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Abstract

We consider the task of detecting a statistically varying signal of known lotatio a statistically varying
background in a reconstructed tomographic image. We analyze themparfce of linear observer models in this task.
We show that a broad family of linear observers can exactly achieve ajptietection performance if one chooses a
suitable reconstruction method. This conclusion encompasses ssredrkhown observer models from the literature,
including models with a frequency-selective channel mechanism ebitegly, the “optimal” reconstruction methods
are unregularized and in some cases quite unconventional. Thedis eegjgest that, for the purposes of designing
regularized reconstruction methods that optimize lesion detectability, kitmation tasks are of limited use.

Index Terms

Emission tomography, lesion detection, observer models, channeliagdlihy observer, penalized maximum-
likelihood.

I. INTRODUCTION

Objective evaluation of the quality of an image requirescgping the goal that the image will be used to achieve.
Typical uses of medical images can be categorized into eitm where the goal is to measure the value of some
parameter of interese(g, radioactivity distribution), and classification, whetestgoal is to decide among several
possible states of the trute.§, the presence or absence of a tumor) [1]. By evaluating isagth respect to a
task of interest, one can compare and rank the imaging sgstemeconstruction algorithms that produce these
images. In the case of classification tasks, such evaligatian be performed directly by applying ROC analysis
to experiments that record the classification performarideuman observers [2]-[4]. However, not only are such
experiments time-consuming, but also the performance afdmiobservers does not lend itself to optimization
through analytical tools. The alternative is to turn to neatlatical observer models.

The ideal observer models that are well-known from stafstilecision theory [5] exploit all available statistical
information on the classification task at hand. Howevereaeshers have found that human observers do not
perform ideally and have proposed observer models thatuatdor human suboptimality [6]-[9]. As a result,
various popular linear observer models exist in the litegteither in their ideal form [10], or with the addition
of frequency-selective channels and internal noise §14,2.2]. The Channelized Hotelling Observer (CHO) [9] in
particular, has been found to predict human observer padnce in several detection tasks [12]-[15]. Furthermore,
strategies have been proposed for estimating the temiatdireear observer model directly from human observer
data [16], [17].

Since the performance of the ideal observer is invariantrip ronsingular data transformation, it cannot be
used to evaluate and rank image reconstruction methodsefbe, one can optimize reconstruction methods with
respect to detectability only for suboptimal observer ni®dech as the ones mentioned above. Significant attention
has been focused on analyzing the performance of severalli@ar observers for the task of detecting a signal
of known location in tomographic images [18]-[23]. One ca® uhese analytical performance approximations
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to tune user-specified parameters involved in image reamigin methods, such as regularization parameters in
penalized-likelihood reconstruction [24].

In this paper we extend our analysis from [20] to show that@abrfamily of linear observer models and their
channelized counterparts can exactly achieve optimabpaegnce (for a certain internal noise model) in the detactio
of a statistically varying signal on a statistically vanyibbackground without the need for regularization. Further
insight into the performance of channelized observers eagadined through local shift invariance analysis. Using
such an analysis, we present evidence of more situationsevthe CHO in particular can achieve approximately
optimal performance in this task without regularization.

The paper is structured as follows. Section Il defines thedfiein task and the general form of the observers
and reconstruction methods that we will be consideringti®edll analyzes the detection performance of several
well-known observers, with the objective of finding reconstion methods that allow each of these observers to
achieve optimal performance. We show that there is a braadyfaf linear observers that can achieve the optimum
with unregularized reconstruction. Section IV summarittes conclusions of our analysis.

[I. THE DETECTION TASK
A. Object model

Let f denote the true object being imaged (or an approximatiorhefttue object inR"). To express our
uncertainty about the object, we allow it to be a random @eqearameterized by two spatial coordinates. The
object f consists of ebackgroundf, and it may or may not also containsggnal of interestf,, which we assume
to be localized in space. The detection task is to determimethver the signaf, is present or not in the objedt,

i.e., to decide between the following pair of hypotheses:

Hy : f=5hH (signal absent)
H, : f=7fi+fs (signal present) (1)

In emission tomography, for example, where the objgds a radioactivity distribution, the backgroun could
correspond to normal radioactivity and the sigifalto additional radioactivity absorbed in the area of a lesion

The backgroundf, and the signalf; are random and statistically independent. We denote thpieatations by
f» and f, respectively. We denote their covariances Gy and /C, respectively. In the general case where both
background and signal are randol§, and/C; are positive definite. In the special case known asstgaal known
exactly(SKE) detection task, we havé, = 0 and thus a deterministic sign#l = f.. Similarly, in thebackground
known exactlyBKE) task, we havéC, = 0 and thus a deterministic backgrougfg = f. In all cases, we assume
that fy, fs, K, andIC, are known.

B. Measurement model

In the applications that interest us, the true objctannot be observed directly. The decision between hypeshes
H, and H, has to be based on a noisyeasuremengy € R" that depends oif. For a given instance of the object
f, the measuremenyj is random due to noise inherent in the imaging system.

In the following, we useE[-] to denote expectation arcbv{-} to denote covariance. All moments are averages
over bothy and f, except when they are accompanied by the subsgtiph which case they are averages only
over f, or when they are conditional averages oydor a given instance of, in which case the usudlf notation
is used. Finally, we use the notatieff; when referring to moments conditional on the event that tygsis H;
is true. We assume knowledge of the following statisticshef measuremeny:

y = E[y|H\] - E[y|Ho 2
11, Cov{y|H;}, i=0,1, 3)

(1>

where we use£” to denote definitions.

In emission tomography the measuremgnt a noisy sinogram, whose elements are independent angoReis
distributed conditional on the objegt. The conditional mean and covariance of the sinoggaare, respectively,

Elylf] = Af+r
Cov{y|f} = diag{Af+r},

June 21, 2005 DRAFT



where we use the notatiatiag{v} for a diagonal matrix with diagonal elements equal to thenelets of vector
v. The linear operato¥d models the tomographic imaging system and the vecterR™ represents “background
events” such as scatter and/or random coincidences [25], Bbth .A andr are assumed to be deterministic and
known. The moments of the sinograsmunder hypothesig¢i;,i = 0,1 are then given by

Ely|Hi] = Es[Elylf]|H:] = AEs[fIHi]+r (4)
Cov{y|H;} = Ey[Cov{y|f}|H:]+ Covs{E[y|f]|H:i}
= dlag{AEf[f|H7] +T}+ACOVf{f|H1j}A,, (5)

where we use’™ to denote the adjoint of an operator or equivalently the plax transpose of a matrix. Under the
assumption thaf;, and f, are independent, using (4) and (5) for each of the two hypeth@& (1) and substituting
in (2) and (3) yields, for emission tomography,

y = Af, (6)
I, = diag{Af,}+AK,A’ (7)
II, = II,+diag{Af,} +AK A" (8)

C. Image reconstruction methods

An image reconstruction method is a mapping of the measunsgeinto an estimated imagg¢. We focus here

on linear reconstruction methods, as several common taapbg@r reconstruction techniques either are or can be
approximated as linear. We denote a generic linear reearietrby an operato£. The reconstructed image is then
given by .

fly)=Zy. (9)
We may view the reconstructioﬁ either as a vector in a Hilbert space, in which casé a general linear mapping
from R™¢ to that Hilbert space, or as a discrete representatioR"in in which caseZ is a matrix inR"r>"d,
Combining the linear reconstruction method in (9) with tradmoments from (2) and (3) yields the following
expressions for the moments of the reconstructed image:

E{.ﬂHl} - E{ﬂHo}
Cov{f\Hi} - ZILZ, i=0,1. (12)

2y (10)

An example of a well-known family of reconstruction methaklat can be approximated as linear is femalized-
likelihood family. These methods obtain the estimated image by maxgiraimobjective function

fly) = ar%(l)aX[D(% Af) — R(f)], (12)

where the objective function is composed ofdata-fit term D(-,-) and aregularizationterm R(-). The non-
negativity constraintf > 0 is used in emission tomography, whefeis a radioactivity distribution. A subset of
penalized-likelihood methods to which we will refer latee #enalized Weighted Least-Squares (PWLS) methods.
These make use of a data-fit term that is quadratic in the blfjec

for some measurement-domain weighting ma#¥ When the regularization term is also quadraticfini.e.,
R(f) = f'Rf, (14)

for some linear operatoR, we have quadratically penalized WLS (QPWLS) reconstruction

In general, penalized-likelihood tomographic recongtauccan be approximated as linear, except maybe when
enforcing the non-negativity constraint [27]. Here we assuhat the signal of interest appears on a background that
is sufficiently high to render the non-negativity consttaivactive around the signal location, so these reconsirsict
can be considered linear near the signal. For example, ihtmenegativity constraint is ignored, one can show
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that QPWLS reconstruction with data-fit term (13) and redgeddion term (14) is equivalent to takinﬁ(y) =
(AWA+R) LA Wy, which corresponds to the linear reconstructor

Z=(AWA+R)AW. (15)

For R = 0, we get the unregularized WLS reconstructor, which simplximaes the data-fit term (13).

D. Observer models

The termobserverrefers to the entity making the decision between hypothégesind H,. Observers acting
directly on the measurememt would be very likely to grossly overestimate human obsepeanformance, since
humans have difficulty distinguishing small features in @ogram. In the following, we will focus on observers
that are applied to the reconstructed imqbesince this situation better corresponds to common imagmagtice.

We consider observers that decide between hypothBgeand H, based on the reconstructed imagjeand a
decision rule that, similarly to Neyman-Pearson tests, games some scalaest statistic

t=1t(f) =t(Zy) (16)

to somethresholdT"

Decide H; if ¢(f) > T, otherwise decidédy,

wheret() is the discriminant functionand 7" is independent of the data. The specific form of the discramin
function depends on the observer model considered. Ourigdal optimize the reconstructa€ with respect to
the performance of various observer models of interesteénditection off;.

E. Figures of merit

One can quantify the detection performance of an observetrdnyng its Receiver Operating Characteristic
(ROC) curve, a plot of the probability of taue positive(deciding thatH; is true whenH; is actually true) versus
the probability of afalse positive(deciding thatH; is true whenH, is actually true). The curve is traced by
varying the decision thresholfi and theArea Under the CurvéAUC) is a common figure of merit for observer
performance. Another figure of merit is ti8gnal-to-Noise RatigSNR), defined as

E[t|H1] — E[t|Ho]
/3 Var{t[H,} +1 Var{t|Ho}

In the case where the test statistitcs Gaussian-distributed under both hypotheses, the SNRpiscally useful,
since it is monotonically related to the AUC [11, p.819].

SNR = (17)

IIl. OPTIMAL RECONSTRUCTION FOR SIGNAL DETECTION
A. ldeal observer
The discriminant function of the ideal observer in a Bayesianse is the well-known likelihood ratio [5, p.26],

to(f) = p(£ (y)| H1)/p(f(y)|Ho),

which is generally nonlinear irf. Even if the reconstructed imag is assumed to be Gaussian-distributed, the
likelihood ratio is quadratic inf and thus not Gaussian-distributed itself. Therefore, ooelavhave to optimize the

AUC of this test statistic directly rather than work with t8&R. However, the ideal observer is generally not used
to evaluate reconstruction methods, since its perform@aavariant to any nonsingular data transformation [28,
§10.1]. The observer models commonly used in the literatorevaluate image reconstruction methods are linear.
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B. Generic linear observers

Linear observers facilitate analysis and they have beendido approximate the suboptimality of human ob-
servers [29], [30]. Therefore we focus hereafter on obssrwith a general linear discriminant of the form

t(y) = w'f(y) (18)

for sometemplatew, which is a real vector in the same spacefasombining the linear discriminant in (18) with
the reconstruction moments from (10) and (11) yields thiofohg expressions for the moments o ¢(y):

E[t|H.] —E[t|H)] = w'Zy (29)
Var{t|H;} = w'ZIL;Z'w, i=0,1. (20)

Hereafter, we assume that the test statisiec Gaussian-distributed and focus on maximizing the SNRyhich
case the AUC is also maximized. For a linear obsemseand a linear reconstructag, the test statistie¢ is a
weighted sum of the elements of the measurement vgcten usuallyt can be approximated as Gaussian-distributed
by the central limit theorem. Furthermore, the probabititgtribution of an imagef reconstructed from Poisson
datay through a penalized-likelihood method of the form (12) canapproximated as Gaussian [31]. This is an
additional argument for consideringto be Gaussian-distributed when it is the product of a lingaserverw
applied on an imagg reconstructed by a penalized-likelihood algorithm.

Substituting the moment expressions (19) and (20) into yiellls the SNR of the generic linear observer in (18):

(w'Zy)?®  wZyy)Zw

SNR? = o = sty (21)
w' ZI1Z w w' ZI1Z w
where 1 1
14 5+ 5T (22)

is the unconditional covariance of the data. The left-haide ©f the SNR expression (21) has the form of a
generalized Rayleigh quotient. This form is maximized wigpect toZ’w when g.g, see [32, p.120])

Z'wx ! Y. (23)

When the observer template and the reconstructaB satisfy the condition (23), the observer at hand achieves
the maximum SNR that is attainable with any combination ohadr observer and linear reconstruction method.
Substituting the optimality condition (23) into the SNR eagsion (21) yields:

SNR7, <y’ 'y 2 SNR}, . (24)

The upper bound on the right-hand side of (24) is the maximINR &ttainable by any linear observer and linear
reconstructor in the detection task at hand.
For emission tomography, substituting (7) and (8) into (¢2)ds

=11+ AKC; A (25)

whereII £ diag{.A(f, + 1 ;) + r} is the imaging noise covariance for the unconditional meajra andiC; <
KCy + LIC, is the unconditional covariance of the object. SidEe/C, andIC, are positive definite, so Bl in (25),
thus the ratio in (21) is well-defined provide®w is nonzero. Substituting (6) and (25) into (24) yields théropl
SNR for the detection task at hand in emission tomography:

SNRE,, = f.F fs, (26)

where we define
F &2 AT'A=A0+AK;A) A (27)
= T+FK)'F=FIT+K;F)7", (28)

whereZ is the identity operator, angF £ A'TI' A. From (27) we derive (28) using the “push-through” identity
A(Z + BA)™ = (T + AB)".A [33]. The operatorsF and F have a form analogous to that of thésher
information matrix [5, p.80] for estimation problems that involve a Bmesystem and additive Gaussian noise. In
the SKE/BKE case, we hav#& = F.
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A simple combination that satisfies the optimality conditi®3) is Z = Z (which is not a reconstruction
method) andw = IT! g, which corresponds to the Hotelling observer (see sectle@.1) for detection in the raw
measurement domain rather than the reconstruction dordaimever, even when we restrict attention to observers
that are applied to reconstructed images, usually therstéirsmany ways to satisfy (23), as the analysis that follows
indicates.

C. Fisher observers and reconstructors

As shown in more detail below, several of the mathematicakokers that have been proposed in the literature
can achieve the optimal SNR when paired with simple recoogirs that correspond to some power of the Fisher
information operatotF applied to a backprojection of the data. For lack of a bettemtwe refer to this family of
reconstruction methods &ssher reconstructorand we allow them to include a regularization component:

Z,2AHOAT! = (F+R)DATT (29)
for someg € R and’H £ F + R for some regularization operat®. We use the notation

(q) A an q ZO
7t { (H")~7, ¢<0.

where “” denotes a pseudo-invefseTypically the regularizefR is chosen so that is nonsingular. The reason
we allow H to be singular in the analysis that follows is to accomodhteunregularized casR = 0, since F
itself may be singular.

The estimated image produced by the Fisher reconstruc@rig2

f=Z2y=HPAT 'y =HDA T+ AK;A )y,
which is a kind of weighted backprojection with a (perhapsieahat unusual) postfilter. Fgr< 0, this postfilter
is something like a regularized deconvolver. ko —1 in particular, the Fisher reconstructor yields
f=HATy, (30)

so it is equivalent to the QPWLS estimator from (15) wi#i = IT!.
Interestingly, for any Fisher reconstructor, even an wegized one, there is a corresponding linear observer
that achieves optimal detection performance. We refer imodhserver family agisher observers

w, 2 HP f, (31)
for somep € R. For a reconstructor of the family (29) and an observer offémeily (31) we have
Zlw, =T AR DOHP) £, (32)

By comparing (32) with (23) forj = Af, we see that the choice = —¢ leads to the optimal SNR,e., the
observerw_, achieves optimal SNR when applied to images produced byetenstructorZ,,. This is true even
for R = 0 and singularF, as we can show by using the fact tHatB'B)(@) (B'B)(~%) = B for any B, which
we obtain by singular value decomposition8f SubstituingB = II-'/2 4 yields the desired result. Fig. 1 shows
template profiles for some of the observers in (31). The mrafiape fop = 0.5 especially is reminiscent of those
estimated from human observersd, see [17]).

Fisher reconstructors witlR = 0 appear to be largely devoid of regularizafiorlowever, even for these recon-
structors, there are corresponding observers that caewachptimal performance in the detection task considered
here. As shown in the following sections, some well-knowseykers from the literature fall within this category.
This means that, if the reconstructed images are meant tatbmieted by these observersgularization is not
essentialin the reconstruction process, at least for the simple tetetask at hand.

1we follow Definition 6.2.1 of the pseudo-inverse in [34]. Anrhediate result of this definition is that for nonsingular nuatsi the pseudo-
inverse is the same as the inverse (Theorem 6.2.13 in [34{hisotation, we have+{(~1) = K = 1 wheneverK is nonsingular.

2For R = 0 and ¢ > —1, one could construe the Fisher reconstructor as being nadligiregularized since it entails somewhat “less
deconvolution” than the unregularized WLS reconstructawelver, this type of “regularization” does not improve thexdition number in the
case of singulatF, and it is unlike most regularization methods described inliteeature.

June 21, 2005 DRAFT



0.8

0.6

0.4

0.2

10 20 30 40 50 60

Fig. 1. Profiles through the center of (normalized) Fisherole templatesw, for p = 0,0.5, 1. Note thatw = fs.

1) Hotelling Observer (HO):The HO utilizes the optimal linear discriminant in a maxim@®NR sense, which,
similarly to (23), can be shown to be proportional to

wio 2 14 (E[f1H ] ~E[f1Ho| ), (33)
whereC ¢ L1 Cov{f|H1} +1 Cov{f|H0} . Substituting the moments gf from (10) and (11) into (33) yields
wyo = (ZMZ) Zy (34)

and thus 5 3 3
Zwyo = Z'(ZNZNV Zg =TTV ?Pyuje s I1712 g), (35)

where P12z (-) denotes the orthogonal projection of a vector oRtg. -z, the range space dii'/?Z’. By
comparing (35) with (23) we find that the HO achieves optimidRSor any Z that satisfiedI—'/2 g ¢ Riq/zz
or, equivalently,

m YyERz. (36)

There are a multitude of choices &f that satisfy the mild condition in (36). For example, aBy of the Fisher
reconstructor family (29) satisfies (36), as longass in the range space ol (e.g, ¥ = A f,). This is true
even for aZ, with R = 0 and singularF, following an argument similar to the previous section. Ftine HO
achieves the ideal SNR for any Fisher reconstructor, regelh or not. This result is consistent with the fact that
linear transformations of the data do not affect the peréoroe of the optimal linear observer [28,0.2] (except
when the transformation operator does not have a right $eyen which case performance degrades). Note that
for y = Af,, R = 0 andq # 0 the HO template in (34) becomesyo = .’7—'(7(1)127 which is the Fisher observer
template in (31) withp = —¢ and the optimality ofZ, for this observer follows by the previous section.

2) PreWhitening (PW) observeiThe template of the PW observer is given by

. T . .
wpw 2 Cov{f|Ho} (E|f|H:| ~E|f|Ho] ). (37)
Substituting the moments of from (10) and (11) into (37) yields
wpw = (ZIL,Z2") 2y

and thus . o
Zwpy = 2/ (Z2 ) 2y =11, Pz My 2g). (38)
By comparing (38) with (23) we find that the PW observer aatgeoptimal SNR for any2 that satisfies

Prazz Ty ) o I,
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which in turn implies thafl; /> § —cITy/*TI~ 4 must be orthogonal t&® .- ., for any constant. This finally
0

leads to the requirement that §
Zyx ZIII g,

i.e, that the sinogramg and IT,II1! g yield the same reconstructed image but for a scaling constus, in
general there is no linear reconstruct8rthat leads to optimal SNR for the PW observer.

An exception to this is the SKE case, whdie= II, and the PW observer is the same as the HO, so it can
achieve optimal SNR for infinitely many choices 8f. The minimal dependence of the SNR &hfor the HO is
consistent with the observation of @t al. that performance of the PW observer in the SKE task is inddgren
of smoothing method in the MAP case [19].

3) Non-PreWhitening (NPW) observeThe template of the NPW observer is given by

wnpw 2 E[f‘Hl} - E[f\Ho} . (39)
Substituting the moments of from (10) into (39) yields
WNPW — Zg (40)
and thus by (23) the NPW observer achieves optimal SNR forZrthat satisfies
ZZyxIly. (41)
For a Z, of the Fisher reconstructor family (29) angl = Af,, we haveZ'Z2g = I 'AH®DFf,, so
the optimal SNR is achieved wheR = 0 and ¢ = —1/2. This corresponds to the somewhat unusual Fisher
reconstructor i
z=F""an. (42)

Whether there are other solutions that satisfy (41) is an @ueblem. (There is also the choice &f = IT~1/2
which is not a reconstruction method. It is equivalent toltmtelling observer for sinogram-based detection.) Note

that for the reconstructor (42) the NPW template in (40) bee®wnpw = j-'l/zfs, which is the Fisher observer
template in (31) withp = 1/2.
The reconstructor in (42) yields the estimated image
f _ ]'_-(*1/2)A/1=[71y _ j-'l/Q(j-'TA’ﬂfly),

which is the unregularized WLS estimate, given in (30)#r= 0, followed by the unusual shift-variant post-filter

.7:1/2. This estimator is impractical for two reasons. Firstlye\f .A happens to have full rankF is usually very
ill-conditioned, so computing the WLS solution (30) will idge a multitude of iterations for any practical iterative

algorithm. Secondly, the shift-variant post-fil'rfﬁl/2 would be computationally intensive to implement for typica
problem sizes.
4) Region-of-Interest (ROI) observemhe template of the ROI observer is given by

wror = E[f|Hi] = fs. (43)
Then by (23) the ROI observer achieves optimal SNR for Znthat satisfies
Z'fxIy.
Since the ROI template corresponds to the Fisher observ@linwith p = 0, the optimal SNR fory = Af,
is achieved by the Fisher reconstructor with-= 0, i.e,
Z=A1" (44)
Curiously, in this case
FoATy,

This is a very blurry estimate of, being simply unfiltered backprojection. Yet for the ROI eh&r it is optimal,
and no amount of deconvolution will improve the SNR for thetattion task, which is an indication that the task
is too simple. The optimality of this blurry estimate is cistsnt with the demonstration in @it al. of the ROI

June 21, 2005 DRAFT



observer (for a penalized-likelihood reconstructor wRh= (Z) approaching the PW observer’s performance as
8 — oo [19].

Alternatively to (43), the ROI template may be defined as aimimg 1's wherever f, is non-zero and)’s
everywhere else. In this case, the optinglwould be the backprojector in (44) followed by a diagonal rapar
that weighs the reconstructed image by the shapg,piZ = diag{fs} A'TI'. This weighting does not improve
the resolution of the backprojection, so for either defimitof the ROI template the conclusion remains that optimal
performance is achieved with a very blurry estimator.

5) Summary of Fisher observers and reconstructdtsr three of the specific observer models considered above,
at least one reconstructor of the Fisher family (29) was fotm achieve the highest SNR possible for linear
observers. The following table summarizes these findings.

Observer q R Best estimator Interpretation

Hoteling|| R | =0 | (F+R)DATI 'y | Any Fisher reconstructore(g, WLS)
NPW || —1/2| 0 FoU » ATy | Partly deconvolved backprojection
ROI 0 - A'TI'y | Backprojection

Thus the linear reconstructogs that yield optimal detection performance for the HO, NPW{ &DI models need
not include any form of regularization. This is true evenhé tsystem operatad is a matrix with less than full
column rank. We conclude on theoretical grounds that regalgon is not absolutely essential for the HO, NPW,
and ROI observer models in the task of detecting a statilsticarying signal of known location on a statistically
varying background.

The optimality of blurry backprojections with respect taelgion performance for the HO, NPW, and ROl models
implies that spatial resolution is not important for thesmwn-location tasks. This is consistent with the findings
of Wagneret al, who attempted to optimize imaging systems with respectetfopmance in such a task, only to
find that a pinhole of very large size would be optimal [35]thelugh Wangeket al. considered a SKE/BKE task,
our analysis above shows that spatial resolution does agtan important role even in the presence of signal and
background variability.

Furthermore, there is a strong dependence of the optimahsteiction method on the specific observer model
considered. This implies that there is no universally optireconstruction method, even for the simple detectidk tas
considered here. As we mentioned in section I, the apparentipe of human-observer studies in the literature is
that humans do not perform as well as the ideal observereldrey;, the fact that there exist “simple” reconstruction
methods that allow the HO, NPW, and ROI observer models téeeetthe ideal linear-detection SNR (which is
also the overall ideal SNR for SKE tasks) suggests that theserver models, the tasks, or both are somehow
inappropriate. We proceed with analyzing the effect of tageation on the performance channelized observer
models,which are known to correlate well with human observers foovin-location tasks.

D. Channelized linear observers

1) Overview: Channelized observer models include a set of frequenegcthet channels in an attempt either
to construct an efficient basis for the approximation of tiheal linear observer [36], or to model the frequency
selectivity that is believed to characterize human viseateption [9]. Here we are interested primarily in the latte
type of channel, since suboptimal observers are the foaushé purpose of image reconstruction optimization.
However, the analysis that follows applies to either chafiagor.

Conceptually, channelized observers first pass the recmtstl imagef through a set of\/ bandpass filters.
The new feature vectat € CM is formed from the values of the filter outputs at the knowratamn of the target
signal center and can include additive noise:

é(y) = C/f<y) + €int,

whereC = [Cy,...,Cy] consists ofM operators. Thenth of these operators applies the impulse response of the
mth bandpass filter and samples the output at the center ofatgettsignal. Typically this filtering step is not
invertible and it greatly reduces the dimensionality of tetection probleme.g, M = 4 in [14]). The internal
noisevectore;,,; models inherent uncertainty in the observer's decisiomkiammssumed to be zero-mean Gaussian
with covariance matridI;,;.
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A generic channelized linear observer forms its test statls, by applying a templatev € CM to the output
of the filter bank:

ten(y) = w'é(y). (45)
For a linear reconstruction metha#l, combining the reconstruction moments from (10) and (11hle chan-
nelized linear discriminant in (45) yields the followingprssions for the moments &f;:
E[ten|H1] — E[ten|Ho] = w'C'Zy (46)
Var{ta|H;} = w'C'ZILZ'Cw + w'Ijw, i=0,1. (47)
Combining expressions (46) and (47) with (17) yields the SMRhe channelized observer:
(w'C'Zy)”
w/C' ZNZ' Cw + wjw
We would like to find a reconstructa€ that optimizes the SNR in (48). However,Iif;,,; # 0 is independent of
Z, then aZ of infinitely large norm would be optimal. Thus one would nesune constraint ol to optimize
the SNR in its most general form (48), but it is unclear whaistmints would be suitable.

A special case occurs if we assume that the covariance otkenal noise in the channels is proportional to
the covariance o€’ f due to imaging noise and object variability. Specificallg assume

Hint = Cintclzlﬂzc (49)

SNRZ, = (48)

for some constant of proportionality,;, which includes the special case of no internal noisecfgr = 0. The
model (49) is similar to the one proposed in [15], except {4&) does not presume independence of the internal
noise in individual channels. Under the assumption (493R& of the channelized linear observer in (48) becomes

1 (wCZy)? 1, ... _ SNRZ
SNRZ, = s < 'y = Mo 50
P Tt wCZNZCw 1 +am 7 T+ o (50)
The SNR upper bound in (50) is achieved for afiythat satisfies
Z'Cw x Iy, (51)

similarly to the non-channelized version in (21) and (23).

2) Channelized Hotelling Observer (CHOXs mentioned in section I, the CHO has been shown to be phatigu
successful in predicting human observer performance.gliegpthe optimal linear discriminant with respect to the
output¢ of the M-channel filter bank. This corresponds to the template

weno 2 TI(E[e|Hy] — E[é|Ho] )
= (C'ZIIZ'C+1I,)'C' 2y, (52)

whereTl; = 1 Cov{é¢|H,}+1 Cov{é|H,} . (The filters involved inC typically correspond to distinct frequency
bands. If this is the case, then the covariahitg can be assumed to be nonsingular even wikn = 0, so its
pseudo-inverse is the same as its inverse. Neverthelesaseva pseudo-inverse in the interest of generality.) By
substituting the CHO template from (52) into the SNR expoes$48), we find this observer's SNR:

SNRZuo =% Z'C(C'ZNZ'C + II,,)IC’ 2 3. (53)
In the special case of the internal noise model (50) we have
Z'Cwio x Z'C(C'ZNZ'C)IC'Zy=T1"V?Pri o ze (T2 ). (54)

By comparing (54) to the optimality condition (51), we fincatithe SNR upper bound in (50) is achieved when
Z satisfiesII= /2y € Rypi/2z¢ Of, equivalently,

H'geRze, (55)
which is similar to (36). To find & that satisfies (55), consider a reconstructor of the form

Z=wclc'we)lg A, (56)
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whereW is any image-domain weighting operator ads a mapping fronC to object space. For the in (56),
we haveZ’'C = II"1.AG, so the optimality condition (55) is satisfied if

Y € Rag. (57)

As long asG can be chosen to satisfy (57), the unregularized reconetri€ given in (56) allows the CHO
to achieve the optimal SNR. For emission tomography, wheee Af,, there is always a way to choosk to
satisfy (57); choosingg so that one of its “columns” is proportional tf, is the most obvious way.

The rather unconventional family of reconstructors in (58)hough ensuring optimal SNR for the CHO under
the internal noise model (49), does not produce what we lyscahsider to be reconstructed images. In essence,
the HO template for detection in the raw measurement domais- ([T ) is hidden in one of the rows of such
a reconstructor. Thus it is of interest to know whether retattors that are more conventional than (56) can be
combined with the CHO to achieve SNR values close to the @ptand, if so, whether these reconstructors must
include regularization. As shown below, such insight cag#&@ed by using approximations to the SNR expression
in (53) that are based on local Fourier-domain analysish @pproximations also facilitate analysis of internal Bois
models other than (49). In the following, we first provide @ebreview of local Fourier-domain approximations
and we then use them to analyze the SNR of the CHO for one uaremd and one regularized reconstructor
example.

3) Local Fourier analysis of CHO performancé:or the purposes of the Fourier analysis that follows, we wil
assume to have a discrete representation of the dbfectR"». Let U be a discrete Fourier operator, mapping an
object inR™» to some vector inC" known as thespectrumof the object. The Fourier operatdf is linear and,
due to the shift property of the Fourier transform, it can kéred through its action on an objeg that consists
of an impulse centered at the origin:

er =

1
1, (58)
v p
where 1 is the vector ofn;, ones. Without loss of generality, we choose the origin of Foerier transform to
coincide with the location where the signgl is centered.
Let A € C™ be thelocal frequency responsef the Fisher information operatdF at the origin, defined by

A = U.’Feo.

In general, the operatdF is shift-variant, so its behavior when applied to an objdbieo the impulsesy cannot

be fully defined through\. However, if the operatofF is applied to an object that is contained within a small
spatial extent around the origin, we can approximate theieh of F using A, i.e, we can approximateF as
shift-invariant within the spatial extent of the object.€eThloser the object comes to resembling an impulse, the
greater the accuracy of this approximation. Thus we appraté the operatofF within a small spatial extent
around the origin as

Fr~U'AU, (59)

where A = diag{A}. The elements o\, \;, ¥ = 1,...,n,, contain the local frequency response %Bf Since
JF is symmetric nonnegative definite, we force thgs to be real and nonnegative by discarding imaginary parts
and setting negatives to zero. Locally shift-invariantragpmations of F have proven to be useful and accurate in
several cases [18], [19], [31], [37]-[41].

We also use a locally shift-invariant approximation of thgeot covariance:

K;~U'N U, (60)

where N = diag{vy,k =1,...,np}. They,’s contain the local frequency responsef6f (i.e., the local power
spectrumof the objectf) around the location of,. Although it may be reasonable to approximate the backgtroun
f» as locally stationary within the spatial extent of the sigrapproximating the signalfs itself as locally
stationary would be less reasonable. That is, the appraikiméan (60) is much more accurate when the signal
fs is deterministic or when the signal covariarf€g is negligible in comparison to the background covarialke

SNevertheless, it is possible to generalize this analysisafoinfinite-dimensional object space.
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Using the approximations (59) and (60), we can start fron) (@8derive the following locally shift-invariant
approximation for the Fisher information operatbt

F=FI+KF) "~ u—1A<I +NA)TU=UTAU, (61)

whereA £ diag{\v,k =1,...,n,} and ), £ 1+um , which reduces to\ = A in the SKE/BKE case.

As in [20]-[22], we also use the fact thétis a collecnon of filters to get its frequency-domain reprdation.
Let t™ € C™ denote the frequency response of théh bandpass filter. Then theth operator inC has the form
C., = U " diag{t"}Ue, and, using (58), we get
1

V1
4) CHO and Fisher reconstructorsFor an unregularized Fisher reconstrucy, given by (29) withR = 0,
we can use the Fourier decompositions (61) and (62) alorly (@)t to obtain the approximations

CZ,5 ~ TAMIX (63)
c'zZUOz,c ~ TAUTT, (64)

where X = Uf, is the spectrum of the mean target signal. The approximgB8) assumes thaf, is highly
localized in space. The accuracy of the approximation (&hedds on how localized in space the channel responses
are. However, wher is positive definite, the expression (64) is exactdor —1/2, so it may also be reasonable
for ¢ near—1/2 (includingg = —1 andq = 0, which are the two cases of greatest practical interesgréypmation
error plots for some values @f were presented in [20].

Substituting the approximations (64) and (63) into (53)dgethe following approximation for the SNR of the
CHO when combined with an unregularized Fisher recongiruct

SNR g0 p ~ X' AMTOT(TACT2)T 4 T, ) I T ACTO X (65)

5) Channels with disjoint passband$he CHO filters are sometimes assumed to be bandpass filtérsligjoint
passbands. In that case, the vectdtshave disjoint nonzero entries and thé x M matrix on the right-hand side
of (64) is diagonal, so we have

C=U"'T, T =

[t' ..M. (62)

A 1 3 (14+q)
[T'A(1+Q)X]'rn — (tm) A X
V7 kezT:m
[T’A(HQ‘Z)T]mm - = Z I )\(1+2q)
'p k€T,

whereT,, = {k : t]* # 0} is the passband of theth filter and “” denotes complex conjugate.

If we furthermore combine the assumption of disjoint paeslsawith the internal noise model (49), the covariance
IT;,,; becomes diagonal (to within approximation (64)) and the eh@d9) coincides with the one proposed in [15].
Under these assumptions the SNR approximation in (65) fiegplto

2
%3 (14
L& Sher, Xaltp) A
! T(1+2
1 + cing m=1 ZkeTm \%"l%i v

We now examine the conditions under which the approximatB 8N\(66) can reach the SNR upper bound in (50).
6) Achievability of the optimal SNRfo determine how closely the approximate SNR in (66) can @gogr the
SNR upper bound, define vectong® andv™ with elements

SNREpo.r ~ SNR} £ (66)

ul' 2 XeNgerys

R A,

respectively. Then rewriting (66) and using Cauchy’s imé'nua yields
M 2

1 [(u™, v™)|
SNR? = ’ < m
b1t = flom)? T 1t mzzz Juml =

DX A (67)

keT

1 8 1 ... SNR}
X 2)\ ~ /.F = ling ,
1 + Cint ; | k‘ ¥ 1 + Cint fs f 1 + Cint

1+ 1n
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where7 = UM_,7,, denotes the combined passband of Ml channels. If the combined passbafiddoes not
contain all of the signal energy, then the SNR will be styiddss than the optimal SNR. This suboptimality is
expected due to the dimensionality decrease caused by #mels.

Is there an unregularized Fisher reconstrucqyr for which the upper bound in (67) can be achieved? Suppose
that each channel filter has a flat passbamd, ¢} = 1(¢7,,1- Then there are two obvious cases where the SNR
upper bound in (67) is achieved, as can be verified by substitor by using the requirement™ ~ v™ Vm :

e If the X}’s are constant over each passband, then0 (the unfiltered backprojector) will be optimal.

e If the A,’s are also constant over each passband, thenyan®R will be optimal.

In practice, it may be unlikely that either the’s or the X},’s areexactlyuniform over each channel’'s passband, but
if the passbands are reasonably narrow, then it is likely ttese spectra will bapproximatelyuniform over each
passband. So to within the accuracy of the approximationsidered above, one or more of these unregularized
reconstructors will nearly achieve the highest SNR obta&&or the given CHO channels and internal noise model.
Once again, regularization does not seem to play a crude) ewen for the CHO.

7) CHO and QPWLS reconstructor§he analysis in the previous section showed some situationdich one
or more unregularized reconstructors allow the CHO to aeh{approximately) optimal SNR in the detection task
at hand. We next examine the QPWLS family of regularized rsttantors, described in section II-C, to explore
how closely the CHO can approach the optimal SNR with a praktiegularized reconstruction method and to
examine the optimal choice of regularizer.

The general form of a QPWLS reconstructor is given in (15) dreldommonly used weighting matr¥d is
the one corresponding to MAP estimatidre., W = (Cov{y|f = f,}) ™ = II"'. For thisW, the reconstructor
in (15) becomes

Z=(F+R) AT (68)

Note that the QPWLS reconstructor in (68) is the same as theeFieconstructor (29) witly = —1 only if
Ky =0, i.e, only if there is no object variability. We assume throughthat the regularization operat@® is
chosen such thaF + R is positive definite. We would like to desigR to optimize CHO detection performance
in the QPWLS-reconstructed images.

To analyze CHO performance with QPWLS reconstruction, weirassthat bothF and R are diagonalized
locally by a common operator (the Fourier operdif): Specifically, we use (59), (60), (62) and also assume that

R~UTQU, (69)

where Q@ = diag{w,k =1,...,n,}. The real, nonnegative),’s contain the local frequency response of the
regularizer around the location ¢ft. Approximations of simultaneous diagonalization/Bfand R have been used
by other investigators to analyze observer performanck pénalized-likelihood reconstruction [18], [21], [22].

Substituting the QPWLS reconstructor (68) and the emissiomography measurement moments (6) and (25)
into the SNR of the CHO from (53) yields

SNR%HO’QPWLS =fIF(F+R)C[C(F+R)* (.7-'+.7-'7Cf.7-')(.7-'+7€)_1(3 + ] 'C(F+R) I Ff,. (70)
Similarly to section IlI-D.4, we use the local Fourier apgrations (59), (60), (69) to obtain:

C(F+R)'Ff, T'(A+Q)AX (71)

C(F+R)UF+FK;FF+R)'C ~ TA+Q) 7 (A+AN)A+Q)'T. (72)

Substituting (71) and (72) into (70) yields the followingpapximation for the SNR of the CHO when combined
with a QPWLS reconstructor:

SNREno.qpwrs ~ X' AA+ Q) ' T(T'(A+ Q) (A+ A’N)(A+ Q)T+ 1L, T/ (A + Q) 'AX. (73)

Q

8) Channels with disjoint passbandSimilarly to section 111-D.5, when the CHO channels havéaiig frequency
responses, th&/ x M matrix on the right-hand side of (72) becomes diagonal. \VBerag that its diagonal elements
are nonzeroi.e., the system has some nonzexp for each passband. (If not, the noninformative passbanéticou
be eliminated.)
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As in section 111-D.5, we combine the assumption of disjgiassbands with the internal noise model (49). Then

the approximate SNR expression in (73) becomes
2

1 X ‘Zke’fm Xi(t7)* 525
1 i m )‘2

+ Cint m=1 ZkGTm |tk 2;\k(/\kiwk)2
We now examine the conditions under which the approximatB 8N\(74) can reach the SNR upper bound in (50).

9) Achievability of the optimal SNRTo determine how closely the approximate SNR in (74) can g the
SNR upper bound, define vectoa$® andv™ with elements

SNR%HO,QPWLS ~ SNRg £ (74)

ug’ = Xk}‘llc/Ql{kETm}’

t?)\k/;\;lgﬂ(% + wr),

(1>

ui;!

respectively. Then rewriting (74) and using Cauchy’s iradify yields

M moomn2 M
SN TR ol AR A0 Tu S o . AW (75)
1+ Cint m=1 ||va 1+ Cint m=1 1+ Cint keT
1 . 1 . .. SNRZ
X2\ ~ 'Ff, = lino 76
1 + Cint Zk:| k‘ k 1 + Cint fs f 1 + Cint ( )

Once again, if the combined passbeahd= UY_,7,, does not contain all of the signal energy, then the SNR will
be strictly less than the optimal SNR.

The intermediate inequality in (75) becomes an equality’f oc v™ Vm. Suppose that each channel filter is an
ideal bandpass filter over some frequency bamd, t7" = 14,c7,.;. Then, for\, # 0, Xj, # 0, the intermediate
upper bound in (75) is achieved for example when

Ak
Wik Osz}\k /\]€7 (77)

where the constant: # 0 can be chosen arbitrarily. Using £ 2max; (X)) would keep thew,’s positive.
To within approximations (59), (60) and (69), the local fieqcy response in (77) corresponds to the following
nonnegative definite regularizer:

R = o(T + FK;) (U diag{X} ' U) - F. (78)

The R in (78) usually has a high-pass characteristic, so it cogldcénstrued as a regularization operator, but it
is quite different from standard forms of regularizationdiéd in the literature. Furthermore, substituting iRe
from (78) into the QPWLS reconstructor in (68) yields the rastior

F- é(u*l diag{ X} 1) ATy, (79)

Therefore this “optimal” choice oR results in an unregularized estimator that is simply a weigbackprojection
followed by the application of a “matched” filter (convolomi with f.,). This agrees with the conclusion from
section IlI-D.6 that regularization is not essential foe t6HO, if the passbands of the CHO channels are flat,
non-overlapping and with internal noise covariance of trenf (49).

Similarly to section 11I-D.6, a degenerate case occurs wihenchannel passbands are flat and the mean signal
spectrum{ X}, system spectrum{\;}, and object power spectrufy;} are all constant over each channel's
passband. Then the first upper bound in (75) is achievedrgchoice of regularizatioqw;} that is also constant
over each passband, including = 0. Once again, under the internal noise model (49), the ctaficegularization
is not important in this detection task if there is little hiit-passband variation of the mean signal spectrum, the
system spectrum, the object power spectrum, and/or thenehaesponse itself.
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10) CHO and QPWLS with a roughness penaltg: the previous section, where we placed no constraints on
the form of the regularizeR, we ended up with an “optimalR that yielded the unregularized estimator in (79).
We now constrain the regularizer to the commonly used forna guadraticroughness penaltyn this case, the
regularization operatoR in (14) is such that

R(f) = fﬁi PR RO (80)

j=1keN

where f; is the jth sample of the objecf, A; a neighborhoodof pixels around thejth pixel, ands > 0 a
regularization parameterA regularization term of the form (80) penalizes differeadetween neighboring image
pixels, thus favoring smoother images. For simplicity, vemsider here a first-order neighborhaag, consisting

of the four closest (top, bottom, left and right) neighbgrisixels. The only free parameter in the regularizer (80)
is thus the regularization parameter

We now provide an example of howaffects the SNR of the CHO with overlapping or non-overlaggassbands
in the presence of internal noise. We consider the case wHeoerresponds to a 2-D PET system model with
the characteristics of a CTI ECAT 931 scanner (matrix gi2& x 128, pixel size4.7mm, 192 radial samples with
3.1mm spacing, 160 projection angles ou&0°), generated by the ASPIRE software package [42]. We asshate t
the target signajf; has a known Gaussian shape with FWHM 4 pixels and amplitudetiielbackgroundf, has
a Gaussian autocorrelation function with FWHM 8 pixels arahdard deviation 0.05, and the mean background
f is the anthropomorphic phantom shown in Fig. 2, which c@oess to a slice of the Zubal phantom [43]. We
determine measurement variance by assuming a totabof0° counts.

We consider three different models for the CHO channels:-di@rlapping square channels with = 4 (SQR)
and overlapping difference-of-Gaussians channels with= 3 (S-DOG) andM = 10 (D-DOG), as defined by
Abbey et al. [15]. Figure 3 shows plots of the SNR for QPWLS reconstructiéth the roughness penalty in (80)
and various values gf. The SNR is plotted for each of the three channel sets mesttiabove and internal noise
covariancell;,, = oI with o2 = 0.005. All the SNR values in these plots are normalized with respedhe
ideal SNR in (26). The abscissa of the plots represents gwuton of the QPWLS reconstruction, defined as the
FWHM (in pixels) of the reconstructed image when the true ctiea noiseless impulse. This FWHM is a measure
of the amount of smoothing imposed by QPWLS. The resolutiamaksgl pixel fors = 0, which corresponds to
unregularized WLS, and it increases @sncreases.

For all three channel sets, Fig. 3 shows a sharp SNR drop fgr laege amounts of regularization. Similar
behavior was reported by Qi [22], who also shows that this SIK#p occurs only when internal observer noise is
present. Apparently, internal noise is an important fatboconsider when optimizing regularization methods with
respect to detectability.

However, no similar drop in SNR occurs for very small amouotsregularization. In Fig. 3, for all three
channel sets and with internal noise present, the peak SKRvad by QPWLS is only slightly higher than the
SNR achieved by unregularized WL® & 0). We also investigated different amounts of imaging easd/or
background variability and obtained very similar resutist(shown here). That is, unregularized WLS led to SNR
very close to the peak SNR attainable with QPWLS and the rcegghipenalty in (80). Once again, we have a
situation in which regularization is of minimal benefit inetlknown-location detection task — even with a CHO
model that includes overlapping channel passbands anchahteoise.

Fig. 3 also compares the exact SNR, computed from (70), tapipeoximate SNR, computed from (73). The
agreement between the two confirms the accuracy of our Fedwimain approximations.

IV. CONCLUSIONS

Our analysis shows that, for the task of known-location algtetection, there are unregularized reconstruction
methods that can lead to exactly optimal SNR for severahlimbserver models from the literature. Even for the
CHO with internal noise, unregularized reconstructionleanl to SNR very close to the peak SNR attainable with the
given channels and internal noise level. Therefore, we lodecthat optimizing regularized reconstruction does not
lead to any significant improvement of SNR performance in garison to unregularized reconstruction in known-
location detection tasks. This conclusion concurs witheeixpental results showing that the post-smoothing of noisy
images has little benefit for human observers as far as peaftece in a known-location task is concerned [15].

It is interesting to contrast this to the results of Qi and hygavho analyzed the effect of regularization on the
contrast-to noise ratio (CNR) [39]. As opposed to the SNB,ENR exibits a pronounced peak for an intermediate
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(&

(a) Mean background (b) Profile with signal

Fig. 2. Mean background and profile through the mean backgreuith the target signal superimposed.

0.7} = 0 (WLS) [ B =0 (WLS) [ B=0(WLS) [
— — 0.82—— N 0.88[c
0.69
0.68 0.86
Z 0.67 4 z
& i % 0.84)
5 0.66; o °
[ [ [
5 0.65 2 S
g g g 0.82
S 0.64 S S
z z z
0.63 08
0.62
—©—Exact 0.72 —©-Exact 0.78 [—o—Exact
0.61 —— Approximate| ’ —<— Approximate| —<— Approximate|
1 15 2 25 3 35 4 1 15 2 25 3 35 4 45 1 2 3 4 5
Resolution (pixels) Resolution (pixels) Resolution (pixels)
(a) SQR channels (b) S-DOG channels (c) D-DOG channels

Fig. 3. SNR of CHO versus QPWLS reconstruction resolutionttioee different channel sets. The exact and approximate SNRmputed
from (70) and (73) respectively. All SNR values are normalingth respect to the upper bound (ideal SNR for the intenuade-free observer)
in (26).

amount of regularization. This may be explained by the faat the CNR is equivalent to the SNR of an observer that
utilizes an impulse as its template. Since this templatéopas no smoothing of its own, the optimal reconstructor
must perform some smoothing. On the other hand, the tensptdtéhe observers that we considered here are all
weighted versions of the mean signfl (typically not an impulse), so they do perform some smogtton the
reconstructed image and, as a result, there is little banefirms of the SNR from additional smoothing performed
by the reconstructor.

The relatively small significance of regularization thrbogt our analysis indicates that detection performance
in tasks where the target signal location is known exactlgfiimited use as a criterion for optimizing the free
parameters of regularized reconstruction methods. Fumihye, the finding that some form or another of unfiltered
backprojection is an optimal reconstructor for severahef dbserver models considered here, shows that resolution
is not an essential image quality as far as known-locatideatigbility is concerned. Since known-location tasks
are easy enough to perform optimally with poor resolutidnisiimportant to examine whether there are more
complicated tasks where regularization has a more signtfiefiect. A relevant area of investigation is the analysis
of regularized image reconstruction methods with respectidtectability in tasks with location uncertainty, a
direction that recent work is in the process of exploring]{446].
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