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Abstract

We consider the task of detecting a statistically varying signal of known location on a statistically varying
background in a reconstructed tomographic image. We analyze the performance of linear observer models in this task.
We show that a broad family of linear observers can exactly achieve optimal detection performance if one chooses a
suitable reconstruction method. This conclusion encompasses severalwell-known observer models from the literature,
including models with a frequency-selective channel mechanism. Interestingly, the “optimal” reconstruction methods
are unregularized and in some cases quite unconventional. These results suggest that, for the purposes of designing
regularized reconstruction methods that optimize lesion detectability, known-location tasks are of limited use.

Index Terms

Emission tomography, lesion detection, observer models, channelized Hotelling observer, penalized maximum-
likelihood.

I. I NTRODUCTION

Objective evaluation of the quality of an image requires specifying the goal that the image will be used to achieve.
Typical uses of medical images can be categorized into estimation, where the goal is to measure the value of some
parameter of interest (e.g., radioactivity distribution), and classification, where the goal is to decide among several
possible states of the truth (e.g., the presence or absence of a tumor) [1]. By evaluating images with respect to a
task of interest, one can compare and rank the imaging systems or reconstruction algorithms that produce these
images. In the case of classification tasks, such evaluations can be performed directly by applying ROC analysis
to experiments that record the classification performance of human observers [2]–[4]. However, not only are such
experiments time-consuming, but also the performance of human observers does not lend itself to optimization
through analytical tools. The alternative is to turn to mathematical observer models.

The ideal observer models that are well-known from statistical decision theory [5] exploit all available statistical
information on the classification task at hand. However, researchers have found that human observers do not
perform ideally and have proposed observer models that account for human suboptimality [6]–[9]. As a result,
various popular linear observer models exist in the literature, either in their ideal form [10], or with the addition
of frequency-selective channels and internal noise [11,§14.2.2]. The Channelized Hotelling Observer (CHO) [9] in
particular, has been found to predict human observer performance in several detection tasks [12]–[15]. Furthermore,
strategies have been proposed for estimating the template of a linear observer model directly from human observer
data [16], [17].

Since the performance of the ideal observer is invariant to any nonsingular data transformation, it cannot be
used to evaluate and rank image reconstruction methods. Therefore, one can optimize reconstruction methods with
respect to detectability only for suboptimal observer models such as the ones mentioned above. Significant attention
has been focused on analyzing the performance of several such linear observers for the task of detecting a signal
of known location in tomographic images [18]–[23]. One can use these analytical performance approximations
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to tune user-specified parameters involved in image reconstruction methods, such as regularization parameters in
penalized-likelihood reconstruction [24].

In this paper we extend our analysis from [20] to show that a broad family of linear observer models and their
channelized counterparts can exactly achieve optimal performance (for a certain internal noise model) in the detection
of a statistically varying signal on a statistically varying background without the need for regularization. Further
insight into the performance of channelized observers can be gained through local shift invariance analysis. Using
such an analysis, we present evidence of more situations where the CHO in particular can achieve approximately
optimal performance in this task without regularization.

The paper is structured as follows. Section II defines the detection task and the general form of the observers
and reconstruction methods that we will be considering. Section III analyzes the detection performance of several
well-known observers, with the objective of finding reconstruction methods that allow each of these observers to
achieve optimal performance. We show that there is a broad family of linear observers that can achieve the optimum
with unregularized reconstruction. Section IV summarizesthe conclusions of our analysis.

II. T HE DETECTION TASK

A. Object model

Let f denote the true object being imaged (or an approximation of the true object inRnp ). To express our
uncertainty about the object, we allow it to be a random process parameterized by two spatial coordinates. The
objectf consists of abackgroundfb and it may or may not also contain asignal of interestfs, which we assume
to be localized in space. The detection task is to determine whether the signalfs is present or not in the objectf ,
i.e., to decide between the following pair of hypotheses:

H0 : f = fb (signal absent)

H1 : f = fb + fs (signal present). (1)

In emission tomography, for example, where the objectf is a radioactivity distribution, the backgroundfb could
correspond to normal radioactivity and the signalfs to additional radioactivity absorbed in the area of a lesion.

The backgroundfb and the signalfs are random and statistically independent. We denote their expectations by
f̄b and f̄s respectively. We denote their covariances byKb and Ks respectively. In the general case where both
background and signal are random,Kb andKs are positive definite. In the special case known as thesignal known
exactly(SKE) detection task, we haveKs = 0 and thus a deterministic signalfs = f̄s. Similarly, in thebackground
known exactly(BKE) task, we haveKb = 0 and thus a deterministic backgroundfb = f̄b. In all cases, we assume
that f̄b, f̄s, Kb andKs are known.

B. Measurement model

In the applications that interest us, the true objectf cannot be observed directly. The decision between hypotheses
H0 andH1 has to be based on a noisymeasurementy ∈ R

nd that depends onf . For a given instance of the object
f , the measurementy is random due to noise inherent in the imaging system.

In the following, we useE[·] to denote expectation andCov{·} to denote covariance. All moments are averages
over bothy and f , except when they are accompanied by the subscriptf , in which case they are averages only
overf , or when they are conditional averages overy for a given instance off , in which case the usual·|f notation
is used. Finally, we use the notation·|Hi when referring to moments conditional on the event that hypothesisHi

is true. We assume knowledge of the following statistics of the measurementy:

ȳ , E[y|H1]−E[y|H0] (2)

Πi , Cov{y|Hi}, i = 0, 1, (3)

where we use “,” to denote definitions.
In emission tomography the measurementy is a noisy sinogram, whose elements are independent and Poisson-

distributed conditional on the objectf . The conditional mean and covariance of the sinogramy are, respectively,

E[y|f ] = Af + r

Cov{y|f} = diag{Af + r},
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where we use the notationdiag{v} for a diagonal matrix with diagonal elements equal to the elements of vector
v. The linear operatorA models the tomographic imaging system and the vectorr ∈ R

nd represents “background
events” such as scatter and/or random coincidences [25], [26]. Both A andr are assumed to be deterministic and
known. The moments of the sinogramy under hypothesisHi, i = 0, 1 are then given by

E[y|Hi] = Ef

[

E[y|f ]
∣

∣Hi

]

= AEf [f |Hi] +r (4)

Cov{y|Hi} = Ef

[

Cov{y|f}
∣

∣Hi

]

+Covf

{

E[y|f ]
∣

∣Hi

}

= diag{A Ef [f |Hi] +r}+ACovf{f |Hi}A
′, (5)

where we use “′” to denote the adjoint of an operator or equivalently the complex transpose of a matrix. Under the
assumption thatfb andfs are independent, using (4) and (5) for each of the two hypotheses in (1) and substituting
in (2) and (3) yields, for emission tomography,

ȳ = Af̄s (6)

Π0 = diag
{

Af̄b

}

+AKbA
′ (7)

Π1 = Π0 + diag
{

Af̄s

}

+AKsA
′. (8)

C. Image reconstruction methods

An image reconstruction method is a mapping of the measurementsy into an estimated imagêf . We focus here
on linear reconstruction methods, as several common tomographic reconstruction techniques either are or can be
approximated as linear. We denote a generic linear reconstructor by an operatorZ. The reconstructed image is then
given by

f̂(y) = Zy. (9)

We may view the reconstruction̂f either as a vector in a Hilbert space, in which caseZ is a general linear mapping
from R

nd to that Hilbert space, or as a discrete representation inR
np , in which caseZ is a matrix inR

np×nd .
Combining the linear reconstruction method in (9) with the data moments from (2) and (3) yields the following
expressions for the moments of the reconstructed image:

E
[

f̂ |H1

]

−E
[

f̂ |H0

]

= Z ȳ (10)

Cov
{

f̂ |Hi

}

= ZΠiZ
′, i = 0, 1. (11)

An example of a well-known family of reconstruction methodsthat can be approximated as linear is thepenalized-
likelihood family. These methods obtain the estimated image by maximing anobjective function:

f̂(y) = arg max
f≥0

[D(y,Af) − R(f)], (12)

where the objective function is composed of adata-fit term D(·, ·) and a regularization term R(·). The non-
negativity constraintf ≥ 0 is used in emission tomography, wheref is a radioactivity distribution. A subset of
penalized-likelihood methods to which we will refer later are Penalized Weighted Least-Squares (PWLS) methods.
These make use of a data-fit term that is quadratic in the object f :

D(y,Af) = −(y − Af)′W (y − Af), (13)

for some measurement-domain weighting matrixW . When the regularization term is also quadratic inf , i.e.,

R(f) = f ′Rf , (14)

for some linear operatorR, we have quadratically penalized WLS (QPWLS) reconstruction.
In general, penalized-likelihood tomographic reconstruction can be approximated as linear, except maybe when

enforcing the non-negativity constraint [27]. Here we assume that the signal of interest appears on a background that
is sufficiently high to render the non-negativity constraint inactive around the signal location, so these reconstructors
can be considered linear near the signal. For example, if thenon-negativity constraint is ignored, one can show
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that QPWLS reconstruction with data-fit term (13) and regularization term (14) is equivalent to takinĝf(y) =
(A′WA + R)−1A

′Wy, which corresponds to the linear reconstructor

Z = (A′WA + R)−1A
′W . (15)

For R = 0, we get the unregularized WLS reconstructor, which simply maximizes the data-fit term (13).

D. Observer models

The termobserverrefers to the entity making the decision between hypothesesH0 and H1. Observers acting
directly on the measurementy would be very likely to grossly overestimate human observerperformance, since
humans have difficulty distinguishing small features in a sinogram. In the following, we will focus on observers
that are applied to the reconstructed imagef̂ , since this situation better corresponds to common imagingpractice.

We consider observers that decide between hypothesesH0 and H1 based on the reconstructed imagef̂ and a
decision rule that, similarly to Neyman-Pearson tests, compares some scalartest statistic

t = t(f̂) = t(Zy) (16)

to somethresholdT :
DecideH1 if t(f̂) > T , otherwise decideH0,

where t(·) is the discriminant functionand T is independent of the data. The specific form of the discriminant
function depends on the observer model considered. Our goalis to optimize the reconstructorZ with respect to
the performance of various observer models of interest in the detection offs.

E. Figures of merit

One can quantify the detection performance of an observer bytracing its Receiver Operating Characteristic
(ROC) curve, a plot of the probability of atrue positive(deciding thatH1 is true whenH1 is actually true) versus
the probability of afalse positive(deciding thatH1 is true whenH0 is actually true). The curve is traced by
varying the decision thresholdT and theArea Under the Curve(AUC) is a common figure of merit for observer
performance. Another figure of merit is theSignal-to-Noise Ratio(SNR), defined as

SNR =
E[t|H1]−E[t|H0]

√

1
2
Var{t|H1}+ 1

2
Var{t|H0}

. (17)

In the case where the test statistict is Gaussian-distributed under both hypotheses, the SNR is especially useful,
since it is monotonically related to the AUC [11, p.819].

III. O PTIMAL RECONSTRUCTION FOR SIGNAL DETECTION

A. Ideal observer

The discriminant function of the ideal observer in a Bayesian sense is the well-known likelihood ratio [5, p.26],

t◦(f̂) = p(f̂(y)|H1)/p(f̂(y)|H0),

which is generally nonlinear in̂f . Even if the reconstructed imagêf is assumed to be Gaussian-distributed, the
likelihood ratio is quadratic in̂f and thus not Gaussian-distributed itself. Therefore, one would have to optimize the
AUC of this test statistic directly rather than work with theSNR. However, the ideal observer is generally not used
to evaluate reconstruction methods, since its performanceis invariant to any nonsingular data transformation [28,
§10.1]. The observer models commonly used in the literature to evaluate image reconstruction methods are linear.
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B. Generic linear observers

Linear observers facilitate analysis and they have been found to approximate the suboptimality of human ob-
servers [29], [30]. Therefore we focus hereafter on observers with a general linear discriminant of the form

t(y) = w′f̂(y) (18)

for sometemplatew, which is a real vector in the same space asf̂ . Combining the linear discriminant in (18) with
the reconstruction moments from (10) and (11) yields the following expressions for the moments oft = t(y):

E[t|H1]−E[t|H0] = w′Z ȳ (19)

Var{t|Hi} = w′ZΠiZ
′w, i = 0, 1. (20)

Hereafter, we assume that the test statistict is Gaussian-distributed and focus on maximizing the SNR, inwhich
case the AUC is also maximized. For a linear observerw and a linear reconstructorZ, the test statistict is a
weighted sum of the elements of the measurement vectory, so usuallyt can be approximated as Gaussian-distributed
by the central limit theorem. Furthermore, the probabilitydistribution of an imagef̂ reconstructed from Poisson
datay through a penalized-likelihood method of the form (12) can be approximated as Gaussian [31]. This is an
additional argument for consideringt to be Gaussian-distributed when it is the product of a linearobserverw
applied on an imagêf reconstructed by a penalized-likelihood algorithm.

Substituting the moment expressions (19) and (20) into (17)yields the SNR of the generic linear observer in (18):

SNR2
lin =

(w′Z ȳ)2

w′ZΠ̌Z
′w

=
w′Z(ȳ ȳ′)Z ′w

w′ZΠ̌Z
′w

, (21)

where
Π̌ ,

1

2
Π1 +

1

2
Π0 (22)

is the unconditional covariance of the data. The left-hand side of the SNR expression (21) has the form of a
generalized Rayleigh quotient. This form is maximized withrespect toZ ′w when (e.g., see [32, p.120])

Z
′w ∝ Π̌

−1 ȳ . (23)

When the observer templatew and the reconstructorZ satisfy the condition (23), the observer at hand achieves
the maximum SNR that is attainable with any combination of a linear observer and linear reconstruction method.
Substituting the optimality condition (23) into the SNR expression (21) yields:

SNR2
lin ≤ ȳ′

Π̌
−1 ȳ , SNR2

lin◦
. (24)

The upper bound on the right-hand side of (24) is the maximum SNR attainable by any linear observer and linear
reconstructor in the detection task at hand.

For emission tomography, substituting (7) and (8) into (22)yields

Π̌ = Π + AKfA
′, (25)

whereΠ , diag
{

A(f̄b + 1
2
f̄s) + r

}

is the imaging noise covariance for the unconditional mean object andKf ,

Kb + 1
2
Ks is the unconditional covariance of the object. SinceΠ, Kb andKs are positive definite, so išΠ in (25),

thus the ratio in (21) is well-defined providedZ ′w is nonzero. Substituting (6) and (25) into (24) yields the optimal
SNR for the detection task at hand in emission tomography:

SNR2
lin◦

= f̄ ′
sF̌ f̄s, (26)

where we define

F̌ , A
′
Π̌

−1A = A
′(Π + AKfA

′)−1A (27)

= (I + FKf )−1F = F(I + KfF)−1, (28)

whereI is the identity operator, andF , A
′
Π

−1A. From (27) we derive (28) using the “push-through” identity
A(I + BA)−1 = (I + AB)−1A [33]. The operatorsF̌ and F have a form analogous to that of theFisher
information matrix [5, p.80] for estimation problems that involve a linear system and additive Gaussian noise. In
the SKE/BKE case, we havěF = F .
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A simple combination that satisfies the optimality condition (23) is Z = I (which is not a reconstruction
method) andw = Π̌

−1 ȳ, which corresponds to the Hotelling observer (see section III-C.1) for detection in the raw
measurement domain rather than the reconstruction domain.However, even when we restrict attention to observers
that are applied to reconstructed images, usually there arestill many ways to satisfy (23), as the analysis that follows
indicates.

C. Fisher observers and reconstructors

As shown in more detail below, several of the mathematical observers that have been proposed in the literature
can achieve the optimal SNR when paired with simple reconstructors that correspond to some power of the Fisher
information operatořF applied to a backprojection of the data. For lack of a better term we refer to this family of
reconstruction methods asFisher reconstructorsand we allow them to include a regularization component:

Zq , H
(q)

A
′
Π̌

−1 = (F̌ + R)(q)A′
Π̌

−1 (29)

for someq ∈ R andH , F̌ + R for some regularization operatorR. We use the notation

H
(q)

,

{

H
q, q ≥ 0

(H†)−q, q < 0.

where “†” denotes a pseudo-inverse1. Typically the regularizerR is chosen so thatH is nonsingular. The reason
we allow H to be singular in the analysis that follows is to accomodate the unregularized caseR = 0, sinceF̌

itself may be singular.
The estimated image produced by the Fisher reconstructor (29) is

f̂ = Zqy = H
(q)

A
′
Π̌

−1y = H
(q)

A
′(Π + AKfA

′)−1y,

which is a kind of weighted backprojection with a (perhaps somewhat unusual) postfilter. Forq < 0, this postfilter
is something like a regularized deconvolver. Forq = −1 in particular, the Fisher reconstructor yields

f̂ = H
†
A

′
Π̌

−1y, (30)

so it is equivalent to the QPWLS estimator from (15) withW = Π̌
−1.

Interestingly, for any Fisher reconstructor, even an unregularized one, there is a corresponding linear observer
that achieves optimal detection performance. We refer to this observer family asFisher observers:

wp , H
(p)f̄s (31)

for somep ∈ R. For a reconstructor of the family (29) and an observer of thefamily (31) we have

Z
′
qwp = Π̌

−1AH
(q)

H
(p)f̄s. (32)

By comparing (32) with (23) for̄y = Af̄s we see that the choicep = −q leads to the optimal SNR,i.e., the
observerw−q achieves optimal SNR when applied to images produced by the reconstructorZq. This is true even
for R = 0 and singularF̌ , as we can show by using the fact thatB(B′

B)(q)(B′
B)(−q) = B for any B, which

we obtain by singular value decomposition ofB. SubstituingB = Π̌
−1/2A yields the desired result. Fig. 1 shows

template profiles for some of the observers in (31). The profile shape forp = 0.5 especially is reminiscent of those
estimated from human observers (e.g., see [17]).

Fisher reconstructors withR = 0 appear to be largely devoid of regularization2. However, even for these recon-
structors, there are corresponding observers that can achieve optimal performance in the detection task considered
here. As shown in the following sections, some well-known observers from the literature fall within this category.
This means that, if the reconstructed images are meant to be interpreted by these observers,regularization is not
essentialin the reconstruction process, at least for the simple detection task at hand.

1We follow Definition 6.2.1 of the pseudo-inverse in [34]. An immediate result of this definition is that for nonsingular matrices the pseudo-
inverse is the same as the inverse (Theorem 6.2.13 in [34].) Inthis notation, we haveH(−1)

= H†
= H−1 wheneverH is nonsingular.

2For R = 0 and q > −1, one could construe the Fisher reconstructor as being marginally regularized since it entails somewhat “less
deconvolution” than the unregularized WLS reconstructor. However, this type of “regularization” does not improve the condition number in the
case of singulařF, and it is unlike most regularization methods described in theliterature.

June 21, 2005 DRAFT



7

10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1
p = 0
p = 0.5
p = 1

Fig. 1. Profiles through the center of (normalized) Fisher observer templateswp for p = 0, 0.5, 1. Note thatw0 = f̄s.

1) Hotelling Observer (HO):The HO utilizes the optimal linear discriminant in a maximum-SNR sense, which,
similarly to (23), can be shown to be proportional to

wHO , K
†

f̂

(

E
[

f̂ |H1

]

−E
[

f̂ |H0

] )

, (33)

whereK
f̂

, 1
2
Cov

{

f̂ |H1

}

+ 1
2
Cov

{

f̂ |H0

}

. Substituting the moments of̂f from (10) and (11) into (33) yields

wHO = (ZΠ̌Z
′)†Z ȳ (34)

and thus
Z

′wHO = Z
′(ZΠ̌Z

′)†Z ȳ = Π̌
−1/2P

Π̌1/2Z′(Π̌−1/2 ȳ), (35)

whereP
Π̌1/2Z′(·) denotes the orthogonal projection of a vector ontoR

Π̌1/2Z′ , the range space of̌Π1/2Z
′. By

comparing (35) with (23) we find that the HO achieves optimal SNR for anyZ that satisfiešΠ−1/2 ȳ ∈ R
Π̌1/2Z′

or, equivalently,
Π̌

−1 ȳ ∈ RZ′ . (36)

There are a multitude of choices ofZ that satisfy the mild condition in (36). For example, anyZq of the Fisher
reconstructor family (29) satisfies (36), as long asȳ is in the range space ofA (e.g., ȳ = A f̄s). This is true
even for aZq with R = 0 and singularF̌ , following an argument similar to the previous section. Thus the HO
achieves the ideal SNR for any Fisher reconstructor, regularized or not. This result is consistent with the fact that
linear transformations of the data do not affect the performance of the optimal linear observer [28,§10.2] (except
when the transformation operator does not have a right inverse, in which case performance degrades). Note that
for ȳ = Af̄s, R = 0 andq 6= 0 the HO template in (34) becomeswHO = F̌

(−q)
f̄s, which is the Fisher observer

template in (31) withp = −q and the optimality ofZq for this observer follows by the previous section.
2) PreWhitening (PW) observer:The template of the PW observer is given by

wPW , Cov
{

f̂ |H0

}† (

E
[

f̂ |H1

]

−E
[

f̂ |H0

] )

. (37)

Substituting the moments of̂f from (10) and (11) into (37) yields

wPW = (ZΠ0Z
′)†Z ȳ

and thus
Z

′wPW = Z
′(ZΠ0Z

′)†Z ȳ = Π
−1/2
0 P

Π
1/2

0 Z′
(Π

−1/2
0 ȳ). (38)

By comparing (38) with (23) we find that the PW observer achieves optimal SNR for anyZ that satisfies

P
Π

1/2

0 Z′
(Π

−1/2
0 ȳ) ∝ Π

1/2
0 Π̌

−1 ȳ,
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which in turn implies thatΠ−1/2
0 ȳ−cΠ

1/2
0 Π̌

−1 ȳ must be orthogonal toR
Π

1/2

0 Z′
for any constantc. This finally

leads to the requirement that
Z ȳ ∝ ZΠ0Π̌

−1 ȳ,

i.e., that the sinograms̄y and Π0Π̌
−1 ȳ yield the same reconstructed image but for a scaling constant. Thus, in

general there is no linear reconstructorZ that leads to optimal SNR for the PW observer.
An exception to this is the SKE case, whereΠ̌ = Π0 and the PW observer is the same as the HO, so it can

achieve optimal SNR for infinitely many choices ofZ. The minimal dependence of the SNR onZ for the HO is
consistent with the observation of Qiet al. that performance of the PW observer in the SKE task is independent
of smoothing method in the MAP case [19].

3) Non-PreWhitening (NPW) observer:The template of the NPW observer is given by

wNPW , E
[

f̂ |H1

]

−E
[

f̂ |H0

]

. (39)

Substituting the moments of̂f from (10) into (39) yields

wNPW = Z ȳ (40)

and thus by (23) the NPW observer achieves optimal SNR for anyZ that satisfies

Z
′
Z ȳ ∝ Π̌

−1 ȳ . (41)

For a Zq of the Fisher reconstructor family (29) and̄y = Af̄s, we haveZ
′
Z ȳ = Π̌

−1AH
(2q)

F̌ f̄s, so
the optimal SNR is achieved whenR = 0 and q = −1/2. This corresponds to the somewhat unusual Fisher
reconstructor

Z = F̌
(−1/2)

A
′
Π̌

−1. (42)

Whether there are other solutions that satisfy (41) is an openproblem. (There is also the choice ofZ = Π̌
−1/2,

which is not a reconstruction method. It is equivalent to theHotelling observer for sinogram-based detection.) Note
that for the reconstructor (42) the NPW template in (40) becomeswNPW = F̌

1/2
f̄s, which is the Fisher observer

template in (31) withp = 1/2.
The reconstructor in (42) yields the estimated image

f̂ = F̌
(−1/2)

A
′
Π̌

−1y = F̌
1/2

(F̌
†
A

′
Π̌

−1y),

which is the unregularized WLS estimate, given in (30) forR = 0, followed by the unusual shift-variant post-filter
F̌

1/2
. This estimator is impractical for two reasons. Firstly, even if A happens to have full rank,̌F is usually very

ill-conditioned, so computing the WLS solution (30) will require a multitude of iterations for any practical iterative
algorithm. Secondly, the shift-variant post-filterF̌

1/2
would be computationally intensive to implement for typical

problem sizes.
4) Region-of-Interest (ROI) observer:The template of the ROI observer is given by

wROI , E[fs|H1] = f̄s. (43)

Then by (23) the ROI observer achieves optimal SNR for anyZ that satisfies

Z
′f̄s ∝ Π̌

−1 ȳ .

Since the ROI template corresponds to the Fisher observer in(31) with p = 0, the optimal SNR forȳ = Af̄s

is achieved by the Fisher reconstructor withq = 0, i.e.,

Z = A
′
Π̌

−1. (44)

Curiously, in this case

f̂ = A
′
Π̌

−1y.

This is a very blurry estimate off , being simply unfiltered backprojection. Yet for the ROI observer it is optimal,
and no amount of deconvolution will improve the SNR for this detection task, which is an indication that the task
is too simple. The optimality of this blurry estimate is consistent with the demonstration in Qiet al. of the ROI
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observer (for a penalized-likelihood reconstructor withR = βI) approaching the PW observer’s performance as
β → ∞ [19].

Alternatively to (43), the ROI template may be defined as containing 1’s wherever f̄s is non-zero and0’s
everywhere else. In this case, the optimalZ would be the backprojector in (44) followed by a diagonal operator
that weighs the reconstructed image by the shape off̄s: Z = diag

{

f̄s

}

A
′
Π̌

−1. This weighting does not improve
the resolution of the backprojection, so for either definition of the ROI template the conclusion remains that optimal
performance is achieved with a very blurry estimator.

5) Summary of Fisher observers and reconstructors:For three of the specific observer models considered above,
at least one reconstructor of the Fisher family (29) was found to achieve the highest SNR possible for linear
observers. The following table summarizes these findings.

Observer q R Best estimator Interpretation
Hotelling R � 0 (F̌ + R)(q)A′

Π̌
−1y Any Fisher reconstructor (e.g., WLS)

NPW −1/2 0 F̌
(−1/2)

A
′
Π̌

−1y Partly deconvolved backprojection
ROI 0 - A

′
Π̌

−1y Backprojection

Thus the linear reconstructorsZ that yield optimal detection performance for the HO, NPW, and ROI models need
not include any form of regularization. This is true even if the system operatorA is a matrix with less than full
column rank. We conclude on theoretical grounds that regularization is not absolutely essential for the HO, NPW,
and ROI observer models in the task of detecting a statistically varying signal of known location on a statistically
varying background.

The optimality of blurry backprojections with respect to detection performance for the HO, NPW, and ROI models
implies that spatial resolution is not important for these known-location tasks. This is consistent with the findings
of Wagneret al., who attempted to optimize imaging systems with respect to performance in such a task, only to
find that a pinhole of very large size would be optimal [35]. Although Wangeret al. considered a SKE/BKE task,
our analysis above shows that spatial resolution does not play an important role even in the presence of signal and
background variability.

Furthermore, there is a strong dependence of the optimal reconstruction method on the specific observer model
considered. This implies that there is no universally optimal reconstruction method, even for the simple detection task
considered here. As we mentioned in section I, the apparent premise of human-observer studies in the literature is
that humans do not perform as well as the ideal observer. Therefore, the fact that there exist “simple” reconstruction
methods that allow the HO, NPW, and ROI observer models to achieve the ideal linear-detection SNR (which is
also the overall ideal SNR for SKE tasks) suggests that theseobserver models, the tasks, or both are somehow
inappropriate. We proceed with analyzing the effect of regularization on the performance ofchannelized observer
models,which are known to correlate well with human observers for known-location tasks.

D. Channelized linear observers

1) Overview: Channelized observer models include a set of frequency-selective channels in an attempt either
to construct an efficient basis for the approximation of the ideal linear observer [36], or to model the frequency
selectivity that is believed to characterize human visual perception [9]. Here we are interested primarily in the latter
type of channel, since suboptimal observers are the focus for the purpose of image reconstruction optimization.
However, the analysis that follows applies to either channel flavor.

Conceptually, channelized observers first pass the reconstructed imagef̂ through a set ofM bandpass filters.
The new feature vector̂c ∈ C

M is formed from the values of the filter outputs at the known location of the target
signal center and can include additive noise:

ĉ(y) = C
′f̂(y) + εint,

whereC = [C1, . . . ,CM ] consists ofM operators. Themth of these operators applies the impulse response of the
mth bandpass filter and samples the output at the center of the target signal. Typically this filtering step is not
invertible and it greatly reduces the dimensionality of thedetection problem (e.g., M = 4 in [14]). The internal
noisevectorεint models inherent uncertainty in the observer’s decisions and is assumed to be zero-mean Gaussian
with covariance matrixΠint.
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A generic channelized linear observer forms its test statistic tch by applying a templatew ∈ C
M to the output

of the filter bank:
tch(y) = w′ĉ(y). (45)

For a linear reconstruction methodZ, combining the reconstruction moments from (10) and (11) with the chan-
nelized linear discriminant in (45) yields the following expressions for the moments oftch:

E[tch|H1]−E[tch|H0] = w′C
′
Z ȳ (46)

Var{tch|Hi} = w′C
′
ZΠiZ

′
Cw + w′

Πintw, i = 0, 1. (47)

Combining expressions (46) and (47) with (17) yields the SNRof the channelized observer:

SNR2
ch =

(w′C
′
Z ȳ)2

w′C
′
ZΠ̌Z

′
Cw + w′Πintw

. (48)

We would like to find a reconstructorZ that optimizes the SNR in (48). However, ifΠint 6= 0 is independent of
Z, then aZ of infinitely large norm would be optimal. Thus one would needsome constraint onZ to optimize
the SNR in its most general form (48), but it is unclear what constraints would be suitable.

A special case occurs if we assume that the covariance of the internal noise in the channels is proportional to
the covariance ofC′f̂ due to imaging noise and object variability. Specifically, we assume

Πint = cintC
′
Z

′
Π̌ZC (49)

for some constant of proportionalitycint, which includes the special case of no internal noise forcint = 0. The
model (49) is similar to the one proposed in [15], except that(49) does not presume independence of the internal
noise in individual channels. Under the assumption (49) theSNR of the channelized linear observer in (48) becomes

SNR2
ch =

1

1 + cint

(w′C
′
Z ȳ)2

w′C
′
ZΠ̌Z

′
Cw

≤ 1

1 + cint
ȳ′

Π̌
−1 ȳ =

SNR2
lin◦

1 + cint
. (50)

The SNR upper bound in (50) is achieved for anyZ that satisfies

Z
′
Cw ∝ Π̌

−1 ȳ, (51)

similarly to the non-channelized version in (21) and (23).
2) Channelized Hotelling Observer (CHO):As mentioned in section I, the CHO has been shown to be particularly

successful in predicting human observer performance. It applies the optimal linear discriminant with respect to the
output ĉ of the M -channel filter bank. This corresponds to the template

wCHO , Π
†
ĉ

(

E[ĉ|H1]−E[ĉ|H0]
)

= (C′
ZΠ̌Z

′
C + Πint)

†C
′
Z ȳ, (52)

whereΠĉ , 1
2
Cov{ĉ|H1}+ 1

2
Cov{ĉ|H0} . (The filters involved inC typically correspond to distinct frequency

bands. If this is the case, then the covarianceΠĉ can be assumed to be nonsingular even whenΠint = 0, so its
pseudo-inverse is the same as its inverse. Nevertheless, weuse a pseudo-inverse in the interest of generality.) By
substituting the CHO template from (52) into the SNR expression (48), we find this observer’s SNR:

SNR2
CHO = ȳ′ Z

′
C(C′

ZΠ̌Z
′
C + Πint)

†C
′
Z ȳ . (53)

In the special case of the internal noise model (50) we have

Z
′
CwHO ∝ Z

′
C(C′

ZΠ̌Z
′
C)†C′

Z ȳ = Π̌
−1/2P

Π̌1/2Z′C(Π̌−1/2 ȳ). (54)

By comparing (54) to the optimality condition (51), we find that the SNR upper bound in (50) is achieved when
Z satisfiesΠ̌−1/2 ȳ ∈ R

Π̌1/2Z′C or, equivalently,

Π̌
−1 ȳ ∈ RZ′C, (55)

which is similar to (36). To find aZ that satisfies (55), consider a reconstructor of the form

Z = WC(C′
WC)−1G

′
A

′
Π̌

−1, (56)
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whereW is any image-domain weighting operator andG is a mapping fromC
M to object space. For theZ in (56),

we haveZ
′
C = Π̌

−1AG, so the optimality condition (55) is satisfied if

ȳ ∈ RAG . (57)

As long asG can be chosen to satisfy (57), the unregularized reconstructor Z given in (56) allows the CHO
to achieve the optimal SNR. For emission tomography, whereȳ = Af̄s, there is always a way to chooseG to
satisfy (57); choosingG so that one of its “columns” is proportional tōfs is the most obvious way.

The rather unconventional family of reconstructors in (56), although ensuring optimal SNR for the CHO under
the internal noise model (49), does not produce what we usually consider to be reconstructed images. In essence,
the HO template for detection in the raw measurement domain (w = Π̌

−1 ȳ) is hidden in one of the rows of such
a reconstructor. Thus it is of interest to know whether reconstructors that are more conventional than (56) can be
combined with the CHO to achieve SNR values close to the optimal and, if so, whether these reconstructors must
include regularization. As shown below, such insight can begained by using approximations to the SNR expression
in (53) that are based on local Fourier-domain analysis. Such approximations also facilitate analysis of internal noise
models other than (49). In the following, we first provide a brief review of local Fourier-domain approximations
and we then use them to analyze the SNR of the CHO for one unregularized and one regularized reconstructor
example.

3) Local Fourier analysis of CHO performance:For the purposes of the Fourier analysis that follows, we will
assume to have a discrete representation of the object3 f ∈ R

np . Let U be a discrete Fourier operator, mapping an
object in R

np to some vector inCnp known as thespectrumof the object. The Fourier operatorU is linear and,
due to the shift property of the Fourier transform, it can be defined through its action on an objecte0 that consists
of an impulse centered at the origin:

Ue0 =
1

√
np

1, (58)

where1 is the vector ofnp ones. Without loss of generality, we choose the origin of theFourier transform to
coincide with the location where the signalf̄s is centered.

Let λ ∈ C
np be thelocal frequency responseof the Fisher information operatorF at the origin, defined by

λ , UFe0.

In general, the operatorF is shift-variant, so its behavior when applied to an object other the impulsee0 cannot
be fully defined throughλ. However, if the operatorF is applied to an object that is contained within a small
spatial extent around the origin, we can approximate the behavior of F using λ, i.e., we can approximateF as
shift-invariant within the spatial extent of the object. The closer the object comes to resembling an impulse, the
greater the accuracy of this approximation. Thus we approximate the operatorF within a small spatial extent
around the origin as

F ≈ U
−1

Λ U , (59)

whereΛ = diag{λ}. The elements ofλ, λk, k = 1, . . . , np, contain the local frequency response ofF . Since
F is symmetric nonnegative definite, we force theλk’s to be real and nonnegative by discarding imaginary parts
and setting negatives to zero. Locally shift-invariant approximations ofF have proven to be useful and accurate in
several cases [18], [19], [31], [37]–[41].

We also use a locally shift-invariant approximation of the object covariance:

Kf ≈ U
−1N U , (60)

whereN = diag{νk, k = 1, . . . , np}. The νk ’s contain the local frequency response ofKf (i.e., the local power
spectrumof the objectf ) around the location of̄fs. Although it may be reasonable to approximate the background
fb as locally stationary within the spatial extent of the signal, approximating the signalfs itself as locally
stationary would be less reasonable. That is, the approximation in (60) is much more accurate when the signal
fs is deterministic or when the signal covarianceKs is negligible in comparison to the background covarianceKb.

3Nevertheless, it is possible to generalize this analysis for an infinite-dimensional object space.
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Using the approximations (59) and (60), we can start from (28) to derive the following locally shift-invariant
approximation for the Fisher information operatorF̌ :

F̌ = F(I + KfF)−1 ≈ U
−1

Λ(I + NΛ)−1U = U
−1

Λ̌ U , (61)

whereΛ̌ , diag
{

λ̌k, k = 1, . . . , np

}

and λ̌k , λk

1+νkλk
, which reduces tǒΛ = Λ in the SKE/BKE case.

As in [20]–[22], we also use the fact thatC is a collection of filters to get its frequency-domain representation.
Let tm ∈ C

np denote the frequency response of themth bandpass filter. Then themth operator inC has the form
Cm = U

−1 diag{tm}Ue0 and, using (58), we get

C = U
−1T , T =

1
√

np

[

t1 . . . tM
]

. (62)

4) CHO and Fisher reconstructors:For an unregularized Fisher reconstructorZq, given by (29) withR = 0,
we can use the Fourier decompositions (61) and (62) along with (6) to obtain the approximations

C
′
Zq ȳ ≈ T ′

Λ̌
(1+q)X (63)

C
′
ZqΠ̌Z

′
qC ≈ T ′

Λ̌
(1+2q)T , (64)

whereX = U f̄s is the spectrum of the mean target signal. The approximation(63) assumes that̄fs is highly
localized in space. The accuracy of the approximation (64) depends on how localized in space the channel responses
are. However, wheňΛ is positive definite, the expression (64) is exact forq = −1/2, so it may also be reasonable
for q near−1/2 (includingq = −1 andq = 0, which are the two cases of greatest practical interest). Approximation
error plots for some values ofq were presented in [20].

Substituting the approximations (64) and (63) into (53) yields the following approximation for the SNR of the
CHO when combined with an unregularized Fisher reconstructor:

SNR2
CHO,F ≈ X ′

Λ̌
(1+q)T (T ′

Λ̌
(1+2q)T + Πint)

†T ′
Λ̌

(1+q)X. (65)

5) Channels with disjoint passbands:The CHO filters are sometimes assumed to be bandpass filters with disjoint
passbands. In that case, the vectorstm have disjoint nonzero entries and theM ×M matrix on the right-hand side
of (64) is diagonal, so we have

[T ′
Λ̌

(1+q)X]m =
1

√
np

∑

k∈Tm

(tmk )∗λ̌
(1+q)
k Xk

[T ′
Λ̌

(1+2q)T ]mm =
1

np

∑

k∈Tm

|tmk |2λ̌(1+2q)
k ,

whereTm = {k : tmk 6= 0} is the passband of themth filter and “∗” denotes complex conjugate.
If we furthermore combine the assumption of disjoint passbands with the internal noise model (49), the covariance

Πint becomes diagonal (to within approximation (64)) and the model (49) coincides with the one proposed in [15].
Under these assumptions the SNR approximation in (65) simplifies to

SNR2
CHO,F ≈ SNR2

1 ,
1

1 + cint

M
∑

m=1

∣

∣

∣

∑

k∈Tm
Xk(tmk )∗λ̌

(1+q)
k

∣

∣

∣

2

∑

k∈Tm
|tmk |2λ̌(1+2q)

k

, (66)

We now examine the conditions under which the approximate SNR in (66) can reach the SNR upper bound in (50).
6) Achievability of the optimal SNR:To determine how closely the approximate SNR in (66) can approach the

SNR upper bound, define vectorsum andvm with elements

um
k , Xkλ̌

1/2
k 1{k∈Tm},

vm
k , tmk λ̌

(q+1/2)
k ,

respectively. Then rewriting (66) and using Cauchy’s inequality yields

SNR2
1 =

1

1 + cint

M
∑

m=1

|〈um, vm〉|2

‖vm‖2 ≤ 1

1 + cint

M
∑

m=1

‖um‖2
=

1

1 + cint

∑

k∈T

|Xk|2λ̌k (67)

≤ 1

1 + cint

∑

k

|Xk|2λ̌k ≈ 1

1 + cint
f̄ ′

sF̌ f̄s =
SNR2

lin◦

1 + cint
,
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whereT = ∪M
m=1Tm denotes the combined passband of allM channels. If the combined passbandT does not

contain all of the signal energy, then the SNR will be strictly less than the optimal SNR. This suboptimality is
expected due to the dimensionality decrease caused by the channels.

Is there an unregularized Fisher reconstructorZq for which the upper bound in (67) can be achieved? Suppose
that each channel filter has a flat passband,i.e., tmk = 1{k∈Tm}. Then there are two obvious cases where the SNR
upper bound in (67) is achieved, as can be verified by substitution or by using the requirementum ∝ vm ∀m :
• If the Xk ’s are constant over each passband, thenq = 0 (the unfiltered backprojector) will be optimal.
• If the λ̌k ’s are also constant over each passband, then anyq ∈ R will be optimal.

In practice, it may be unlikely that either thěλk’s or theXk’s areexactlyuniform over each channel’s passband, but
if the passbands are reasonably narrow, then it is likely that these spectra will beapproximatelyuniform over each
passband. So to within the accuracy of the approximations considered above, one or more of these unregularized
reconstructors will nearly achieve the highest SNR obtainable for the given CHO channels and internal noise model.
Once again, regularization does not seem to play a crucial role, even for the CHO.

7) CHO and QPWLS reconstructors:The analysis in the previous section showed some situationsin which one
or more unregularized reconstructors allow the CHO to achieve (approximately) optimal SNR in the detection task
at hand. We next examine the QPWLS family of regularized reconstructors, described in section II-C, to explore
how closely the CHO can approach the optimal SNR with a practical regularized reconstruction method and to
examine the optimal choice of regularizer.

The general form of a QPWLS reconstructor is given in (15) and the commonly used weighting matrixW is
the one corresponding to MAP estimation,i.e., W = (Cov

{

y|f = f̄b

}

)−1 = Π
−1. For thisW , the reconstructor

in (15) becomes
Z = (F + R)−1A

′
Π

−1. (68)

Note that the QPWLS reconstructor in (68) is the same as the Fisher reconstructor (29) withq = −1 only if
Kf = 0, i.e., only if there is no object variability. We assume throughout that the regularization operatorR is
chosen such thatF + R is positive definite. We would like to designR to optimize CHO detection performance
in the QPWLS-reconstructed images.

To analyze CHO performance with QPWLS reconstruction, we assume that bothF and R are diagonalized
locally by a common operator (the Fourier operatorU ). Specifically, we use (59), (60), (62) and also assume that

R ≈ U
−1

Ω U , (69)

where Ω = diag{ωk, k = 1, . . . , np}. The real, nonnegativeωk ’s contain the local frequency response of the
regularizer around the location of̄fs. Approximations of simultaneous diagonalization ofF andR have been used
by other investigators to analyze observer performance with penalized-likelihood reconstruction [18], [21], [22].

Substituting the QPWLS reconstructor (68) and the emission tomography measurement moments (6) and (25)
into the SNR of the CHO from (53) yields

SNR2
CHO,QPWLS = f̄ ′

sF(F +R)−1C[C′(F +R)−1(F +FKfF)(F +R)−1C +Πint]
†C

′(F +R)−1F f̄s. (70)

Similarly to section III-D.4, we use the local Fourier approximations (59), (60), (69) to obtain:

C
′(F + R)−1F f̄s ≈ T ′(Λ + Ω)−1

ΛX (71)

C
′(F + R)−1(F + FKfF)(F + R)−1C ≈ T ′(Λ + Ω)−1(Λ + Λ

2N)(Λ + Ω)−1T . (72)

Substituting (71) and (72) into (70) yields the following approximation for the SNR of the CHO when combined
with a QPWLS reconstructor:

SNR2
CHO,QPWLS ≈ X ′

Λ(Λ + Ω)−1T (T ′(Λ + Ω)−1(Λ + Λ
2N)(Λ + Ω)−1T + Πint)

†T ′(Λ + Ω)−1
ΛX. (73)

8) Channels with disjoint passbands:Similarly to section III-D.5, when the CHO channels have disjoint frequency
responses, theM×M matrix on the right-hand side of (72) becomes diagonal. We assume that its diagonal elements
are nonzero,i.e., the system has some nonzeroλk for each passband. (If not, the noninformative passband could
be eliminated.)
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As in section III-D.5, we combine the assumption of disjointpassbands with the internal noise model (49). Then
the approximate SNR expression in (73) becomes

SNR2
CHO,QPWLS ≈ SNR2

2 ,
1

1 + cint

M
∑

m=1

∣

∣

∣

∑

k∈Tm
Xk(tmk )∗ λk

λk+ωk

∣

∣

∣

2

∑

k∈Tm
|tmk |2 λ2

k

λ̌k(λk+ωk)2

. (74)

We now examine the conditions under which the approximate SNR in (74) can reach the SNR upper bound in (50).
9) Achievability of the optimal SNR:To determine how closely the approximate SNR in (74) can approach the

SNR upper bound, define vectorsum andvm with elements

um
k , Xkλ̌

1/2
k 1{k∈Tm},

vm
k , tmk λk/λ̌

1/2
k (λk + ωk),

respectively. Then rewriting (74) and using Cauchy’s inequality yields

SNR2
2 =

1

1 + cint

M
∑

m=1

|〈um, vm〉|2

‖vm‖2 ≤ 1

1 + cint

M
∑

m=1

‖um‖2
=

1

1 + cint

∑

k∈T

|Xk|2λ̌k (75)

≤ 1

1 + cint

∑

k

|Xk|2λ̌k ≈ 1

1 + cint
f̄ ′

sF̌ f̄s =
SNR2

lin◦

1 + cint
. (76)

Once again, if the combined passbandT = ∪M
m=1Tm does not contain all of the signal energy, then the SNR will

be strictly less than the optimal SNR.
The intermediate inequality in (75) becomes an equality ifum ∝ vm ∀m. Suppose that each channel filter is an

ideal bandpass filter over some frequency band,i.e., tmk = 1{k∈Tm}. Then, forλk 6= 0, Xk 6= 0, the intermediate
upper bound in (75) is achieved for example when

ωk = α
λk

Xkλ̌k

− λk, (77)

where the constantα 6= 0 can be chosen arbitrarily. Usingα , 2maxk(Xkλ̌k) would keep theωk ’s positive.
To within approximations (59), (60) and (69), the local frequency response in (77) corresponds to the following
nonnegative definite regularizer:

R = α(I + FKf )(U−1 diag{X}−1
U) − F . (78)

The R in (78) usually has a high-pass characteristic, so it could be construed as a regularization operator, but it
is quite different from standard forms of regularization studied in the literature. Furthermore, substituting theR

from (78) into the QPWLS reconstructor in (68) yields the estimator

f̂ =
1

α
(U−1 diag{X}U)A′

Π̌
−1y. (79)

Therefore this “optimal” choice ofR results in an unregularized estimator that is simply a weighted backprojection
followed by the application of a “matched” filter (convolution with f̄s). This agrees with the conclusion from
section III-D.6 that regularization is not essential for the CHO, if the passbands of the CHO channels are flat,
non-overlapping and with internal noise covariance of the form (49).

Similarly to section III-D.6, a degenerate case occurs whenthe channel passbands are flat and the mean signal
spectrum{Xk}, system spectrum{λk}, and object power spectrum{νk} are all constant over each channel’s
passband. Then the first upper bound in (75) is achieved forany choice of regularization{ωk} that is also constant
over each passband, includingωk = 0. Once again, under the internal noise model (49), the choiceof regularization
is not important in this detection task if there is little within-passband variation of the mean signal spectrum, the
system spectrum, the object power spectrum, and/or the channel response itself.
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10) CHO and QPWLS with a roughness penalty:In the previous section, where we placed no constraints on
the form of the regularizerR, we ended up with an “optimal”R that yielded the unregularized estimator in (79).
We now constrain the regularizer to the commonly used form ofa quadraticroughness penalty.In this case, the
regularization operatorR in (14) is such that

R(f) = −β

np
∑

j=1

∑

k∈Nj

(fj − fk)2, (80)

where fj is the jth sample of the objectf , Nj a neighborhoodof pixels around thejth pixel, andβ ≥ 0 a
regularization parameter. A regularization term of the form (80) penalizes differences between neighboring image
pixels, thus favoring smoother images. For simplicity, we consider here a first-order neighborhoodNj , consisting
of the four closest (top, bottom, left and right) neighboring pixels. The only free parameter in the regularizer (80)
is thus the regularization parameterβ.

We now provide an example of howβ affects the SNR of the CHO with overlapping or non-overlapping passbands
in the presence of internal noise. We consider the case whereA corresponds to a 2-D PET system model with
the characteristics of a CTI ECAT 931 scanner (matrix size128× 128, pixel size4.7mm, 192 radial samples with
3.1mm spacing, 160 projection angles over180o), generated by the ASPIRE software package [42]. We assume that
the target signalfs has a known Gaussian shape with FWHM 4 pixels and amplitude 0.1, the backgroundfb has
a Gaussian autocorrelation function with FWHM 8 pixels and standard deviation 0.05, and the mean background
f̄b is the anthropomorphic phantom shown in Fig. 2, which corresponds to a slice of the Zubal phantom [43]. We
determine measurement variance by assuming a total of5 × 105 counts.

We consider three different models for the CHO channels: Non-overlapping square channels withM = 4 (SQR)
and overlapping difference-of-Gaussians channels withM = 3 (S-DOG) andM = 10 (D-DOG), as defined by
Abbey et al. [15]. Figure 3 shows plots of the SNR for QPWLS reconstructionwith the roughness penalty in (80)
and various values ofβ. The SNR is plotted for each of the three channel sets mentioned above and internal noise
covarianceΠint = σ2I with σ2 = 0.005. All the SNR values in these plots are normalized with respect to the
ideal SNR in (26). The abscissa of the plots represents the resolution of the QPWLS reconstruction, defined as the
FWHM (in pixels) of the reconstructed image when the true object is a noiseless impulse. This FWHM is a measure
of the amount of smoothing imposed by QPWLS. The resolution equals 1 pixel forβ = 0, which corresponds to
unregularized WLS, and it increases asβ increases.

For all three channel sets, Fig. 3 shows a sharp SNR drop for very large amounts of regularization. Similar
behavior was reported by Qi [22], who also shows that this SNRdrop occurs only when internal observer noise is
present. Apparently, internal noise is an important factorto consider when optimizing regularization methods with
respect to detectability.

However, no similar drop in SNR occurs for very small amountsof regularization. In Fig. 3, for all three
channel sets and with internal noise present, the peak SNR achieved by QPWLS is only slightly higher than the
SNR achieved by unregularized WLS (β = 0). We also investigated different amounts of imaging noise and/or
background variability and obtained very similar results (not shown here). That is, unregularized WLS led to SNR
very close to the peak SNR attainable with QPWLS and the roughness penalty in (80). Once again, we have a
situation in which regularization is of minimal benefit in the known-location detection task – even with a CHO
model that includes overlapping channel passbands and internal noise.

Fig. 3 also compares the exact SNR, computed from (70), to theapproximate SNR, computed from (73). The
agreement between the two confirms the accuracy of our Fourier-domain approximations.

IV. CONCLUSIONS

Our analysis shows that, for the task of known-location signal detection, there are unregularized reconstruction
methods that can lead to exactly optimal SNR for several linear observer models from the literature. Even for the
CHO with internal noise, unregularized reconstruction canlead to SNR very close to the peak SNR attainable with the
given channels and internal noise level. Therefore, we conclude that optimizing regularized reconstruction does not
lead to any significant improvement of SNR performance in comparison to unregularized reconstruction in known-
location detection tasks. This conclusion concurs with experimental results showing that the post-smoothing of noisy
images has little benefit for human observers as far as performance in a known-location task is concerned [15].

It is interesting to contrast this to the results of Qi and Leahy, who analyzed the effect of regularization on the
contrast-to noise ratio (CNR) [39]. As opposed to the SNR, the CNR exibits a pronounced peak for an intermediate

June 21, 2005 DRAFT



16

1 128

 
1

128

(a) Mean background

1 128
0

1

2

3

4

5
f̄b
fs

(b) Profile with signal

Fig. 2. Mean background and profile through the mean background with the target signal superimposed.
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Fig. 3. SNR of CHO versus QPWLS reconstruction resolution forthree different channel sets. The exact and approximate SNR is computed
from (70) and (73) respectively. All SNR values are normalized with respect to the upper bound (ideal SNR for the internal-noise-free observer)
in (26).

amount of regularization. This may be explained by the fact that the CNR is equivalent to the SNR of an observer that
utilizes an impulse as its template. Since this template performs no smoothing of its own, the optimal reconstructor
must perform some smoothing. On the other hand, the templates of the observers that we considered here are all
weighted versions of the mean signalf̄s (typically not an impulse), so they do perform some smoothing on the
reconstructed image and, as a result, there is little benefitin terms of the SNR from additional smoothing performed
by the reconstructor.

The relatively small significance of regularization throughout our analysis indicates that detection performance
in tasks where the target signal location is known exactly isof limited use as a criterion for optimizing the free
parameters of regularized reconstruction methods. Furthermore, the finding that some form or another of unfiltered
backprojection is an optimal reconstructor for several of the observer models considered here, shows that resolution
is not an essential image quality as far as known-location detectability is concerned. Since known-location tasks
are easy enough to perform optimally with poor resolution, it is important to examine whether there are more
complicated tasks where regularization has a more significant effect. A relevant area of investigation is the analysis
of regularized image reconstruction methods with respect to detectability in tasks with location uncertainty, a
direction that recent work is in the process of exploring [44]–[46].
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