed
with 50 iterations of the OSTR algorithm with and without RC.
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The 120 views per head (with two heads, each rotating 360°)
were divided equally into 30 subsets, with four views per subset.

B. Scanning Line Source With Parallel-Hole Collimated
Camera (PRISM 2000)

On the PRISM 2000 system in our clinic, transmission
imaging utilizes a scanning Gd-153 line source. The normal
acquisition time for transmission study is about 20 min. The
line source scans in the axial direction and the region of the
camera face on the head opposed to the line source which is
employed to acquire transmission counts scans electronically in
synchrony with the line source. As is typical of such systems,
no collimation of the line source in the transaxial direction is
incorporated into the line-source holder. Thus, in this direction,
the line source is an uncollimated extended source. For sim-
plicity, we assumed the spatial resolution was the same in both
directions, and could be described by a 2-D Gaussian function
[29], [30]. That is, we assumed the geometry was that of using
a sheet source with no source collimation and parallel-hole
collimation on the camera. This over-estimates the blurring
in the axial direction since the scanning line source is axially
collimated by an electronically scanning window and source
holder. One reason for employing this simplification was that
we were only interested in the transaxial resolution in our
experiments with the air-filled Data Spectrum Deluxe SPECT
Phantom.

In the simulations with MCAT phantom, the geometric
response (o,) was assumed to be 1.2 cm (sigma) for a 60-cm
source-camera distance. A ray-driven numerical projector was
used to trace the cone-beam rays from each source bin on
measured flood. The flood was scaled to 36 counts per camera
bin (with 0.416 cm/bin) on average, which was close to the
noise level of transmission scans we acquire clinically with this
system. Counts along each cone-beam ray were multiplied by
a weight calculated from the 2-D Gaussian (o, = 1.2 cm),
and were summed over all source bins into projection data
(Fig. 1). The projection data were further convolved with a
2-D Gaussian (o; = 0.12 cm) to model the blur due to the
intrinsic resolution of the camera PRISM 2000 camera for
Gd-153 photons. Poisson noise was then added. In this way
we obtained transmission projection data which contained 60
views (over 180°) of 128 x 128 images.

To estimate the system-blur-function for the imaging
geometry described above (Fig. 1), we investigate the
counts (I;) arriving at a certain detector bin through an
arbitrary ray L; (the thick solid line in Fig. 1). We have

2 2y — dl
I, = Ije /295)¢ J “+ . Approximating the attenuation
path L; by the dashed line L , and using similarity relation, we

obtain I, ~ Ipe=(2/270)¢ de w”, where t, = (ROR/D)t,
0, = (ROR/D)o,, ROR is the radius of rotation, D is the
distance between the source and the camera. The average blur-
ring due to nonideal collimation can be approximated by a 2-D
Gaussian with sigma = o, [31]. The system-blur-function was
defined as the average blurring (sigma = /02 + 07, 0; is the
intrinsic resolution) of object, which was equal to the blurring
at the camera plane in measuring the object center or center
of rotation (COR) for convenience. Calculated from imaging

u
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Geometric response -
G,=1.2cm

Sourcem

ROR|

Camera Collimato

Camera |« t,
1—‘ t
\/ Intrinsic response -
67=0.12 cm

Fig. 1. Transmission system with sheet source and parallel-hole camera colli-
mation is used in simulation. Geometric response due to camera collimation is
assumed a 2-D Gaussian. Cone-beam rays in the simulation are plotted in solid
lines.

parameters described before, the sigma of the system-blur-func-
tion was 0.61 cm, taking into account contributions from both
geometric response and intrinsic resolution.

The approximation we made above to estimate SBF normally
holds, since the geometric response o, is small when compared
with D, and the Gaussian decreases rapidly from its central
maximum. The more L; deviates from L, the less it contributes
to the counts. To have a better understanding of the approxima-
tion involved in our simulation, we considered rays L; in Fig. 1
that correspond to the full-width at half-maximum (FWHM) and
the full-width at tenth-maximum (FWTM). The tilting angles
between L; and Ly were 4.2° and 7.7°, respectively. The sepa-
rations at the camera plane between L, and L, were 0.71 and 1.3
cm, respectively. At the perimeter of the phantom, this separa-
tion were reduced approximately in half, or 0.36 cm for FWHM
and 0.65 cm for FWTM.

The projection data were reconstructed by 50 iterations of
the OSTR algorithm with and without RC. A 3-D edge-pre-
serving smoothness prior [28] was used in both cases. In each
case, the data were reconstructed with a range of values (from
1000 to 10000, with 500 step size) of the scaling factor of
the smoothness prior, which controls the tradeoff between the
smoothness and resolution. The RMSE within an ROI, which
contained the entire MCAT phantom, was calculated for each
reconstruction, and the optimal scaling factor of the smooth-
ness prior was chosen, basing on the minimum RMSE. The re-
construction with the optimal smoothness prior corresponded to
the best attenuation map we could obtain in each case. The same
scaling parameters were applied in latter reconstruction of the
acquisitions of the air-filled Data Spectrum Deluxe phantom.

Two 30 minute transmission acquisitions of the air-filled
Data Spectrum Deluxe phantom were additionally performed
on the PRISM 2000 system. Since the air-filled phantom would
not attenuate the Gd-153 line source used clinically enough
to make the transmission counting rate similar to that when
acquiring clinically, we employed a Gd-153 line-source that
had decayed down by approximately four half-lives with the
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air-filled phantom. Thus the transmission counts acquired by
a 30-min acquisition were similar to that we obtain in the
20-25-min clinical acquisitions. The two acquisitions differed
from each other by the ROR employed: 18.5 cm in one case
and 30 cm the other. Each acquisition was reconstructed with
50 iterations of the OSTR algorithm with and without RC. The
60 views (covering 180°) were divided equally into 15 subsets,
with 4 views per subset.

C. MCAT Phantom Simulations to Study the Impact of System
Resolution Compensated Attenuation Maps on Attenuation
Compensation During Emission Reconstruction

We generated a set of emission projection data of the MCAT
phantom using a numerical projector which modeled attenua-
tion, distance-dependent system resolution, but no scatter. We
simulated a 180° acquisition with a parallel-hole collimated
camera. The projection data consisted of 60 views of 128 x 128
bins. The bin size was 0.416 cm. A half-million counts were
simulated for the heart which is approximately what we observe
in a stress Tc-99 m labeled sestamibi acquisition. Poisson noise
was added to the projection data.

We reconstructed the projection data with 10 iterations of
the OSEM (15 subsets, four views for each subset). In recon-
struction, system resolution and attenuation were modeled in
the projector and backprojector. Three attenuation maps were
compared: the true attenuation map that matched the simula-
tion, the attenuation map reconstructed without modeling the
system resolution, and the attenuation map reconstructed with
modeling the system resolution. The latter two attenuation maps
were simulated with for a scanning-line-source system (Section
ITI-B). A post Gaussian filter with 1.5 pixel sigma was applied
to all reconstructed emission images.

IV. RESULTS

A. Point Source With Cone-Beam Geometry (Modified
BEACON)

The results for the reconstruction of the MCAT phantom are
shown in Figs. 2 and 3. Since blurring due to the intrinsic res-
olution is small (sigma = 0.2 cm in simulation), the difference
between reconstructions with RC and without RC is also small.
The RMSE was slightly smaller in the case with RC (0.022
cm™ 1) than without RC (0.023 cm™1).

Results from reconstruction of measurements of the air-filled
Data Spectrum Deluxe SPECT Phantom are plotted in Fig. 4.
RC slightly increased the resolution of images in that some of
the small rods are more clearly seen.

B. Scanning Line Source With Parallel-Hole Collimated
Camera (PRISM 2000)

The transmission projection data of MCAT phantom were
simulated for PRISM 2000 system and reconstructed with and
without RC. The smoothness prior was optimized in each case
to reconstruct images with the minimum RMSE. The minimum
RMSE was 0.027 cm~! without RC, and 0.017 cm—! with RC.
The attenuation map reconstructed with RC was much smoother
than the map without RC. Reconstruction with RC was visually
of higher resolution (Fig. 5) and accuracy (Fig. 6).
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Original With RC

Fig. 2. Reconstruction of the projection data simulated for the modified
BEACON system. (Left) Two slices of original MCAT phantom. (Middle) 50
iterations of the OSTR without RC. (Right) 50 iterations of the OSTR with
RC. System-blur-function in RC is a 2-D Gaussian with sigma = 0.2 cm. Note
that on each slice are shown short bars, along which the profile of attenuation
coefficient was obtained for comparison in Fig. 3.
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Fig. 3. Profiles of linear attenuation coefficient are plotted through the short
bars in Fig. 2. Dotted line is original phantom. Dashed line is without RC. Solid
line is with RC.

‘ ROR 25 cm ‘

Without RC With RC

ROR 32 cm

A I

Fig. 4. Reconstruction of transmission measurements (ROR = 25 cm and
ROR = 30 cm) on the modified BEACON system. (Upper left) ROR =
25 cm, without RC. (Upper right) ROR = 25 cm, with RC. (Lower left)
ROR = 32 cm, without RC. (Lower right) ROR = 32 cm, with RC.

L y

Measurements of the air-filled Data Spectrum Deluxe SPECT
Phantom on PRISM 2000 were reconstructed with and without
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@D
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@
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Original With RC

Fig. 5. Reconstruction of the projection data simulated for the PRISM 2000
system. (Left) Two slices of original MCAT phantom. (Middle) 50 iterations
of the OSTR without RC. (Right) 50 iterations of the OSTR with RC. System-
blur-function in RC is a 2-D Gaussian with sigma = 0.61 cm. Note that on each
slice are shown short bars, along which the profile of attenuation coefficient was
obtained for comparison in Fig. 6.
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Fig. 6. Profiles of linear attenuation coefficient are plotted through the short
bars in Fig. 5. Dotted line is the original phantom. Dashed line is without RC.
Solid line is with RC.

RC. In each case, the smoothness prior was the same as for
the counterpart in simulations. The results are plotted in Fig. 7.
The images reconstructed with RC show better resolution than
without RC.

C. MCAT Phantom Simulations to Study the Impact of the
System Resolution Compensated Attenuation Map on the
Attenuation Compensation

The MCAT emission projection data were reconstructed with
the true and attenuation maps reconstructed from transmission
projection imaging simulating the PRISM 2000 for the cases of
with and without RC. A transaxial emission slice of the heart
for each case is shown in Fig. 8. Visually no difference could be
seen in these images. Using reconstruction with the true atten-
uation map as the gold standard, the difference (or error) image
was calculated for emission reconstruction using attenuation
maps reconstructed with and without RC. In maximum error
when using the nonresolution compensated attenuation maps
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ROR 18.5 cm

V’

Without RC

A o~

ROR 30 cm

Fig. 7. Reconstruction of transmission measurements (ROR = 18.5 cm and
ROR = 30 cm) on the modified BEACON system. (Upper left) ROR
18.5 cm, without RC. (Upper right) ROR = 18.5 cm, with RC (sigma
0.45 cm). (Lower left) ROR = 30 cm, without RC. (Lower right) ROR
30 cm, with RC (sigma = 0.55 cm).

)

A. By map w/o RC

)

B. By map w RC

)

C. By true map

Fig. 8. Attenuation-compensated emission reconstruction of the MCAT
phantom simulation. (a) Using the attenuation map reconstructed without
system resolution compensation (as shown in the middle column of Fig. 5). (b)
Using the attenuation map reconstructed with system resolution compensation
(as shown in the right column of Fig. 5). (c) Using the true attenuation map (as
shown in the left column of Fig. 5). (d) Absolute difference between A and C.
(e) Absolute difference between B and C. (d) and (e) are plotted on the same
greyscale.

was about 6% of the average myocardial counts. This maximum
error was reduced to 2% for the case of the using the attenuation
map with RC. The largest difference was found near the apex.

V. DISCUSSION

Our method requires two additional smoothing steps, one in
the projector, and another in the backprojector. These smoothing
steps are performed frame-by-frame and usually with a rela-
tively short convolution kernel. The increase in computation
time is a few percent (3% for the cone-beam case, 5% for the
parallel-beam case) over not including RC. From our experi-
ence with overlapping cone-beam transmission imaging [10],
the computation time approximately doubles when the number
of the point-sources doubles. Thus, by estimation the overlap-
ping beam approach in the one dimensional case will lead to one
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or two orders of magnitude increase in the computation time.
To model both axial and transaxial blurring for a scanning line
source system, the overlapping-beams approach could increase
the computation time by two to three orders.

For a scanning line-source system, our method employs the
central-ray approximation for the path of the photon through
an attenuating media in the presences of blurring as discussed
by Liang, et al. [31]. It could be further improved by using a
smoothing kernel determined by the average distance of the ob-
ject along each ray to the camera. This will require pre-recon-
struction and segmentation of the attenuation map. As a result,
the smoothing kernel could vary point-by-point on the camera,
depending on the average distance of the object to each camera
bin.

Only a slight difference was found in the attenuation maps
reconstructed with RC in comparison to those reconstructed
without RC for the case of transmission imaging with a point
source. Since this is intrinsically a high-resolution imaging ge-
ometry, the lack of a significant difference is to be expected. For
the case of transmission imaging with an uncollimated extended
source (transaxial slices for an axial scanning-line-source), a
significant difference was observed visually and quantitatively
in the attenuation maps with use of RC in transmission recon-
struction. In transmission imaging for SPECT and positron
emission tomography (PET), the attenuation maps are not
used for diagnostic purposes. They are used for attenuation
compensation. Thus, the best measure of the impact of in-
cluding RC in transmission reconstruction is whether the use
of RC alters emission slices. It has previously shown that the
spatial resolution of the attenuation map should be similar
to that of the emission slices to be reconstructed [6]. Our
method has been shown to improve the spatial resolution for
scanning-line-source systems which employ an uncollimated
line-source. When we investigated the difference RC attenua-
tion maps made in emission slices of the MCAT phantom no
obvious visual difference was noticed, but the emission slices
were quantitatively closer to the emission slices reconstructed
with true attenuation map of the MCAT simulation. Thus,
we expect our method could improve quantification and in
some cases possibly detection accuracy of small lesions near
boundaries between organs.

Scatter was not included in our transmission simulations, and
the air-filled Data Spectrum phantom has only minimal scatter
associated with it. Certainly the presence of scatter in the trans-
mission projections will bias the estimated values of the attenua-
tion coefficients. The OSTR algorithm can perform scatter com-
pensation in reconstruction, if the contribution of scatter to the
projection data is known. Herein we concentrated on investi-
gating the use of RC with the OSTR algorithm. In future work,
we plan to investigate the use of scatter compensation with the
OSTR algorithm.

VI. CONCLUSION

We developed a method of incorporating compensation for
the finite spatial resolution of transmission imaging in the OSTR
algorithm. We determined the inclusion of RC can enhance the
resolution and accuracy of the reconstructed attenuation maps
for scanning-line-source transmission imaging geometries. For
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other geometries such as scanning point-sources, multiple line-
sources, and sheet-sources our method is also applicable. The
key is to figure out the system-blur-function which describes
the average blurring of imaging the object with those systems.
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